
1688 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

Semiconstrained Systems
Ohad Elishco, Student Member, IEEE, Tom Meyerovitch, and Moshe Schwartz, Senior Member, IEEE

Abstract— When transmitting information over a noisy
channel, two approaches, dating back to Shannon’s work, are
common: assuming the channel errors are independent of
the transmitted content and devising an error-correcting code
or assuming the errors are data dependent and devising a
constrained-coding scheme that eliminates all offending data
patterns. In this paper, we analyze a middle road, which we
call a semiconstrained system. In such a system, which is an
extension of the channel with the cost constraints model, we do
not eliminate the error-causing sequences entirely, but rather
restrict the frequency in which they appear. We address several
key issues in this paper. The first is proving closed-form bounds
on the capacity, which allow us to bound the asymptotics of the
capacity. In particular, we bound the rate at which the capacity
of the semiconstrained (0, k)-RLL tends to 1 as k grows. The
second key issue is devising efficient encoding and decoding pro-
cedures that asymptotically achieve capacity with vanishing error.
Finally, we consider delicate issues involving the continuity of the
capacity and a relaxation of the definition of semiconstrained
systems.

Index Terms— Constrained coding, capacity, large deviations,
encoder construction.

I. INTRODUCTION

ONE OF the most fundamental problems in coding and
information theory is that of transmitting a message over

a noisy channel and attempting to recover it at the receiving
end. This is either when the transmission is over a distance
(a communications system), or over time (a storage system).
Two common approaches to deal with this problem were
already described in Shannon’s work [31]. The first approach
uses an error-correcting code to combat the errors introduced
by the channel. The theory of error-correcting codes has
been studied extensively, and a myriad of code constructions
are known for a wide variety of channels (for example,
see [19], [21], [25], [26], and the many references therein).
The second approach asserts that the channel introduces errors
in the data stream only in response to certain patterns, such as
offending substrings. It follows that removing the offending

Manuscript received July 7, 2015; accepted December 24, 2015. Date of
publication February 18, 2016; date of current version March 16, 2016. This
work was supported in part by the People Programme (Marie Curie Actions)
of the European Union’s Seventh Framework Programme (FP7/2007-2013)
within REA through the Israel Science Foundation under Grant 333598,
and in part by the Israel Science Foundation under Grant 626/14. This
paper was presented at the 2015 Information Theory and Applications
Workshop and the 2015 IEEE International Symposium on Information
Theory.

O. Elishco and M. Schwartz are with the Department of Electrical and Com-
puter Engineering, Ben-Gurion University of the Negev, Beer Sheva 84105,
Israel (e-mail: ohadeli@post.bgu.ac.il; schwartz@ee.bgu.ac.il).

T. Meyerovitch is with the Department of Mathematics, Ben-Gurion Univer-
sity of the Negev, Beer Sheva 84105, Israel (e-mail: mtom@math.bgu.ac.il).

Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2016.2531722

substrings from the stream entirely will render the channel
noiseless. Schemes of this sort have been called constrained
systems or constrained codes, and they have also been exten-
sively studied and used (for example, see [8], [20], and the
references therein).

Both approaches are not free of cost. Error-correcting codes
incur a rate penalty, depending on the specific code used,
and bounded by the channel error model that is assumed.
Constrained codes also impose a rate penalty that is bounded
by the capacity of the constrained system.

The two approaches, one based on error-correcting codes
and one based on constrained codes, may be viewed as
two extremes: while the first assumes the errors are data
independent, the second assumes the errors are entirely data
dependent. Since in the real world the situation may not be
either of the extremes, existing solutions may over-pay in
rate.

The goal of this paper is to define and study semiconstrained
systems and their properties, as well as suggest encoding and
decoding procedures.

Arguably, the most famous constrained system is the
(d, k)-RLL system, which contains only binary strings with at
least d 0’s between adjacent 1’s, and no k+ 1 consecutive 0’s
(see [8] for uses of this system). In particular, (0, k)-RLL is
defined by the removal of a single offending substring, namely,
it contains only binary strings with no occurrence of k + 1
consecutive zeros, denoted 0k+1. Informally, a semiconstrained
(0, k)-RLL system has an additional parameter, p ∈ [0, 1],
a real number. A binary string is in the system if the frequency
that the offending pattern 0k+1 occurs does not exceed p.
When p = 1 this degenerates into a totally unconstrained
system that contains all binary strings, whereas when p = 0
this is nothing but the usual constrained system, which we call
a fully-constrained system for emphasis.

The capacity of the semiconstrained (0, k)-RLL system is
known using the methods of [23]. The expression involves an
optimization problem that does not lend itself to finding other
properties of the system, such as the rate at which the capacity
converges to 1 as k grows. This rate of convergence is known
when the system is fully constrained [28]. Additionally, the
capacity is known only in the one-dimensional case, whereas
the general bounds may be extended to the multi-dimensional
case as well.

The first main contribution of this paper is establishing
analytic lower and upper bounds on the capacity of semicon-
strained (0, k)-RLL. These bounds are then used to derive the
rate at which the capacity of these systems converges to 1 as
k grows, up to a small constant multiplicative factor.
The bounds extend previous techniques from [28] as well

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1689

as employ large-deviations theory. These bounds are also
extended to the multi-dimensional case.

This paper is not motivated or limited solely by the case of
a single offending substring. We can define multiple offending
substrings, each equipped with its own limited empirical
frequency. Indeed, with a proper set of semiconstraints, vari-
ants such as DC-free RLL are possible (see [16] and references
therein). Another motivating example is the system of strings
over Zq where the offending substring is q−1, 0, q−1. In the
case of multi-level flash memory cells, inter-cell interference
is at its maximum when three adjacent cells are at the
highest, lowest, and then highest charge levels possible [3].
By adjusting the amount of such substrings we can mitigate
the noise caused by inter-cell interference. Further restrictions,
such as the requirement for constant-weight strings (see the
recent [13], [24]) correspond to a semiconstrained system.
A similar case appears in [29], where the frequency of 101
in a binary code is suppressed, to mitigate the appearance
of a “ghost pulse” in optical communications. A more gen-
eral analysis in the same setting appears in [30] where the
probabilities of bit triplets are skewed and the redundancy of
coding for such systems is studied. Another motivation comes
from reconstructing DNA sequences using partial information
about their subsequences [15]. A part of the solution suggested
in [15] uses the distribution of different substrings of length �
and their growth rate as � grows. This can be formulated as
a problem of calculating the capacity of a semiconstrained
system.

Coding schemes for some of these systems exist. They
are mostly ad-hoc and tailored for each specific case, as
in [13], [16], and [29]. A more general constant-to-constant
coding scheme exists [14] for a channel with cost constraints
model. However, it is not optimal in terms of rate, and
it addresses only scalar cost functions, which is a slightly
different model than the semiconstrained systems we study.
In the scalar cost function, each symbol receive a weight and
the goal is to limit the expected weight of the codewords. In the
semiconstrained systems the goal is to control the appearance
of each problematic pattern independently. Both models can
be viewed as a private case of a general model in which we
would like to control the problematic patterns with respect to
some functions on those patterns.

The second main contribution of this paper is a general,
explicit, constant bit-rate to constant bit-rate encoding and
decoding scheme. This coding scheme is based on the theory
of large deviations, and it asymptotically achieves capacity,
with a vanishing failure probability as the block length grows.
To that end, we also define and study a relaxation of semi-
constrained systems, allowing us to address the issue of the
existence of the limit in the definition of the capacity, as well
as the continuity of the capacity.

We would like to highlight some of the main differences
between this paper and previous works. In [11] and [14] the
capacity of channels with cost constraints is investigated. Such
channels define a scalar cost function that is applied to each
sliding-window k-tuple in the transmission. The admissible
sequences are those whose average cost per symbol is less
than some given scalar constraint. In our paper, however,

we investigate sequences with a cost function which can
control separately the appearance of any unwanted word
(not necessarily of the same length).

The more general framework we study is similar to that
of [1], [22], [23]. In [22] some embedding theorems and results
concerning the entropy of a weight-per-symbol shift of finite
type (SFT) are presented. A weight-per-symbol SFT is a graph
representation of an SFT with a weight function which assigns
to each edge a weight in R

d . In [1], some large-deviation
theorems are proved for empirical types of Markov chains
that are constrained to thin sets. A thin set is a set whose
convex hull has a strictly lower dimension (which means it
has an empty interior topologically). We also mention [23],
in which an improved Gilbert-Varshamov bound for
fully-constrained systems is found. Thus, [23] studies certain
semiconstrained systems as means to an altogether different
end. Using these works, the exact capacity of semiconstrained
systems, as defined in this paper, may be calculated. However,
key issues we address are not covered by these papers,
including the rate of convergence of the capacity, the existence
of the limit in the capacity definition, and continuity of the
capacity.

Lastly, in [14], coding for channels with cost constraints is
investigated. The main focus is given to functions with a scalar
cost on symbols, whereas the model we study in this paper
is different. The proposed constant-to-constant coding scheme
of [14] is based on the state-splitting algorithm and does not
achieve the capacity in general.

As a final introductory note, semiconstrained systems are
not to be confused with weakly-constrained systems [7].
Unlike the model we study, the weakly-constrained scheme
comprises of an encoder function from strings of length n
to strings of length n + r , and a prescribed error proba-
bility, p. The encoder must, on a 1 − p fraction of the
possible unconstrained input strings, produce fully-constrained
output strings. For the remaining p fraction of the input
strings, the encoder may produce totally unconstrained output
strings.

The paper is organized as follows. In Section II we give the
basic definitions and the notation used throughout the paper.
We also cite some previous work and derive some elementary
consequences. In Section IV we introduce a relaxation called
weak semiconstrained systems, and study issues involving
existence of the limit in the capacity definition as well as
continuity of the capacity. In Section III we present an upper
and a lower bound on the capacity of the (0, k, p)-RLL
semiconstrained system, as well as bound the capacity’s rate
of convergence as k grows. Section V is devoted to devising
an encoding and decoding scheme for weak semiconstrained
systems. We conclude in Section VI with a summary of the
results.

