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Bounds for Permutation Rate-Distortion
Farzad Farnoud (Hassanzadeh), Moshe Schwartz, Senior Member, IEEE, and Jehoshua Bruck, Fellow, IEEE

Abstract— We study the rate-distortion relationship in the set
of permutations endowed with the Kendall τ -metric and the
Chebyshev metric (the �∞-metric). This paper is motivated by
the application of permutation rate-distortion to the average-case
and worst-case distortion analysis of algorithms for ranking with
incomplete information and approximate sorting algorithms. For
the Kendall τ -metric, we provide bounds for various distortion
regimes, while for the Chebyshev metric, we present bounds that
are valid for all distortions and are especially accurate for small
distortions. In addition, for the Chebyshev metric, we provide a
construction for covering codes.

Index Terms— Rank modulation, rate-distortion, covering
codes, permutations, Kendall τ -metric, Chebyshev metric,
�∞-metric.

I. INTRODUCTION

IN THE analysis of sorting and ranking algorithms, it is
often assumed that complete information is available, that

is, the answer to every question of the form “is x > y?”
can be found, either by query or computation. A standard and
straightforward result in this setting is that, on average, one
needs at least log2 n! pairwise comparisons to sort a randomly-
chosen permutation of length n. In practice, however, it is
usually the case that only partial information is available.
One example is the learning-to-rank problem, where the solu-
tions to pairwise comparisons are learned from data, which
may be incomplete or difficult/expensive to collect [14], or
in big-data settings, where the number of items may be
so large as to make it impractical to query every pairwise
comparison [12]. It may also be the case that only an
approximately-sorted list is required, and thus one does not
seek the solutions to all pairwise comparisons. In such cases,
the question that arises is what is the quality of a ranking
obtained from incomplete data, or an approximately-sorted
list [12]–[14], [29].

One approach to quantify the quality of an algorithm
that ranks with incomplete data is to find the relationship
between the number of pairwise comparisons performed by
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the algorithm and the average, or worst-case, quality of the
output ranking, as measured via a metric on the space of
permutations. To explain, consider a deterministic algorithm
for ranking n items that makes n R queries and outputs a
ranking of length n. Suppose that the true ranking is ω. The
information about ω is available to the algorithm only through
the queries it makes. Since the algorithm is deterministic,
the output, denoted f (ω), is uniquely determined by ω. The
“distortion” of this output can be measured with a metric d
as d(ω, f (ω)). The goal is to find the relationship between R
and d(ω, f (ω)) when ω is chosen at random, and when it is
chosen by an adversary.

A general way to quantify the best possible performance
by such an algorithm is to use the rate-distortion theory on
the space of permutations. In this context, the codebook is the
set { f (ω) : ω ∈ Sn}, where Sn is the set of permutations of
length n, and the rate is determined by the number of queries.
For a given rate, no algorithm can have a smaller distortion
than what is dictated by rate-distortion.

For example, for the worst-case analysis, we are interested
in studying codes C ⊆ Sn , such that for any ω ∈ Sn there
exists ω′ ∈ C which satisfies

d(ω, ω′) � D,

for some D. By setting f (ω) = ω′, we are guaranteed every
point in space is distorted by f by no more than D. Such a
code C is called a covering code, since balls of radius D that
are centered around the codewords, cover the entire
space.

An important ingredient is the choice of metric to use.
A wide variety of metrics can be applied in various scenarios
to permutations, including the Kendall τ -metric, Spearman’s
footrule, the Chebyshev metric, and the Ulam metric [8].
In particular, the Kendall τ -metric is commonly used to
compare and aggregate rankings [9], [10]. Recently, in coding
theory, it was suggested that the rank-modulation scheme may
alleviate some of the problems associated with reliable storage
of information in non-volatile memories [16]. Subsequent
works [3], [17], [21], [27], [28], focused on error-correcting
codes, advocated the use of two metrics in particular in
the context of rank modulation: the Kendall τ -metric, which
counts the number of pairs that are ranked incorrectly, and the
Chebyshev metric (also called the �∞-metric), which is the
largest error in the rank of any item.

With this motivation, we study rate-distortion and covering
codes in the space of permutations under the Kendall τ -metric
and the Chebyshev metric. Rate-distortion and covering codes
over permutations have only been recently studied in depth,
starting with the work of [6], and followed by [18] and [24],
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all of which only use the Hamming distance over permu-
tations. The paper [14] considers Spearman’s footrule as a
measure of distortion over permutations and studies
comparison-based approximate sorting algorithms. Finally, the
work of [29] considers the asymptotics of permutation cov-
ering codes using Kendall’s τ -metric and the �1-metric of
inversion vectors. The latest is the only work on rate-distortion
and covering codes over permutations that studies metrics
motivated by the application to non-volatile memories.

