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Perfect Constant-Weight Codes

Tuvi Etzion, Fellow, IEEE, and Moshe Schwartz, Member, IEEE

Abstract—In his pioneering work from 1973, Delsarte conjectured that
there are no nontrivial perfect codes in the Johnson scheme.Many attempts
weremade, during the yearswhich followed, to proveDelsarte’s conjecture,
but only partial results have been obtained. We survey all these attempts,
and prove some new results having the same flavor. We also present a new
method, taking a different approach, which we hope can lead to the settling
of this conjecture. We show how this new method rules out sets of parame-
ters as well as specific given parameters.

Index Terms—Constant-weight codes, Johnson scheme, -regular codes,
perfect codes, Steiner systems.

I. INTRODUCTION

In a givenmetric, codes which attain the sphere-packing bound in the
metric are called perfect. Such codes have always drawn the attention
of coding theorists and mathematicians. In the Hamming scheme, all
perfect codes over finite fields are known [1]. They exist for only a rel-
atively small number of parameters, while for other parameters it was
proved [1]–[4] that they cannot exist. The nonexistence proof is based
of Lloyd’s polynomials. For non-field alphabets only trivial codes are
known and by similar methods it was proved [5] that for most other
parameters they do not exist.

Constant-weight codes are building blocks for general codes in the
Hamming scheme. They are also of interest in a wide range of areas
[6]–[10]. A natural question is whether there exist perfect constant-
weight codes. In the 1970s and 1980s, most work on constant-weight
codes considered only the binary case. A binary constant-weight code
has three parameters: length n, constant weightw, and minimumHam-
ming distance d = 2� (Hamming distance will be calledH-distance for
short). If we define the distance between two words x and y of weight
w, as half their H-distance, we obtain a new metric which is called the
Johnson metric, and the distance is called the J-distance.

It is very convenient to describe the Johnson scheme in terms of sets.
With the Johnson schemewe associate the Johnson graph J(n;w). The
vertex set V n

w of the Johnson graph consists of all w-subsets of a fixed
n-set. Two such w-subsets are adjacent if and only if their intersection
has sizew�1. A code C of suchw-subsets is called an e-perfect code in
J(n;w) (or in the Johnson scheme) if the e-spheres with centers at the
codewords of C form a partition of V n

w . In other words, C is an e-perfect
code if for each element v 2 V n

w there exists a unique element c 2 C

such that the J-distance between v and c is at most e. There are some
trivial perfect codes in J(n;w).

1) V n

w is 0-perfect.
2) Any fvg, v 2 V n

w , is w-perfect.
3) If n = 2w, w odd, any pair of disjoint w-subsets is e-perfect

with e = 1

2
(w � 1).

It was conjectured byDelsarte [11], that these are the only perfect codes
in J(n;w).
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The main purpose of this correspondence is to present a new tech-
nique which could lead to the settling of the existence question of
perfect codes in the Johnson scheme. In Section II, we give a short
survey of the known results and techniques concerning the existence
of perfect codes in the Johnson scheme. Parameters for which perfect
codes cannot exist are summarized. In Section III, we present some new
results using similar techniques, which rule out more parameters for
which perfect codes cannot exist. In Section IV, we present a new tech-
nique to prove that e-perfect codes do not exist in J(n;w). We show
which general parameters can be ruled out by the new technique. In
Section V, we summarize the parameters for which there are no e-per-
fect codes in J(n;w). We also describe a computer search, using the
new technique, with which we were able to show the nonexistence of
e-perfect codes in J(n;w) for any given specific e, n, and w that we
checked. Conclusion is given in Section VI.

II. SURVEY OF KNOWN RESULTS

In his work from 1973, Delsarte wrote [11, p. 55]:

“After having recalled that there are “very few” perfect codes
in the Hamming schemes, one must say that, for 1 < � < n, there
is not a single one known in the Johnson schemes. It is tempting
to risk the conjecture that such codes do not exist. Certain re-
sults contained in the present work could be useful to attack this
problem; especially the generalized Lloyd theorem of sec. 5.2.2
and theorem 4.7 about t-designs.”

Indeed, Delsarte omitted the trivial perfect codes (we will omit them
too, so when we say perfect codes we mean nontrivial perfect codes)
and his conjecture on the nonexistence of perfect codes in the Johnson
scheme has provided lots of ground for research in the ten years which
followed. Due to the fact that in the Hamming scheme all parameters
for which perfect codes exist were known, special emphasis was given
to the Johnson scheme. However, most research failed to produce sig-
nificant results.
In the Hamming scheme, the trivial codes, the Hamming codes, and

the two Golay codes, are the only perfect codes over GF (q). There
are no perfect codes with other parameters [2]–[4] (see also [1] for
the detailed proof). Moreover, for most parameters, it is known that
there are no perfect codes over non-field size alphabets in the Hamming
scheme [5].
Biggs [12] showed that the natural setting for the existence problem

of perfect codes is the class of distance-transitive graphs. Let � be a
connected graph. We denote by d�(x; y) the length of the shortest path
from x to y. � is said to be distance-transitive if, whenever x, x0, y, y0

are vertices with d�(x; x0) = d�(y; y
0), there is an automorphism  of

� with (x) = y and (x0) = y0. Biggs [12] claims that the class of
distance-transitive graphs includes all interesting schemes, such as the
Hamming scheme and the Johnson scheme. These graphs are contained
in another class of graphs. � is said to be distance-regular if there are
integers ai, bi, ci (0 � i � d, where d is the diameter of �) with the
following property: whenever x and x0 are vertices with d�(x; x0) = i,
then

y : d�(x; y) = j and d�(x
0

; y) = 1 = ai; bi; or ci

depending on whether j = i�1, i, or i+1. A distance-transitive graph
is obviously distance-regular. Let � be a distance-regular graph with a
vertex set V . A subsetX of V is called an anticodewith diameter �, if �
is the maximum distance occurring between vertices of X . Anticodes
with diameter � having maximal size are called optimal anticodes. The
following theorem is due to Delsarte [11].
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Theorem 1: Let X and Y be subsets of V such that the nonzero dis-
tances occurring between vertices of X do not occur between vertices
of Y . Then jXj � jYj � jVj.

Biggs [12] developed a general theory and a “simple” criterion for
the existence of perfect codes in a distance-transitive graph. He showed
that this criterion implies Lloyd’s theorem, which is used in the Ham-
ming scheme to prove the nonexistence of perfect codes in all cases.
Bannai [13] proved the nonexistence of e-perfect codes inJ(2w�1; w)
and J(2w+1; w) for e � 2. He used an analog to Lloyd’s theorem and
some number-theoretic results. Hammond [14] improved this result by
proving the following.

