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Abstract— The rank-modulation scheme has been recently
proposed for efficiently storing data in nonvolatile memories.
In this paper, we explore [n, k, d] systematic error-correcting
codes for rank modulation. Such codes have length n, k informa-
tion symbols, and minimum distance d . Systematic codes have the
benefits of enabling efficient information retrieval in conjunction
with memory-scrubbing schemes. We study systematic codes for
rank modulation under Kendall’s τ -metric as well as under
the �∞-metric. In Kendall’s τ -metric, we present [k + 2, k, 3]
systematic codes for correcting a single error, which have optimal
rates, unless systematic perfect codes exist. We also study the
design of multierror-correcting codes, and provide a construction
of [k + t + 1, k,2t + 1] systematic codes, for large-enough k.
We use nonconstructive arguments to show that for rank mod-
ulation, systematic codes achieve the same capacity as general
error-correcting codes. Finally, in the �∞-metric, we construct
two [n, k, d] systematic multierror-correcting codes, the first for
the case of d = O(1) and the second for d = �(n). In the latter
case, the codes have the same asymptotic rate as the best codes
currently known in this metric.

Index Terms— Flash memory, rank modulation, error-
correcting codes, permutations, metric embeddings, Kendall’s
τ -metric, �∞-metric, systematic codes.

I. INTRODUCTION

THE rank-modulation scheme has been recently proposed
for storing data efficiently and robustly in nonvolatile

memories (NVMs) [12]. Its applications include flash
memories [5], which are currently the most widely used family
of NVMs, and several emerging NVM technologies, such as
phase-change memories [3]. The rank-modulation scheme uses
the relative order of cell levels to represent data, where a
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cell level denotes a floating-gate cell’s threshold voltage for
flash memories and denotes a cell’s electrical resistance for
resistive memories (such as phase-change memories). Consider
n memory cells, where for i ∈ [n] = {1, 2, . . . , n}, let ci ∈ R

denote the level of the i th cell. It is assumed that no two cells
have the exact same level, which is easy to realize in practice.
Let Sn denote the set of all n! permutations over [n]. The
n cell levels induce a permutation [ f1, f2, . . . , fn] ∈ Sn ,
where c f1 > c f2 > · · · > c fn . The rank-modulation scheme
uses such permutations to represent data. It enables memory
cells to be programmed efficiently and robustly, from lower
levels to higher levels, without the risk of over-programming.
It also makes it easier to adjust cell levels when noise appears
without erasing cells, and makes the stored data more robust
to asymmetric errors that change cell levels in the same
direction [12], [13], [29].

Error-correcting codes are essential for data reliability.
An error-correcting code is a set of elements in a metric space,
no two of which are too close together under its distance
measure. In the case of rank modulation, the space is Sn . As for
the distance measure, it is usually chosen in such a way that
small (common) errors in the physical medium correspond to a
small distance in the metric space. In the context of rank mod-
ulation for NVMs, the two most studied distance functions are
Kendall’s τ -distance, and the �∞-distance. It was suggested
in [13] that small charge-constrained errors correspond to a
small distance in Kendall’s τ -metric. In contrast, in [29] it
was shown that small limited-magnitude errors correspond to
a small �∞-distance.

Some results are known on error-correcting codes for
rank modulation equipped with Kendall’s τ -distance. In [13],
a single-error-correcting code is constructed based on metric
embedding, whose size is provably within half of the optimal
size. In [2], the capacity of rank modulation codes is derived
for the full range of minimum distance between codewords,
and the existence of codes whose sizes are within a constant
factor of the sphere-packing bound for any fixed number
of errors is shown. Some explicit constructions of error-
correcting codes have been proposed and analyzed in [23].
We also mention that the Ulam metric has been suggested as
a generalization of Kendall’s τ -metric and was recently studied
in the context of error-correcting codes in [7].

There has also been some work on error-correcting
codes for rank modulation equipped with the �∞-distance.
In [17] and [29] some general constructions and bounds
were given. A relabeling scheme, improving the distance
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TABLE I

COMPARISON OF LENGTH-n CODES IN KENDALL’S τ -METRIC

of codes was suggested in [30]. Several counting problems,
mainly concerning ball size under the �∞-metric, and optimal
anticodes, were studied in [15], [16], [26], and [27].

In this paper, we study systematic error-correcting codes for
rank modulation as a new approach for code design. In the
more common error-correcting setting over vectors equipped
with the Hamming distance function, an [n, k, d] systematic
code is a subset of length-n vectors whose projection onto a
given set of k coordinates has all possible length-k vectors
appearing exactly once. Additionally, distinct codewords are
at least distance d apart. These k positions are referred to
as the information symbols, whereas the rest of the posi-
tions are called redundancy symbols. If the code is linear,
it is well known (for example, see [21]) that any code has
an equivalent code with the same parameters that is also
systematic.

We shall be interested in the analog of systematic codes in
the space of permutations with either Kendall’s τ -distance or
the �∞-distance. Loosely speaking, in an [n, k, d] systematic
code (either in Kendall’s τ -metric or the �∞-metric), when
projecting the n-permutation codewords onto the k information
symbols, each possible k-permutation appears exactly once.
Additionally, there is a minimum-distance guarantee of d
between distinct codewords, which allows correction of up to t
errors, where t = �(d − 1)/2�. A more rigorous definition will
follow in the next section.

Systematic codes for rank modulation are mainly motivated
by memory-scrubbing applications. In such schemes, when
reading information from the memory, the users assume no
errors are present. To make certain this assumption holds,
an independent background process periodically reads infor-
mation from the memory and rewrites it with corrections if
needed (see for example [8, p. 578]). Memory scrubbing is
common in DRAM, and has also been studied for conventional
flash memory [1], [11].

In the context of a memory-scrubbing scheme with rank
modulation, since every permutation induced by the infor-
mation symbols appears in exactly one codeword, and since
we assume no noise when reading, the information symbols
of codewords can be mapped efficiently to data. Thus, no
decoding is required, and the mapping of permutations to data

by the readers may be done via enumerative source coding
(e.g., by ordering permutations lexicographically) in linear
time [6], [22]. In contrast, the independent memory-scrubbing
process does employ a decoding procedure.

The main contributions of this work are the design of
systematic codes, and the analysis of their performance.
In Kendall’s τ -metric we present families of [k + 2, k, 3]
systematic codes for correcting a single error. We show that
they have optimal parameters among systematic codes, unless
perfect systematic single-error-correcting codes, which meet
the sphere-packing bound, exist. We also study the design
of systematic codes that correct multiple errors, and provide
constructions for a wide range of parameters. In particular,
we show a construction for [k + t + 1, k, 2t + 1] systematic
codes capable of correcting t errors. Furthermore, we prove
that systematic codes have the same capacity as general
error-correcting codes. This result establishes that, asymptoti-
cally, systematic codes are as strong in their error-correction
capability as general codes. The systematic codes we present
in this work have the same encoding and decoding complexity
as the non-systematic codes presented in [23], but they incur a
rate penalty. The main constructions we present for Kendall’s
τ -metric are summarized in Table I, and compared with
previously-known results. The asymptotic code size is given
assuming the number of correctable errors is a constant t .
To facilitate the comparison with previous works, Table I
parametrizes codes by their length n, whereas in the rest of
the paper we use the number of information symbols, k, as
the main code parameter.

We also consider the �∞-metric, and provide two construc-
tions for systematic codes. The first construction is for [n, k, d]
systematic codes with d = O(1), and the second is for the
case of d = �(n). We show that the asymptotic rate of the
second construction equals that of the best codes currently
known. The main constructions we present for the �∞-metric
are summarized in Table II, and compared with previously-
known results.

The rest of the paper is organized as follows. In Section II
we provide the basic notation and definitions used throughout
the paper. In Section III we study systematic codes in
Kendall’s τ -metric. We turn in Section IV to explore
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TABLE II

COMPARISON OF CODES IN THE �∞-METRIC

systematic codes in the �∞-metric. We conclude in Section V
and present some open problems.

II. NOTATION AND DEFINITIONS

Let [n] = {1, 2, . . . , n}, and Sn denote the set of permu-
tations over [n]. A permutation f ∈ Sn is represented in
single-line notation by f = [ f1, f2, . . . , fn], where f (i) = fi .
We also denote the identity permutation by Id = [1, 2, . . . , n].
Finally, we denote by f −1 the inverse of the permutation f,
i.e., the permutation sending f (i) to i .