II. PRELIMINARIES

Let � be a finite alphabet and let �∗ denote the set of all
the finite sequences over �. The elements of �∗ are called
words (or strings). The length of a word ω ∈ �∗ is denoted by
|ω|. Assuming ω = ω0ω1 . . . ω�−1, with ωi ∈ �, a subword
(or substrings) is a string of the form ωiωi+1 . . . ωi+m−1,

1690 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

where 0 � i � i + m � �. For convenience, we define

ωi,m = ωiωi+1 . . . ωi+m−1,

i.e., ωi,m denotes the substring of ω which is of length m and
is starting at the i th position.

Given two words, ω,ω′ ∈ �∗, their concatenation is
denoted by ωω′. Repeated concatenation is denoted using a
superscript, i.e., for any natural m ∈ N, ωm denotes

ωm = ωω . . .ω,

where m copies of ω are concatenated. As an example,

1(10)301203 = 1101010011000.

The following definition will be used later when defining
semiconstrained systems.

For any two words τ ,ω ∈ �∗, let fr(τ ,ω) denote the
frequency of τ as a subword of ω, i.e.,

fr(τ ,ω) = 1

|ω| − |τ | + 1

|ω|−|τ |∑

i=0

[ωi,|τ | = τ]. (1)

Here, [A] denotes the Iverson bracket, having a value of 1
if A is true, and 0 otherwise. If |τ | > |ω| then we define
fr(τ ,ω) = 0.

We are now ready to define semiconstrained systems.
Definition 1: Let F ⊆ �∗ be a finite set of words, and let

P ∈ [0, 1]F be a function from F to the real interval [0, 1].
A semiconstrained system (SCS), X(F , P), is the following
set of words,

X(F , P) = {ω ∈ �∗ : ∀φ ∈ F , fr(φ,ω) � P(φ)
}
.

When F and P are understood from the context, we may
omit them and just write X . We also define the set of words
of length exactly n in X(F , P) as

Bn(F , P) = X(F , P) ∩�n .

Example 2: We recall that the (d, k)-RLL constrained sys-
tem contains exactly the binary words with at least d 0’s
between adjacent 1’s, and no k + 1 0’s in a row. Using our
notation, after setting � = {0, 1}, the (d, k)-RLL constrained
system is a semiconstrained system X(F , P), where

F =
{

11, 101, 1021, . . . , 10d−11, 0k+1
}
,

and P(φ) = 0 for all φ ∈ F . �
Another example is the constant-weight ICI-free codes

which are described in [13].
Example 3: The constant-weight ICI-free codes comprised

of a codebook that satisfies the following two constraints:
1) For code length n and some fixed r , r ∈ [0, 1], every

codeword has constant Hamming weight of rn.
2) The subsequence 101 does not appear in any codeword.

We can rewrite this two constraints as a SCS system as
follows. Let F = {0, 1, 101} and P = (r, 1 − r, 0) such that
P(0) = r, P(1) = 1− r, P(101) = 0. �

An important object of interest is the capacity of an SCS.
We define it as follows.

Definition 4: Let X(F , P) be an SCS. The capacity of
X(F , P), which is denoted by cap(F , P), is defined as

cap(F , P) = lim sup
n→∞

1

n
log2 |Bn(F , P)|.

If we had a closed-form expression for |Bn(F , P)|,
we could calculate the capacity of (F , P). As in [28], we trans-
late the combinatorial counting problem with a probability-
bounding problem. Assume pn denotes the probability that
a random string from �n , which is chosen with uniform
distribution, is in Bn(F , P). Then,

|Bn(F , P)| = pn · |�|n ,
and then

cap(F , P) = log2 |�| + lim sup
n→∞

1

n
log2 pn. (2)

In certain cases, a different definition of semiconstrained
systems is helpful. The new definition has a cyclic nature.
In a similar manner to (1), for any two words τ ,ω ∈ �∗,
let frcyc(τ ,ω) denote the cyclic frequency of τ as a subword
of ω, i.e.,

frcyc(τ ,ω) = 1

|ω|
|ω|−1∑

i=0

[ωi,|τ | = τ],

where this time, ωi,m = ωiωi+1 . . . ωi+m−1, and the indices
are taken modulo |ω|. We extend the definitions of X(F , P)
and Bn(F , P) to Xcyc(F , P) and Bcyc

n (F , P) in the natural
way, by replacing fr with frcyc.

We now give a brief overview of some basic definitions
and known results in large deviations theory that we use in
this paper. Let � denote the closure of a set �, and let �◦
denote its interior. Let X be some Polish space equipped with
the Borel sigma algebra.

Definition 5: A rate function I is a mapping I : X →
[0,∞] such that for all α ∈ [0,∞), the level set φI (α) =
{x ∈ X : I (x) � α} is a closed subset of X .

Definition 6: Let {μn} be a sequence of probability mea-
sures. We say that {μn} satisfies the large-deviation princi-
ple (LDP) with a rate function I , if for every Borel set � ⊆ X ,

− inf
x∈�◦ I (x) � lim inf

n→∞
1

n
log2 μn(�)

� lim sup
n→∞

1

n
log2 μn(�) � − inf

x∈�
I (x).

Definition 7: A good rate function I : X → [0,∞] is a
rate function for which all the level sets are compact subsets
of X .

Lemma 8 ([5, Lemma 4.1.5]): Let X be a polish space and
let Y ⊆ X be a Gδ-subset of X (countable intersection of open
sets in X), equipped with the induced topology. Let {μn} be
finite measures on X such that μn(X \ Y) = 0 for all n � 1
and let I be a good rate function on X such that I (x) = ∞ for
all x ∈ X \Y . Let μn|Y and I |Y denote the restriction of μn

and I to Y , respectively. Then, I |Y is a good rate function
on Y and the following statements are equivalent.

1) The sequence {μn} satisfies the LDP with rate
function I .

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1691

2) The sequence {μn|Y} satisfies the LDP with rate
function I |Y .

Let M1(�) denote the space of all probability measures on
some finite alphabet �.

Definition 9: Let Y = Y0,Y1, . . . be a sequence over some

alphabet�, and let y ∈ �∗. We denote by frY
n (y) the empirical

occurrence frequency of the word y in the first n places
of Y , i.e.

frY
n (y) = fr

(
y,Y 0,n+|y|−1

) = 1

n

n−1∑

i=0

[
Y i,| y| = y

]
.

We denote by frY
n,k ∈ M1(�

k) the vector of empirical distri-

bution of �k in Y , i.e., for a k-tuple y ∈ �k , the coordinate
that corresponds to y in frY

n,k is frY
n (y).

Suppose Y = Y0,Y1, . . . are �-valued i.i.d. random vari-
ables, with q(σ) denoting the probability that Yi = σ ,
for all i . We assume that q(σ) > 0 for all σ ∈ �.
We denote by q(σ0, σ1, . . . , σk−1) the probability of the
sequence σ0, σ1, . . . , σk−1. The following theorem connects
the empirical distribution with the large-deviation principle.

Theorem 10 ([5, Sec. 3.1]): Let ν ∈ X = M1(�
k), and let

Y = Y0,Y1, . . . be �-valued i.i.d. random variables, with
q(σ) > 0 denoting the probability that Yi = σ for σ ∈ �.
For every Borel set, � ⊆ X , define

μn (�) = Pr
[
frY

n,k ∈ �
]
.

Let us denote by ν1 ∈ M1(�
k−1) the marginal of ν obtained

by projecting onto the first k − 1 coordinates,

ν1(σ0, . . . , σk−2) =
∑

σ∈�
ν(σ0, . . . , σk−2, σ).

Then the rate function, I : X → [0,∞], governing the LDP
of the empirical distribution frY

n,k with respect to � is,

I (ν) =
⎧
⎨

⎩

∑

σ∈�k

ν(σ) log2
ν(σ)

ν1(σ 0,k−1)q(σk−1)
ν is shift invariant,

∞ otherwise,

where ν ∈ X = M1(�
k) is shift invariant if

∑

σ∈�
ν(σ, σ1, σ2, . . . , σk−1) =

∑

σ∈�
ν(σ1, σ2, . . . , σk−1, σ).

In the context of an X (F , P) SCS with F ⊆ �k , i.e., all
the offending words are of equal length, the set � ⊆ M1(�

k)
takes on the following intuitive form,

� =
{
(pφ)φ∈�k ∈ M1(�

k) : ∀φ ∈ F , pφ � P(φ)
}
.

In other words, � contains all the vectors indexed by the
elements of �k , such that each entry is a real number from
[0, 1], the entries sum to 1, and each entry corresponding to
an offending word φ ∈ F does not exceed P(φ).

Note that if I is continuous and � ⊆ X is such that
� = �◦, then infx∈� I (x) = infx∈�◦ I (x). In that case the
limit of Definition 6 exists, giving limn→∞ 1

n log2 μn(�) =
− infx∈� I (x).

An important observation is the following. Assume
� = {1, 2, . . . , |�|}. Let us denote the vector of probabilities
for the symbols from � by q = (q(1), q(2), . . . , q(|�|)). For
a probability measure μ ∈ M1(�

k−1) we define the probability
measure μ⊗q ∈ M1(�

k) as follows. The measure μ⊗q may
be viewed as a vector indexed by �k , whose value at the
coordinate i1, i2, . . . , ik is

(μ⊗ q)(i1, . . . ik) = μ(i1, . . . , ik−1) · q(ik).

We now note that the rate function on the set of shift-
invariant measures, that governs the LDP of frY

n,k as defined
in Theorem 10, can be written as

I (ν) = H (ν|ν1 ⊗ q),

where H (·|·) is the relative-entropy function. Since the rel-
ative entropy is nonnegative and convex, and the set of
shift-invariant measures is closed and convex, we reach the
following corollary.