Theorem 2: There are no perfect codes in J(2w � 2; w),
J(2w � 1; w), J(2w + 1; w), and J(2w + 2; w).

However, the most significant result, in the first 20 years following
Delsarte’s conjecture, was given in 1983 by Roos [15].

Theorem 3: If an e-perfect code exists in J(n; w), then

n � (w � 1)
2e+ 1

e
:

The proof of Roos was based on the following theory given by Del-
sarte [11]: by using Theorem 1, Roos noticed that if an e-perfect code
exists, then the e-spheres should be optimal anticodeswith diameter 2e.
He proceeded to find anticodes in J(n;w) and obtained his result by
comparing them to the e-spheres. In Section III, we will give a different
simple proof to Theorem 3. There is a special interest in the technique
of Roos and Theorem 1 of Delsarte as we will discuss in Section II-A.

It took more than 10 years to obtain new results. Etzion [16] took a
new approach. He proved that if there exists a nontrivial e-perfect code
C in J(n;w), then many Steiner systems are embedded in C. A Steiner
systemS(t; k; n) is a collection of k-subsets (called blocks) taken from
an n-set, such that each t-subset of the n-set is contained in exactly one
block. The following theorems are well known (see [1] for reference).

Theorem 4: If there exists a Steiner system S(t; k; n) for t � 1,
then there exists a Steiner system S(t� 1; k � 1; n � 1).

Theorem 5: A necessary condition for a Steiner system S(t; k; n)
to exist, is that the numbers

n� i

t� i

k � i

t� i

must be integers, for all 0 � i � t.

Using Etzion’s approach, the necessary conditions of Theorem 5
imply necessary conditions for the existence of perfect codes in the
Johnson scheme. Moreover, Etzion developed a new concept called
configuration distribution, which is akin to the concept of weight
distribution for codes in the Hamming scheme. Using this concept,
combined with the necessary conditions derived from Steiner systems,
many parameters were found, for which e-perfect codes do not exist
in J(n;w). We summarize the main results given in [16].

Lemma 1: If C is an e-perfect code in the Johnson scheme, then its
minimum H-distance is 4e + 2.

An (n; d; w) code is a code of length n, constant weight w, and
minimum H-distance d. A(n; d; w) denotes the maximum size of an
(n; d; w) code. The following lemma is a trivial observation.

Lemma 2: If C is an e-perfect code in J(n;w), then

A(n; 4e+ 2; w) = jCj:

Henceforth, let N = f1; 2; . . . ; ng be the n-set. From a Steiner
system S(t; k; n) we construct a constant-weight code on n coordi-
nates as follows. From each block B we construct a codeword with 1’s
in the positions of B and 0’s in the positions of N n B. This construc-
tion leads to the following well-known theorem (see reference in [7]).

Theorem 6:

A(n; 2(k� t+ 1); k) =
n(n� 1) � � � (n� t+ 1)

k(k � 1) � � � (k � t+ 1)

if and only if a Steiner system S(t; k; n) exists.

From Theorem 6 and Lemmas 1 and 2, we immediately infer the
following result.

Lemma 3: If C is an e-perfect code in J(n;w) which is also a
Steiner system, then it is a Steiner system S(w � 2e; w; n).

The next lemma is a simple observation of a considerable use.

Lemma 4: The complement of an e-perfect code in J(n;w) is an
e-perfect code in J(n; n � w).

Finally, we need a few more definitions which we will use in the
proofs of the nonexistence theorems in the sequel. For a given partition
ofN into two subsetsA and B, such that jAj = k and jBj = n�k, let
configuration (i; j) consist of all vectors with weight i in the positions
of A and weight j in the positions of B.
For an e-perfect code C in J(n;w), we say that u 2 C J-covers

v 2 V n
w

if the J-distance between u and v is at most e. In the sequel,
we will use a mixed language of set notation and vector notation. It
should be understood from the context which one we are using, and
how to translate the two different notations. The following results were
proved in [16].

Theorem 7: If an e-perfect code exists in J(n;w), then a Steiner
systemS(e+1;2e+1; w) and a Steiner systemS(e+1;2e+1; n�w)
exist.

Corollary 1: If an e-perfect code exists in J(n;w), then a Steiner
system S(2; e + 2; w � e + 1) and a Steiner system S(2; e + 2;
n � w � e + 1) exist.

Corollary 2: If an e-perfect code exists in J(n;w), then n � w �
w � e (mod e+ 1) and hence e+ 1 divides n � 2w.

Theorem 8: Except for the Steiner systems S(1; w; n) and
S(w;w; n), there are no more Steiner systems which are also perfect
codes in the Johnson scheme.

Theorem 9: There are no e-perfect codes in J(2w+p; w), p prime,
in J(2w + 2p;w), p prime, p 6= 3, and in J(2w + 3p;w), p prime,
p 6= 2; 3; 5.

If we combine Lemma 4 with the fact that the J-distance between
words of an e-perfect code is at least 2e+ 1, we get the following.

Corollary 3: If an e-perfect code exists in J(n;w), thenw � 2e+1
and n � w � 2e + 1.

To give the reader the flavor of the methods used in [16], we use
similar methods to provide a much simpler proof of Theorem 3, and
to prove that there are even more Steiner systems embedded in perfect
codes in the Johnson scheme (these results were also presented in [17]).

Theorem 10: If an e-perfect code exists in J(n;w) then

n � (w � 1)
2e+ 1

e
:
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Proof: Assume C is an e-perfect code in J(n;w). We partition
N into two subsetsA and B, such that jAj = n�w+1, jBj = w�1,
and there is a codeword of configuration (e+1; w�e�1). Clearly, the
J-distance between a vector from configuration (e+1; w�e�1) and a
vector from configuration (e+1�i; w�e�1+i),0 < i � e, is strictly
less than 2e+ 1, so C does not have any codeword from configuration
(e+1� i; w�e�1+ i). Therefore, all the vectors from configuration
(1; w�1) are J-covered by codewords from configuration (e+1; w�
e � 1). To J-cover each vector from configuration (1; w � 1) exactly
once we must have exactly n�w+1

e+1
codewords from configuration (e+

1; w � e � 1). Since the minimum J-distance of C is 2e + 1, two
codewords from configuration (e+ 1; w � e � 1) cannot intersect in
the zeroes of part B. Hence, w� 1 � n�w+1

e+1
e, which is equivalent to

n � (w � 1)2e+1
e

.

Theorem 11: If an e-perfect code exists in J(n;w) and n <
(w � 1)(2e+ 1)=e, then an S(2; e+ 2; n � w + 2) exists.