Consider a metric over the permutations Sn with a distance
function d : Sn × Sn → N ∪ {0}. An (n,M, dmin)-code is a
subset C ⊆ Sn such that |C| = M , and d( f, g) � dmin for
all f, g ∈ C , f 	= g. We say M is the size of the code, and
dmin is the minimum distance of the code.

In this work we shall consider two distance func-
tions: Kendall’s τ -distance, and the �∞-distance. The latter
�∞-distance function is easily defined for all f, g ∈ Sn by

d∞( f, g) = max {| f (i)− g(i)| | i ∈ [n]}.
For the former, Kendall’s τ -distance function, assume f ∈ Sn

is some permutation. An adjacent transposition on f switches
the values of f (i) and f (i +1) for some i ∈ [n−1]. Kendall’s
τ -distance [14] between f and g, denoted by dK ( f, g),
is defined as the minimal number of adjacent transpositions
required to transform f into g. This is sometimes also called
the bubble-sort distance.

We recall that in the rank-modulation scheme we have n
memory cells labeled by [n], and the level of the i th cell is
denoted by ci ∈ R. Assume ci1 > ci2 > · · · > cin , then
the permutation stored by the n cells is [i1, i2, . . . , in] ∈ Sn

(see [12]). Assume a permutation f ∈ Sn was stored, but a
distorted version of it, g ∈ Sn , was eventually read. It was
noted in [13] that small charge-constrained errors translate
to small Kendall’s τ -distance. In contrast, it was suggested
in [29] and [30], that small limited-magnitude errors translate
to small �∞-distance on the inverse permutation. This differ-
ence between storing the permutation or its inverse will play
a role in defining two versions of systematic codes.

In order to define systematic codes we need to define
two types of projections. Let A = {a1, a2, . . . , am} ⊆ [n] be
any subset, a1 < a2 < · · · < am . For any permutation f ∈ Sn ,
we define f |A to be the permutation in Sm that preserves
the relative order of the sequence f (a1), f (a2), . . . , f (am).
Intuitively, to compute f |A we keep only the coordinates of f
that appear in A, and then relabel the entries to [m] while

keeping the relative order. In a similar fashion we define

f |A =
(

f −1|A

)−1
.

To calculate f |A we keep only the values of f from A, and
then relabel the entries to [m] while keeping relative order.

Example 1: Let n = 6 and consider the permutation

f = [6, 1, 3, 5, 2, 4] ∈ S6.

We take A = {3, 5, 6}. We then have

f |A = [2, 1, 3],
since we keep positions 3, 5, and 6, of f , giving us [3, 2, 4],
and then relabel these to get [2, 1, 3].

Similarly, we have

f |A = [3, 1, 2],
since we keep the values 3, 5, and 6, of f , giving us [6, 3, 5],
and then relabel these to get [3, 1, 2]. �

We are now in a position to define systematic codes in
two different ways, depending on the metric.

Definition 2: An [n, k, d] systematic code, C, for Kendall’s
τ -metric, is an (n, k!, d) code such that

{
f |[k]

∣∣∣ f ∈ C
}

= Sk .

We call [k] the information symbols of the code, and
{k + 1, k + 2, . . . , n} the redundancy symbols of the code. The
redundancy of the code is defined as the number of redundancy
symbols, i.e., n − k.

The notation [n, k, d] uses square brackets, to distinguish
from the (n,M, d) notation of [2], [13], [29], and [30]
in which M denotes the number of codewords. We briefly
comment that the same notation, in the context of codes
over vector spaces, is used for linear codes. There, also, a
linear [n, k, d] systematic code has k information symbols and
redundancy n − k. However, the codes in this paper are over
permutations, and are, by no means, linear.

If we have an [n, k, d] systematic code in Kendall’s
τ -metric, reading just the levels of the first k cells and
comparing them, enables us to ascertain the relative positions
of the values 1, 2, . . . , k in the stored permutation, and there
is a unique codeword with this relative ordering. More pre-
cisely, assume a codeword f ∈ C is stored. If the levels
we read from the first k cells are c1, c2, . . . , ck , and their
ordering is ci1 > ci2 > · · · > cik , then i1 appears before i2
in the codeword, appearing before i3, and so on, until ik ,
i.e., f −1(i1) < f −1(i2) < · · · < f −1(ik).
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In contrast, in the setting of limited-magnitude errors
and the �∞-metric [29], the inverse of the permutation
read from the cells is protected by an error-correcting
code. Thus, if g is the codeword we want to store, we
would physically write its inverse g−1 to the cells using the
rank-modulation scheme. Then, reading just the levels of the
first k cells, c1, c2, . . . , ck , gives us the relative ordering of
g(1), g(2), . . . , g(k). This motivates the following definition.

Definition 3: An [n, k, d] systematic code, C, for the
�∞-metric, is an (n, k!, d) code such that

{
g|[k]

∣∣ g ∈ C
} = Sk .

We call [k] the information coordinates of the code, and
{k + 1, k + 2, . . . , n} the redundancy coordinates of the code.

III. SYSTEMATIC CODES IN KENDALL’S τ -METRIC

This section is devoted to the study of systematic codes
in Kendall’s τ -metric. In Section III-A we introduce further
notation and some useful lemmas. In Section III-B we
study systematic single-error-correcting codes. We turn,
in Section III-C, to the case of general systematic error-
correcting codes. Finally, in Section III-D, we analyze the
capacity of systematic codes.

A. Preliminaries

We let Zn denote the set of integers {0, 1, . . . , n − 1},
as well as the additive group over these integers with addition
modulo n. It is well known (see [13], and references therein)
that there is a one-to-one correspondence between the permu-
tations of Sn and factoradic representations, which are mixed-
radix vectors from

Zn! = Z1 × Z2 × · · · × Zn−1 × Zn .

Let f ∈ Sn be any permutation. The factoradic representation
corresponding to f is a vector v = [v1, . . . , vn ] ∈ Zn! such
that vi ∈ Zi equals

vi =
∣∣∣
{

j
∣∣∣ j < i and f −1( j) > f −1(i)

}∣∣∣,
i.e., vi counts the number of elements of lesser value than i ,
but which appear to the right of i in the permutation
f = [ f1, f2, . . . , fn ]. We note that v1 = 0 always, and is
thus redundant in the representation, but we keep it to make
the notation simpler. From now on, we denote the factoradic
representation of f ∈ Sn by �( f ) ∈ Zn !, and the i th element
of �( f ) by �( f )i .

We now crucially observe that, in a systematic scheme,
setting the levels of the first k cells determines exactly the
first k entries of the factoradic representation of the permuta-
tion stored by the n cells. This is true regardless of the levels
of the last n − k cells. More succinctly, for any f ∈ Sn , and
for all 1 � i � k � n,

�( f |[k])i = �( f )i .

Example 4: Let n = 6 and k = 4. Take

f = [6, 1, 3, 2, 5, 4] ∈ Sn .

We then have

�( f ) = [0, 0, 1, 0, 1, 5],
as well as

f |[k] = [1, 3, 2, 4] and �( f |[k]) = [0, 0, 1, 0].
We observe that the first k coordinates of �( f ) and �( f |[k])
are the same. �

Another well-known fact (used by [2] and [13]) is the
following metric embedding:

dK ( f, g) � d1(�( f ),�(g)) =
n∑

i=1

|�( f )i −�(g)i |, (1)

where dK is Kendall’s τ -distance, and d1 is the �1-distance.
The following lemma gives a more refined version of (1),
taking into account the partition into information symbols and
redundancy symbols.

Lemma 5: Given f, g ∈ Sn, and 1 � k � n,

dK ( f, g) � dK ( f |[k], g|[k])+
n∑

i=k+1

|�( f )i −�(g)i | .

Proof: The proof is by induction on r = n − k. As the
base case, the inequality is clearly satisfied for r = 0, i.e.,
n = k. Now consider the inductive step. Suppose that the
inequality holds for some r − 1 = n − k − 1, and we will now
show that it also holds for r = n − k.

Consider a sequence of dK ( f, g) adjacent transpositions that
changes the permutation f into the permutation g. Of these
transpositions, assume that α adjacent transpositions involve
the integer n, and β adjacent transpositions do not involve n.
Clearly,

dK ( f, g) = α + β.

Since the integer n needs to be moved from position
n −�( f )n to position n −�(g)n , we get

α � |�( f )n −�(g)n|.
Note that those adjacent transpositions that involve n do
not change the relative order of the integers [n − 1] in the
permutation. Thus, to transform the integers [n − 1] from
their relative order in f to their relative order in g, by the
induction assumption, we get

β � dK ( f |[k], g|[k])+
n−1∑

i=k+1

|�( f )i −�(g)i |.

