
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016 2673

Construction of Partial MDS and Sector-Disk Codes
With Two Global Parity Symbols

Mario Blaum, Fellow, IEEE, James S. Plank, Member, IEEE, Moshe Schwartz, Senior Member, IEEE,
and Eitan Yaakobi, Member, IEEE

Abstract— Partial MDS (PMDS) codes are erasure codes
combining local (row) correction with global additional correction
of entries, while sector-disk (SD) codes are erasure codes that
address the mixed failure mode of current redundant arrays
of independent disk (RAID) systems. It has been an open
problem to construct general codes that have the PMDS and
the SD properties, and previous work has relied on Monte-Carlo
searches. In this paper, we present a general construction that
addresses the case of any number of failed disks and in addition,
two erased sectors. The construction requires a modest field size.
This result generalizes previous constructions extending RAID 5
and RAID 6.

Index Terms— Partial MDS codes, sector-disk codes, locally
recoverable codes, maximally recoverable codes.

I. INTRODUCTION

CONSIDER an r × n array whose entries are elements
in a finite field GF(2w) [13] (in general, we could

consider a field GF(pw), p a prime number, but for simplicity,
we constrain ourselves to binary fields). The array may
correspond to a stripe on a disk system, where elements
co-located in the same column reside on the same disk, or the
elements may correspond to disk or SSD blocks in a large
storage system. Normally, these arrays are protected using
the well known architectures known as Redundant Arrays of
Independent Disks (RAID) [7].

Recent work has explored the loosening of the MDS prop-
erty of RAID codes by defining erasure codes that combine
global array protection with protection of subsets of the
array (typically rows). Examples include Pyramid codes [10],
LRC codes [11], [14], [16] and STAIR codes [12]. The
rationale for these codes is to improve storage efficiency,

Manuscript received May 21, 2015; revised October 16, 2015; accepted
February 16, 2016. Date of publication March 1, 2016; date of current version
April 19, 2016. This work was supported in part by the National Science
Foundation under Grant CSR-1016636 and in part by the IBM Faculty Award.
This paper was presented at the 2014 IEEE International Symposium on
Information Theory.

M. Blaum is with the IBM Research Division, Almaden Research Center,
San Jose, CA 95120 USA (e-mail: mmblaum@us.ibm.com).

J. S. Plank is with the Department of Electrical Engineering and Computer
Science, The University of Tennessee, Knoxville, TN 37996 USA (e-mail:
jplank@utk.edu).

M. Schwartz is with the Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel (e-mail:
schwartz@ee.bgu.ac.il).

E. Yaakobi was with the Electrical Engineering Department, California
Institute of Technology, Pasadena, CA 91125 USA. He is now with the
Department of Computer Science, Technion–Israel Institute of Technology,
Haifa 32000, Israel (e-mail: yaakobi@cs.technion.ac.il).

Communicated by A. G. Dimakis, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2016.2536720

encoding complexity and decoding complexity over RAID,
while tolerating combinations of failures that are practical in
storage systems. Please see [15] for further discussion of the
practical nature of these codes.

In this paper, we concentrate on two erasure codes that also
follow this trend, loosening the MDS property of RAID codes
for improved performance and storage efficiency. These codes
are called Partial MDS (PMDS) codes and Sector-Disk (SD)
codes [2], [15]. Both follow the same methodology—m entire
columns of elements are devoted to coding, and each row
composes an [n, n − m, m + 1] MDS code. In the remaining
n−m columns of the array, s more elements are also devoted to
coding. The erasure protection that they provide differentiates
PMDS and SD codes. SD codes tolerate the erasure of any
m columns of elements, plus any additional s elements in the
array. PMDS codes tolerate a broader class of erasures —
any m elements per row may be erased, plus any additional
s elements.

As their name implies, SD codes address the combination of
disk and sector failures that occurs in modern disk systems.
Column failures occur when entire disks break, and sector
failures can accumulate over time, typically unnoticed until
an entire disk breaks, and the failed sector is required for
recovery [1], [8]. PMDS codes are maximally recoverable for
codes laid out in the manner described above [2]. Maximally
recoverable codes have been applied to cloud storage systems
where each element resides on a different storage node [11].
The rows of the array correspond to collections of storage
nodes that can decode together with good performance, while
the extra s elements allow the system to tolerate broader
classes of failures.