Proof: Assume C is an e-perfect code in J(n;w). As in the proof
of Theorem 11, we partition N into two subsets A and B, such that
jAj = n � w + 1, jBj = w � 1, and there are n�w+1

e+1
codewords

from configuration (e+1; w� e� 1). Since n < (w� 1)(2e+1)=e,
i.e., n�w+1

e+1
e < w � 1, we have at least one coordinate in B which

has ones in all the codewords from configuration (e + 1; w � e �
1). We remove this coordinate from B to obtain B1 and join it to A
to obtain A1. jA1j = n � w + 2, jB1j = w � 2, and C does not
have any codeword from configuration (e + 2 � i; w � e � 2 + i),
i > 0. Therefore, all the vectors from configuration (2; w � 2) are
J-covered by codewords from configuration (e+2; w� e� 2). Since
each vector from configuration (2; w�2)must be J-covered by exactly
one codeword from configuration (e + 2; w � e � 2), it follows that
partA1 of the codewords from configuration (e+2; w� e� 2) forms
a Steiner system S(2; e+ 2; n� w + 2).

Corollary 4: If an e-perfect code exists in J(2w + a; w), a � 0,
then an S(2; e + 2; w + 2) exists.

Martin also examined the existence problem when he considered
completely regular subsets in his Ph.D. dissertation [18]. He found that
if e = 1, then perfect codes must obey some numerical formulas. Et-
zion [17] polished some of the results from [16].

Recently, Shimabukuro [19] showed that, as an application of Et-
zion’s results, one can obtain that there are no perfect codes in

• J(2w + 5p;w), p prime, p 6= 3;
• J(2w + p2; w), p prime.

A. Steiner Systems and Perfect Codes

Steiner systems play an important role in ruling out the exis-
tence of e-perfect codes in J(n;w). Moreover, the Steiner systems
S(1; w; 2w), w odd, and S(w;w; n), are among the trivial perfect
codes in the Johnson scheme. Theorem 8 states that there are no more
Steiner systems which are also perfect codes in the Johnson scheme.
By Theorem 6, any Steiner system is an optimal constant-weight
code. Obviously, any e-perfect code in J(n;w) is also an optimal
constant-weight code. Since in a Steiner system S(t; k; n) each
t-subset appears in exactly one block, it would be natural to think that
Steiner systems are perfect codes of some kind.

By Lemma 2, an e-perfect code in J(n;w) is an optimal (n; 4e +
2; w) code and the size of such a code is clearly

j(n;w; e) =
n

w

e

i=0

w

i

n�w

i

:

By Theorem 6, a Steiner system S(w�2e;w; n) is an optimal (n; 4e+
2; w) code and its size is

s(n;w; e) =
n!(2e)!

(n� w + 2e)!w!
:

If j(n;w; e) > s(n;w; e) then there is no e-perfect code in J(n;w)
and if s(n;w; e) > j(n;w; e) then there is no Steiner system S(w �
2e;w; n). Note that j(n;w; e) = s(n;w; e) when n = 2w = 4e+ 2
in which case a trivial Steiner system S(1; 2e+1; 4e+2) and a trivial
e-perfect code in J(4e + 2; 2e + 1) exist. No new bounds for either
e-perfect codes in J(n;w) or Steiner systems S(w� 2e;w; n) can be
derived from these conditions.
Recently, Ahlswede, Aydinian, and Khachatrian [20] gave a new in-

teresting definition of diameter-perfect codes (D-perfect codes). They
examined a variant of Theorem 1. Let � be a distance-regular graph
with a vertex set V . If A is an anticode in �, denote by D(A) the di-
ameter of A. Now let

A�(D) = max fjAj : D(A) � Dg :

Theorem 12: If C is a code in �with minimum distanceD+1, then
jCj � jVj A�(D)�1.

They continued with the following new definition for perfect codes.
A code C with minimum distance D + 1 is called D-perfect if The-
orem 12 holds with equality. This is a generalization of the usual defi-
nition of e-perfect codes as e-spheres are anticodes with diameter 2e.
This new definition for perfect codes introduced some new classes of

perfect codes. The interesting classes are those of codes which attain
some classical bound. In the Johnson scheme, it was proved that all
Steiner systems areD-perfect, thus showingmore connections between
Steiner systems and perfect codes.

III. NEW RESULTS

In this section, we continue to prove results on the structure of e-per-
fect codes in J(n;w). As a result, we identify more parameters of e,
n, and w, in which such codes cannot exist.

A. New Upper Bound on n

We first show that no nontrivial e-perfect code achieves Roos’ bound
with equality. This seemingly slight improvement has many applica-
tions.

Theorem 13: If there exists an e-perfect code in J(n;w) then

n < (w � 1)
2e+ 1

e
:

Proof: If n < 2w then by Corollary 3 the claim is obvious. As-
sume C is an e-perfect code in J(n;w), where n = 2w + a, a � 0,
and n = (w� 1)2e+1

e
. If a = 0, then n = 2w and n = (w� 1)2e+1

e

imply that w = 2e+ 1, i.e., C is a trivial perfect code. By Theorem 2,
we have that there are no perfect codes in J(2w+1; w), and, therefore,
a � 2.
Let b = e + 1; by Corollary 2, a = n � 2w � 0 (mod b), and

hence, 2 � b � a. We substitute b = e + 1 and n = 2w + a, in
n = (w � 1)2e+1

e
, and obtain w = ab � a + 2b � 1. By previous

theorems, the following Steiner systems must exist.

• By Corollary 1, there exists a Steiner system S(2; b+1; ab�a+

b+ 1). Thus, by Theorem 5, ( )
( )

must be an integer.

• By Corollary 1 there also exists a Steiner system S(2; b + 1;

ab+ b+ 1). Thus, by Theorem 5,
( )
( )

must be an integer.
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• By Corollary 4, there also exists a Steiner system S(2; b + 1;

ab� a+2b+1). Thus, by Theorem 5, ( )
( )

must be an

integer.

Therefore,
ab+b+1

2
b+1
2

�
ab�a+b+1

2
b+1
2

=
2a2 � a2=b+ 2a+ a=b

b+ 1

is an integer, and hence,

2a2 � a2=b+ 2a+ a=b � 0 (mod b+ 1):

But, since b � �1 (mod b+ 1), we have that

3a2 + a � 0 (mod b+ 1): (1)

We also have that
ab�a+2b+1

2
b+1
2

�
ab�a+b+1

2
b+1
2

=
2ab� 2a+ 3b+ 1

b+ 1

is an integer, and hence,

2ab� 2a+ 3b+ 1 � 0 (mod b+ 1):

Again, b � �1 (mod b+ 1) which implies that

4a+ 2 � 0 (mod b+ 1): (2)

By (1) and (2) we have that

8(3a2 + a)� (6a� 1)(4a+ 2) � 0 (mod b+ 1): (3)

But, 8(3a2+a)�(6a�1)(4a+2) = 2 and clearly 2 is not divisible
by b+ 1, a contradiction. Hence, n < (w � 1)2e+1

e
.