That leads to the conclusion.
Example 6: Let n = 3 and k = 2 and consider

f = [1, 3, 2] and g = [2, 1, 3].
In this case, the inequality of Lemma 5 becomes an equality
since

dK ([1, 3, 2], [2, 1, 3]) = 2

= 1 + |1 − 0| = dK ([1, 2], [2, 1])+ |�( f )3 −�(g)3|.
The equality, however, does not always hold. For instance, if

f ′ = [1, 3, 2] and g′ = [2, 3, 1],
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we get

dK ([1, 3, 2], [2, 3, 1]) = 3

> 1 + |1 − 1| = dK ([1, 2], [2, 1])+ |�( f )3 −�(g)3|.
�

We now present an inequality for ball sizes in Sn , which
will be useful for the analysis of systematic codes. Given
a permutation f ∈ Sn , the ball of radius r centered at f ,
is defined by

Br ( f ) = {g ∈ Sn | dK ( f, g) � r},
for any 0 � r �

(n
2

)
. We recall that the maximum distance

for any two permutations in Sn is
(n

2

)
(for example, see [13]).

A simple relabeling argument suffices to show that the size of
a ball does not depend on the choice of its center. Therefore,
we will use |Br (n)| to denote |Br ( f )| for any f ∈ Sn .

An exact expression for |Br (n)| is known [19]. However,
for our purposes, we will use the inequality of the following
lemma.

Lemma 7: For all n � 1 and 0 � r �
(n

2

)
,

|Br (n)| �
(

n + r − 1

n − 1

)
.

Proof: Since the center of a ball does not affect its size,
consider the ball centered at the identity, Br (Id). It follows
from (1) that

|Br (Id)| � |{ f ∈ Sn | d1(�( f ),�(Id)) � r}|. (2)

Since, conveniently, �(Id) is the all-zero vector, we have for
any f ∈ Sn that

d1(�( f ),�(Id)) =
n∑

i=1

�( f )i .

We further note that �( f )1 = 0 always.
Thus, the right-hand side of (2) is upper bounded by the

number of non-negative-integer vectors of length n − 1 whose
entry sum is at most r . This is easily seen to be the same
as the number of ways r identical balls can be thrown into
n non-identical bins, and hence,

|Br (n)| �
(

n + r − 1

n − 1

)
.

B. Systematic Single-Error-Correcting Codes

We start by presenting two constructions for systematic
[k + 2, k, 3] codes, capable of correcting a single error. The
first construction uses a direct manipulation of the permuta-
tions to construct the codewords, and is somewhat restricted in
its choice of parameters. In contrast, the second construction
uses a metric embedding technique, and applies to all para-
meters. We then show the codes are optimal unless perfect
single-error-correcting codes exist.

Construction A: Let k � 3 be an integer such that either
k or k + 1 is a prime. For any f ∈ Sk, and for any integer
j � 1, we define the following function:

ρ j ( f ) =
(

k∑
i=1

(2i − 1) j f (i)

)
mod m, (3)

where m = k if k a prime and m = k + 1 if k + 1 is a prime.
We construct the code

C =
{

f ∈ Sk+2

∣∣∣ �( f )k+ j = ρ j ( f |[k]), for all j ∈ [2]
}
.

�
Theorem 8: The code C from Construction A is a systematic

[k + 2, k, 3] code in Kendall’s τ -metric.
Proof: We easily observe that the information symbols [k]

are unconstrained, and so
{

f |[k]
∣∣∣ f ∈ C

}
= Sk .

Furthermore, since a choice of the order of the information
symbols determines the positions of the two redundancy
symbols uniquely, we also have |C| = k!.

It now only remains to show that the minimum distance
of C is 3. We know that either k is a prime, or k + 1 is a
prime. Let us first handle the former case. Let f, g ∈ C be
two codewords, f 	= g. We divide our proof into three cases,
depending on dK ( f |[k], g|[k]).

a) Case 1: dK ( f |[k], g|[k]) = 1. In this case, we can write

f |[k] = [a1, a2, . . . , ai , ai+1, . . . , ak],
g|[k] = [a1, a2, . . . , ai+1, ai , . . . , ak]

for some i ∈ [k − 1], i.e., f |[k] and g|[k] differ by an adjacent
transposition of the i th and (i + 1)st elements.

Let us now define 	 = ai+1 − ai . It follows that

�( f )k+1 −�(g)k+1 ≡ 2	 (mod k).

Since 1 � |	| � k − 1 and k � 3 is a prime, we know that
2	 is not a multiple of k. As a result, we get

|�( f )k+1 −�(g)k+1| � 1.

Similarly, we have

�( f )k+2 −�(g)k+2 ≡ (2i − 1)2ai + (2i + 1)2(ai +	)

−(2i − 1)2(ai +	)− (2i + 1)2ai

≡ 8i	 (mod k).

Again, 8i	 is not a multiple of k since 1 � i, |	| � k − 1
and k � 3 is a prime. This implies that

|�( f )k+2 −�(g)k+2| � 1.

Thus, by Lemma 5, we get

dK ( f, g) � dK ( f |[k], g|[k])+
k+2∑

i=k+1

|�( f )i −�(g)i |

� 1 + 1 + 1 = 3.

b) Case 2: dK ( f |[k], g|[k]) = 2. Let us denote

f |[k] = [a1, a2, . . . , ak].
By our assumption, there exist 1 � i, j � k − 1 such that g is
obtained from f as a result of two adjacent transpositions: one
exchanging locations i and i +1, and one exchanging locations
j and j + 1. We distinguish between two cases.
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In the first case, {i, i + 1}∩{ j, j + 1} = Ø. Without loss of
generality, assume i < j , and then we have

g|[k] = [a1, . . . , ai+1, ai , . . . , a j+1, a j , . . . , ak].
Let us define 	1 = ai+1 − ai , and 	2 = a j+1 − a j . Then
we get

�( f )k+1 −�(g)k+1 ≡ 2(	1 +	2) (mod k).

If 	1 +	2 is not a multiple of k, then by the same reasoning
as before,

|�( f )k+1 −�(g)k+1| � 1.

If 	1 +	2 is a multiple of k, then we can write 	2 ≡ −	1
(mod k). Hence,

�( f )k+2 −�(g)k+2 ≡ (2i − 1)2ai + (2i + 1)2(ai +	1)

+ (2 j − 1)2a j + (2 j + 1)2(a j −	1)

− (2i − 1)2(ai +	1)− (2i + 1)2ai

− (2 j − 1)2(a j −	1)− (2 j + 1)2a j

≡ 8(i − j)	1 (mod k).

Since 8(i − j)	1 is not a multiple of k, we have

|�( f )k+2 −�(g)k+2| � 1.

In the second case, {i, i + 1} ∩ { j, j + 1} 	= ∅. Thus, either

g|[k] = [a1, . . . , ai+2, ai , ai+1, . . . , ak],
or

g|[k] = [a1, . . . , ai+1, ai+2, ai , . . . , ak],
for some i ∈ [k − 2]. By defining 	1 = ai+2 − ai+1 and
	2 = ai+2 − ai in the first case, or 	1 = ai+1 − ai and
	2 = ai+2 − ai in the second case, and with the same
arguments as above, it can be proved that either

|�( f )k+1 −�(g)k+1| � 1,

or

|�( f )k+2 −�(g)k+2| � 1.

Combining all the cases together, by Lemma 5, we get

dK ( f, g) � dK ( f |[k], g|[k])+
k+2∑

i=k+1

|�( f )i −�(g)i |

� 2 + 1 = 3.

c) Case 3: dK ( f |[k], g|[k]) � 3. This is the easiest case,
since by Lemma 5,

dK ( f, g) � dK ( f |[k], g|[k]) � 3.

Finally, we note that if k + 1 is a prime, we can repeat the
proof in its entirety, replacing modk with mod(k + 1).

Before continuing to the next construction we would like
to consider encoding and decoding algorithms for the code
from Construction A. For the encoding procedure, we start
by mapping an integer from Zk! to a permutation f ′ ∈ Sk .
This may be accomplished in linear time [22]. Then, using the
description of Construction A, the two redundancy symbols

are easily placed in their correct position, and we receive a
codeword f ∈ C such that f |[k] = f ′.

Decoding may be done efficiently as well. Assume
f ∈ C ⊆ Sk+2 was transmitted, while g ∈ Sk+2 was received,
where dK ( f, g) � 1. A trivial decoding algorithm can check
the k+2 permutation in the ball of radius 1 centered around g,
and find the unique codeword f in it. This algorithm takes
O(k2) steps.