Corollary 11: The rate function governing the LDP of frY
n,k

defined in Theorem 10 is nonnegative and convex on the set
of shift-invariant measures ν ∈ M1(�

k).
Finally, the following corollary shows cases in which the

constraints in P are redundant.
Corollary 12: Let F ⊆ �k . If P(φ) � |�|−k for all φ ∈ F ,

then cap(F , P) = log2 |�|.
Proof: Assume Y = Y0,Y1, . . . is a sequence of

i.i.d. random variables distributed uniformly (each symbol
with probability |�|−1). Let I be the rate function governing

the LDP of frY
n,k as defined in Theorem 10. Consider the shift-

invariant measure ν ∈ M1(�
k), ν(σ) = |�|−k , for all σ ∈ �k .

Note that we obtain that I (ν) = 0 and by Corollary 11,
ν minimizes the rate function. Let � ⊆ M1(�

k) be the set
associated with the constraint, then

cap(F , P) = lim
n→∞

1

n
log2

(
|�|n Pr[frY

n,k ∈ �]
)

= log2 |�| + lim
n→∞

1

n
log2

(
Pr[frY

n,k ∈ �]
)

= log2 |�| − I (ν) = log2 |�| .

III. BOUNDS ON THE CAPACITY OF (0, k, p)-RLL
SCS AND RATE OF CONVERGENCE

In this section we obtain closed-form bounds on the capacity
that allow us to analyze the asymptotics of the capacity of
semiconstrained systems, and prove bounds on the capacity
in the multi-dimensional case. We focus on the family of
semiconstrained (0, k)-RLL, since it is defined by a single
offending string of 0k+1. While the results are specific to this
family, we note that the method may be extended to some
more general semiconstrained systems.

For reasons that will become apparent later, we con-
veniently invert the bits of the system, and define the
(0, k)-RLL constrained system as the set of all finite binary
strings not containing the 1k+1 substring. We therefore con-
sider the semiconstrained system X (F , P) defined by

F =
{

1k+1
}
, P(1k+1) = p,

1692 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

for some real constant p ∈ [0, 1]. We call this semiconstrained
system the (0, k, p)-RLL SCS, and throughout this section we
denote its capacity by Ck,p . Thus, Ck,0 denotes the capacity
of the fully-constrained (0, k)-RLL system.

In the case of fully-constrained (0, k)-RLL, the asymptotics
of the capacity, as k tends to infinity, are well known. It was
mentioned in [12], that

1− Ck,0 = log2 e

4 · 2k
(1+ o(1))

together with bounds on the capacity of two dimensional
(0, k)-RLL. The rate was later extended in [28] to the
multi-dimensional case, where it was shown that

1− C(D)
k,0 =

D log2 e

4 · 2k
(1+ o(1)),

where C(D)
k,0 denotes the capacity of the fully-constrained

D-dimensional (0, k)-RLL.
Our analysis will proceed by proving a lower bound and an

upper bound on the capacity of (0, k, p)-RLL SCS, and then
analyzing it when k →∞. We note that due to Corollary 12
the interesting region is p � 1

2k+1 or else the capacity is
exactly 1.

A. An Upper Bound on the Capacity of (0, k, p)-RLL SCS

In order to obtain an upper bound on the capacity of
(0, k, p)-RLL SCS we employ a bound by Janson [9].
Consider an index set, Q, and a set {Ji }i∈Q of independent
random indicator variables. Let A be a family of subsets of Q,
namely, A ⊆ 2Q . We define the random variables

S =
∑

A∈A
IA, IA =

∏

i∈A

Ji .

Moreover, we define

pA = E[IA], λ = E[S] =
∑

A

pA, δ = 1

λ

∑

A∼B

E[IA IB],

where, for A, B ∈ A, we write A ∼ B if A ∩ B
= ∅ and
A
= B .

Theorem 13 ([9, Th. 1]): If η is an integer such that
0 � η � λ, then

Pr [S � η] �
(√

2π(η + 1)
λη

η! e
−λ
) 1

1+δ
.

Lemma 14: For the (0, k, p)-RLL SCS, let

F =
{

1k+1
}
, P(1k+1) = p ∈ [0, 1].

Then

cap(Xcyc(F , P)) = cap(X (F , P)).

Proof: For any ω ∈ Bcyc
n , n � k + 1, by definition,

ωω0,k ∈ Bn+k . Thus, |Bcyc
n | � |Bn+k | for all n � k + 1.

In the other direction, we note that for any ω ∈ Bn−1, one can
easily verify that ω0 ∈ Bcyc

n , for all n � k+ 2. It follows that,
for all n � k + 2,

|Bn−1| �
∣∣Bcyc

n
∣∣ � |Bn+k | .

Taking the appropriate limits required by the definition of the
capacity, we prove the claim.

Before stating the upper bound on the capacity of
(0, k, p)-RLL SCS, we explain briefly how Theorem 13 is
going to be used. We conveniently set the index set of a string
of length n to be Q = {0, 1, . . . , n − 1}. For (0, k, p)-RLL
SCS we define the family of subsets of Q,

A = {{i, i + 1, . . . , i + k} : 0 � i < n},
where the coordinates are taken modulo n. Setting η = pn,
we have that Pr[S � pn] is the probability that a sequence of
length n obeys the cyclic (0, k, p)-RLL SCS, for some integer
0 � pn � λ. For this reason, Corollary 12 implies that in case
η � λ the capacity is log2 2 = 1.

Theorem 15: For 0 < p � 1
2k+1 , the capacity of the

(0, k, p)-RLL SCS is bounded by

Ck,p � 1− 1

3− 2−k+1

(
log2 e

2k+1 + p(k + 1)− p log2
e

p

)
.

Proof: Assume a sequence of n bits are randomly chosen
i.i.d. Bernoulli(1/2). It follows that

λ = E[S] =
∑

A

pA = n

2k+1 .

For each A ∈ A there are exactly 2k sets, Bi ∈ A,
i = 0, 1, . . . , 2k − 1, such that A ∼ Bi . If |A ∩ Bi | = t
then E[IA IBi] = 1

22(k+1)−t . Hence,

δ = 1

λ

∑

A∈A

∑

B∼A

E[IA IB] = 1

λ

∑

A∈A

k∑

t=1

2
1

22(k+1)−t

= 1

λ

∑

A∈A

2k − 1

22k
= 2− 1

2k−1 .

Applying Theorem 13 yields

Ck,p = lim sup
n→∞

1

n
log2 |Bn|

= lim sup
n→∞

1

n
log2 2n Pr[S � pn]

= 1+ lim sup
n→∞

1

n
log2 Pr[S � �pn�]

(a)
� 1+ lim

n→∞
1

n
log2

(√
2π(�pn� + 1)

λ�pn�

�pn�!e
−λ
) 1

1+δ

= 1+ lim
n→∞

1

(3− 1
2k−1)n

(
−λ log2 e + log2

λ�pn�

�pn�!
)

= 1− log2 e

(3− 1
2k−1)2k+1

+ lim
n→∞

1

(3− 1
2k−1)n

log2
n�pn�

2�pn�(k+1)(�pn�!)
(b)= 1− log2 e

(3− 1
2k−1)2k+1

− p(k + 1)

(3− 1
2k−1)

+ p

(3− 1
2k−1)

log2
e

p
,

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1693

where (a) follows from Theorem 13 and from the existence
of the limit, and (b) follows from Stirling’s approximation.
Using Lemma 14 we complete the proof.

The same method can be applied for the D-dimensional
(0, k, p)-RLL SCS, extending the results of [28]. We briefly
define the extension of SCS to the multi-dimensional case, and
only sketch the proof since it is similar to that of [28].

Define [n] = {0, 1, . . . , n − 1}, and let e j be the
j th standard unit vector, containing all 0’s, except the
j th position which is 1. Assume � is a finite alphabet, and
ω ∈ �[n]D is an n × · · · × n D-dimensional array over �.
A substring of ω is defined as

ωi,m,e j = ωiωi+e j . . . ωi+(m−1)e j ,

where i ∈ [n]D is a D-dimensional index. We note that ωi,m,e j

is a one-dimensional string of length m. We naturally extend
frcyc to the D-dimensional case in the following manner: For
ω ∈ �[n]D and τ ∈ �∗, the frequency of τ as a cyclic substring
of ω is defined as

frcyc(τ ,ω) = 1

nD

D−1∑

j=0

∑

i∈[n]D
[ωi,|τ |,e j = τ],

where indices are taken modulo n appropriately.
The D-dimensional cyclic (0, k, p)-RLL SCS is defined as

Bcyc,(D)
n (1k+1, p) =

{
ω ∈ {0, 1}[n]D : frcyc(1k+1,ω) � p

}
,

Xcyc,(D)(1k+1, p) =
⋃

n

Bcyc,(D)
n (1k+1, p).

Its capacity is defined as

C(D)
k,p = lim sup

n→∞
1

nD
log2

∣∣∣Bcyc,(D)
n (1k+1, p)

∣∣∣ .

We obtain the following upper bound on C(D)
k,p :

Theorem 16: The capacity of the D-dimensional
(0, k, p)-RLL SCS is bounded by the following.

C(D)
k,p � 1− D log2(e)

2k+1 + p(k + 1)− p log2
De
p

3− 2−k+1 + 2−k(D − 1)(k + 1)2
.

(Sketch of Proof): We use Janson’s method, a direct cal-
culation of the expected number of appearances of a sequence
of k+1 ones, together with direct calculations of the value of
δ. We obtain that

λ = DnD

2k+1 ,

δ = 1

λ

∑

A∈A

∑

B∼A

E[IA IB] = 2 − 1

2k−1 +
(D − 1)(k + 1)2

2k
.

Placing λ and δ in Theorem 13 yields the wanted result. �
We return to the one-dimensional case. The upper bound of

Theorem 15 converges to 1 as k grows. We now find the rate
of this convergence. To that end we prove a stronger upper
bound on the capacity, that does not have as nice a form as
Theorem 15 in the finite case, but does have a nice asymptotic

form. Note that p must be a function of k since p � 1
2k+1 .