Our results on the Kendall τ -metric improve upon those
presented in [29]. In particular, for the small distortion regime,
D = cn + O(1) (for c > 0), we eliminate the gap between
the lower bound and the upper bound given in [29]; for the
large distortion regime, D = cn2 + O(n), we provide a
stronger lower bound; and for the medium distortion regime,
D = cn1+α + O(n) (for 0 < α < 1), we provide upper and
lower bounds with error terms. Our study includes both worst-
case and average-case distortions for the Kendall τ -metric and
for the Chebyshev metric, as both measures are frequently
used in the analysis of algorithms. Note that permutation rate-
distortion results can also be applied to lossy compression of
permutations, e.g., rank-modulation signals [16]. Finally, we
also present covering codes for the Chebyshev metric, where
covering codes for the Kendall τ -metric were already pre-
sented in [29]. The codes are the covering analog of the error-
correcting codes already presented in [3], [17], [21], and [27].

The rest of the paper is organized as follows. In Section II,
we present preliminaries and notation. Section III contains
non-asymptotic results valid for both metrics under study.
Section IV and Section V focus on the Kendall τ -metric
and the Chebyshev metric, respectively. Finally, concluding
remarks are presented in Section VI.

II. PRELIMINARIES AND DEFINITIONS

For a nonnegative integer n, let [n] denote the set {1, . . . , n},
and let Sn denote the set of permutations of [n]. We denote
a permutation σ ∈ Sn as σ = [σ1, σ2, . . . , σn], where the
permutation sets σ(i) = σi . We also denote the identity
permutation by Id = [1, 2, . . . , n].

The Kendall τ -metric between two permutations ω, σ ∈ Sn

is the number of transpositions of adjacent elements needed to
transform ω into σ , and is denoted by dK(ω, σ ). In contrast,
the Chebyshev distance between ω and σ is defined as

dC(ω, σ ) = max
i∈[n] |ω(i) − σ(i)|.

In the following we explore some properties of Sn under
either dK or dC. Some of these properties are common to
both dK and dC, and in these cases we shall use the notation
d(ω, σ ) to denote the distance between ω and σ in either of
the two metrics.

Both dK and dC are invariant; the former is left-invariant
and the latter is right-invariant [8]. In other words, for
all f, g, h ∈ Sn ,

dK( f, g) = dK(h f, hg) and dC( f, g) = dC( f h, gh).

Hence, the size of the ball of a given radius in either metric
does not depend on its center. The size of a ball of radius r

with respect to dK, dC, and d, is given, respectively, by BK(r),
BC(r), and B(r). The dependence of the size of the ball on n is
implicit.

A code C is a subset C ⊆ Sn . For a code C and a
permutation ω ∈ Sn , let

d(ω, C) = min
σ∈C

d(ω, σ )

be the (minimal) distance between ω and C .
We use M̂(D) to denote the minimum number of codewords

required for a worst-case distortion D. That is, M̂(D) is the
size of the smallest code C such that for all ω ∈ Sn , we
have d(ω, C) � D. Similarly, let M̄(D) denote the minimum
number of codewords required for an average distortion D
under the uniform distribution on Sn , that is, the size of the
smallest code C such that

1

n!
∑

ω∈Sn

d(ω, C) � D.

Note that M̄(D) � M̂(D). In what follows, we assume
that the distortion D is an integer. For worst-case distortion
(but not for average-case distortion), this assumption does not
lead to a loss of generality as the metrics under study are
integer valued.

We also define

R̂(D) = 1

n
lg M̂(D), R̄(D) = 1

n
lg M̄(D),

Â(D) = 1

n
lg

M̂(D)

n! , Ā(D) = 1

n
lg

M̄(D)

n! ,

where we use lg as a shorthand for log2. It is clear that

R̂(D) = Â(D) + lg n!
n

, R̄(D) = Ā(D) + lg n!
n

.

The reason for defining Â and Ā is that they sometimes lead
to simpler expressions compared to R̂ and R̄. Furthermore,
Â (resp. Ā) can be interpreted as the difference between the
number of bits per symbol required to identify a codeword in

a code of size M̂ (resp. M̄) and the number of bits per symbol
required to identify a permutation in Sn .

Throughout the paper, for M̂, M̄, Â, Ā, R̂, and R̄, sub-
scripts K and C denote that the subscripted quantity corre-
sponds to the Kendall τ -metric and the Chebyshev metric,
respectively. Lack of subscripts indicates that the result is valid
for both metrics.

In the sequel, bounds on the binomial coefficient and
Stirling’s approximation (for example, see [7]) will be useful,

2nH(p)

√
8np(1 − p)

�
(

n

pn

)
� 2nH(p)

√
2πnp(1 − p)

, (1)
√

2πn(n/e)n < n! <
√

2πn(n/e)ne1/(12n), (2)

where H (·) is the binary entropy function and 0 < p < 1.
Furthermore, to denote limx→∞ f (x)

g(x) = 1, we use

f (x) ∼ g(x) as x → ∞,

or if the variable x is clear from the context, we simply write
f ∼ g.
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TABLE I

A SUMMARY OF THE ASYMPTOTIC BOUNDS ON ÂK (D) AND ĀK (D), WHERE c > 0, 0 < α < 1 ARE CONSTANTS

III. NON-ASYMPTOTIC BOUNDS

In this section, we derive non-asymptotic bounds, that is,
bounds that are valid for all positive integers n and D. The
results in this section apply to both the Kendall τ -metric and
the Chebyshev distance, as well as any other left-invariant or
right-invariant distances on permutations.