We can do better than that, using the decoding algorithm
we now describe. Let ĝ ∈ C be the unique codeword
in C having the same order of information symbols as g,
i.e., ĝ|[k] = g|[k]. If dK (ĝ, g) � 1, then f = ĝ is the correct
decoding. Otherwise, dK ( f |k, g|k) = 1, and we can write

f |[k] = [a1, . . . , ai , ai+1, . . . , ak],
g|[k] = [a1, . . . , ai+1, ai , . . . , ak],

for some i ∈ [k − 1].
Since a single adjacent transposition changed the order of

two information symbols, we deduce no redundancy symbols
were moved, and thus,

�( f )k+1 = �(g)k+1 and �( f )k+2 = �(g)k+2.

According to the proof of Theorem 8,

�(g)k+1 −�(ĝ)k+1 ≡ 2(ai+1 − ai ) (mod m),

�(g)k+2 −�(ĝ)k+2 ≡ 8i(ai+1 − ai ) (mod m),

where m is the prime in {k, k + 1}. Combining the
two equations together we get

�(g)k+2 −�(ĝ)k+2 ≡ 4i
(
�(g)k+1 −�(ĝ)k+1

)
(mod m),

and we can easily solve for i , thus recovering the coordinate
of the adjacent transposition. This decoding algorithm runs
in O(k) steps. We illustrate the decoding algorithm with the
following example.

Example 9: Let k = 4, and assume we would like to encode
[4, 1, 3, 2]. Thus, by Construction A, we look for a permutation
f ∈ S6 such that

�( f )5 =
(

4∑
i=1

(2i − 1) f (i)

)
mod 5 = 1,

�( f )6 =
(

4∑
i=1

(2i − 1)2 f (i)

)
mod 5 = 1.

We therefore transmit

f = [4, 1, 3, 5, 6, 2],
and let us assume the received permutation is

g = [4, 3, 1, 5, 6, 2],
due to an adjacent transposition in positions 2 and 3.
We extract the information symbols from g to obtain,

g|[k] = [4, 3, 1, 2],
and use that to construct the codeword

ĝ = [4, 6, 3, 5, 1, 2].
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Since dK (ĝ, g) > 1, we deduce that two information symbols
changed positions. Since

�(g)k+1 = 1 �(g)k+2 = 1

�(ĝ)k+1 = 2 �(ĝ)k+2 = 4,

we solve

1 − 4 ≡ 4i(1 − 2) (mod 5),

resulting in the correct positions of the adjacent transposition,
i = 2 and i + 1 = 3. �

Another strategy for constructing rank-modulation codes
for Kendall’s τ -metric, which was already employed
by [2] and [13], is to first construct a code C∗ with minimum
�1-distance d in Z

n , and then take

C = �−1(C∗ ∩ Zn !),
i.e., exactly those permutations whose factoradic represen-
tations are C∗ ∩ Zn !. Since by (1), the distance can only
increase, the resulting set of permutations is a code with
minimum Kendall’s τ -distance of at least d . The main chal-
lenge with this approach is to ensure a large intersection of
C∗ with Zn !.

For the construction of systematic codes we shall employ
the same methods, however, now we have an additional
challenge: we also require the intersection C∗ ∩ Zn ! to have
at least one vector for each possible prefix from Zk !.

Construction B: Let k � 2 be some integer. For a vector
x = (x1, x2, . . . , xk+1) ∈ Z

k+1, and for all m ∈ Z, we denote

sm(x) =
(

m∑
i=1

i xi

)
mod (2k + 3).

We construct a subset C ′ ⊆ Z
k+1 defined by

C ′ = {x ∈ Z
k+1|xk = �sk−1(2x)/3�,

xk+1 = sk−1(2x) mod 3}.
We denote by

C∗ = {(0, x1, x2, . . . , xk+1) | (x1, x2, . . . , xk+1) ∈ C ′},
the prepending of 0 to all the codewords of C ′. The constructed
code is

C = �−1 (C∗ ∩ Zk+2!
)
.

�
Theorem 10: For all k � 2, the code C from Construction B

is a [k + 2, k, 3] systematic code in Kendall’s τ -metric.
Proof: Consider the perfect (k + 1)-dimensional

single-error-correcting code in the �1-metric described by
Golomb and Welch in [9] and given by,

C ′′ =
{

x = (x1, x2, . . . , xk+1) ∈ Z
k+1

∣∣∣ sk+1(x) = 0
}
.

We contend that C ′ ⊆ C ′′, i.e., that C ′ is also a
single-error-correcting code in the �1-metric. Indeed, let
x = (x1, . . . , xk+1) ∈ C ′ be a codeword in C ′. Then, noting
that

k ≡ 3(k + 1) (mod 2k + 3),

and working modulo 2k + 3, and we get

sk+1(x) ≡ sk−1(x)+ kxk + (k + 1)xk+1

≡ sk−1(x)+ k �sk−1(2x)/3�
+ (k + 1) (sk−1(2x) mod 3)

≡ sk−1(x)+ (k + 1)(3 �sk−1(2x)/3�
+ (sk−1(2x) mod 3))

≡ sk−1(x)+ (k + 1)sk−1(2x)

≡ sk−1(x)+ 2(k + 1)sk−1(x)

≡ (2k + 3)sk−1(x) ≡ 0 (mod 2k + 3).

Thus, x ∈ C ′′, and so C ′ ⊆ C ′′.
We note how the first k − 1 coordinates of the codewords

of C ′ are unconstrained. Thus, for all 1 � i � k − 1 we can
set xi ∈ Zi+1 arbitrarily in any one of k! ways. Furthermore,
for any x ∈ C ′,

0 � �sk−1(2x)/3� � 2(k + 1)

3
� k,

as well as

0 � sk−1(2x) mod 3 � k + 1.

It follows that xk ∈ Zk+1 and xk+1 ∈ Zk+2. Hence, after
prepending a 0 to the codewords to obtain C∗, we get

∣∣C∗ ∩ Zk+2!
∣∣ = k!.

Finally, prepending the 0 does not change the minimum
distance, and so C∗ has minimum �1-distance of 3,
and therefore, so does the final constructed code
C = �−1(C∗ ∩ Zk+2!).

Encoding the code from Construction B is extremely easy.
In the factoradic representation we arbitrarily fill in the first
k − 1 entries. The last two digits are determined by the first
k − 1 digits, and a 0 is then prepended. We then convert
the factoradic representation to a permutation, which is the
desired codeword. The entire procedure takes O(k) steps if
we use [22] to convert from the factoradic representation to
permutations.

The decoding process is simple as well. Given a permutation
read from the channel, we first translate it to its factoradic
representation and remove the leading 0. The remaining k + 1
coordinates are decoded using any simple procedure for decod-
ing the Golomb-Welch code [9]. Again, the entire procedure
takes O(n) steps.

We note that the two constructions may produce different
codes. As an example, the [5, 3, 3] code from Construction A
contains the codewords

f = [1, 4, 3, 2, 5] and g = [2, 3, 4, 1, 5].
However,

�( f ) = [0, 0, 1, 2, 0] and �(g) = [0, 1, 1, 1, 0].
Since

d1(�( f ),�(g)) = 2,

the code cannot have originated from Construction B.



24 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 61, NO. 1, JANUARY 2015

An obvious question to ask is how good are the parameters
of the codes presented in Construction A and Construction B.
Any (n,M, d) code (systematic or not) has to satisfy the ball-
packing bound:

M � n!
|Br (n)| , (4)

where r = �(d − 1)/2�. Codes attaining (4) with equality are
called perfect. We thus reach the following simple corollary:

Corollary 11: The [k + 2, k, 3] systematic codes of
Construction A and Construction B have optimal size,
unless perfect systematic single-error-correcting codes exist
in Kendall’s τ -metric.

Example of perfect codes in other metrics are quite rare
(see [21]). In Kendall’s τ -metric there is a simple (3, 2, 3)
that is perfect:

C = {[1, 2, 3], [3, 2, 1]}.
This code is also systematic, i.e., a [3, 2, 3]-code. However,
beside this code, no other perfect code has been found
yet. It was recently shown in [4], that no perfect codes
exist in Sn under Kendall’s τ -metric when n is a prime,
or when 4 � n � 10.

To summarize, the [k + 2, k, 3] codes presented have min-
imal redundancy among systematic codes, unless there exists
a perfect systematic [k + 1, k, 3] single-error-correcting code.
Furthermore, compared with the single-error-correcting code
presented in [13], the codes presented here have more efficient
encoding and decoding algorithms.