Theorem 17: For p = p(k), assume c = limk→∞ p
2−(k+1)

where c ∈ [0, 1], and let

bL =
{

3−√1+8c
4 log2 e − c log2

(
1+4c+√1+8c

8c

)
c > 0,

1
2 log2 e c = 0.

Then,

1− Ck,p � bL

2k+1 (1+ o(1)),

where o(1) denotes a function a of k tending to 0 as k →∞.
Proof: Let S′A = IA+∑B∼A IB and hence, given IA = 1,

S′A ∈ {1, 2, . . . , 2k + 1}. We denote ψ(t) = E[e−t S]. For all
t � 0, it was shown in [9] that

− d

dt
lnψ(t) = 1

ψ(t)

∑

A∈A
E[IAe−t S]

�
∑

A∈A
pA E[e−t S ′A|IA = 1]. (3)

While [9] bounded z = E[e−t S ′A|IA = 1], we proceed by
calculating it explicitly. Due to symmetry, z does not depend
on A or n (for large enough n). Thus, (3) becomes

− d

dt
lnψ(t) � z

∑

A∈A
pA = λz. (4)

However, z does depend on k and t , which we will sometime
emphasize by writing z(k, t).

We assume that the length of the sequence is at least 3k, and
recall that we may consider sequences cyclically. A tedious
calculation gives

Pr[S′A = �|IA = 1] =

⎧
⎪⎪⎨

⎪⎪⎩

�
2�+1 1 < � � k
2k+4−�

2�+1 k < � � 2k
4

2�+1 � = 2k + 1.

Thus,

z =
k∑

j=1

j

2 j+1 e−t j +
2k∑

j=k+1

2k + 4 − j

2 j+1 e−t j + 4

22k+2 e−t (2k+1)

= 2−2ke−(1+2k)t
(
et − 2ke(k+1)t − 1

)2

(1− 2et)2
.

Since ψ(0) = 1, (4) implies

− lnψ(t) �
∫ t

0
λz(k, u)du.

For b′ � 0 and t � 0 we have

e−tb′λ Pr[S � b′λ] � E[e−t S],
it follows that

ln Pr[S � b′λ] � −λ
∫ t

0
z(k, u)du + tb′λ.

Recall that in our setting we consider the value ln Pr[S � pn]
where p is the constraint and n is the length of the sequence.
Therefore, since λ = n

2k+1 , we set b′ = p2k+1 to get b′λ = pn.

1694 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

For any k, the following upper bound on the capacity holds
for any t � 0,

Ck,p = 1+ lim sup
n→∞

1

n
log2 Pr[S � pn]

� 1− log2 e

2k+1

∫ t

0
z(k, u)du + t p log2 e,

where we note that the change of logarithm base introduces a
factor of log2 e. Thus,

1− Ck,p � log2 e

2k+1

∫ t

0
z(k, u)du − t p log2 e. (5)

Note that for any t � 0, by Lebesgue’s dominated conver-
gence we obtain that

lim
k→∞

∫ t

0
z(k, u)du =

∫ t

0
lim

k→∞ z(k, u)du

=
∫ t

0

eu

(1− 2eu)2
du.

It follows that for any fixed b > 0, multiplying the right-hand
side of (5) by 2k+1/b gives,

lim
k→∞

2k+1 log2 e

b

(
1

2k+1

∫ t

0
z(k, u)du − t p

)

= log2 e

b

(∫ t

0

eu

(1− 2eu)2
du − tc

)

= log2 e

2b

(
1+ 1

1− 2et
− 2tc

)
.

Thus, to get a bound of the claimed form, this expression must
equal 1, i.e.,

b = 1

2

(
1+ 1

1− 2et
− 2tc

)
log2 e.

Since we are lower-bounding 1 − Ck,p , we would like to
maximize this expression by choosing an appropriate value
of t . When c > 0 the maximum is attained by

t = ln

(
1+ 4c+√1+ 8c

8c

)
,

and then we get b = bL, i.e.,

b = 3−√1+ 8c

4
log2 e − c log2

(
1+ 4c+√1+ 8c

8c

)
.

When c = 0 we take the limit as t →∞ to obtain b = bL =
1
2 log2 e, which completes the proof.

We note that taking c = 0 in Theorem 17 gives 1−Ck,0 �
log2 e
4·2k (1 + o(1)), which coincides with the capacity’s rate of

convergence for the fully-constrained system [28].
We also mention that in order to apply this method to more

general constraints we can use [10]. Unlike [9], in which the
events are positively correlated, in [10] a general dependence
structure is allowed. The relevant bounds of [10] have the same
flavor as those of [9].

B. A Lower Bound on the Capacity of (0, k, p)-RLL SCS

We turn to consider a lower bound on the capacity of the
(0, k, p)-RLL SCS. We can extend the method of monotone
families that was used in [28] to obtain such a bound. However,
the result that we describe next, which is based on the theory of
large deviations, outperforms the monotone-families approach.

As mentioned in Theorem 10, the capacity of (0, k, p)-RLL
SCS is given by

cap(F , p) = 1− inf
ν∈� I (ν)

where � = {ν ∈ Mσ (�
k) : ν(1k+1) � p

}
. The main idea of

the bound is that by fixing some ν ∈ � we find a lower bound
on the capacity. We do, however, have to keep in mind that
the measure we choose must be shift invariant.

Theorem 18: For all k � 1 and 0 < p � 2−(k+1),

Ck,p � 1− 1− p

2k+1 − 1
log2

(
2− 2 p

1+ 2 p(2k − 1)

)

− p log2

(
2 p(2k+1 − 1)

1+ 2 p(2k − 1)

)
. (6)

Proof: Construct the following measure,

ν∗(i) =
{

p i = 1k+1,
1−p

2k+1−1
otherwise.

It is easy to verify that ν∗ is indeed a shift-invariant measure.
Plugging ν∗ into Theorem 10 gives,

Ck,p = 1− inf
ν∈� I (ν) � 1− I (ν∗)

= 1− 1− p

2k+1 − 1
log2

(
2− 2 p

1+ 2 p(2k − 1)

)

− p log2

(
2 p(2k+1 − 1)

1+ 2 p(2k − 1)

)
,

as claimed.
The bound of Theorem 18 can now be used to prove an

asymptotic form when k→∞.
Corollary 19: For p = p(k), assume c = limk→∞ p

2−(k+1)

where c ∈ [0, 1], and let bU = (1 + c)(1 − H (1
c+1)), where

H (·) is the binary entropy function. Then,

1− Ck,p � bU

2k+1 (1+ o(1)).

Proof: We take the limit of the right-hand side of (6)
divided by bU/2k+1. We obtain that

lim
k→∞

2(k+1)

bU

⎛

⎝
(1− p) log2

(
2−2p

1+2p(2k−1)

)

2k+1 − 1

+ p log2

(
2 p(2k+1 − 1)

1+ 2 p(2k − 1)

)⎞

⎠

=
log2

(
2

1+c

)

bU

+ c

bU

log2

(
2c

1+ c

)

= 1

bU

(
(1+ c)− (1+ c)H

(
1

1+ c

))

= 1,

which proves the claim.

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1695

In order to obtain a lower bound on the capacity of the
D-dimensional (0, k, p)-RLL SCS we use the method of
monotone families. The bound is recursive in the sense that it
is given in terms of the one-dimensional capacity. Thus, the
expression may be further simplified by plugging in lower
bounds on the one-dimensional capacity from Theorem 18
or Theorem 19. We follow the steps presented in [28], and
therefore, only sketch the proof.

Theorem 20: The capacity of the D-dimensional
(0, k, p)-RLL SCS is bounded by the following,

C(D)
k,p � 1+ D

(
C(1)

k,p/D − 1
)
.

(Sketch of Proof): Fix j ∈ [D], and let A j denote
the set of all ω ∈ {0, 1}[n]D such that ω i,n,e j are each
one-dimensional (0, k, p/D)-RLL semiconstrained strings.
As in [28], we note that the D-dimensional (0, k, p)-RLL SCS
is a superset of the intersection

⋂
j∈[D] A j . Additionally, each

A j is a monotone decreasing family in the sense that it is
closed under the operation of turning 1’s into 0’s. Thus, as in
[28, Corollary 8], we obtain the desired result. �

As a final comment we note that the ratio between the
bounds of Theorem 17 and Theorem 19 is at most ≈ 1.5.

IV. WEAK SEMICONSTRAINED SYSTEMS

Let us consider the following two examples of binary
semiconstrained systems.

Example 21: Let X (F , P) be an SCS with F = {0, 1} and
P(0) = P(1) = 1

2 . Note that in this example the limit in the
definition of the capacity does not exist. For an even number, n,
one can calculate |Bn(F , P)| and obtain

(n
n/2

)
which gives

cap(F , P) > 0. For an odd n we have that |Bn(F , P)| = 0.
It is easy to construct more examples in the same spirit. �

Example 22: Let X (F , P) be an SCS with F = {0, 1} and
P(0) = r, P(1) = 1 − r where r ∈ [0, 1] is an irrational
number. We have that the possible words are those with exactly
an r-fraction of zeros and a (1 − r)-fraction of ones. Since
the capacity is defined on finite words, for every n we obtain
Bn(F , P) = ∅, which implies that cap(F , P) = −∞. �

These two examples are interesting because the first shows
that the limit in the definition of the capacity does not always
exist, and the second one shows that the capacity is not a
continuous function of the restrictions P . That is, in the second
example, from Theorem 10 we know that for every ε > 0,

lim
n→∞

1

n
log2 |Bn (F , (r + ε, 1 − r + ε)) | > 0

exists. However, the second example shows that

lim
ε→0

lim
n→∞

1

n
log2 |Bn (F , (r + ε, 1 − r + ε)) |

= cap (F , (r, 1 − r)).

We therefore suggest a more relaxed definition of semicon-
strained systems.

Definition 23: Let F ⊆ �∗ be a finite set of words, and let
P ∈ [0, 1]F be a function from F to the real interval [0, 1].
A weak semiconstrained system (WSCS), X(F , P), is
defined by

X(F , P) = {ω ∈ �∗ : ∀φ ∈ F , fr(φ,ω) � P(φ)+ ξ(|ω|)},

where ξ : N→ R
+ is a function satisfying both ξ(n) = o(1)

and ξ(n) = �(1/n). In addition, we define

Bn(F , P) = X(F , P) ∩�n .