The next lemma gives two basic lower bounds for M̂(D)
and M̄(D).

Lemma 1: For all n, D ∈ N,

M̂(D) � n!
B(D)

, M̄(D) >
n!

B(D)(D + 1)
.

Proof: The first inequality follows from the fact that every
codeword covers at most B(D) permutations of Sn . For the
second inequality, fix n and D. Consider a code C ⊆ Sn of
size M and suppose the average distortion of this code is at
most D. There are at most MB(D) permutations ω such that
d(ω, C) � D and at least n! − MB(D) permutations ω such
that d(ω, C) � D + 1. Hence,

D > (D + 1)

(
1 − MB(D)

n!
)

.

The second inequality then follows.
The following theorem by Stein [26] can be used to obtain

existence results for covering codes (see, e.g., [7]), and thus
provide upper bounds.

Theorem 2 [26, Th. 2]: Consider a finite set X of cardi-
nality N, and a family {Ai }t

i=1 of sets that cover X, with
|Ai | � a for all i . Suppose each element of X is in at least q
of the sets Ai . Then there is subfamily of {Ai }t

i=1 containing at
most

N

a
+ t

q

(
1

2
+ 1

3
+ · · · + 1

a

)
� N

a
+ t

q
ln a

sets that cover X.
In our context X is Sn , Ai are the balls of radius D centered

at each permutation, and therefore N = t = n! and a = q =
B(D). Hence, the theorem implies that

M̂(D) � n!
B(D)

(1 + ln B(D)).

The following theorem summarizes the results of this
section.

Theorem 3: For all n, D ∈ N,

n!
B(D)

� M̂(D) � n!
B(D)

(1 + ln B(D)), (3)

n!
B(D)(D + 1)

< M̄(D) � M̂(D). (4)

IV. THE KENDALL τ -METRIC

The goal of this section is to consider the rate-distortion
relationship for the permutation space endowed by the Kendall
τ -metric. First, we find non-asymptotic upper and lower
bounds on the size of the ball in the Kendall τ -metric. Then, in
the following subsections, we consider asymptotic bounds for
the small, medium, and large distortion regimes. To help the
reader navigate the various asymptotic results in this metric,
a summary is given in Table I.

Throughout this section, we assume 1 � D < 1
2

(n
2

)

and n � 1. Note that D is upper bounded by
(n

2

)
, and

the case of 1
2

(n
2

)
� D �

(n
2

)
leads to trivial codes,

e.g., {Id, [n, n − 1, . . . , 1]} and {Id}.

A. Non-Asymptotic Results

Let Xn be the set of integer vectors x = x1, x2, . . . , xn of
length n such that 0 � xi � i − 1 for all i ∈ [n]. It is well
known (for example, see [17]) that there is a bijection between
Xn and Sn such that for corresponding elements x ∈ Xn and
ω ∈ Sn , we have

dK (ω, Id) =
n∑

i=2

xi .

Hence

BK(r) =
∣∣∣∣∣

{
x ∈ Xn :

n∑

i=2

xi � r

}∣∣∣∣∣ , (5)

for 1 � r �
(n

2

)
. Thus, the number of nonnegative integer

solutions to the equation
∑n

i=2 xi � r is at least BK(r), i.e.,

BK(r) �
(

r + n − 1

r

)
. (6)

This bound is already known, appearing as [29, Lemma 1].
Furthermore, for δ � 0 such that δn is an integer, it can be

shown that

BK (δn) � 	1 + δ
!	1 + δ
n−	1+δ
, (7)

by noting the facts that the right-hand side of (7) counts the
elements of Xn such that

{
0 � xi � i − 1, for i � 	1 + δ
,
0 � xi � 	δ
, for i > 	1 + δ
,

and that⎛

⎝
∑

i�	1+δ

(i − 1)

⎞

⎠+ (n − 	1 + δ
) 	δ
 � 	δ
n � δn.
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Next we find a lower bound on BK(r) for r < n. Let I (n, r)
denote the number of permutations in Sn that are at distance r
from the identity. We have [4, p. 51] (or [20, p. 15])

I (n, r) =
(

n + r − 1

r

)
−
((

n + r − 2

r − 1

)
+
(

n + r − 3

r − 2

))

+
∞∑

j=2

(−1) j f j ,

where

f j =
(

n + r − (u j − j) − 1

r − (u j − j)

)
+
(

n + r − u j − 1

r − u j

)
,

and u j = (3 j2 + j)/2. For j � 2, we have f j � f j+1. Thus,
for r < n,

I (n, r) �
(

n + r − 1

r

)(
1 − r

n + r − 1

(
1 + r − 1

n + r − 2

))

� 1

4

(
n + r − 1

r

)
.

Hence, for r < n, we have

BK(r) � 1

4

(
n + r − 1

r

)
. (8)

In the next two theorems, we use the aforementioned bounds
on BK(r) to derive lower and upper bounds on ÂK (D) and
ĀK (D).

Theorem 4: For all n, D ∈ N, and δ = D/n,

ÂK (D) � − lg
(1 + δ)1+δ

δδ
,

ĀK (D) � − lg
(1 + δ)1+δ

δδ
− lg n

n
.