C. Multi-Error-Correcting Codes
After studying systematic single-error-correcting codes, we

turn to consider systematic codes capable of correct more than
one error. We will first describe an explicit construction for a
wide range of parameters, and then turn to a greedy algorithm
leading us to prove a non-constructive existence result.

The systematic single-error-correcting code in Construc-
tion A may be generalized in a straightforward way: for
1 � k � n and r � 1 integers we define,

C =
{

f ∈ Sk+r

∣∣∣ �( f )k+ j = ρ j ( f |[k]) for all j ∈ [r ]
}
,

where ρ j (·) is given by (3). This gives us a family of
codes, including a [10, 4, 5] systematic code, and a [14, 4, 7]
systematic code. However, a general analysis of these codes
is difficult.

We therefore return to the strategy of metric embedding:
An �1-metric code is constructed in such a way as to allow
all possible values in the first few information entries, and
then the other positions are determined as a function of the
information entries.

Construction C: Let p be a prime, m � 2, 1 � t � p−3
2 ,

and p + tm � n � pm. Arbitrarily choose α1, α2, . . . , αn−1
to be n − 1 distinct non-zero elements of GF(pm). We define

H =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
α1 α2 . . . αn−1

α2
1 α2

2 . . . α2
n−1

...
... . . .

...
αt

1 αt
2 . . . αt

n−1

⎤
⎥⎥⎥⎥⎥⎦
.

Viewing GF(pm) as the vector space GF(p)m, we can think of
any entry of the form α

j
i in H as a column vector of length m

over GF(p). Thus, we shall consider H to be a (t + 1)m ×
(n − 1) matrix over GF(p). We denote

k = n − rank H.

We construct a subset C ′ ⊆ Z
n−1 defined by

C ′ =
{

x ∈ Z
n−1

∣∣∣ H x ≡ 0 (mod p)
}
,

where the entries of H x are computed modulo p.
We define the mapping μ : Z

n−1 → Z
n as follows,

μ(x1, x2, . . . , xn−1) = (0, x1, . . . , xk−1, xk mod

p, . . . , xn−1 mod p),

i.e., prepending a zero and reducing the last n − k entries
modulo p. We then set

C∗ = {μ(x) ∣∣ x ∈ C ′ }.
The constructed code is

C = �−1(C∗ ∩ Zn !).
�

Theorem 12: The code C from Construction C is an
[n, k, 2t + 2] systematic code in Kendall’s τ -metric capable
of correcting t errors. Furthermore, the code’s redundancy
satisfies n − k � tm + 1.

Proof: The matrix H is nothing but the parity-check
matrix for a BCH code over GF(p). Since the code is linear,
we can find a (k−1)×(n−1) generator matrix G for the code,
and in particular, we can require that it be systematic, i.e.,

G = [Ik−1|A],
where Ik−1 is the (k − 1) × (k − 1) identity matrix, and
A is a (k − 1) × (n − k) matrix over GF(p). As a side
note, getting to this systematic form, we may be required
to permute the coordinates of the code. Since the order
of elements α1, . . . , αn−1, which are used to construct H ,
is irrelevant, we assume it is chosen so that no change of
order of coordinates is required.

Let us denote by C ′′ the code whose generator matrix is G.
We recall the definition of the Lee-distance measure over
GF(p): Given two vectors x, x ′ ∈ GF(p)n−1,

dL(x, x ′) =
n−1∑
i=1

min
(
xi − x ′

i , x ′
i − xi

)
,

where subtraction is done in GF(p). It was shown
in [24, Th. 1], that when t + 1 � (p − 1)/2, the minimum
Lee distance of the code C ′′ is at least 2t +2. Since we require
t � (p − 3)/2, this is also the case here.

Our next goal is to transform C ′′ to a code over Z
n−1

with a minimum �1-distance guarantee. Since we have the
code C ′′ reside in the (n − 1)-dimensional cube GF(p)n−1,
we can place copies of that cube and tile the entire space Z

n−1.
This is known as Construction A of [20], and the resulting
code is exactly

C ′ =
{

x ∈ Z
n−1

∣∣∣ H x ≡ 0 (mod p)
}
,
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where the entries of H x are computed modulo p. Again,
by [20], the codewords of C ′ are spanned (using linear com-
binations with integer coefficients) by the generating matrix

G′ =
[

Ik−1 A
0 pIn−k

]
.

Thus, the minimum Lee distance of 2t +2 between codewords
of C ′′, and our requirement that 2t + 2 � p − 1, guarantee a
minimum �1-distance of 2t + 2 between codewords of C ′.

A quick inspection of G′ reveals that, due to the first k − 1
rows, any prefix of k − 1 integers may be completed to a
length-n codeword in C ′. Furthermore, given a codeword
in C ′, by reducing its last n − k entries modulo p we obtain
another codeword of C ′, due to the last n − k rows of G′.
It follows that

C∗ = {μ(x) | x ∈ C ′},
is a subset of the codewords of C ′ with a 0 prepended.

At this point we contend that
∣∣C∗ ∩ Zn !∣∣ = k!.

To prove this, we need to show that

xi mod p ∈ Zi+1, (5)

for all k � i � n − 1. It is well known (see also [24]) that
when H is viewed as a (t +1)m × (n −1) matrix over GF(p),

n − k = rank H � tm + 1. (6)

Thus, to prove (5), it suffices to verify it for the smallest
possible value of k, which by (6), is n − tm − 1. Since, in the
construction, we required p + tm � n,

xk mod p � p − 1 � n − tm − 1 � k,

and necessarily (5) holds. Hence, C is indeed an [n, k, 2t + 2]
systematic code in Kendall’s τ -metric, with redundancy at
most tm + 1.

Again, encoding and decoding are easily done. For an
encoding procedure, take any vector (0|u) ∈ Zk ! and map
it to

(0|u) �→ (0|u|u A mod p) ∈ C∗.

The permutation whose factoradic representation is given by
this vector is the encoded permutation.

For a decoding procedure, map the received permutation
to its factoradic representation, and use the decoding for
the Lee-metric code (essentially, a BCH decoding procedure)
given in [24].

We also note that for the least redundancy, we would like
to choose m = 2 in Construction C. To show that there are
infinitely many parameters for which the construction works
we present the following corollary.

Corollary 13: For any t � 1, and 6t + 3 � n � (2t + 3)2,
there exists a prime p, such that the requirements of
Construction C are satisfied with m = 2, and therefore there
exists an [n, k, 2t + 2] systematic code with redundancy at
most 2t + 1.

Proof: We recall Bertrand’s postulate (for example, see
[10, section 22.3]), stating that for any integer s > 1, there

exists a prime s < p < 2s. Given t and n we would like to
find a prime p to satisfy the requirements of Construction C
with parameter m = 2. These requirements

p � 2t + 3, (7)

p � n − 2t, (8)

p2 � n. (9)

If we have n − 2t + 1 � 2(2t + 2), then by Bertrand’s
postulate, there is a prime p satisfying (7) and (8). Rearranged,
this becomes n � 6t + 3. Finally, if we require n � (2t + 3)2,
then p2 � (2t + 3)2 � n, satisfying (9).

Along the same lines, but using two embeddings, one after
the other, we present a construction transforming systematic
binary codes under the Hamming metric, into systematic
codes of permutations under Kendall’s τ -metric. We recall
the definition of the Hamming-distance measure over {0, 1}m :
Given two vectors x, x ′ ∈ {0, 1}m ,

dH (x, x ′) = ∣∣{i ∈ [m] | xi 	= x ′
i

}∣∣.
The construction is a simple modification of the construction

given in [23]. The main idea for the first embedding is to use
a mapping Gm : Z2m → {0, 1}m such that for any two integers
t1, t2 ∈ Z2m ,

|t1 − t2| � dH (Gm(t1),Gm(t2)), (10)

where dH (·, ·) denotes the Hamming distance function.
By convention, G0 is the mapping returning the unique vector
of length 0. A simple way of creating such a mapping is to
use the encoding function for an optimal Gray code (see [25]
for a survey of Gray codes). Additionally, before presenting
the construction we require the following two identities from
[19, section 5.3.1, eq. (3)] and [18, section 1.2.4, Exam-
ple 42(b)], respectively:

�∑
i=1

⌈
log2 i

⌉ = �
⌈
log2 �

⌉− 2�log2 �� + 1,

�∑
i=1

⌊
log2 i

⌋ = (�+ 1)
⌊

log2 �
⌋− 2�log2 ��+1 + 2.