By combining Theorem 11, Corollary 4, and Theorem 13 we con-
clude as follows.

Corollary 5: If an e-perfect code exists in J(n;w), then a Steiner
system S(2; e+2; w+2) and a Steiner system S(2; e+2; n�w+2)
exist.

B. Applications

Lemma 4 implies that it is sufficient to prove that there are no e-per-
fect codes in J(n;w) for n � 2w. Therefore, in the sequel, we assume
that w � n� w. Assume that an e-perfect code exists in J(n;w). By
Corollaries 1 and 5, the following Steiner systems must exist:

S(2; e+ 2; w + 2); S(2; e+ 2; n� w + 2)

S(2; e+ 2; w � e+ 1); S(2; e+ 2; n� w � e+ 1):

By Theorem 5, we have that

• (e+ 1)(e+ 2) divides (w + 1)(w + 2).
• (e+ 1)(e+ 2) divides (n� w + 1)(n� w + 2).
• (e+ 1)(e+ 2) divides (w � e)(w � e + 1).
• (e+ 1)(e+ 2) divides (n� w � e)(n� w � e+ 1).

Since (n�w+1)(n�w+2)� (w+1)(w+2)= (n+3)(n� 2w)
it follows that

(e+ 1)(e+ 2) divides (n+ 3)(n� 2w): (4)

Since (n � w � e)(n � w � e + 1) � (w � e)(w � e + 1)=
(n � 2e + 1)(n� 2w) it follows that

(e+ 1)(e+ 2) divides (n� 2e+ 1)(n� 2w): (5)

By Corollary 2, we have that e+ 1 divides n � 2w and, therefore, by
(5) we have

(e+ 1)(e+ 2) divides (n+ 5)(n� 2w): (6)

Thus, from (4) and(6) we have

(e+ 1)(e+ 2) divides 2(n� 2w): (7)

Therefore, by Corollary 2, (4), and(7), we obtain the following theorem.

Theorem 14: Assume there exists an e-perfect code in J(n;w).

• If e is odd then n is even and (e+ 1)(e+ 2) divides n� 2w.
• If e is even and n is even then (e+ 1)(e+ 2) divides n� 2w.
• If e is even andn is odd then e � 0 ( mod 4) and (e+1)(e+2)=2
divides n � 2w.

Corollary 6: Assume there exists an e-perfect code in J(n;w).

• If n is even then (e+ 1)(e+ 2) divides n � 2w.
• If n is odd then e � 0 (mod 4) and (e + 1)(e + 2)=2 divides
n � 2w.

Corollary 7: There are no perfect codes in

• J(2w + pi; w), p is a prime and i � 1;
• J(2w + pq; w), p and q primes, q < p, and p 6= 2q � 1.

C. A Lower Bound on w

In this subsection, we give a lower bound on w if there exists an
e-perfect code C in J(n;w). This bound will be used in our application
of themain result in Section IV.We assume the existence of an e-perfect
code in J(n;w) and as usual w � n � w.

Theorem 15: If there exists an e-perfect code inJ(n;w),w < n�w,
then

w >
e(e+ 1)(e+ 2)

2
+ 2e+ 1

if n is odd, and w > e(e+ 1)(e+ 2) + 2e+ 1 if n is even.
Proof: We prove the case of n odd. The case of n even is proved

similarly. By Corollary 6, we have that (e+1)(e+2)
2

divides n�2w and,
hence,

(e+ 1)(e+ 2)

2
� n� 2w:

By Theorem 13, we have that n � 2w < w�2e�1
e

and hence
(e+1)(e+2)

2
< w�2e�1

e
. Thus,

w >
e(e+ 1)(e+ 2)

2
+ 2e+ 1:

We now handle the case of n = 2w. We denote w = 2e+1+ " and
n = 4e+ 2 + 2", where " � 0 by Corollary 3. We partition the set of
coordinates N into two subsets A and B, such that jAj = jBj = w,
and there is a codeword from configuration (w; 0). Let C(i) denote the
number of codewords with i ones in the positions of A. Now, one can
easily verify (see also [16]) that

C(w � 2e� 1) =
(2e+ 1 + ")!e!

(2e+ 1)!(e+ ")!

2

C(w � 2e� 2) = C(w � 2e� 1)
1

(2e+ 2)2
("2 � 2e(e+ 1)"):

Since C(w � 2e� 2) is obviously nonnegative, we have

"2 � 2e(e+ 1)":

We note that " > 0 or else the code is trivial. Then

" � 2e(e+ 1):

Therefore, we have the following.

Theorem 16: If an e-perfect code exists in J(n;w), n = 2w, then

w � 2e2 + 4e+ 1:
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IV. k-REGULAR CODES

In this section, we present a new approach to rule out the existence
of e-perfect codes in J(n;w). We note that all the known divisibility
conditions which rule out perfect codes are derived from Steiner sys-
tems. In this section, we investigate the divisibility conditions which
are derived from the size of the code as given by the sphere-packing
bound. In J(n;w), let us denote

�e(n;w) =

e

i=0

w

i

n� w

i

the size of a sphere of radius e. The number of codewords of an e-per-
fect code C in J(n;w) is

jCj =
n

w

�e(n; w)

by the sphere-packing bound, and hence we have that

�e(n; w)
n

w
: (8)

However, we may do much better than this by introducing the notion
of k-regular codes.

Definition 1: Let C be a code in J(n;w) and let A be a subset of
the coordinate set N = f1; . . . ; ng. For all 0 � i � jAj we define

CA(i) = jfc 2 C : jc \ Aj = igj:

Also, for each I � A we define

CA(I) = jfc 2 C : c \ A = Igj:

Definition 2: A code C in J(n;w) is said to be k-regular, if the
following two conditions hold.

(c.1) There exist numbers �(0); . . . ; �(k) such that if A � N ,
jAj = k, then CA(i) = �(i) for all 0 � i � k.

(c.2) For any given k-subset A of N , there exist numbers
�A(0); . . . ; �A(k) such that if I � A then CA(I) = �A(jIj).