Proof: For the worst-case distortion, we have

BK(D)
(a)
�
(

n + δn − 1

δn

)
�
(

(1 + δ)n

δn

)

(b)
� 2

n(1+δ)H
(

1
1+δ

)

√
2πnδ/(1 + δ)

(c)
� 2

n(1+δ)H
(

1
1+δ

)

,

where (a) follows from (6), (b) follows from (1), and
(c) follows from the facts that δ � 1/n and n � 1. The
first result then follows from (3).

For the case of average distortion, we proceed as follows:

BK(D)(D + 1) = BK(δn) (δn + 1)

�
(

n + δn − 1

δn

)
(δn + 1)

=
(

n + δn

δn

)
δn + 1

1 + δ
(a)
� 2

n(1+δ)H
(

1
1+δ

)
δn + 1√

2πnδ(1 + δ)

= 2
n(1+δ)H

(
1

1+δ

)√
2δn

π

1 + 1/(δn)

2
√

1 + δ
(b)
� 2

n(1+δ)H
(

1
1+δ

)√
2δn/π,

where (a) follows from (1) and (b) is proved as follows. The
expression 1+1/(δn)

2
√

1+δ
is decreasing in δ for positive δ and so it

is maximized by letting δ = 1/n. Hence,

1 + 1/(δn)

2
√

1 + δ
� 1√

1 + 1/n
� 1.

Now, using (4) leads to (a stronger version of) the statement
in the theorem.

Theorem 5: Assume n, D ∈ N, and let δ = D/n. We have

ĀK (D) � ÂK (D) � − lg
(1 + δ)1+δ

δδ
+ 3 lg n + 12

2n
,

for δ < 1, and

ĀK (D) � ÂK (D) � − lg	1 + δ
 + 1

n
lg
(

ne	1+δ
 ln	1 + δ

)
,

for δ � 1.
Proof: For δ < 1, we have

BK(D) = BK (δn) � 1

4

(
n + δn − 1

δn

)

� n

4 (n + δn)

(
n + δn

δn

)

� 1

4(1 + δ)
· 2

n(1+δ)H
(

1
1+δ

)

√
8nδ/(1 + δ)

= 1

4
· 2

n(1+δ)H
(

1
1+δ

)

√
8nδ(1 + δ)

� 2
n(1+δ)H

(
1

1+δ

)

16
√

n
,

where the first inequality follows from (8) and the last step
follows from the fact that δ � 1, and so δ(1 + δ) � 2.

Since (1+ln x)/x is a decreasing function for x � 1, we can
substitute the above lower bound on BK(D) in (3) to obtain

M̂(D) � 16n!√n

2
n(1+δ)H

(
1

1+δ

) ln

⎛

⎝e2
n(1+δ)H

(
1

1+δ

)

16
√

n

⎞

⎠

(a)
� 16n!n3/2

2
n(1+δ)H

(
1

1+δ

) (1 + δ)H

(
1

1 + δ

)
ln 2

(b)
� 64n!n3/2

2
n(1+δ)H

(
1

1+δ

) ,

where (a) follows from the fact that e � 16
√

n and (b) from
the fact that for δ � 1, we have (1 + δ)H (1/(1 + δ)) ln 2 �
2H (1/2) ln 2 � 4. Thus

ÂK (D) � − lg
(1 + δ)1+δ

δδ
+ 3 lg n + 12

2n
.

For δ � 1, by (7) and (2) we have

BK(D) = BK(δn) � 	1 + δ
!	1 + δ
n−	1+δ
 � 	1 + δ
n

e	1+δ
 ,
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Fig. 1. Upper bound and lower bounds for n = 50 from Theorems 4 and 5.

implying

ÂK (D) � 1

n
lg

1 + ln BK(δn)

BK(δn)

� 1

n
lg

e	1+δ


	1 + δ
n
+ 1

n
lg (1 + n ln	1 + δ
 − 	1 + δ
)

� 1

n
lg

e	1+δ


	1 + δ
n
+ 1

n
lg (n ln	1 + δ
)

� − lg	1 + δ
 + 1

n
lg
(

ne	1+δ
 ln	1 + δ

)

.

The plots for the expressions given in Theorems 4 and 5 are
given in Figure 1.

B. Small Distortion

In this subsection, we consider small distortions, that
is, D = O (n). First, suppose D < n, or equivalently,
δ = D/n < 1.

Lemma 6: For δ = D/n < 1, we have that

ÂK (D) = − lg
(1 + δ)1+δ

δδ
+ O

(
lg n

n

)
, (9)

and that ĀK (D) satisfies the same equation.
Proof: The lemma is an immediate consequence of

Theorems 4 and 5.
Next, let us consider the case of D = 	 (n). We introduce

the following notation. Assume

f (z) =
∞∑

i=0

ai z
i ,

is a formal power series. We denote the coefficient of zi as
[zi ] f (z), i.e.,

[zi ] f (z) = ai .

As was already mentioned in [17], from (5), it follows that

BK(k) = [zk] 1

1 − z

n∏

i=2

1 − zi

1 − z
= [zk]

∏n
i=2

(
1 − zi

)

(1 − z)n .