It is also easily seen that

�∑
i=1

(⌈
log2 i

⌉− ⌊log2 i
⌋) = �− ⌊log2 �

⌋− 1.

Construction D: Let C ′ be an (n′, 2k′
, d) binary systematic

code in the Hamming metric, where the first k ′ coordinates
are systematic. Furthermore, let k and n be integers such that

k ′ =
k∑

i=1

⌈
log2 i

⌉ = k
⌈

log2 k
⌉− 2�log2 k� + 1, (11)

n′ =
k∑

i=1

⌈
log2 i

⌉+
n∑

i=k+1

⌊
log2 i

⌋

= (n + 1)
⌊
log2 n

⌋− 2�log2 n�+1

+ k − ⌊log2 k
⌋+ 1. (12)
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We conveniently define

λ(i) =
{⌈

log2 i
⌉

1 � i � k,⌊
log2 i

⌋
k + 1 � i � n.

We now construct the following code,

C = { f ∈ Sn
∣∣ Gλ(1)(�( f )1)|| . . . ||Gλ(n)(�( f )n) ∈ C ′ }.

where || denotes vector concatenation. In particular, the nota-
tion implies that for any f ∈ C,

0 � �( f )i � 2�log2 i� − 1 � i − 1,

for all k + 1 � i � n. �
Theorem 14: The code C from Construction D is an [n, k, d]

systematic code in Kendall’s τ -metric.
Proof: The length of the code is obviously n. Let us

try to build a codeword f ∈ C . We note that the first
k symbols of �( f ) form a binary vector of length k′ after
being Gray-mapped and concatenated. Since the first k ′ bits
of the code C ′ are systematic, any such k ′-prefix may be
uniquely completed to form a codeword in C ′ by adding
appropriate n′− k ′ redundancy bits. These redundancy bits can
be divided into sets of size

⌊
log2 i

⌋
, with k +1 � i � n. Thus,

the reverse Gray mapping of these sets uniquely determines
�( f )k+1, . . . ,�( f )n , and therefore, f as well. It follows that
C is indeed a systematic code of length n and k information
symbols.

Finally, let f, g ∈ C be two distinct codewords. Then, using
(1) and (10) we get

dK ( f, g) �
n∑

i=1

|�( f )i −�(g)i |

�
n∑

i=1

dH
(Gλ(i)(�( f )i ),Gλ(i)(�(g)i )

)

� d.

Thus, C is an [n, k, d] systematic code.
Using Construction D we obtain the following codes.
Theorem 15: For any fixed t � 1, and for large-enough k,

Construction D produces a [k + t + 1, k, 2t + 1] systematic
code in Kendall’s τ -metric.

Proof: Fix the values of k and t , and denote
n = k+t+1. When plugging these values into Construction D,
(12) becomes

n′ = (k + t + 2)
⌊

log2(k + t + 1)
⌋− 2�log2(k+t+1)�+1

+ k − ⌊log2 k
⌋+ 1.

We now take an [n′, k ′, d] BCH code (that can be made
systematic). It is well known (see [21]) that the number of
errors such a code is capable of correcting is at least

⌊
n′ − k ′

⌈
log2(n′ + 1)

⌉
⌋
.

One can now verify that without the floor function,

lim
k→∞

n′ − k ′
⌈

log2(n′ + 1)
⌉ = t + 1.

Thus, for a large-enough value of k, the BCH code is capable
of correcting at least t errors, and d � 2t + 1. A direct
application of Theorem 14 completes the proof.

We comment that encoding and decoding is done in a
similar manner to the previous constructions. The complexity
of these procedures is dominated by the complexity of encod-
ing and decoding a BCH code, and is equal to the complexity
of the corresponding procedure suggested in [23]. When fixing
the number of correctable errors, t , we observe that the
size of the length-n code from Theorem 15 is �(n!/nt+1),
which is slightly worse than �(n!/(nt logt n)), the size of the
corresponding non-systematic code from [23].

As a final note, Construction D together with a binary
BCH code, cannot cover the case of d = �(n). However,
other constructions following the same basic idea may prove
useful for this regime.

D. Capacity of Systematic Codes

In this section, we prove that for rank modulation under
Kendall’s τ -metric, systematic error-correcting codes achieve
the same capacity as general error-correcting codes.

In [2], Barg and Mazumdar derived the capacity of general
error-correcting codes for rank modulation under Kendall’s
τ -metric. Let A(n, d) denote the maximum size of an
(n,M, d) code. We define the capacity of error-correcting
codes of minimum distance d as

cap(d) = lim
n→∞

ln A(n, d)

ln n! .

It was shown in [2] that

cap(d) =

⎧
⎪⎨
⎪⎩

1 if d = O(n),

1 − ε if d = �(n1+ε) with 0 < ε < 1,

0 if d = �(n2).

Turning to systematic codes, let k(n, d) denote the max-
imum number of information symbols in systematic codes
of length n and minimum distance d . Such codes are
[n, k(n, d), d] systematic codes, and have k(n, d)! codewords.
The capacity of systematic codes of minimum distance d is
defined as

capsys(d) = lim
n→∞

ln k(n, d)!
ln n! .

Before proceeding with the main result of this section,
we require the existence of codes with certain parameters.
We show this existence by means of a Gilbert-Varshamov-like
procedure.

Theorem 16: Let 2 � k < n and d � 1 be integers such
that
d−1∑
i=1

(
k + i − 2

i

)(
d − i − 1 + n − k

n − k

)
2min (d−i−1,n−k) <

n!
k! .

Then there exists an [n, k, d] systematic code in Kendall’s
τ -metric.

Proof: The proof strategy has three main parts. We first
describe a procedure for constructing a code. We then prove
that a successful run of the procedure indeed produces a code
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with the right parameters. Finally, we prove that given the
theorem requirements, the procedure is always successful.

We start by describing the procedure. We define C0 = ∅.
For all i � 1, the procedure searches for f ∈ Sn such that

min
g∈Ci−1

dK ( f, g) � d, (13)

and

f |[k] 	∈
{

g|[k]
∣∣∣ g ∈ Ci−1

}
. (14)

If we can continue the process, increasing i by 1 at each
iteration, and reach i = k!, then the procedure is successful,
and the constructed code is C = Ck!. Otherwise, the procedure
declares a failure.

Let us now show that a successful run of the procedure
produces an [n, k, d] systematic code. We start with an empty
set, and at each stage we add a codeword that is not to close
to previously chosen codewords. Thus, the minimum distance
of the resulting code is d . The second requirement at each
step, is that the information symbols do not repeat those of a
previously chosen codeword. Thus,

{
f |[k]

∣∣∣ f ∈ C
}

= Sk,

and the code is systematic.
For the final part of the proof, we would like to show

that given the theorem requirements, the procedure is always
successful. For any permutations h ∈ Sk there are exactly
n!/k! permutations f ∈ Sn such that f |[k] = h. At each step i
of the procedure we shall arbitrarily choose h ∈ Sk such that

h 	∈
{

g|[k]
∣∣∣ g ∈ Ci−1

}
.

We shall then try to find f ∈ Sn such that f |[k] = h, i.e., f
satisfies requirement (14). Our goal is to show there is at least
one such f that also satisfies the requirement of (13).

Given any such h ∈ Sk , let us upper bound the number of
permutations f such that f |[k] = h but f does not satisfy (13).
Let g ∈ Ci−1 be a codeword chosen in some previous iteration,
and assume dK ( f, g) � d − 1. Let us denote

dK ( f |[k], g|[k]) = j � d − 1.

By Lemma 5, in order for us to have dK ( f, g) � d − 1,
we must have

n−k∑
t=1

|�( f )k+t −�(g)k+t | � d − j − 1.

Thus, we would like to count the number of integer vectors of
length n − k, whose �1 weight is at most d − j − 1. Choosing
the magnitudes of the entries of such a vector is equivalent to
the number of ways d − j − 1 identical balls can be placed
in n − k + 1 non-identical bins. We also need to choose the
sign for the non-zero entries of such a vector, and there are
at most min(d − j − 1, n − k) such entries. It follows, that an
upper bound on the number of permutations f ∈ Sn such that
f |[k] = h, and dK ( f |[k], g|[k]) = j for the given g, is

(
d − j − 1 + n − k

n − k

)
2min(d− j−1,n−k).

Let N j denote the number of permutations g ∈ Ci−1
such that dK ( f |[k], g|[k]) = j . If we had this number, then
by a simple union bound, the total number of permutations
f ∈ Sn such that f |[k] = h, but (13) does not hold, is upper
bounded by

d−1∑
j=1

N j

(
d − j − 1 + n − k

n − k

)
2min (d− j−1,n−k).