Note that if a code is k-regular, k � 1, then it is also (k�1)-regular.
Now, (8) is a simple result of the following theorem and the fact that
all codes are trivially 0-regular.

Theorem 17: If an e-perfect code C in J(n;w) is k-regular, then

�e(n; w)
n� i

w � i

for all 0 � i � k.
Proof: Let C be an e-perfect code in J(n;w) which is k-regular.

Let 0 � i � k, and by condition (c.1), let � denote the number of
length i all-ones words appearing in a projection of C onto i coordi-
nates. We may, therefore, write the following equation, which counts
in two different ways the total number of length i all-ones words ap-
pearing in all the projections of C onto i coordinates:

n

w

�e(n; w)

w

i
=

n

i
�:

Therefore,

� =

n�i

w�i

�e(n; w)

for each i, 0 � i � k.

For the rest of our discussion, we examine e-perfect codes in J(2w+
a; w). We define the following polynomial which plays a crucial role:

�e(w; a; k)

e

j=0

(�1)j
k

j

e�j

i=0

w � j

i

w + a� k + j

i+ j
:

Theorem 18: Let C be an e-perfect code in J(2w + a; w), and let
1 � k � w. If �e(w; a;m) 6= 0 for all the integers 1 � m � k, then
C is k-regular.

Proof: We prove the theorem by induction on k. Let C be an
e-perfect code in J(2w + a; w). We partition the coordinate set into
two subsets A and B, such that jAj = k and jBj = 2w + a� k.
The basis for the induction is k = 1. We obtain the following two

equations:

CA(0)
e

i=0

w

i

w + a� 1

i

+ CA(1)
e�1

i=0

w � 1

i

w + a

i+ 1
=

2w + a� 1

w

CA(0) + CA(1) =
2w+a

w

�e(2w+ a; w)
:

The first equation describes the way codewords of configuration
(0; w) and (1; w � 1) J-cover words of configuration (0; w). The
second equation simply relates CA(0) and CA(1) to the total number
of codewords. To see that this equation set has exactly one solution we
have to show that the determinant

e

i=0

w

i

w+a�1

i

e�1

i=0

w�1

i

w+a

i+1

1 1
(9)

is nonzero. But the determinant is simply �e(w; a; 1)which is nonzero
by the conditions of the theorem. Since our solution does not depend
on the partition, we see immediately that the conditions of Definition 2
are satisfied. Therefore the basis is proved.
Now, for the induction hypothesis, assume that C is (k� 1)-regular.

Hence, there exist numbers �0(0); . . . ; �0(k � 1), such that for each
(k�1)-subsetA0 ofN , we have CA (i) = �0(i), for all 0 � i � k�1.
We now prove the induction step, i.e., that C is also k-regular. Again,
letA andB be a partition of the coordinate setN into two subsets, with
jAj = k and jBj = 2w + a � k. We start by showing that condition
(c.2) in Definition 2 for regularity is satisfied. This is done by induction
on the weight of the A part. For weight 0 the claim is obvious. Now
assume the claim holds for weight i, i.e., each of the length k weight
i words appears in the A part of the codewords the same number of
times. We prove that the claim holds for weight i + 1.
Let A0 � A, jA0j = k � 1, and B0 � B, jB0j = 2w + a � k + 1,

be a partition of the coordinates which is obtained from A and B by
moving one coordinate � fromA to B. With these two partitions, fix a
length k�1 weight i word ! in theA0 part. The number of codewords
having this word in theirA0 part is given by�0(i)= k�1

i
since the code

is (k�1)-regular. By our last induction assumption concerning weight
i, the number of codewords containing ! in the A0 part and a “0” in
coordinate � is given by CA(i)=

k

i
. Hence, the number of codewords

containing ! in theirA0 part and a “1” in coordinate � is the difference

�0(i)
k�1

i

�
CA(i)

k

i

:

Wenow note that the choice of coordinate � has no bearing on the last
arguments, i.e., we can use any coordinate of A0 instead of �. There-
fore, the number of codewords containing a given weight i + 1 word
in theA part is CA(i+1)= k

i+1
. Hence, condition (c.2) for regularity

is satisfied. Again, note that (c.2) may hold while (c.1) is not satisfied.
In fact, we have proved that if (c.1) and (c.2) hold for k, then (c.2) also
holds for k + 1. Therefore, we have k equations in k + 1 variables

CA(i)
k

i

+
CA(i+ 1)

k

i+1

=
�0(i)
k�1

i

; for all 0 � i � k � 1: (10)
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Just like in the induction basis, in order to prove condition (c.1) for
regularity we add the following equation:

min(k;e)

j=0

CA(j)
e�j

i=0

w � j

i

w + a� k + j

i+ j
=

2w + a� k

w
:

(11)

This set of equations has exactly one solution if and only if its deter-
minant is nonzero. This determinant is easily seen to be equal to

k�1

i=0

1
k

i

�
e

j=0

(�1)j k

j

e�j

i=0

w � j

i

w + a� k + j

i+ j

=

k�1

i=0

1
k

i

�e(w; a; k):

By our assumption on �e, we have a unique solution to the set of
(10)–(11). Since the partition does not affect the above arguments, con-
dition (c.1) for regularity holds and C is k-regular.

A. 1-Perfect Codes

We now focus on 1-perfect codes and show that they are k-regular
for a relatively wide range of values of k.

Theorem 19: If a 1-perfect code exists in J(2w + a; w), then it is
k-regular for all

0 � k <
2w + a+ 1� (a+ 1)2 + 4(w� 1)

2
:

Proof: According to Theorem 18, a 1-perfect code is k-regular
in J(2w + a; w) when

�1(w;a; k) = k2 � (2w+ a+ 1)k+ w(w+ a) + 1

has no integer roots in [1; k]. Considered as a polynomial in k, the

smaller of the two possible roots is
2w+a+1�

p
(a+1) +4(w�1)

2
, so the

range of k described in the theorem contains no integer roots.

Corollary 8: If a 1-perfect code exists in J(n; w), n = 2w + a,
then

�1(n;w) = 1 + w(n� w)
n� i

w � i

for all 0 � i <
2w+a+1�

p
(a+1) +4(w�1)

2
.

The following theorem on binomial coefficients will be used to de-
termine nondivisibility of binomial coefficients by powers of primes.
The theorem was given by Kummer, and it can be found in [21, p.245].

Theorem 20: Let p be a prime. The number of times p appears in
the factorization of a

b
equals the number of carries when adding b to

a � b in base p.

By [16], we already know that for 1-perfect codes, w � n � w �
1 (mod 6). Hence, �1(n;w) � 0 (mod 2). We give a stronger re-
sult in the following theorem.