Let

g (k, n) =
(

n + k − 1

k

)−1

BK(k),

γ (z, n) =
∞∑

i=0

�i (n) zi =
n∏

i=2

(
1 − zi

)
, (10)

and

f (z, n) =
∞∑

i=0

Fi (n) zi = 1

(1 − z)n ,

where

Fi (n) =
(

n + i − 1

i

)
,

so that

g (k, n) = 1

Fk (n)
[zk] f (z, n) γ (z, n) .

We use the following theorem to find the asymptotics
of g (k, n) and BK(k) using the asymptotics of γ (z, n) in
Theorem 8.

Theorem 7 [22, Th. 3.1]: Let f (z, n) and γ (z, n) be two
functions with Taylor series for all n,

f (z, n) =
∞∑

i=0

Fi (n) zi , γ (z, n) =
∞∑

i=0

�i (n) zi ,

where Fi (n) > 0 for all sufficiently large n. Suppose

g (k, n) = 1

Fk (n)
[zk] f (z, n) γ (z, n) ,

and let n = n (k) be a function of k such that the limit
ρ = limk→∞ Fk−1(n(k))

Fk(n(k)) exists. We have

g (k, n (k)) ∼ γ (ρ, n (k)) as k → ∞,

provided that

1) for all sufficiently large k and for all i ,
∣∣∣∣

�i (n (k))

γ (ρ, n (k))

∣∣∣∣ � pi ,

where
∑∞

i=0 piρ
i < ∞, and

2) there exists a constant b, such that for all sufficiently
large i � k and large k,

∣∣∣∣
Fk−i (n (k))

Fk (n (k))

∣∣∣∣ � bρi .

Theorem 8: Let n = n (k) = k/c + O (1) for a constant
c > 0. Then

BK(k) ∼ Kc

(
n + k − 1

k

)
(11)

as k, n → ∞, where Kc is a positive constant,

Kc = lim
n→∞ γ (c/ (1 + c) , n) .

Proof: To prove the theorem, we use Theorem 7. To do
this, we first let

ρ = lim
k→∞

(n(k)+k−2
k−1

)
(n(k)+k−1

k

) = lim
k→∞

k

n (k) + k − 1
= c

1 + c
.
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We now turn our attention to Condition 1 of Theorem 7. First,
we show that γ (ρ, n (k)) is bounded away from 0. We have

ln γ (ρ, n (k)) �
∞∑

i=2

ln
(

1 − ρi
)

� −
∞∑

i=2

ρi

1 − ρi

� −
∞∑

i=2

ρi

1 − ρ
= − ρ2

(1 − ρ)2 ,

where the second inequality follows from the fact that for
0 < x < 1,

ln (1 − x) = −
∞∑

i=1

xi

i
� −

∞∑

i=1

xi = −x

1 − x
.

Hence,

γ (ρ, n (k)) � e
−
(

ρ
1−ρ

)2

> 0.

To satisfy Condition 1 of Theorem 7, it thus suffices to find
p′

i such that |�i (n (k))| � p′
i and

∑∞
i=0 p′

iρ
i < ∞ and then

let pi = p′
i e

(ρ/(1−ρ))2
.

For all positive integers m, we have

|�i (m)| =
∣∣∣∣[zi ]

m∏

j=2

(
1 − z j

) ∣∣∣∣�
∣∣∣∣[zi ]

m∏

j=2

(
1 + z j

)∣∣∣∣

�
∣∣∣∣[zi ]

∞∏

j=1

(
1 + z j

) ∣∣∣∣< eπ
√

2/3
√

i ,

where the last inequality follows from the facts that∏∞
j=1

(
1 + z j

)
is the generating function for the number of

partitions of a positive integer into distinct parts and that the
number of partitions of a positive integer i is bounded by
eπ

√
2/3

√
i [2, p. 316].

We let p′
i = eπ

√
2/3

√
i and apply the root test to the sum∑∞

i=0 p′
iρ

i to prove its convergence. Since

lim
i→∞

(
p′

iρ
i
)1/ i = lim

i→∞ eπ
√

2/3/
√

iρ < 1,

the sum converges and Condition 1 of Theorem 7 is satisfied.
Condition 2 of Theorem 7 is proved in [22, Th. 3.1]. Hence,

BK(k)
(n+k−1

k

) ∼ γ

(
c

1 + c
, n

)
.

To complete the proof, we must show that the limit
limn→∞ γ (c/ (1 + c) , n) exists and is positive. This is evi-
dent as γ (c/ (1 + c) , n) is decreasing and, as shown before,
bounded away from 0.

For D = cn + O (1) with c a positive constant, we have

1

n
lg BK(D) = 1

n
lg

(
n + D − 1

D

)
+ O

(
1

n

)

= n + cn + O (1)

n
H

(
c

1 + c
+ O

(
1

n

))

+ O

(
lg n

n

)

= (1 + c) H

(
c

1 + c

)
+ O

(
1

n

)
+ O

(
lg n

n

)

= (1 + c) H

(
c

1 + c

)
+ O

(
lg n

n

)
,

where we have used (11) for the first step. Using (3), for
D = cn + O (1), we find

ÂK (D) � − 1

n
lg BK(D)

= − (1 + c) H

(
c

1 + c

)
+ O

(
lg n

n

)

and

ÂK (D) � − 1

n
lg BK(D) + 1

n
lg (1 + ln BK(D))

= − (1 + c) H

(
c

1 + c

)
+ O

(
lg n

n

)

The derivation for ĀK (cn + O(1)) is similar. We thus have
the following lemma.