To continue our upper bound, we replace N j with the
larger N ′

j , where N ′
j denotes the number permutations h′ ∈ Sk

such that dK (h′, h) = j . Our upper bound is now

d−1∑
j=1

N ′
j

(
d − j − 1 + n − k

n − k

)
2min (d− j−1,n−k). (15)

We do not have a nice closed-form expression for N ′
j , and

so, we would like to upper-bound (15). According to Lemma 7,

j∑
t=0

N ′
t = ∣∣B j (k)

∣∣ �
(

k + j − 1

k − 1

)
.

To relax the problem, we replace N ′
1, . . . , N ′

d−1 with variables
x1, . . . , xd−1 that are non-negative integers with the same
constraints on their partial sums, i.e.,

j∑
t=0

xt �
(

k + j − 1

k − 1

)
, (16)

and where x0 = N ′
0 = 1. We further define

F( j) = 2min (d− j−1,n−k)
(

d − j − 1 + n − k

n − k

)
,

and note that F( j) is a decreasing function in j . Thus, to upper
bound (15), we need to find values for x1, . . . , xd−1, subject
to (16), that maximize

d−1∑
j=1

x j F( j).

Since F( j) is decreasing in j , the maximization problem is
easily solved by setting

x j =
(

k + j − 1

k − 1

)
−
(

k + j − 2

k − 1

)
=
(

k + j − 2

k − 2

)
,

for k � 2 and 1 � j � d − 1.
As a result, the number of permutations f ∈ Sn , such that

f |[k] = h, but (13) does not hold, is upper bounded by

d−1∑
i=1

(
k + i − 2

i

)(
d − i − 1 + n − k

n − k

)
2min (d−i−1,n−k). (17)

Since the total number of permutations f ∈ Sn such that
f |[k] = h is n!/k!, if (17) is strictly less than n!/k! then
there exists a permutation f satisfying (13). Since we did not
restrict h in any way, this conclusion holds for any iteration
of the procedure, and the procedure succeeds.

Example 17: When d = 3 and n = k + 2, the inequality of
Theorem 16 can be simplified to

6

(
k − 1

1

)
+
(

k

2

)
< (k + 1)(k + 2),
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which holds for any k � 2. Therefore, there exists a
[k + 2, k, 3] systematic code for any k � 2. Note that this
result is consistent with the codes built in Construction A and
Construction B. �

Example 18: When d = 4 and n = k + 3, the inequality of
Theorem 16 can be simplified to

40

(
k − 1

1

)
+ 8

(
k

2

)
+
(

k + 1

3

)
< (k + 1)(k + 2)(k + 3),

which holds for all k � 2. Therefore, there exists a [k+3, k, 4]
systematic code for any k � 2. �

Building on Theorem 16, we now state the following useful
theorem.

Theorem 19: There exists a [k + d, k, d] systematic code in
Kendall’s τ -metric, for any k � 2 and d � 1.

Proof: Based on Theorem 16, to show that there exists a
[k + d, k, d] systematic code, we only need to prove

d−1∑
i=1

(
k + i − 2

i

)(
2d − 1 − i

d

)
2d−i−1 <

(k + d)!
k!

for k � 2 and d � 1. We note that the case d = 1 is trivial,
and so we will assume throughout the rest of the proof that
d � 2. Furthermore, to simplify the proof, we will prove a
stronger claim,

d−1∑
i=1

(
k + i

i

)(
2d − 1 − i

d

)
2d−i−1 <

(k + d)!
k! . (18)

Let us define

ψd(k) = k!
(k + d)!

d−1∑
i=1

(
k + i

i

)(
2d − 1 − i

d

)
2d−i−1.

We contend the ψd (k) is non-increasing in k, and to prove
this claim we consider ψd (k + 1)/ψd(k) and note that

ψd (k + 1)

ψd (k)
=

(k+1)!
(k+d+1)!

k!
(k+d)!

·
∑d−1

i=1

(k+1+i
i

)(2d−1−i
d

)
2d−i−1

∑d−1
i=1

(k+i
i

)(2d−1−i
d

)
2d−i−1

=
(k+1)!
(k+d+1)!

k!
(k+d)!

·
∑d−1

i=1
k+1+i

k+1

(k+i
i

)(2d−1−i
d

)
2d−i−1

∑d−1
i=1

(k+i
i

)(2d−1−i
d

)
2d−i−1

� k + 1

k + d + 1
· k + d

k + 1
< 1.

Thus, ψd (k) is indeed a non-increasing function of k.
If ψd (2) < 1 for all d � 2, then for any k, d � 2, we surely
have ψd (k) < 1, which proves (18). So our task is to prove
ψd (2) < 1, namely,

d−1∑
i=1

(
2 + i

i

)(
2d − 1 − i

d

)
2d−i−1 <

(2 + d)!
2! , (19)

for all d � 2.
For all 2 � d � 16 we can show that the inequality holds

by computing the exact values. In what follows, we show that
the inequality also holds when d > 16. The left-hand side

of (19) may be upper bounded by

d−1∑
i=1

(
2 + i

i

)(
2d − 1 − i

d

)
2d−i−1

� d(d + 1)(d + 2)

2

(
2d − 2

d

)
2d−2.

Thus, to prove (19), it suffices to prove(
2d − 2

d

)
2d−2 < (d − 1)!.

We define

ξ(d) = 1

(d − 1)!
(

2d − 2

d

)
2d−2.

We can numerically check that ξ(17) < 1, and since
ξ(d + 1)

ξ(d)
= 4d(2d + 1)

d(d + 1)(d − 1)
< 1

for all d > 16, we have ξ(d) < 1 for all d > 16, and this
completes the proof.

The following theorem is the main result of this section.
It shows that systematic codes have the same capacity as
general codes. This is done by using the systematic codes
whose existence is guaranteed by Theorem 19.

Theorem 20: The capacity of systematic codes of minimum
distance d is

capsys(d) =

⎧⎪⎨
⎪⎩

1 i f d = O(n),

1 − ε i f d = �(n1+ε) wi th 0 < ε < 1,

0 i f d = �(n2).

Proof: Since systematic codes are a special case of general
error-correcting codes, we naturally have

capsys(d) � cap(d).

Thus, to prove the claim, all that remains is to prove the other
direction of the inequality.

According to Theorem 16, there exists an [n, k, d] system-
atic code if k is the maximum integer that satisfies

d

(
k + d

d

)(
d + n − k

n − k

)
2n <

n!
k! . (20)

That is because
d−1∑
i=1

(
k + i − 2

i

)(
d − i − 1 + n − k

n − k

)
2min (d−i−1,n−k)

� d

(
k + d

d

)(
d + n − k

n − k

)
2n,

for all n > k � 2 and d � 2.
For such k, we have k(n, d) � k. For convenience, we define

the constant

α = lim inf
n→∞

k

n
.

We also recall the well-known Stirling’s approximation [28],

ln(m!) = m ln m − O(m).

Thus, if α > 0,

capsys(d) � lim inf
n→∞

ln k(n, d)!
ln n! � lim inf

n→∞
ln k!
ln n!

= lim
n→∞

αn ln(αn) − O(n)

n ln n − O(n)
= α.
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To prove the final conclusion, we will show that

α �

⎧⎪⎨
⎪⎩

1 if d = O(n),

1 − ε if d = �(n1+ε),
0 if d = �(n2).

(21)

We note that the last case is trivial, and so we only have to
prove the first two.

By our choice of k and by (20), we have

d

(
k + d + 1

d

)(
d + n − k − 1

n − k − 1

)
2n � n!

(k + 1)! .

It suffices now to consider the subsequence of k such that
limn→∞ k/n = α. It follows that

lim
n→∞

ln
(

d
(k+d+1

d

)(d+n−k−1
n−k−1

)
2n
)

ln
(

n!
(k+1)!

) � 1. (22)

To prove the first case of (21) assume d = O(n). Again,
by Stirling’s approximation, (22) becomes,

1 � lim
n→∞

ln
(

d
(k+d+1

d

)(d+n−k−1
n−k−1

)
2n
)

ln
(

n!
(k+1)!

)

� lim
n→∞

ln
(
d · 2k+d+1 · 2d+n−k−1 · 2n

)

ln(n!)− ln(k!)− ln(k + 1)

= lim
n→∞

O(n)

n ln n − αn ln(αn)− O(n)
.

Since α is a constant, we must therefore have α = 1.
For the second case, assume d = �(n1+ε) for 0 < ε < 1.