We can think of ξ(|ω|) as an additive tolerance to
the semiconstraints. The requirement that ξ(n) = o(1) is in
the spirit of having the WSCS X “close” to the SCS X . In the
other direction, however, if we were to allow ξ(n) = o(1/n),
then for large enough n, we would have gotten Bn = Bn ,
i.e., no relaxation at all. Thus, we require ξ(n) = �(1/n).

The capacity of WSCS is defined in a similar fashion.
Definition 24: Let X(F , P) be a WSCS. The capacity

of X(F , P), which is denoted by cap(F , P), is defined as

cap(F , P) = lim sup
n→∞

1

n
log2

∣∣Bn(F , P)
∣∣.

We show that under this definition of the capacity, the limit
superior is actually a limit. Moreover, for cases such as the
first example, cap(F , P) = cap(F , P), i.e. the capacity is
continuous with respect to the restrictions P . We do however
note that weak semiconstrained systems are not a generaliza-
tion of fully-constrained systems since the set of sequences
in the latter does not contain any word which belongs to F ,
while the former does.

In order to show that the limit in the definition of cap exists
we need to show that it is possible to work only over the set
of shift-invariant measures with the induced topology. In order
to show this, we first show that the rate function governing the
LDP as defined in Theorem 10 is a good rate function.

Lemma 25: The rate function governing the LDP of the
empirical distribution frY

n,k , as defined in Theorem 10, is a
good rate function.

Proof: Recall that the rate function I governing the LDP

of the empirical distribution frY
n,k , as defined in Theorem 10,

can be written as the relative-entropy function. Let us denote
� = |�|k . The set M1(�

k) is isomorphic to a closed and
bounded subset of [0, 1]� and hence, compact. The subset
of shift-invariant measures in M1(�

k) is a closed subset of
M1(�

k) as a finite intersection of closed sets. Every closed
subset of a compact set is compact and therefore the set of
shift-invariant measures on M1(�

k) is compact. Since I is a
rate function, the level sets are a closed subset of the shift-
invariant measures on M1(�

k) and hence compact.
Corollary 26: Let X = M1(�

k) be the set of probability
measures on k-tuples and let Y = Mσ (�

k) ⊆ X be the set
of shift-invariant probability measures on k-tuples. If S is a

sequence of i.i.d. symbols, denote μn(�) = Pr[frS
n,k ∈ �].

Let μn|Y and I |Y denote the restriction of μn and I to Y ,
respectively. If the sequence {μn} satisfies the LDP with
rate function I then μn |Y satisfies the LDP with the rate
function I |Y .

Proof: The shift-invariant measures on M1(�
k) form a

Gδ-subset, and the probability of a sequence to have a measure
which is not shift invariant is 0, i.e., μn(X \Y) = 0 where Y is
the set of shift-invariant measures. Moreover, by the definition
of the rate function governing the LDP of the empirical
distribution, frY

n,k , we have I (x) = ∞ for x ∈ X \ Y . Thus,
we can use Lemma 8 which allows us to restrict ourselves to

1696 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

the set of shift-invariant measures with the induced topology,
which is denoted by Mσ (�

k).
The set F could contain words of various lengths, a fact

that sometimes complicates proofs. In order to keep things
as simple as possible we would like to work with a set of
forbidden words of the same length, i.e., a set F ⊆ �k for
some k ∈ N. The next definition and theorem help us achieve
this goal.

Definition 27: Let F ⊆ �∗ be a finite set of words. Set
k = maxφ∈F |φ| and define the operator f : M1(�

k) →
[0, 1]|F | as follows. Let M be a |F |× |�|k matrix, where for
φ ∈ F and ω ∈ �k , the (φ,ω) entry is given by

Mφ,ω =
[
ω0,|φ| = φ

]
.

Then, for any ν ∈ M1(�
k), we define f (ν) =Mν, where ν

is viewed as a vector indexed by �k .
Example 28: Let F = {1, 100} thus k = 3. The matrix M

has two rows and eight columns. Each rows corresponds to a
word from F : the first row to 1 and the second row to 100.
Each column corresponds to a triple 000, 001, 010, . . . , 111.

M =
[

0 0 0 0 1 1 1 1
0 0 0 0 1 0 0 0

]
.

�
The key point we make is that by using f −1 we are able

to convert constraints on a general set F to constraints on
k-tuples. The following theorem shows that the limit in the
definition of the capacity of the WSCS exists.

Theorem 29: Let X(F , P) be a WSCS, and

� =
{
ν ∈ [0, 1]F : ∀φ ∈ F , ν(φ) � P(φ)

}
.

Set k = maxφ∈F |φ|, and let X = Mσ (�
k) and Y = [0, 1]F .

Define the linear function f : X → Y as in Definition 27.
Then, if f −1(�) ∩ X
= ∅ the following equality holds (and
the limit exists):

cap(F , P) = lim
n→∞

1

n
log2

∣∣Bn(F , P)
∣∣ = 1− inf

μ∈ f −1(�)
I (μ),

provided the tolerance function for the WSCS satisfies
ξ(n) � 2 |�|k−1 n−1, and where I is the rate function defined
in Theorem 10.

Before proving Theorem 29 we need a technical
lemma.

Lemma 30: Let S = S0, S1, · · · be a sequence of �-valued
i.i.d. random variables. Denote Y = [0, 1]|F |, and let frS

n,F
denote the vector of empirical distribution of words in F in

the first n places of S, i.e., the coordinate frS
n,F (φ) that cor-

responds to φ ∈ F is fr(φ, S0,n+|φ|−1). Set k = maxφ∈F |φ|.
Then, for all n � k, and for every Borel set � ⊆ Y ,

Pr[frS
n,F ∈ �] = Pr[frS

n,k ∈ f −1(�)].
Proof: Let frS

n,k = v ∈ f −1(�), and frS
n,F = u.

We show that u ∈ �. Note that f (v) ∈ � hence if u = f (v)

TABLE I

EMPIRICAL DISTRIBUTION OF TRIPLES frS
10,3 IN THE

SEQUENCE ω = 101001101000 . . .

we are done. For all φ ∈ F , we get,

f (v)(φ) =
∑

ω∈�k

Mφ,ωv(ω)

=
∑

ω∈�k

[
ω0,|φ| = φ

]
fr(ω, S0,n+k−1)

= 1

n

∑

ω∈�k

n−1∑

i=0

[
Si,k = ω

] [
ω0,|φ| = φ

]

= 1

n

n−1∑

i=0

[
Si,|φ| = φ

]

= fr(φ, S0,n+|φ|−1) = u(φ).

The proof for the other direction is symmetric.
Example 31: Let F = {1, 100} and k = 3 as in

Example 28. Consider the sequence S0,12 = 101001101000.
The empirical distribution of triples in S0,12 is shown
in Table I.

Thus,

v =
(

1

10
,

1

10
,

2

10
,

1

10
,

2

10
,

2

10
,

1

10
, 0

)T

and we have that

Mv =
(

5

10
,

2

10

)T

.

Indeed, frS
10,F (1) = fr(1, S0,10) = 5/10 and frS

10,F (100) =
fr(100, S0,12) = 4/12 and we obtain that frS

10,F =MfrS
10,3. �

We are now ready to prove Theorem 29.
Proof of Theorem 29: We first note that � is closed and

hence compact. Let {�n} be the sequence

�n =
{
ν ∈ [0, 1]F : ∀φ ∈ F , ν(φ) � P(φ)+ 2 |�|k−1

n

}
.

We let � = f −1(�), and define the sequence {�n} where for
every n, �n = f −1(�n), i.e.,

�n =
{
ν ∈ Mσ

(
�k
)
:

∀φ ∈ F , f (ν(φ)) � P(φ)+ 2 |�|k−1

n

}
.

From Corollary 26 we can restrict ourselves to the shift-
invariant measures Mσ (�

k). Clearly, for every n, �n is a
closed and compact set, and �n → � when n → ∞
(in the sense that for every open neighborhood U of �
there exists N ∈ N such that for all n > N , �n ⊆ U).

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1697

Moreover,
⋂

n �n = �. Since � is not empty and is closed,
from LD theory we obtain that for every l ∈ N

lim sup
n→∞

1

n
logμn(�n) � lim sup

n→∞
1

n
logμn(�l) � − inf

ν∈�l
I (ν),

where μn(·) = Pr[frS
n,k ∈ ·]. Since the rate function is

continuous we obtain,

lim sup
n→∞

1

n
logμn(�n) � lim

l→∞

(
− inf
ν∈�l

I (ν)

)
(a)= − inf

ν∈� I (ν)

where (a) follows from the convergence of �n to �.
Now we argue that for every n, the set �n contains a

probability measure which belongs to the support of μn ,
i.e., ∃ω1 ∈ �n such that ω1 ∈ frS

n,k . Moreover, if q1 ∈ � then

we have ω1 ∈ �n such that ω1 ∈ frS
n,k and ‖q1 − ω1‖∞ � 2

n
(see appendix for a proof). Note that a tolerance of 2/n
becomes, after applying f , a tolerance of at most 2 |�|k−1 n−1

since the maximum sum of entries in a row of M is |�|k−1.
It is known [1] that

1

n
logμn(ω1) = −I (ω1)+ O(n−1 log n).

For every n ∈ N

1

n
logμn(�n) � − inf

ω∈�n∩L S
n,k

I (ω)+ O(n−1 log n).

Since the rate function is continuous and since
‖q1 − ω1‖∞ � 2

n we obtain

1

n
logμn(�n) � − inf

ω∈�n
I (ω) + O(n−1 log n)+ o(1),

which implies

lim inf
n→∞

1

n
logμn(�n) � − inf

ω∈� I (ω).

Therefore,

lim
n→∞

1

n
logμn(�n) = − inf

ω∈� I (ω).