Lemma 9: For a constant c > 0, we have

ÂK (cn + O (1)) = − lg
(1 + c)1+c

cc
+ O

(
lg n

n

)
. (12)

Furthermore, ĀK (cn + O(1)) satisfies the same equation.
The results given in (9) and (12) are given as lower bounds

in [29, eq. (14)]. We have thus shown that these lower bounds
in fact match the quantity under study. Furthermore, we have
shown that ĀK (D) satisfies the same relations.

C. Medium Distortion

We next consider the medium distortion regime, that is,
D = cn1+α + O (n) for constants c > 0 and 0 < α < 1.
For this case, from [29], we have

ÂK (D) ∼ − lg nα.

In this subsection, we improve upon this result by providing
upper and lower bounds with error terms. We note that the
improvement in the upper bound comes at the cost of a non-
constructive proof, compared with the constructive approach
of [29].

Lemma 10: For D = cn1+α + O(n), where α and c are
constants such that 0 < α < 1 and c > 0, we have

− lg
(
ecnα

)+ O
(
n−α

)
� ÂK (D)

� − lg
(
cnα

)+ O
(

n−α + nα−1
)

.

Furthermore, ĀK (D) satisfies the same inequalities.
Proof: From Theorem 4, we have

ÂK (D) � − lg
(1 + δ)1+δ

δδ
= − lg(1 + δ) − lg

(
1 + 1

δ

)δ

� − lg(e(1 + δ)).

Note that δ = D/n = cnα + O (1). We find

ÂK (D) � − lg
(
ecnα + O (1)

) = − lg
(
ecnα

)+ O
(
n−α

)
.

From Theorem 4, it also follows that the same holds for
ĀK (D), as lg n/n = O(n−α).

On the other hand, from Theorem 5,

ĀK (D) � ÂK (D) � − lg
(
cnα + O (1)

)+ 1

n
lg eO(nα)

= − lg
(
cnα

)+ O
(

n−α + nα−1
)

.
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Fig. 2. Bounds on ÂK (D)+ lg n for D = cn2 + O(n) where the error terms
are ignored. The bounds denoted by [W] are those from [29].

D. Large Distortion

In the large distortion regime, we have D = cn2 + O(n)
and δ = cn + O (1).

Lemma 11: Suppose D = cn2 + O(n) for a constant
0 < c < 1/2. We have

− lg (ecn)+O

(
1

n

)
� ÂK (D)

� − lg (ecn) + (1 + c) lg e + O

(
lg n

n

)
.

Furthermore,

− lg (ecn) + O

(
lg n

n

)
� ĀK (D) � ÂK (D).

Proof: Let δ = D/n = cn + O (1). Similar to
the proof of the lower bound in Lemma 10, we have
ÂK (D) � − lg(e(1 + δ)), and thus

ÂK (D) � − lg (ecn + O (1)) � − lg (ecn) + O

(
1

n

)
.

Similarly,

ĀK (D) � − lg(e(1 + δ)) + O

(
lg n

n

)

� − lg (ecn) + O

(
lg n

n

)
.

On the other hand, from Theorem 5,

ĀK (D) � ÂK (D) � − lg (cn) + c lg e + O

(
lg n

n

)
.

From [29], we have

− lg(ecn) − 1 + O

(
lg n

n

)
� ÂK (D)

� − lg
n

e�1/(2c)� + O

(
lg n

n

)
. (13)

These bounds are compared in Figure 2, where we added the
term lg n to remove dependence on n.

V. THE CHEBYSHEV METRIC

We now turn to consider the rate-distortion function for the
permutation space under the Chebyshev metric. We start by
stating lower and upper bounds on the size of the ball in the
Chebyshev metric, and then construct covering codes.

A. Bounds

For an n × n matrix A, the permanent of A = (Ai, j ) is
defined as,

per(A) =
∑

ω∈Sn

n∏

i=1

Ai,ω(i).

It is well known [19], [25] that BC(r) can be expressed as the
permanent of the n × n binary matrix A for which

Ai, j =
{

1 |i − j | � r

0 otherwise.
(14)

According to Brégman’s Theorem (see [5]), for any n × n
binary matrix A with ri 1’s in the i -th row

per(A) �
n∏

i=1

(ri !)
1
ri .

Using this bound we can state the following lemma (partially
given in [19] and extended in [27]).

Lemma 12 [27]: For all 0 � r � n − 1,

BC(r) �

⎧
⎨

⎩
((2r + 1)!) n−2r

2r+1
∏2r

i=r+1(i !)
2
i , 0 � r � n−1

2 ,

(n!) 2r+2−n
n

∏n−1
i=r+1(i !)

2
i , n−1

2 � r � n − 1.