We label the codes with (m; s), and illustrate the difference
between PMDS and SD codes in Figure 1. The figure depicts
five failure scenarios in a 4 × 5 array, encoded with a (1; 2)
code, where erased elements are shaded in gray. The first four
scenarios may be tolerated by both PMDS and SD codes. The
first scenario is tolerated by both since each row corresponds
to a [5, 4, 2] MDS code. The second scenario is also tolerated
by both PMDS and SD codes, because four erasures are
co-located in the same column. The third and fourth scenarios
are also tolerated by both PMDS and SD codes, since rows
with only one erasure are corrected by a [5, 4, 2] MDS code,
and then we are left with three erasures in the same row, which
are within the erasure-correcting capability of a (1; 2) code.
These two cases are important, as they are not tolerated by
RAID-6, even though RAID-6 devotes two full columns to

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

2674 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016

Fig. 1. Five failure scenarios on a 4 × 5 array of elements.

coding. The fifth scenario is tolerated by PMDS only, since
once the rows with only one erasure are corrected, we are left
with two rows with two erasures each, and none of them is in
the same column.

The challenge is to construct PMDS and SD codes
for general parameters. The case of (m; 1) PMDS codes
was solved in [2]. In this paper, we address the case of
(m; 2) PMDS and SD codes. We will also discuss possible
methods for extending the results to general (m; s) PMDS
and SD codes.

As related work, let us mention [2], [9], that give
constructions of (1; s) PMDS codes (PMDS codes are called
Maximally Recoverable codes in [9]). In [2], the construction
is based on the field generated by Mp(x) = 1 + x + · · · +
x p−1, where p > mn is a prime number and 2 is primitive in
GF(p) (which makes Mp(x) irreducible). In [9], constructions
of (1; s) PMDS codes reducing the size of the field are
presented. STAIR codes relax the failure-coverage of SD codes
in order to allow for general constructions [12]. PMDS codes
satisfy also the requirements of optimal Locally Repairable
codes (LRC) [14], [17]. For example, consider a (1;2) PMDS
code with n > 3, its minimum distance is 3, the same as
an optimal LRC code with the same parameters. However,
an optimal LRC code as described, for instance, in [17]
cannot correct situations of two erasures in two different
rows, as shown, for example, in the second and fifth arrays
of Figure 1.

We begin with a formal definition of the two types of codes.
Definition 1: Let C be a linear [rn, r(n−m)−s] code over

a field such that when codewords are taken row-wise as r × n
arrays, each row belongs in an [n, n −m, m + 1] MDS code.
Then,

1) C is an (m; s) partial MDS (PMDS) code if, for any
(s1, s2, . . . , st) such that each s j � 1 and

∑t
j=1 s j = s,

and for any i1, i2, . . . , it such that

0 � i1 < i2 < · · · < it � r − 1,

C can correct up to s j + m erasures in each row i j ,
1 � j � t , of an array in C.

2) C is an (m; s) sector-disk (SD) code if, for any
l1, l2, . . . , lm such that

0 � l1 < l2 < · · · < lm � n − 1,

for any (s1, s2, . . . , st) such that each s j � 1 and∑t
j=1 s j = s, and for any i1, i2, . . . , it such that

0 � i1 < i2 < · · · < it � r − 1,

C can correct up to s j + m erasures in each row i j ,
1 � j � t , of an array in C provided that

locations l1, l2, . . . lm in each of the rows i j have been
erased.

Constructions of (1; 2) SD codes were given in [6] and
of (2; 2) codes in [4]. These constructions are also summarized
in [15] and the construction of (3; 2) SD codes was verified for
all r, n in GF(28) and for r, n � 24 in GF(216). Hence, our
results extend those constructions. We finally note here that
we can use an MDS code (like a RS code for example) over
the entire array. This will work for the purpose of correcting
the maximum number of erasures in the array, but it does not
guarantee the first property of PMDS or SD codes, namely
that each row belongs in an [n, n − m, m + 1] MDS code.