Theorem 21: There are no 1-perfect codes in J(n;w), when

�1(n;w) = 1 + w(n� w) � 0 (mod 4):

Proof: Assume there exists a 1-perfect code in J(n;w), n =
2w + a for 2m � n � 2m+1 � 1. We have the following two cases.

Case 1: 2m�1 � w � n=2. In this case

w � 2m�1 � w

2
<

2w + a+ 1� (a+ 1)2 + 4(w� 1)

2
;

so by Corollary 8

1 + w(n� w)
n� w + 2m�1

2m�1
:

Theorem 20 implies that

n� w + 2m�1

2m�1
6� 0 (mod 4)

and so

1 + w(n� w) 6� 0 (mod 4):

Case 2:w � 2m�1�1. Note that according to Theorem 13, we also
have a < w � 3. If we want to use Corollary 8, we have to show that

n� (2m � 1) <
2w + a+ 1� (a+ 1)2 + 4(w� 1)

2
(12)

but, after rearranging, this is equivalent to showing that

2w + a+ (a+ 1)2 + 4(w� 1) < 2m+1 � 1:

We now notice the following:

2w + a+ (a+ 1)2 + 4(w� 1)

< 3w � 3 + (w � 2)2 + 4(w� 1) since a < w � 3

= 4w � 3 � 2m+1 � 7 since w � 2m�1 � 1

< 2m+1 � 1

as we wanted to show. Hence, (12) holds, and then by Corollary 8

1 + w(n� w)
2m � 1

w � n+ 2m � 1
:

Theorem 20 implies that

2m � 1

w � n+ 2m � 1
6� 0 (mod 4)

and so

1 + w(n� w) 6� 0 (mod 4):

Corollary 9: If there exists a 1-perfect code in J(n;w) then either
w � n � w � 1 (mod 12) or w � n � w � 7 (mod 12).

B. e-Perfect Codes, e � 2

In this subsection, we discuss nontrivial e-perfect codes when e�2:
As in Section IV-A, we show that if such a code exists, it must be
k-regular for a wide range of values of k.

Theorem 22: If an e-perfect code, e � 2, exists in J(2w + a; w),
then it is k-regular for all 0 � k < w

e
� e.

Proof: Our aim is to show that �e(w; a; k) 6= 0 for all k 2
[1; w=e�e) for the required range of parameters (w, a, and k). We ac-
tually show a stronger claim. We show that �e is strictly positive in the
required range of parameters. We start by noting that the polynomial
may be rewritten in the following manner by summing in a different
order:

�e(w; a; k)=

e

i=0

min(i;k)

j=0

(�1)j k

j

w � j

i� j

w + a� k + j

i
:

We continue and show that in the inner sum, each of the positive
summands is greater than its following negative summand in absolute
value. This is equivalent to showing that

k

j+1
w�j�1
i�j�1

w+a�k+j+1
i

k

j

w�j

i�j

w+a�k+j
i

< 1:
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Since j � 0, i � e, a � 0, and k < w=e � e

k

j+1
w�j�1
i�j�1

w+a�k+j+1
i

k

j

w�j

i�j

w+a�k+j

i

=
(k � j)(i� j)(w+ a� k + j + 1)

(j + 1)(w� j)(w+ a� k + j + 1� i)

<
(w � e2)(we� w + e2 + e)

w(we� w + e)
:

So it suffices to show that

(w � e2)(we� w + e2 + e)

w(we� w + e)
� 1;

but this is equivalent to

w(e� 2) + e(e+ 1) � 0

which always holds.

Corollary 10: If an e-perfect code exists in J(n; w), then it is e-reg-
ular.

Proof: Assume there exists an e-perfect code in J(n;w)By The-
orems 15 and 16, we have thatw > 2e2 and by Theorem 22 such a code
is k-regular for all k < w

e
� e, and hence the code is e-regular.

In the next theorem we extend the range of regularity given in The-
orem 22. We use Corollary 10 as the starting point for the proof. The
method used in the proof of Theorem 22 no longer works for the ex-
tended range, so an asymptotic approach is used. We start by giving
two simple well-known identities, which can be proved by basic com-
binatorial techniques.

Lemma 5:

n� p

m
=

p

k=0

(�1)k
n� k

m� k

p

k
:

Lemma 6: Vandermonde’s convolution

n

m
=

p

k=0

n� p

m� k

p

k
:

Theorem 23: For all e � 2, there exists We > 0 such that for all
w � We, all e-perfect codes in J(2w+ a; w) are w

2
-regular.

Proof: Our proof starts essentially the same as the proof of The-
orem 22. We actually want to show, that for a large enough w, with
a � 0 and k � w=2

�e(w; a; k) =

e

i=0

min(i;k)

j=0

(�1)j
k

j

w � j

i� j

w + a� k + j

i

> 0:

By Corollary 10, we may consider k � e, so we have to show that

e

i=0

i

j=0

(�1)j
k

j

w � j

i� j

w + a� k + j

i
> 0:

The left-hand side can be rewritten as

e

i=0

w

i
w

k

w + a� k

i

i

j=0

(�1)j
i

j

w � j

k � j

w+a�k+j

i

w+a�k

i

:

We continue by proving that for all 0 � i � e, the inner sum is positive,
i.e.,

i

j=0

(�1)j
i

j

w � j

k � j

w+a�k+j

i

w+a�k

i

> 0:

Now

i

j=0

(�1)j
i

j

w � j

k � j

w+a�k+j

i

w+a�k

i

�

i

j=0
j even

i

j

w � j

k � j
�

w+a�k+i

i

w+a�k

i

i

j=0
j odd

i

j

w � j

k � j

=

i

j=0

(�1)j
i

j

w � j

k � j

�

w+a�k+i

i

w+a�k

i

� 1

i

j=0
j odd

i

j

w � j

k � j

=
w � i

k
�

w+a�k+i

i

w+a�k

i

� 1

i

j=0
j odd

i

j

w � j

k � j

where the last step is taken by using Lemma 5. So now it is enough to
prove that

w+a�k+i

i

w+a�k

i

� 1

i

j=0
j odd

i

j

w � j

k � j
<

w � i

k
: (13)

We note that the sum may be rewritten in the following manner:

i

j=0
j odd

i

j

w � j

k � j

=
1

2

i

j=0

i

j

w � j

k � j
�

i

j=0

(�1)j
i

j

w � j

k � j

=
1

2

i

j=0

i

j

w � j

k � j
�

w � i

k
by Lemma 5.