The following lower bound was given in [19].
Lemma 13 [19]: For all 0 � r � (n − 1)/2,

BC(r) � (2r + 1)n

22r

n!
nn

.

We extend this lemma to the full range of parameters.
Lemma 14: For all 0 � r � n − 1,

BC(r) �
{ (2r+1)n

22r
n!
nn , 0 � r � n−1

2 ,

n!
22(n−r) ,

n−1
2 � r � n − 1.

Proof: Only the second claim requires proof, so suppose
that (n − 1)/2 � r � n − 1. The proof follows the same lines
as the one appearing in [19]. Let A be defined as in (14), and
let B be an n × n matrix with

Bi, j =

⎧
⎪⎨

⎪⎩

2, i + j � n − r,

2, i + j � n + r + 2,

Ai, j , otherwise.

We observe that B/n is doubly stochastic. It follows that

BC(r) = per(A) � per(B)

22(n−r)
� nn

22(n−r)
per

(
B

n

)

� n!
22(n−r)

,

where the last inequality follows from Van der Waerden’s
Theorem [23].
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Theorem 15: Let n ∈ N, and let 0 < δ < 1 be a constant
rational number such that D = δn is an integer. Then

R̂C(D) �
{

lg 1
2δ + 2δ lg e

2 + O(lg n/n), 0 < δ � 1
2

2δ lg δ + 2(1 − δ) lg e + O(lg n/n), 1
2 � δ � 1

and

R̂C (D) �
{

lg 1
2δ + 2δ + O(lg n/n), 0 < δ � 1

2
2(1 − δ) + O(lg n/n), 1

2 � δ � 1

Furthermore, the same bounds also hold for R̄C(D).
Proof: First, we prove the lower bound for R̂C (D) using

Theorem 3, which implies R̂C(D) � 1
n lg n!− 1

n lg BC(D), and
Lemma 12. Let

T1 = ((2D + 1)!)(n−2D)/(2D+1) ,

T2 =
2D∏

i=D+1

(i !)2/ i ,

so that BC(D) � T1T2 for 0 < D < (D − 1)/2. We have

lg T1 = n − 2δn

2δn + 1
lg(2δn + 1)!

= n − 2δn

2δn + 1

(
(2δn + 1) lg

(
2δn + 1

e

)
+ O(lg n)

)

= (n − 2δn) lg

(
2δn + 1

e

)
+ O(lg n)

= (n − 2δn) lg(2δn/e) + O(lg n),

and

lg T2 = 2
2δn∑

i=δn+1

1

i
lg i ! = 2

2δn∑

i=δn+1

(
lg

i

e
+ O

(
lg i

i

))

= 2
2δn∑

i=δn+1

lg i − 2δn lg e + O(lg n)

= 2 lg
(2δn)!
(δn)! − 2δn lg e + O(lg n)

= 2δn + 2δn lg(2δn/e) − 2δn lg e + O(lg n).

From these expressions and Lemma 12, it follows that

1

n
lg BC(D) � lg(2δn/e) + 2δ lg(2/e) + O(lg n/n).

The lower bound for 0 < δ � 1/2 then follows from
Theorem 3. The proof of the lower bound for 1/2 < δ � 1 is
similar.

Next, we prove the upper bound for R̂C(D). From
Theorem 3, we have

M̂C(D) � n!
BC(D)

(1 + ln BC(D)) � n!
BC(D)

(1 + ln n!).
While the last inequality seems crude, it will not change the
asymptotic result. Hence, for 0 � D � (n − 1)/2,

R̂C(D) � 1

n
lg

(
n!(1 + ln n!)

BC(δn)

)

� 1

n
lg

(
22δnnn

(2δn + 1)n

)
+ O

(
lg n

n

)

� lg
1

2δ
+ 2δ + O

(
lg n

n

)
, (15)

where we have used Lemma 14 for the second inequality.

Similarly, for (n − 1)/2 < D � n,

R̂C(D) � 1

n
lg 22n(1−δ) + O

(
lg n

n

)

� 2(1 − δ) + O

(
lg n

n

)
. (16)

The proof of the lower bound for R̄C (D) is similar to that of
R̂C(D) except that we use M̄(D) > n!/(B(D)(D + 1)) from
Theorem 3. The proof of the upper bound for R̄C (D) follows
from the fact that R̄C(D) � R̂C(D).

In the Chebyshev metric we define the small-distortion
regime as the regime in which the covering radius of the
code, D, satisfies D = o(n), or alternatively, δ tends to 0. If
we examine Theorem 15, we note that in the small-distortion
regime, the ratio of the upper bound to the lower bound tends
to 1 as δ tends to 0. Thus, the bounds are in particular accurate
in the small-distortion regime.

B. Code Construction

Let A = {a1, a2, . . . , am} ⊆ [n] be a subset of indices,
a1 < a2 < · · · < am . For any permutation σ ∈ Sn we define
σ |A to be the permutation in Sm that preserves the relative
order of the sequence σ(a1), σ (a2), . . . , σ (am). Intuitively, to
compute σ |A we keep only the coordinates of σ from A, and
then relabel the entries to [m] while keeping relative order.
In a similar fashion we define

σ |A =
(
σ−1|A

)−1
.