From Lemma 30 and since

μn(�n) = Pr[frS
n,k ∈ f −1(�n)] = Pr[frS

n,F ∈ �n]
we have that

lim
n→∞

1

n
logμn(�n) = lim

n→∞
1

n
log
(

Pr[L S
n,F ∈ �n]

)

= − inf
ω∈ f −1(�)

I (ω)

as claimed. �
The proof shows another important property, namely, the

continuity of the capacity as a function of P . Note that the
function f is continuous and the rate function is continuous
when reduced to its support. Thus, if P is not empty and P+ε

is not empty, limε→0 cap(F , P + ε) = cap(F , P).

V. ENCODER AND DECODER CONSTRUCTION FOR WSCS

In this section we describe an encoding and decod-
ing scheme for general weak semiconstrained systems,
that asymptotically achieves capacity. The scheme relies on
LD theory, and its implementation is inspired by the coding
scheme briefly sketched in [2].

We outline the strategy used to construct the encoder. Given
a general semiconstrained system, by LD theory we can solve

an optimization problem to find the empirical distribution of
k-tuples that both satisfies the semiconstraints, as well as
maximizes the entropy. We then use this empirical distribution
to construct a Markov chain over a De-Bruijn graph of order
k − 1, with a stationary distribution of edges matching the
empirical distribution given by LD theory. We then use this
Markov chain to translate a stream of input symbols into
symbols that are sent over a channel. The decoder simply
reverses the process to obtain the input symbols.

The encoder we present is a block encoder which is also
a constant bit rate to constant bit rate encoder. We analyze it
for input blocks that contain i.i.d. Bernoulli(1/2) bits. In what
follows we present some notation, then describe the encoder
and decoder, and finally, analyze the scheme and show its
rate is asymptotically optimal, and its probability of failure
tends to 0.

A. Preliminaries

Several assumptions will be made in this section, all of them
solely for the purpose of simplicity of presentation. We will
make these assumptions clear. We further note that the results
easily apply to the general case as well.

Let (F , P) be a WSCS. The first assumption we make is
that the system is over the binary alphabet� = {0, 1}. Another
assumption we make is that F ⊆ �k , i.e., every word φ ∈ F
is of the same length k (see Theorem 27).

Solving the appropriate LD problem (see Theorem 10)
yields the capacity of the system, which is denoted by
C = cap(F , P), together with an optimal probability
vector, p, of length 2k . Each entry of the vector p cor-
responds to a k-tuple and contains the probability that a
k-tuple should appear in order to achieve the capacity of the
system, as well as satisfy the constraints. We denote the entries
p = (p0, p1, . . . , p2k−1).

Let G be the binary De-Bruijn graph of order k − 1,
i.e., the vertices are all the binary (k − 1)-tuples, and the
directed labeled edges are

u = (u1, u2, . . . , uk−1)
uk−→ (u2, u3, . . . , uk) = u′, (7)

where ui ∈ �. Thus, each vertex has 2 outgoing edges labeled
0 and 1. Additionally, each edge corresponds to a binary
k-tuple. For example, the edge from (7) corresponds
to uuk = u1u′.

For convenience, we define an operator R : �+ → �∗,
(where �+ denotes the set of positive-length finite strings
over �) which removes the first bit of a sequence. Namely,
for a sequence u = (u1, u2, . . . , un) ∈ �n , we define
R(u) = (u2, u3, . . . , un) ∈ �n−1. Thus, the edges of the
De-Bruijn graph are of the form u→ R(ua), for all u ∈ �k−1

and a ∈ �. Another operator we require is L : �+ → �,
which maps to the first bit of the sequence. That is, L(u) = u1.

We can construct a Markov chain over G, whose transition
matrix, A, is a 2k−1×2k−1 matrix whose i, j entry, Aij , is the
probability of choosing the edge going from vertex ui ∈ �k−1

to vertex u j ∈ �k−1 given that we are in state ui . At this point,
for simplicity of presentation, we assume that from each vertex
emanate exactly two outgoing edges with positive probability.

1698 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

Denote by v = (v0, v1, . . . , v2k−1−1) the stationary distrib-
ution of the vertices of the Markov chain, i.e., v is the unique
left eigenvector of A associated with the eigenvalue 1, whose
entry sum is also 1. We would like to find a Markov chain
on G whose stationary distribution of the edges matches the
vector p. More precisely, the variables appear in the non-zero
entries of A (we have 2k−1 variables), and we would like
to find a vector v as above (another set of 2k−1 variables)
satisfying

vA = v, (8)

as well as, for each edge ui
a−→ u j , a ∈ �,

vi Ai, j = pui a,

where pui a is the entry in p that corresponds to the
k-tuple ui a. We note that since the vector p is shift invariant,
the set of equations has a solution (see [4]).

B. Encoder

Assume ω ∈ �n is a sequence of n input bits at the
encoder, which are i.i.d. Bernoulli (1/2). The encoding process
is comprised of three steps: partitioning, biasing, and graph
walking.

1) Partitioning: The first step in the encoding process is par-
titioning the sequence ω of n input bits into 2k−1 subsequences
of, perhaps, varying lengths, denoted ni , 0 � i � 2k−1 − 1.
Obviously, ni � 0 for all i , as well as

∑2k−1−1
i=0 ni = n. Each

subsequence is to be associated with a vertex of the Markov
chain, or equivalently, with a (k − 1)-tuple. The first n0 bits
of the input are associated with state u0, the following n1 bits
are associated with state u1, and so on.

For every vertex ui , let u j be the vertex for which ui
0−→ u j ,

i.e., u j = R(ui 0), and denote by qi the entry Aij . For every
k-tuple i , let

ñi = H (qi)vi · n

C
.

For all 0 � i � 2k−1 − 1 take ni = �ñi�, where �·� denotes
either a rounding down or a rounding up. The rounding is
done in such a manner as to preserve the sum,

2k−1−1∑

i=0

ñi =
2k−1−1∑

i=0

ni .

This is always possible, for example, by taking 2k−1 steps,
where at the i th step, ñi is rounded in a direction that keeps
the intermediate sum strictly less than 1 away from the original
sum. We additionally note that indeed

2k−1−1∑

i=0

ni =
2k−1−1∑

i=0

ñi

(a)= n

C

∑

i∈�k−1

H (qi)vi

= n

C

∑

i∈�k−1

(−qivi log2 qi −(1− qi)vi log2(1− qi)
)

= n

C

∑

i∈�k−1

(−pi0 log2 qi − pi1 log2(1− qi)
)

= n

C

∑

i∈�k−1

(
−pi0 log2

pi0

pi0 + pi1

− pi1 log2
pi0

pi0 + pi1

)

(b)= n

C
· C = n,

where (a) follows from the one-to-one correspondence
between states and (k − 1)-tuples, and (b) follows from
Theorem 10.

2) Biasing: After obtaining 2k−1 subsequences, we take
each subsequence and bias it to create subsequences that are
typical for a Bernoulli (q) source, for some q . To that end,
we use an arithmetic decoding process on each subsequence.

Let ηi be the subsequence that corresponds to vertex ui ,
namely,

ηi = ω∑i−1
j=0 n j ,ni

.

For every i , we decode ηi using an arithmetic decoder
with probability qi to obtain a new sequence η̂i distributed
Bernoulli(qi). Since the decoding process can continue indef-
initely, we stop the process when the obtained sequence η̂i is

of length
⌈

ni/H (qi)+ n
1
2+ε
⌉

bits for some known arbitrarily

small ε ∈ (0, 1
4). For every state ui , we call the obtained

sequence “the information bits of state ui .”
The resulting arithmetically-decoded sequence, η̂i , corre-

sponds to a closed segment in [0, 1]. If there exists a state ui

for which η̂i corresponds to a segment of length greater
than 2−ni , an error is declared. For a detailed description of
arithmetic coding see [27].

3) Graph Walking: The encoder now has the sequences η̂i ,
which are of various lengths. The encoder appends to each

sequence η̂i an extra
⌈

n
1
2+2ε

⌉
bits distributed Bernoulli(qi).

These extra bits carry no information and are used for padding
only.

Then, the encoder starts the transmission in the following
manner:

Intuitively, when arriving at a state, the encoder takes a
bit from the sequence associated with the state. This bit is
transmitted, removed from the sequence, and determines the
next state. The encoder fails if a bit is required and the
sequence associated with the state is already empty, or if at
the end of the main loop, not all information bits have been
transmitted. This is described formally in Algorithm 1

C. Decoder

The decoding process mirrors the encoding. A simple graph
walking is the first stage of the decoding (see Algorithm 2).

After the graph walking is completed, the decoder
takes from each received subsequence η̃i only the first⌈

ni/H (qi)+ n
1
2+ε
⌉

bits and passes them through an arith-
metic encoder, thus reversing the second stage of the encoder.
The resulting sequences are now ηi of length ni . Finally, the
decoder takes each ηi and concatenates them in order to obtain
the desired input sequence ω = η0 . . . η2k−1−1.

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1699

Algorithm 1 Encoding – The Graph-Walking Stage

Input: The sequences η̂i
Output: Transmitted bits
u← 0k−1 � Set initial state
repeat

if η̂u is an empty sequence then
Declare error and stop

end if
a← L(η̂u) � Read first bit in queue
Transmit a
η̂u ← R(η̂u) � Remove first bit from queue
u← R(ua) � Proceed to the next state

until
⌈

n
C + n

1
2+2ε

⌉
bits are transmitted

if ∃u ∈ �k−1 s.t.
∣∣η̂u

∣∣ >
⌈

n
1
2+2ε

⌉
then

Declare error and stop
end if

Algorithm 2 Decoding – The Graph-Walking Stage
Input: Received bits
Output: The sequences η̂i
u← 0k−1 � Set initial state
Set η̂i to be empty sequences, for all i
repeat

Receive a bit a
η̂u ← η̂ua � Append received bit to queue
u← R(ua) � Proceed to the next state

until
⌈

n
C + n

1
2+2ε

⌉
bits are received

D. Analysis

We first show that the transmitted sequence indeed admits
the constraints given by P . Let G be the De-Bruijn graph
and A be the associated transition matrix with the stationary
distribution vector v. It is easy to see that G is irreducible and
aperiodic. It is well known that for such graphs, starting with
any vertex-probability vector u, limn→∞ uAn = v. For ε > 0,
a divergence of ε in some coordinate of v induces a divergence
of ε in some coordinate in p. Although the WSCS allows
some tolerance, we need to make sure that the tolerance is
indeed o(1). To show that for large enough n the transmit-
ted words satisfy the semiconstraints we need the following
theorem.