In Section II we give a general code construction for
r × n arrays over a field of size at least rn, i.e., the total
number of symbols. We prove that the construction gives
(m; 2) SD codes. We then show how to adapt the construction
to obtain (m; 2) PMDS codes over fields of size at least
r((m + 1)(n − m − 1) + 1). In Section III we present codes
for a more constrained model of erasures that we call disjoint-
sector-disk codes. These codes cover all possible parameters
m and s and require a much smaller field size. Lastly,
in Section IV we give a summary of the results and some
open questions.

II. CODE CONSTRUCTION

Consider the field GF(2w) and let α be an element
in GF(2w). The (multiplicative) order of α, denoted O(α),
is the minimum � > 0 such that α� = 1. If α is a
primitive element [13], then O(α) = 2w − 1. To each element
α ∈ GF(2w), there is an associated (irreducible) minimal
polynomial [13] that we denote fα(x).

Let α ∈ GF(2w) and rn � O(α). We want to construct an
SD-code consisting of r × n arrays over GF(2w), such that
m of the columns correspond to parity (in RAID 5, m = 1,
while in RAID 6, m = 2). In addition, two extra symbols
also correspond to parity. When read row-wise, the codewords
belong in an [rn, r(n − m)− 2] code over GF(2w).

Construction A: For α ∈ GF(2w) with rn � O(α), let
C(r, n, m, 2; fα(x)) be the [rn, r(n − m) − 2] code whose
(mr + 2)× rn parity-check matrix is given by

H =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...

0 0 . . . H0

H1 H2 . . . Hr

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(1)

where

H0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 . . . 1
1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...

1 αm−1 α2(m−1) . . . α(m−1)(n−1)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(2)

and, for 0 � j � r − 1,

H j+1 =
(

1 αm α2m . . . αm(n−1)

α− j n α− j n−1 α− j n−2 . . . α− j n−(n−1)

)

.

(3)

�

BLAUM et al.: CONSTRUCTION OF PMDS AND SD CODES WITH TWO GLOBAL PARITY SYMBOLS 2675

H1 =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α

⎞

⎟
⎟
⎟
⎟
⎠

(4)

H2 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
1 α α2 α3 α4 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 1 α α2 α3 α4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 0 0 0 0 1 α α2 α3 α4

1 α2 α4 α6 α8 1 α2 α4 α6 α8 1 α2 α4 α6 α8

1 α14 α13 α12 α11 α10 α9 α8 α7 α6 α5 α4 α3 α2 α

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

M(i0, . . . , im; j0, . . . , jm; r; n; �)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1 0 0 . . . 0
αi0 αi1 . . . αim 0 0 . . . 0
α2i0 α2i1 . . . α2im 0 0 . . . 0

...
...

. . .
...

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im 0 0 . . . 0
0 0 . . . 0 1 1 . . . 1
0 0 . . . 0 α j0 α j1 . . . α jm

0 0 . . . 0 α2 j0 α2 j1 . . . α2 jm

...
...

. . .
...

...
...

. . .
...

0 0 . . . 0 α(m−1) j0 α(m−1) j1 . . . α(m−1) jm

αmi0 αmi1 . . . αmim αmj0 αmj1 . . . αmjm

α−i0 α−i1 . . . α−im α−n�− j0 α−n�− j1 . . . α−n�− jm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(6)

We will show under which conditions the codes
C(r, n, m, 2; fα(x)) are SD codes. Unless stated otherwise, for
simplicity, let us denote C(r, n, m, 2; fα(x)) by C(r, n, m, 2).
We start by giving some examples.