Plugging this into (13) we have to prove that,

w+a�k+i

i

w+a�k

i

� 1
1

w�i

k

i

j=0

i

j

w � j

k � j
� 1 < 2:

(14)
Finally, we have the following chain of inequalities:

w+a�k+i

i

w+a�k

i

� 1
1

w�i

k

i

j=0

i

j

w � j

k � j
� 1

�
w + a� k + 1

w + a� k � i+ 1

i

� 1

�
1

w�i

k

i

j=0

i

j

w � j

k � j
� 1 (15)

=
w + a� k + 1

w + a� k � i+ 1

i

� 1

�

i

j=0

i

j

i�j

`=0

i� j

`

w�i

k�j�`

w�i

k

� 1 (16)

�
w + a� k + 1

w + a� k � i+ 1

i

� 1

�

i

j=0

i

j

i�j

`=0

i� j

`

k

w � i� k + 1

j+`

� 1 (17)
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=
w + a� k + 1

w + a� k � i+ 1

i

� 1

�

i

j=0

i

j

k

w � i� k + 1

j
w � i+ 1

w � i� k + 1

i�j

� 1

=
w + a� k + 1

w + a� k � i+ 1

i

� 1
w � i+ k + 1

w � i� k + 1

i

� 1

(18)

�
w=2 + 1

w=2� e+ 1

e

� 1
3w=2� e+ 1

w=2� e+ 1

e

� 1 (19)

where the transition from (15) to (16) is by Lemma 6, the transition
from (17) to (18) is by Newton’s binomial identity, and the transition
from (18) to (19) is by using a � 0, i � e, and k � w=2. Therefore,
it is enough that we show that

w=2 + 1

w=2� e+ 1

e

� 1
3w=2� e+ 1

w=2� e+ 1

e

� 1 < 2: (20)

For a fixed value of e

lim
w!1

w=2 + 1

w=2� e+ 1

e

� 1
3w=2� e+ 1

w=2� e+ 1

e

� 1 = 0

and hence, aWe exists as required.

We note that Theorem 23 may be easily extended to show that for
all e � 2 and 0 < � < 1, there exists We;� > 0 such that for all
w � We;�, all e-perfect codes in J(2w + a; w) are b�wc-regular.
However, for the following, � = 1=2 is sufficient.

Theorem 24: There are no e-perfect codes in J(n; w), e � 2, which
are also bw=2c-regular, when �e(n; w) � 0 (mod 4).

Proof: Let C be a bw=2c-regular e-perfect code in J(n;w), n =
2w+ a, for 2m � n � 2m+1 � 1. We distinguish between two cases.

Case 1: 2m�1 � w � n=2. In this case

w � 2m�1 �
w

2
:

Since the code is bw=2c-regular, then by Theorem 17

�e(n;w)
n� w + 2m�1

2m�1
:

Theorem 20 implies that

n� w + 2m�1

2m�1
6� 0 (mod 4)

and so

�e(n;w) 6� 0 (mod 4):

Case 2: w � 2m�1 � 1. Note that by Theorem 13, we also have

a <
w � (2e+ 1)

e
<

w

2
:

If we want to use Theorem 17, we have to show that

n� (2m � 1) �
w

2
: (21)

But now

n�
w

2
= 2w + a�

w

2
< 2w < 2m � 1:

Hence, (21) holds, and then by Theorem 17

�e(n;w)
2m � 1

w � n+ 2m � 1
:

Theorem 20 implies that

2m � 1

w � n+ 2m � 1
6� 0 (mod 4)

and so

�e(n; w) 6� 0 (mod 4):

Theorem 25: There are no e-perfect codes in J(n;w), e � 2, which
are also bw=2c-regular, when �e(n; w) � 0 (mod p2), p � 3 a
prime.

Proof: Let C be an e-perfect code in J(n;w), for pm � n �
pm+1 � 1. Now, if w � pm�1 � 1, then we have w < n=p which
is impossible for p � 3 by Theorem 3. Hence, let kpm�1 � w �
(k + 1)pm�1 � 1, for some 1 � k � p2 � 1. In this case

w � kpm�1 �
w

2
:

Since the code is bw=2c-regular, then by Theorem 17

�e(n; w)
n� w + kpm�1

kpm�1
:

Theorem 20 implies that

n� w + kpm�1

kpm�1
6� 0 (mod p2)

and so

�e(n;w) 6� 0 (mod p2):

Corollary 11: There are no e-perfect codes in J(n;w), e � 2,
which are also bw=2c-regular, when �e(n; w) � 0 (mod p2), p a
prime.

To prove the next theorem we need another interesting theorem on
binomial coefficients. This theorem is due to Lucas [22]. Let a � 0
be some integer. We then denote by p(a; i), the ith digit of a when
written in base p. Hence,

a =

1

i=0

p(a; i)p
i:

Theorem 26: Let p be a prime, and n � m � 0 two integers, then

n

m
�

1

i=0

p(n; i)

p(m; i)
(mod p):

Theorem 27: Let p be a prime, and e � �1 (mod p2). If an e-per-
fect code exists in J(n;w), then

�e(n;w) � 0 (mod p2):

Proof: Let C be an e-perfect code in J(n;w). By Corollary 2,
w + 1 � n� w + 1 � 0 (mod e+ 1) and hence w + 1 � n� w +
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1 � 0 (mod p2). In other words, the two least significant digits in the
representation in base p of e, w, and n � w, are both p� 1, i.e.,

p(w; 0) = p(w; 1) = p(n� w; 0)

= p(n� w; 1)

= p(e; 0) = p(e; 1) = p� 1: (22)

Let 0 � j < e be some integer such that j � 0 (mod p). Now

w

j + 1

n� w

j + 1
=

w

j

n� w

j

(w � j)(n� w � j)

(j + 1)2
:

However, note that w � j, n � w � j, and j + 1 are coprime to p2.
Furthermore, w � j � n� w � j � �(j + 1) (mod p2). Hence,

w

j

n� w

j
�

w

j + 1

n� w

j + 1
(mod p2):

This may be repeated to get

w

j

n� w

j
�

w

j + 1

n� w

j + 1
� � � � �

�
w

j + p� 1

n� w

j + p� 1
(mod p2): (23)

Now let 0 � j < e be some integer such that j � 0 (mod p2).
Note that in all the numbers of the form j + ip, when 0 � i � p� 1,
only the second digit in base p changes while the first digit is always
zero. We examine the following sum modulo p using Theorem 26:

p�1

i=0

w

j + ip

n� w

j + ip

�

p�1

i=0

1

`=0

p(w; `)

p(j + ip; `)
p(n� w; `)

p(j + ip; `)