Theorem 32 ([18, Ch. 4]): Suppose A is the transition
matrix of an irreducible and aperiodic Markov chain, with
stationary distribution v. Then there exist constants α ∈ (0, 1)
and c > 0 such that

max
i
‖(An)i,· − v‖T V � cαn,

where (An)i,· denotes the i th row of An, and ‖ · ‖T V denotes
the total variation norm.

This implies that the rate of convergence to the stationary
distribution is exponential and as such, the divergence from
the semiconstraints decays as o(1).

We now examine the rate of the presented coding scheme.
The encoder takes n input bits and transmits

⌈
n
C + n

1
2+2ε

⌉

bits over the channel. Since ε ∈ (0, 1
4), the asymptotic rate of

the scheme is

lim
n→∞

n⌈
n
C + n

1
2+2ε

⌉ = C,

and the coding scheme is asymptotically capacity achieving.
We now show that the error probability vanishes as n grows.

We define the following events:
1) E1: There exists a state ui for which the arithmetic-

decoded word η̂i corresponds to a segment of length
greater than 2−ni .

2) E2: Some of the information bits have not been
transmitted, i.e., there exists a state j which, during
the graph-walking stage, is visited strictly less than⌈

n j/H (q j)+ n
1
2+ε
⌉

times.

3) E3: There exists a state j which, during the
graph− walking stage, is visited strictly more than⌈

n j/H (q j)+ n
1
2+ε + n

1
2+2ε

⌉
times.

Thus, the total error probability is

Perr = Pr [E1 ∪ E2 ∪ E3] � Pr [E1]+ Pr[E2 ∪ E3].
We bound the two probabilities appearing on the right-hand
side separately, showing each of them vanishes.

We start by considering Pr[E1]. The arithmetic-coding
scheme used here receives a sequence of ni bits distributed
Bernoulli(1/2), employs the decoding process first, and then
uses the encoding process. The main obstacle in arithmetic
decoding is that the arithmetic decoder does not know when
to stop the decoding process. In our construction we stop the
arithmetic decoder after

⌈
ni/H (qi)+ n

1
2+ε
⌉

bits are obtained.
It is well-known (for example, see [27]) that the error prob-
ability in the arithmetic-coding scheme vanishes as the block
length grows, and therefore, using a simple union bound
Pr[E1] tends to 0.

We continue to the case of bounding Pr[E2 ∪ E3]. The

encoder transmits exactly
⌈

n/C + n
1
2+2ε

⌉
bits. Let V be the

2k−1×2k−1 matrix all of whose rows are the stationary vector
v from (8). We denote by Z the matrix

Z = (I − A + V)−1 ,

where A is from (8) and I is the identity matrix. The
matrix A is invertible by [6, Ch. 11]. We also define, for each i ,

σ 2
i = 2vi Zii − vi − v2

i .

Let S(n)i denote the number of times a walk of length n

on G visits the vertex i . Let us denote f (n) = n
1
2+ε and

g(n) = n
1
2+2ε . For any state ui , it is easy to verify that since

vi
= 0, 1 for every i ,

lim
n→∞

f (n)(1− vi)− g(n)vi√
σ 2

i

(n
C + f (n)+ g(n)

) ≈ lim
n→∞ nε(1− vi (1+ nε))

= −∞
and that

lim
n→∞

(f (n)+ g(n)) (1− vi)√
σ 2

i

(n
C + f (n)+ g(n)

) ≈ lim
n→∞ n2ε = ∞.

1700 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

Pr

[
ni

H (qi)
+ n

1
2+ε < S

(n
C+n

1
2+ε+n

1
2+2ε

)

i <
ni

H (qi)
+ n

1
2+ε + n

1
2+2ε

]

= Pr
[nvi

C
+ f (n) < S

(n
C + f (n)+g(n))

i <
nvi

C
+ f (n)+ g(n)

]

= Pr

⎡

⎣
nvi
C + f (n)− (n

C + f (n)+ g(n)
)
vi√(n

C + f (n)+ g(n)
)
σ 2

i

<
S
(n

C+ f (n)+g(n))
i − (n

C + f (n)+ g(n)
)
vi√(n

C + f (n)+ g(n)
)
σ 2

i

<

nvi
C + f (n)+ g(n)− (n

C + f (n)+ g(n)
)
vi√(n

C + f (n)+ g(n)
)
σ 2

i

⎤

⎦

= Pr

⎡

⎣ f (n)(1− vi)− g(n)vi√(n
C + f (n)+ g(n)

)
σ 2

i

<
S
(n

C+ f (n)+g(n))
i − (n

C + f (n)+ g(n)
)
vi√(n

C + f (n)+ g(n)
)
σ 2

i

<
(f (n)+ g(n)) (1− vi)√(n

C + f (n)+ g(n)
)
σ 2

i

⎤

⎦

−−−→
n→∞

1

2π

∫ ∞

−∞
e−

x2
2 dx = 1 (9)

Using the central limit theorem (CLT) for Markov chains
[6, Ch. 11] we bound 1 − Pr[E2 ∪ E3]. For any start-
ing vertex and for every state i , the probability that

a walk of length
⌈

n/C + n
1
2+ε + n

1
2+2ε

⌉
on G visits

state ui at least ni/H (qi) + n
1
2+ε times but no more than⌈

ni/H (qi)+ n
1
2+ε + n

1
2+2ε

⌉
times is given in (9), as shown

at the top of this page. Thus, as n increases, the probability
Pr[E2 ∪ E3] tends to 0.

VI. CONCLUSION

In this paper we studied semiconstrained systems, as well
as a relaxation in the form of weak semiconstrained systems.
We used tools from probability theory, and in particular,
large deviations theory, to formulate closed-form bounds on
the capacity of the (0, k, p)-RLL SCS. These enabled us
to bound the capacity’s rate of convergence as k grows.
We also examined the limit in the definition of the capacity
for these systems does exist, unlike SCS. We also showed the
capacity is continuous, again, unlike the case of SCS. Finally,
we devised encoding and decoding schemes for WSCS with
rate that asymptotically achieves capacity, and with a vanishing
failure probability.

Many questions remain open. An important one is the
study of multi-dimensional semiconstrained systems, and in
particular, the two-dimensional case. While problems concern-
ing two-dimensional fully-constrained systems are notoriously
difficult (e.g., finding their exact capacity), perhaps the gen-
eralization suggested by semiconstrained systems may bring
new insight to the problem. Other research goals suggested by
this work are the study of the complexity of the associated
encoding and decoding algorithms, as well as the goal of
finding encoders that have a zero-probably of failure. We leave
these problems for future works.

APPENDIX

We provide a proof that for every n, the set �n con-
tains a probability measure which belongs to the support
of μn .

Definition 33: Let G = (V , E) be a directed graph.
An n-circulation is an assignment of weights w(·) to the edges
such that:

1) w(e) � 0 for all e ∈ E.
2)
∑

e∈In(v) w(e) =
∑

e∈Out(v) w(e) for all v ∈ V .
3)
∑

e∈E w(e) = n.
An integer n-circulation is an n-circulation for which w(e) ∈ Z

for all e ∈ E.
We assume throughout that a directed graph has no parallel

edges.
Definition 34: Let G = (V , E) be a directed graph.

A cycle is a sequence v0, v1, . . . , vk−1, such that vi ∈ V ,
and (vi , vi+1) ∈ E for all i , where the indices are
taken modulo k. The cycle is vertex simple if the vertices
are all distinct. It is edge simple if the edges are all
distinct.

We note that using this notation, a cycle of length 1
is described by a sequence with one vertex only. We say
two cycles are distinct if they do not contain the exact same
set of edges.

The underlying graph of a direct graph, is the undi-
rected graph obtained by removing the orientation of
the edges. An underlying graph may contain parallel
edges.

Definition 35: Let G = (V , E) be a directed graph. Let
C = v0, . . . , vk−1 be a cycle in the underlying graph. For
all i , we say (vi , vi+1) is cooriented if (vi , vi+1) ∈ E, and
disoriented if (vi+1, vi) ∈ E. The set of cooriented and
disoriented edges are defined as:

CO(C) = {(vi , vi+1) : (vi , vi+1) ∈ E} ,
DO(C) = {(vi , vi+1) : (vi , vi+1)
∈ E} .

We say the effective length of the cycle is CO(C)− DO(C).
A cycle with effective length of 0 is called balanced.
Definition 36: Let G = (V , E) be a directed graph, w

a weight assignment to the edges, and C = v0, . . . , vk−1
an edge-simple cycle in the underlying graph. Let ε ∈ R.
An ε-adjustment of the cycle C is a weight assignment w′

ELISHCO et al.: SEMICONSTRAINED SYSTEMS 1701

such that,

w′(e) =

⎧
⎪⎨

⎪⎩

w(e)+ ε e ∈ CO(C),

w(e)− ε e ∈ DO(C),

w(e) otherwise.

Lemma 37: Let G = (V , E) be a directed graph, and let
C be a balanced edge-simple cycle in the underlying graph.
Assume w is an n-circulation, and ε ∈ R is some real number.
Denote by w′ the edge-weighing function obtained from w by
ε-adjusting C. If w′(e) � 0 for all e ∈ E, then w′ is also an
n-circulation.

Proof: Property 1 is satisfied by requirement. It is easily
verifiable that an adjustment preserves property 2. Finally, the
overall weight of the edges is not changed.