Example 2: Consider the finite field GF(16) and let α be
a primitive element, i.e., O(α) = 15. Then, the parity-check
matrices H1 and H2, of C(3, 5, 1, 2) and C(3, 5, 2, 2), are
given by (4) and (5), as shown at the top of this page,
respectively. �

Let us point out that the construction of this type of
codes is valid also over the ring of polynomials modulo
Mp(x) = 1 + x + · · · + x p−1, p a prime number, as done
with the Blaum-Roth (BR) codes [5]. In that case, O(α) = p,
where α p−1 = 1+α+ · · ·+α p−2. The construction proceeds
similarly, and we denote it C(r, n, m, 2;Mp(x)). Utilizing the
ring modulo Mp(x) allows for XOR operations at the encoding
and the decoding without look-up tables in a finite field, which
is advantageous in erasure decoding [5]. It is well known that
Mp(x) is irreducible if and only if 2 is primitive in GF(p) [13].

Next we give a lemma that is key to proving the conditions
under which codes C(r, n, m, 2) are PMDS or SD. Throughout
the paper the notation ⊕ denotes the XOR operation.

Lemma 3: Let α ∈ GF(2w), rn � O(α), 1 � � � r − 1,
and, if 1 � m � n − 2, let

0 � i0 < i1 < i2 < · · · < im � n − 1

and

0 � j0 < j1 < j2 < · · · < jm � n − 1.

Consider the (2m + 2) × (2m + 2) matrix
M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; �) given by (6), as
shown at the top of this page. Let

� = det M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; �).
Then,

� =
⎛

⎝
∏

0�u<v�m

(
αiu ⊕ αiv

) (
α ju ⊕ α jv

)
⎞

⎠

·
(
α−

∑m
u=0 iu ⊕ α−n�−∑m

u=0 ju
)
. (7)

Proof: Since the field has characteristic 2, in the determi-
nant expansions we don’t have to worry about signs. Consider
the m × (m + 1) matrices

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
αi0 αi1 . . . αim

α2i0 α2i1 . . . α2im

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im

⎞

⎟
⎟
⎟
⎟
⎟
⎠

and

M ′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
α j0 α j1 . . . α jm

α2 j0 α2 j1 . . . α2 jm

...
...

. . .
...

α(m−1) j0 α(m−1) j1 . . . α(m−1) jm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

2676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016

For each 0 � u � m, let Mu and M ′u denote the
m×m Vandermonde matrices obtained from deleting column
u from M and M ′ respectively. Also, for 0 � u, v � 2m + 1,
u �= v, let X (u,v) be the (2m) × (2m) matrix obtained
from removing columns u and v and the last two rows from
M(i0, i1, . . . , im; j0, j1, . . . , jm; r; n; �).

If 0 � u, v � m, u �= v,

X (u,v) =
(

P 0
0 M ′

)

,

where P denotes an m×(m−1) matrix and 0 are zero matrices.
Notice that X (u,v) has rank smaller than 2m, since the first m
rows have rank smaller than m. Thus,

det
(

X (u,v)
)
= 0 for 0 � u, v � m, u �= v. (8)

If 0 � u � m and m + 1 � v � 2m + 1,

X (u,v) =
(

Mu 0
0 M ′v−m−1

)

.

By properties of determinants,

det
(

X (u,v)
)
= (det(Mu))

(
det(M ′v−m−1)

)
(9)

for 0 � u � m, m + 1 � v � 2m + 1. Similarly,

det
(

X (u,v)
)
= (

det(M ′u−m−1)
)
(det(Mv)) (10)

for m + 1 � u � 2m + 1, 0 � v � m, and

det
(

X (u,v)
)
= 0, (11)

for m + 1 � u, v � 2m + 1, u �= v.
Expanding the determinant � from the bottom row of (6)

and then from the next to bottom row, using (8), (9), (10), (11)
and standard factorization, we obtain

�=

⎛

⎜
⎜
⎝

m⊕

u=0

α−iu
m⊕

v=0
v �=u

αmiv det
(

X (u,v)
)

⎞

⎟
⎟
⎠

⊕
(

m⊕

u=0

α−iu
2m+1⊕

v=m+1

αm jv−m−1 det
(

X (u,v)
)
)

⊕
(

2m+1⊕

u=m+1

α−n�− ju−m−1

m⊕

v=0

αmiv det
(

X (u,v)
)
)

⊕

⎛

⎜
⎜
⎝

2m+1⊕

u=m+1

α−n�− ju−m−1

2m+1⊕

v=m+1
v �=u

αm jv−m−1 det
(

X (u,v)
)