This time, however, to calculate σ |A we keep only the values
of σ from A, and then relabel the entries to [m] while keeping
relative order.

Example 16: Let n = 6 and consider the permutation

σ = [6, 1, 3, 5, 2, 4].
We take A = {3, 5, 6}. We then have

σ |A = [2, 1, 3],
since we keep positions 3, 5, and 6, of σ , giving us [3, 2, 4],
and then relabel these to get [2, 1, 3].

Similarly, we have

σ |A = [3, 1, 2],
since we keep the values 3, 5, and 6, of σ , giving us [6, 3, 5],
and then relabel these to get [3, 1, 2].

Construction 1: Let n and d be positive integers,
1 � d � n − 1. Furthermore, we define the sets

Ai = {i(d + 1) + j : 1 � j � d + 1} ∩ [n],
for all 0 � i � 	(n − 1)/(d + 1)
. We now construct the code
C defined by

C =
{
σ ∈ Sn : σ |Ai = Id for all i

}
.

We note that this construction already appears in
[29, Remark 4], however there it is given for the �1-metric over
permutations, and thus, it has a different minimum distance.
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Theorem 17: Let n and d be positive integers, 1 � d �
n − 1. Then the code C ⊆ Sn of Construction 1 has covering
radius exactly d and size

M = n!
(d + 1)!	n/(d+1)
(n mod (d + 1))! . (17)

Proof: Let σ ∈ Sn be any permutation. We let Ii denote
the indices in which the elements of Ai appear in σ . Let us
now construct a new permutation σ ′ in which the elements of
Ai appear in indices Ii , but they sorted in ascending order.
Thus

σ ′|Ai = Id,

for all i , and so σ ′ is a codeword in C .
We observe that if σ( j) ∈ Ai , then σ ′( j) ∈ Ai as well.

It follows that
∣∣σ( j) − σ ′( j)

∣∣ � d

and so

dC(σ, σ ′) � d.

Finally, we contend that the permutation σ =
[n, n − 1, . . . , 1] is at distance exactly d from the code
C . Note that we already know that there is a codeword
σ ′ ∈ C such that dC(σ, σ ′) � d . We now show there is
no closer codeword in C . Let us attempt to build such a
permutation σ ′′. Consider σ(n) = 1. The value of σ ′′(n) is in
Ai for some i , and since σ ′′ is a codeword, σ ′′(n) must be
the largest in Ai . Thus

σ ′′(n) ∈ {max(Ai ) : 1 � i � �n/(d + 1)�} � d + 1.

It follows that
∣∣σ ′′(n) − σ(n)

∣∣ � d

and so

dC(σ, σ ′′) � d.

The next theorem presents the asymptotic rate of the
construction.

Theorem 18: The code from Construction 1 has the
following asymptotic rate,

R = H

(
δ

⌊
1

δ

⌋)
+ δ

⌊
1

δ

⌋
lg

⌊
1

δ

⌋
− o(1).

Proof: We note that

(n mod d + 1) = n − (d + 1)

⌊
n

d + 1

⌋
.

We then rewrite (17) and get

2Rn = n!
(δn + 1)!	n/(δn+1)
 (n − (δn + 1) 	n/(δn + 1)
)! .

We recall Stirling’s approximation from (2), stating that

m! =
(m

e

)m
2o(m),

Fig. 3. Rate-distortion in the Chebyshev metric: The lower and upper bounds
of Theorem 15, (a) and (b), and the rate of the code construction, given in
Theorem 18, (c).

and use it to obtain

2Rn =
( n

e

)n

(
δn+1

e

)(δn+1)
⌊

n
δn+1

⌋

· 1
(

n−(δn+1)
⌊

n
δn+1

⌋

e

)n−(δn+1)
⌊

n
δn+1

⌋ · 2o(n)

= 1

δ
nδ
⌊

1
δ

⌋ (
1 − δ

⌊ 1
δ

⌋)n(1−δ)
⌊

1
δ

⌋ · 2o(n).

If we now take log2 of both sides, divide by n, and rearrange,
we arrive at the desired form.

The bounds given in Theorem 15 and the rate of the code
construction, given in Theorem 18, are shown in Figure 3.

VI. CONCLUSION

In this paper, we presented rate-distortion results for the
space of permutations endowed by the Kendall τ -metric and
the Chebyshev metric. For the former, we improved upon the
previously known results and for the latter we established new
results. These findings can be further improved by providing
tighter bounds and better constructions. Indeed, in the case of
the Chebyshev distance the construction only attains the bound
at two points. A different approach for constructing such codes
may be needed, perhaps employing deeper combinatorial rea-
soning. Additionally, there remains a gap between the lower
and upper bounds on the size of a ball in the Chebyshev metric,
resulting in bounds which are not tight.

It would also be interesting to study another classical dis-
tance metric on permutations in the context of rate-distortion,
namely the Ulam distance, also known as the edit distance. The
Ulam distance [1] is defined as the number of edits required
to take one permutation to another and has been studied in
coding theory in the context of rank modulation codes [11]
and for measuring sortedness of data streams [15].
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