We observe that for a large-enough d ,
(

k + d + 1

d

)(
d + n − k − 1

n − k − 1

)

� (k + d + 1)k+1(d + n − k − 1)n−k−1

(k + 1)!(n − k − 1)!
� (2d)k+1(2d)n−k−1

(k + 1)!(n − k − 1)!
= (2d)n

(k + 1)!(n − k − 1)! .

By this observation, and by applying Stirling’s approximation
to (22), we get

1 � lim
n→∞

ln
(

d
(k+d+1

d

)(d+n−k−1
n−k−1

)
2n
)

ln
(

n!
(k+1)!

)

� lim
n→∞

n ln(2d)− ln ((k + 1)!(n − k − 1)!))
ln
(

n!
(k+1)!

)

= lim
n→∞

(1 + ε)n ln n − n ln n + O(n)

n ln n − k ln k + O(n)

= lim
n→∞

εn ln n − O(n)

(1 − α)n ln n − O(n)
.

Thus, α � 1 − ε, as we wanted to show.

IV. SYSTEMATIC CODES IN THE �∞-METRIC

We recall that the definition of systematic codes in the
�∞-metric differs from that in Kendall’s τ -metric. In an
[n, k, d] systematic code in the �∞-metric, when taking the
first k coordinates of the k! codewords and relabeling the
surviving k elements to [k], we obtain every permutation of Sk

exactly once.
The exact capacity for codes in the �∞-metric is unknown.

There is a large gap between the lower and upper bounds
on the size of optimal codes, mainly due to the lack of an
asymptotic expression for the size of balls in this metric. Thus,
to evaluate the parameters of our construction we will compare
the rate of the constructed systematic codes with that of known
general codes. Given an (n,M, d) code C in the �∞-metric,
its rate is defined as (see [29])

R(C) = log2 M

n
.

Note that this definition is somewhat different than that for
Kendall’s τ -metric (see [2]). The reason for the difference is
the fact that for a fixed normalized distance δ, the size of the
maximal code is only exponential in n (see [29]). If we were
to use the definition of rate as in Kendall’s τ -metric, then the
resulting rate of all codes would be 0.

We present two constructions for systematic codes, where
the first is adequate for distances d = O(1), and where the
second is intended for the d = �(n) case.

Construction E: Let 1 � d � n be positive integers, and let
1 � k � �n/d� be an integer as well. We denote

Ak,d = {1, 1 + d, 1 + 2d, . . . , 1 + (k − 1)d}.
We construct the code

C = {( f1, . . . , fn) ∈ Sn | { f1, . . . , fk} = Ak,d ,

fk+1 < fk+2 < · · · < fn}
�

Theorem 21: The code C from Construction E is an [n, k, d]
systematic code in the �∞-metric.

Proof: It is immediately evident that |C| = k!. Further-
more, every two distinct codewords in C disagree on at least
one of the first k coordinates. Since all entries in the first
k coordinates leave a residue of 1 modulo d , the �∞-distance
between distinct codewords is at least d . Finally, the projection
onto the first k coordinates is easily seen to provide all possible
permutations from Sk exactly once.

The optimal choice of k in Construction E is obviously
k = �n/d�, and it provides a code of size �n/d�!. This can be
compared with Construction 1 of [29] which gives a code of
size (�n/d�!)n mod d (�n/d�!)d−(n mod d). If we denote the rate
of the code from Construction E by R, and the rate of the
code from Construction 1 of [29] by R′, then

R

R′ = log2(�n/d�!)
log2

(
(�n/d�!)n mod d (�n/d�!)d−(n mod d)

) � 1

d
.

Encoding and decoding procedures for the code from
Construction E is quite simple. We note that, up to a reordering
of the coordinates, the codewords of C from Construction E
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are also codewords of the code from [29]. Thus, the simple
decoding procedure from [29] will suffice: given a received
( f1, . . . , fn) ∈ Sn , we ignore fk+1, . . . , fn , and for all i ∈ [k],
replace fi with the closest element from Ak,d . Encoding is
equally simple: in the spirit of [29], we translate an integer
from Zk! to a permutation over the elements of Ak,d (see
for example [6], [22]), and place the remaining elements of
[n]\Ak,d in ascending order. Thus, encoding and decoding for
the code of Construction E has the same complexity as the
corresponding procedures from [29].

We now turn to provide a construction suited for d = �(n).
Construction F: Let 1 � d � n be positive integers.

We recall Construction 1 from [29], of an (n,M, d) code,

C ′ = { f ∈ Sn | f (i) ≡ i (mod d), for all i ∈ [n]},
where

M = ∣∣C ′∣∣ = (�n/d�!)n mod d (�n/d�!)d−(n mod d) .

Let k be the largest integer such that k! �
∣∣C ′∣∣, and

let C ′′ be the set of all permutations over the set
{n + 1, n + 2, . . . , n + k}. Assume

C ′ =
{

f ′
1, f ′

2, . . . , f ′
|C ′|
}

C ′′ = {
f ′′
1 , f ′′

2 , . . . , f ′′
k!
}
.

We now construct the code

C = { f ′′
i ‖ f ′

i | 1 � i � k!} ,
where ‖ denotes vector concatenation. �

Theorem 22: The code C from Construction F is an [n +
k, k, d] systematic code in the �∞-metric.

Proof: The code is obviously of size k!, and by con-
struction, the projection onto the first k coordinates gives all
possible permutations exactly once. Since C ′ is a code with
minimum distance d (see [29] for proof), the code C also has
minimum distance of d in the �∞-metric.

We now turn to analyze the asymptotic rate of the code
from Construction F. Assume d = δn, where δ is a constant,
0 < δ < 1. By our choice of k, we have

1

k + 1

∣∣C ′∣∣ � |C| = ∣∣C ′′∣∣ = k! �
∣∣C ′∣∣. (23)

Let R denote the rate of C , and R′ denote the rate of C ′, i.e.,

R = log2 k!
n + k

,

R′ = log2

∣∣C ′∣∣
n

.

Thus, by (23),
(

1 − log2(k + 1)

log2 |C ′|
)

n

n + k
� R

R′ � n

n + k
.

Since 1 � k � n, while (see [29])
∣∣C ′∣∣ � 2(1−δ)n

we have

lim
n→∞

R

R′ = lim
n→∞

n

n + k
.

At this point we need to bound k, and we contend that

k � n

log2 log2 n
.

Let us assume, for k = ⌈n/ log2 log2 n
⌉

, that we have

k! �
∣∣C ′∣∣.

We easily see that

∣∣C ′∣∣ �
(⌈n

d

⌉
!
)d =

(⌈
1

δ

⌉
!
)δ�1/δ�n

= αn

for some constant α > 1.
On the other hand, we recall the well known bound

m! �
(m

e

)m
,

which holds for all positive integers m. Thus,

k! = ⌈n/ log2 log2 n
⌉! �

(
n

e log2 log2 n

) n
log2 log2 n

.

If indeed k! �
∣∣C ′∣∣ then necessarily
(

n

e log2 log2 n

) n
log2 log2 n

� αn,

and taking log2 of both sides gives us

n

log2 log2 n
log2

(
n

e log2 log2 n

)
� n log2 α.

However, this last inequality certainly does not hold for large-
enough n. It therefore follows that indeed

k � n

log2 log2 n
.

Finally,

lim
n→∞

R

R′ = lim
n→∞

n

n + k
� lim

n→∞
n

n + n
log2 log2 n

= 1.

Essentially, when d = �(n), we constructed systematic
codes with the same asymptotic rate and minimum distance
as the non-systematic codes appearing in [29], which are
currently the best codes known asymptotically. Furthermore,
the construction we presented can work with any other non-
systematic error-correcting code, provided it has an exponen-
tial size when d = �(n).

V. CONCLUSION

In this paper, we studied systematic error-correcting codes
for rank modulation under two metrics: Kendall’s τ -metric,
and the �∞-metric. In the former, we presented several
constructions, and found the capacity of systematic codes.
Efficient encoding and decoding schemes were also discussed.
In the latter, two constructions were given, one of them
asymptotically attaining the same rate as the best construction
currently known in this metric.

Some open questions remain. In Kendall’s τ -metric we still
do not know, given n and d , what is the largest [n, k, d]
systematic code possible. We are also interested in the question
of whether systematic perfect codes (or even general perfect
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codes) exist. In the �∞-metric, we are still missing tight
bounds, even asymptotically, on the parameters of general
codes, as well as for systematic codes. Furthermore, the last
construction lacks efficient encoding and decoding procedures.
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