⎞

⎟
⎟
⎠

=
(

m⊕

u=0

α−iu
m⊕

v=0

αmjv det(Mu) det(M ′v)
)

⊕
(

m⊕

u=0

α−n�− ju
m⊕

v=0

αmiv det(Mv) det(M ′u)

)

=
(

m⊕

u=0

α−iu det(Mu)

) (
m⊕

u=0

αmju det(M ′u)

)

⊕
(

m⊕

u=0

α−n�− ju det(M ′u)

) (
m⊕

u=0

αmiu det(Mu)

)

. (12)

Let

W0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
αi0 αi1 . . . αim

α2i0 α2i1 . . . α2im

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im

αmi0 αmi1 . . . αmim

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

W1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
αi0 αi1 . . . αim

α2i0 α2i1 . . . α2im

...
...

. . .
...

α(m−1)i0 α(m−1)i1 . . . α(m−1)im

α−i0 α−i1 . . . α−im

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

W ′0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
α j0 α j1 . . . α jm

α2 j0 α2 j1 . . . α2 jm

...
...

. . .
...

α(m−1) j0 α(m−1) j1 . . . α(m−1) jm

αmj0 αmj1 . . . αmjm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

W ′1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1
α j0 α j1 . . . α jm

α2 j0 α2 j1 . . . α2 jm

...
...

. . .
...

α(m−1) j0 α(m−1) j1 . . . α(m−1) jm

α−n�− j0 α−n�− j1 . . . α−n�− jm

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

It is clear that W0 and W ′0 are Vandermonde matrices.
Observe also that W1 and W ′1 become Vandermonde matrices
when multiplying each column t , 0 � t � m, by αit and by
α jt respectively (and in the case of W ′1 extracting α−n� as
a common factor from the last row). Then, by properties of
determinants and of Vandermonde determinants,

det(W0) =
m⊕

u=0

αmiu det(Mu)

=
∏

0�u<v�m

(αiu ⊕ αiv),

det(W1) =
m⊕

u=0

α−iu det(Mu)

= α−
∑m

u=0 iu
∏

0�u<v�m

(αiu ⊕ αiv),

det(W ′0) =
m⊕

u=0

αmju det(M ′u)

=
∏

0�u<v�m

(α ju ⊕ α jv),

det(W ′1) =
m⊕

u=0

α−n�− ju det(M ′u)

= α−n�−∑m
u=0 ju

∏

0�u<v�m

(α ju ⊕ α jv).

BLAUM et al.: CONSTRUCTION OF PMDS AND SD CODES WITH TWO GLOBAL PARITY SYMBOLS 2677

Thus, (12) becomes

� =
(

det(W0) det(W ′0)
det(W1) det(W ′1)

)

=
⎛

⎝
∏

0�u<v�m

(
αiu ⊕ αiv

) (
α ju ⊕ α jv

)
⎞

⎠

· det

(
1 1

α−
∑m

u=0 iu α−n�−∑m
u=0 ju

)

and (7) follows.
Lemma 3 is valid also over the ring of polynomials

modulo Mp(x), p prime, where rn < p. Let us illustrate
it with an example for m = 1 and m = 2.

Example 4: Let m = 1, then

M(i0, i1; j0, j1; r; n; �)

=

⎛

⎜
⎜
⎝

1 1 0 0
0 0 1 1

αi0 αi1 α j0 α j1

α−i0 α−i1 α−n�− j0 α−n�− j1

⎞

⎟
⎟
⎠

and

� =
(
αi0 ⊕ αi1

) (
α j0 ⊕ α j1

) (
α−i0−i1 ⊕ α−n�− j0− j1

)
.

If m = 2, Lemma 3 gives

M(i0, i1, i2; j0, j1, j2; r; n; �)

=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 0 0 0
αi0 αi1 αi2 0 0 0
0 0 0 1 1 1
0 0 0 α j0 α j1 α j2

α2i0 α2i1 α2i2 α j0 α j1 α j2

α−i0 α−i1 α−i2 α−n�− j0 α−n�− j1 α−n�− j2

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

and

�=
(
αi0 ⊕ αi1

) (
αi0 ⊕ αi2

) (
αi1 ⊕ αi2

) (
α j0 ⊕ α j1

)

(
α j0 ⊕ α j2

) (
α j1 ⊕ α j2

) (
α−i0−i1−i2 ⊕ α−n�− j0− j1− j2

)
.