�

p�1

i=0

p� 1

i

2

�

1

`=2

p(w; `)

p(j + ip; `)
p(n� w; `)

p(j + ip; `)

�
2(p� 1)

p� 1

�

1

`=2

p(w; `)

p(j + ip; `)
p(n� w; `)

p(j + ip; `)
(mod p):

However, p(2(p� 1); 0) = p � 2 < p � 1 = p(p � 1; 0), and
therefore, by Theorem 20

2(p� 1)

p� 1
� 0 (mod p):

Hence, the previous sum is congruent to 0 modulo p. Now, for some
integer k

p�1

i=0

w

j + ip

n� w

j + ip
= kp: (24)

We continue by examining the following sum modulo p2:

p �1

i=0

w

j + i

n� w

j + i

�

p�1

`=0

p�1

i=0

w

j + ip+ `

n� w

j + ip+ `

� p

p�1

i=0

w

j + ip

n� w

j + ip
by (23)

� kp2 by (24)

� 0 (mod p2):

Finally, using the fact that e � �1 (mod p2), the sphere size
modulo p2 equals

�e(n; w) �

e

i=0

w

i

n� w

i

�

0�j<e

j�0 (mod p )

p �1

i=0

w

j + i

n� w

j + i

� 0 (mod p2):

Corollary 12: For any given e � 2, e � �1 (mod p2), p prime,
there are finitely many nontrivial e-perfect codes in the Johnson graph.

V. APPLICATIONS

A simple observation is that the left-hand side of (20) is a monoto-
nously decreasing function in w. Hence, a simple computer search can
find the value of We of Theorem 23 and validate that �e(w; a; k) has
no integer roots for k � w=2 and w � We. Such a computer search
was done for e = 3; 7; 8 and, indeed, no such roots were found. There-
fore, we conclude the following.

Proposition 1: There are no nontrivial 3-perfect, 7-perfect, and
8-perfect codes in the Johnson graph.

Another computer searchwas conducted which tested the divisibility
conditions of Theorem 17. The results of this search are given in the
next two propositions.

Proposition 2: There are no 1-perfect codes in J(n;w) for all n �
50000.

Proposition 3: There are no 2-perfect codes in J(n;w) for all n �
40000.

This is a significant improvement over the previous method using
Steiner systems, which left for e = 1 all w � n � w � 1 (mod 6)
as candidates, and for e = 2 all w � n � w � 2; 26; 50 (mod 60)
as candidates. We believe that further number-theoretic analysis of the
regularity method will rule out all perfect codes.
Finally, for given e and a, we examine in which graphs J(2w +

a; w) the existence of e-perfect codes was not ruled out. The results of
Sections III and IV and careful analysis show the following.

Theorem 28: For 1 � a � 35, there are no e-perfect codes in
J(2w+ a; w) with the following possible exceptions: 1-perfect codes
and 2-perfect codes inJ(2w+12;w) and J(2w+24;w), and 4-perfect
codes in J(2w + 15; w) and J(2w + 30; w).

VI. CONCLUSION

The main purpose of this correspondence was to attack Delsarte’s 30
years old conjecture on the nonexistence of nontrivial perfect codes in
the Johnson scheme. We showed various results which rule out e-per-
fect codes in J(n;w) for various values of e, n, and w. A novel tech-
nique using k-regular codes was introduced. For practical use, this tech-
nique is able to rule out any given set of parameters.
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The main problem that should be the focus of further research is to
prove that there are no nontrivial perfect codes in the Johnson scheme
by using the concept of k-regular codes.
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Cocyclic Simplex Codes of Type Over and

Nimalsiri Pinnawala and Asha Rao

Abstract—Over the past decade, cocyles have been used to construct
Hadamard and generalized Hadamard matrices. This, in turn, has led to
the construction of codes—self-dual and others. Herewe explore these ideas
further to construct cocylic complex and Butson–Hadamard matrices, and
subsequently we use the matrices to construct simplex codes of type � over
ZZZ and ZZZ , respectively.

Index Terms—Butson, cocycle, complex Hadamard, exponent, quater-
nary, self-orthogonal, simplex codes, trace.

I. INTRODUCTION

Various authors [1], [2], [11], [12] have studied the construction of
cocyclic Hadamard and cocyclic generalized Hadamard matrices and
the use of these matrices in the construction of cocyclic codes. Here
we extend these constructions to obtain cocyclic Butson and cocyclic
complex Hadamard matrices. Simplex codes of type � were studied by
Gupta [9], but no methods of constructions were given. We use the co-
cyclic complex and cocyclic Butson–Hadamard matrices to construct
simplex codes of type� overZZZ4 andZZZ2 , respectively.We assume that
the reader is familiar with the basic facts of the theory of Hadamardma-
trices (see, for example, [15]) and of binary linear codes (see [13]).
IfG is a finite group (written multiplicatively with identity 1) andC

is an Abelian group, a cocycle (overG) is a set mapping  :G�G!C

which satisfies

 (a; b) (ab; c) =  (a; bc) (b; c); 8a; b; c 2 G:

A cocycle is normalized if  (1; 1) = 1. A cocycle may be represented
as a cocyclic matrix M = [ (a; b)]a;b2G once an indexing of the
elements of G has been chosen.
Let Cp be the multiplicative group of all complex pth roots of unity,

Cp = f1; x; x2; . . . ; xp�1g, where x = exp(2�i=p) and p � 2 is
an integer. A square matrix H = [hij ] of order n with elements from
Cp is called a Butson–Hadamard matrix (BH(n; p)) (see [5]) if and
only ifHH� = nI ,H� being the conjugate transpose ofH and I the
identity matrix of order n. When p = 2 and n = 1; 2 or a multiple of
4, BH(n; p) is a Hadamard matrix.
A complex Hadamard matrix H of order n is a matrix with entries

from f1; i;�1;�ig that satisfies HH� = nI , where i =
p�1 and

H� is the conjugate transpose of H . It is conjectured that a complex
Hadamard matrix exists for every even order. In [15], it is shown that
every complex Hadamard matrix has order 1 or divisible by 2. A com-
plex Hadamard matrix is a special case of a Butson–Hadamard matrix
BH(n; p) for p = 4.
LetH = [hi;j ] be a square matrix overCp, where p is a fixed integer

p > 2. The matrix E = [ei;j ]; ei;j 2 ZZZp, which is obtained from
H = [xe ] = [hi;j ], where x = exp(2�i=p), is called the exponent
matrix associated with H . The elements of the exponent matrix E lie
in the Galois ring GR (p; 1) (Galois field GF (p), for p prime), and its
row vectors can be viewed as the codewords of a code over the integers
modulo p.
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