Lemma 38: Let G = (V , E) be a directed graph, and let
C1 and C2 be two distinct edge-simple cycles in the underlying
graph of effective lengths k1 and k2 respectively. Assume
w is an n-circulation, and ε ∈ R is some real number.
Denote by w′ the edge-weighing function obtained from w by
k2ε-adjusting C1, and then −k1ε-adjusting C2. If w′(e) � 0
for all e ∈ E, then w′ is also an n-circulation.

Proof: Property 1 is satisfied by requirement. It is easily
verifiable that an adjustment preserves property 2. Finally,
the overall weight of the edges if increased by k1k2ε after the
first adjustment, and decreased by the same amount after the
second adjustment.

Theorem 39: Let G = (V , E) be the De-Bruijn graph
of order m over the finite alphabet �. Assume w is an
n-circulation for some n ∈ N. Then there exists an integer
n-circulation w′ such that

�w(e)� � w′(e) � �w(e)� + 1,

for all e ∈ E.
Proof: We first look at the underlying unoriented graph.

This is a regular graph of degree 2 |�|. Because of property 2,
there is no vertex with exactly one incident edge of
non-integer weight. It follows, that every edge of non-integer
weight is on an unoriented cycle in the underlying graph,
all of whose edges have non-integer weights. We call such
cycles, non-integer cycles.

Assume there is a balanced non-integer cycle C .
By Lemma 37, and since all of the weights on the cycle’s
edges are non-integers, there exists a minimal ε > 0 such that
ε-adjusting C creates a new n-circulation with at least one
edge of the cycle having an integer weight. Furthermore, for
this edge e, since we took the minimal ε possible, the new
weight of the edge is either �w(e)� or �w(e)�.

We can repeat the process as long as we have balanced
non-integer cycles. If we do not, assume we have two distinct
non-integer cycles, C1 and C2. We can assume they are edge
simple. Again, there exists a minimal ε > 0 such that adjusting
by Lemma 38 turns at least one of the cycle-edge weights to
an integer weight. Like before, choosing the minimal such ε
ensures the new weight is either a rounding down or a rounding
up of the original weight.

After this, we go back to looking for balanced non-integer
cycles, an continue this way. Repeating the above, we must

end up with either an integer n-circulation w′ as desired,
or with a circulation all of whose non-integer weights form a
single vertex-simple non-balanced non-integer cycle. Denote
this cycle as C , and assume it has an effective length of k.
It is easy to verify that the fractional part of the weight of
all cooriented edges is equal to some constant 0 < α < 1,
whereas the fractional part of the disoriented edges is 1− α.
Since the sum of the edges of C is an integer, we have

|CO(C)| α + |DO(C)| (1− α) = |DO(C)| + kα,

is an integer. Thus, kα is an integer and 0 < kα < k.
It is well known [17] that the De Bruijn graph of order m

has an edge-simple directed cycle for each length between 1
and |�|m . We find such a cycle of length kα. We then round
down all the weights of the cycle C , and add 1 to all the edges
of the kα-cycle. We call the resulting n-circulation w′. Since
the weights of the edges of the kα cycle may have already
been increased in a previous rounding operation, we have

�w(e)� � w′(e) � �w(e)� + 1,

for all e ∈ E , as claimed.
Finally, in the proof of Theorem 29 we are given q1, a shift-

invariant distribution over �k . By identifying the elements
of �k with the edges of the De Bruijn graph of order k − 1
over �, and assigning each edge φ ∈ �k the weight n ·q1(φ),
we obtain a circulation. Using Theorem 39, we can obtain
an integer circulation, which we denote w′. If we define
ω1 = w′/n, then ω1 is a shift-invariant distribution in L S

n,k
satisfying

‖q1 − ω1‖∞ � 2

n
,

as claimed.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and
the anonymous reviewers, whose comments improved the
presentation of the paper.

REFERENCES

[1] P. H. Algoet and B. H. Marcus, “Large deviation theorems for empirical
types of Markov chains constrained to thin sets,” IEEE Trans. Inf.
Theory, vol. 38, no. 4, pp. 1276–1291, Jul. 1992.

[2] S. Aviran, P. H. Siegel, and J. K. Wolf, “An improvement to the
bit stuffing algorithm,” IEEE Trans. Inf. Theory, vol. 51, no. 8,
pp. 2885–2891, Aug. 2005.

[3] A. Berman and Y. Birk, “Constrained flash memory programming,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), St. Petersburg, Russia,
Aug. 2011, pp. 2128–2132.

[4] J.-R. Chazottes, J.-M. Gambaudo, M. Hochman, and E. Ugalde, “On
the finite-dimensional marginals of shift-invariant measures,” Ergodic
Theory Dyn. Syst., vol. 32, no. 5, pp. 1485–1500, 2012.

[5] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions. New York, NY, USA: Springer, 1998.

[6] C. M. Grinstead and L. J. Snell, Introduction to Probability. Providence,
RI, USA: AMS, 2006.

[7] K. A. S. Immink, “Weakly constrained codes,” Electron. Lett., vol. 33,
no. 23, pp. 1943–1944, Nov. 1997.

[8] K. A. S. Immink, Codes for Mass Data Storage Systems. Eindhoven,
The Netherlands: Shannon Foundation Publishers, 2004.

[9] S. Janson, “Poisson approximation for large deviations,” Random Struct.
Algorithms, vol. 1, no. 2, pp. 221–230, 1990.

1702 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 4, APRIL 2016

[10] S. Janson, “Large deviations for sums of partly dependent random
variables,” Random Struct. Algorithms, vol. 24, no. 3, pp. 234–248, 2004.

[11] R. Karabed, D. L. Neuhoff, and A. Khayrallah, “The capacity of
costly noiseless channels,” IBM Res. Rep., New York, NY, USA,
Tech. Rep. RJ 6040 (59639), Jan. 1988.

[12] A. Kato and K. Zeger, “On the capacity of two-dimensional run-
length constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5,
pp. 1527–1540, Jul. 1999.

[13] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-free
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, HI, USA,
Jul. 2014, pp. 1431–1435.

[14] A. S. Khayrallah and D. L. Neuhoff, “Coding for channels with cost
constraints,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 854–867,
May 1996.

[15] H. M. Kiah, G. J. Puleo, and O. Milenkovic. (2015). “Codes for DNA
sequence profiles.” [Online]. Available: http://arxiv.org/abs/1502.00517.

[16] O. F. Kurmaev, “Constant-weight and constant-charge binary run-length
limited codes,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4497–4515,
Jul. 2011.

[17] A. Lempel, “m-ary closed sequences,” J. Combinat. Theory, A, vol. 10,
no. 3, pp. 253–258, 1971.

[18] D. A. Levin, Y. Peres, and E. L. Wilmer, Markov Chains and Mixing
Times. Providence, RI, USA: AMS, 2006.

[19] S. Lin and D. J. Costello, Error Control Coding, 2nd ed.
Upper Saddle River, NJ, USA: Prentice-Hall, 2004.

[20] D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1985.

[21] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1978.

[22] B. Marcus and S. Tuncel, “Entropy at a weight-per-symbol and
embeddings of Markov chains,” Inventiones Math., vol. 102, no. 1,
pp. 235–266, 1990.

[23] B. H. Marcus and R. M. Roth, “Improved Gilbert-Varshamov bound
for constrained systems,” IEEE Trans. Inf. Theory, vol. 38, no. 4,
pp. 1213–1221, Jul. 1992.

[24] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
J. Sel. Areas Commun., vol. 32, no. 5, pp. 836–846, May 2014.

[25] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge,
U.K.: Cambridge Univ. Press, 2008.

[26] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

[27] A. Said, “Introduction to arithmetic coding—Theory and practice,”
Hewlett Packard Lab., Palo Alto, CA, USA, Tech. Rep. HPL-2004-76,
Apr. 2004.

[28] M. Schwartz and A. Vardy, “New bounds on the capacity of multidimen-
sional run-length constraints,” IEEE Trans. Inf. Theory, vol. 57, no. 7,
pp. 4373–4382, Jul. 2011.

[29] A. Shafarenko, A. Skidin, and S. K. Turitsyn, “Weakly-constrained codes
for suppression of patterning effects in digital communications,” IEEE
Trans. Commun., vol. 58, no. 10, pp. 2845–2854, Oct. 2010.

[30] A. Shafarenko, K. S. Turitsyn, and S. K. Turitsyn, “Information-theory
analysis of skewed coding for suppression of pattern-dependent errors
in digital communications,” IEEE Trans. Commun., vol. 55, no. 2,
pp. 237–241, Feb. 2007.

[31] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Jul. 1948.

Ohad Elishco (S’12) received the B.Sc. in mathematics and his B.Sc. in
electrical engineering in 2012 from Ben-Gurion University of the Negev,
Israel; the M.Sc. degree in electrical engineering in 2013 from Ben-Gurion
University of the Negev. In 2013 he started his Ph.D in electrical engineering
also in Ben-Gurion University. His research interests are constrained coding
and dynamical systems.

Tom Meyerovitch received the B.Sc. in mathematics and computer science
from from Tel-Aviv University, Israel, in 1999; the M.Sc. and Ph.D. degrees in
mathematics in 2004 and 2010, respectively, also from Tel-Aviv University.
In 2010-2012 he held a post doctoral position at the University of British
Columbia, and the Pacific Institute for Mathematical studies in Vancouver
Canada. Since 2012, he has been on the faculty of the Department of
Mathematics at Ben-Gurion University, Beer-Sheva, Israel. He studies various
mathematical aspects of dynamical systems, in particular symbolic dynamics.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and
Ph.D. degrees from the Technion - Israel Institute of Technology, Haifa,
Israel, in 1997, 1998, and 2004 respectively, all from the Computer Science
Department. He was a Fulbright post-doctoral researcher in the Department
of Electrical and Computer Engineering, University of California San Diego,
and a post-doctoral researcher in the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012-2014, he was a
visiting scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage, and the 2010
IEEE Communications Society Best Student Paper Award in Signal Processing
and Coding for Data Storage.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChancery-MediumItalic
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