�
We now state the main result for SD codes.

Theorem 5: The codes C(r, n, m, 2; fα(x)) and
C(r, n, m, 2;Mp(x)) from Construction A are SD codes.

Proof: Assume that m columns have been erased, and
in addition, we have two random erasures. Assume first that
these two random erasures occurred in the same row � of the
stripe, where 0 � � � r − 1. The rows that are different from
� are corrected since each one of them has m erasures, which
are handled by the horizontal code, that is, each horizontal
code is given by the parity-check matrix H0, which is the
parity-check matrix of a RS code that can correct up to m
erasures [13]. Thus, we have to solve a linear system with
m + 2 unknowns. Assume that the erasures in row � occurred
in locations i0, i1, . . . , im, im+1, where 0 � i0 < i1 < · · · <
im < im+1 � n − 1. According to the parity-check matrix of
the code as given by (1), (2) and (3), there will be a unique
solution if and only if the (m + 2)× (m + 2) matrix

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 . . . 1 1
αi0 αi1 . . . αim αim+1

α2i0 α2i1 . . . α2im α2im+1

...
...

. . .
...

...

αmi0 αmi1 . . . αmim αmim+1

α−n�−i0 α−n�−i1 . . . α−n�−im α−n�−im+1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

is invertible. By taking α−n� in the last row as a common
factor, and by multiplying each column j , 0 � j � m + 1,
by αi j , this matrix is transformed into a Vandermonde matrix,
which is always invertible in a field and also in the ring of
polynomials modulo Mp(x) [5].

Consider now the case in which the two random failures
occur in different rows. Specifically, assume that columns
i0, i1, . . . , im−1 were erased, where 0 � i0 < i1 < . . . <
im−1 � n − 1, and in addition, entries (�, t) and (�′, t ′) were
erased, where

t, t ′ �∈ {i0, i1, . . . , im−1} and 0 � � < �′ � r − 1.

Again, using the parity-check matrix of the code as given
in (1), (2), and (3), there will be a unique solution if and only
if the (2m + 2) × (2m + 2) matrix of (13), as shown at the
bottom of this page, is invertible. Taking α−n� as a common

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 . . . 1 1 0 . . . 0 0
αi0 . . . αim−1 αt 0 . . . 0 0
α2i0 . . . α2im−1 α2t 0 . . . 0 0

...
. . .

...
...

...
. . .

...
...

α(m−1)i0 . . . α(m−1)im−1 α(m−1)t 0 . . . 0 0
0 . . . 0 0 1 . . . 1 1
0 . . . 0 0 αi0 . . . αim−1 αt ′

0 . . . 0 0 α2i0 . . . α2im−1 α2t ′

...
. . .

...
...

...
. . .

...
...

0 . . . 0 0 α(m−1)i0 . . . α(m−1)im−1 α(m−1)t ′

αmi0 . . . αmim−1 αmt αmi0 . . . αmim−1 αmt ′

α−n�−i0 . . . α−n�−im−1 α−n�−t α−n�′−i0 . . . α−n�′−im−1 α−n�′−t ′

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(13)

2678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016

factor in the last row, we obtain the matrix

M(i0, i1, i2, . . . , im−1, t; i0, i1, i2, . . . , im−1, t ′; r; n; �′ − �)

as defined by (6) in Lemma 3, whose determinant, by (7),
is given by

� =
⎛

⎝
∏

0�u<v�m−1

(
αiu ⊕ αiv

)2

⎞

⎠

·
⎛

⎝
∏

0�u�m−1

(
αiu ⊕ αt

) (
αiu ⊕ αt ′

)
⎞

⎠

·α−
∑m−1

u=0 iu
(
α−t ⊕ α−n(�′−�)−t ′

)
.

For simplicity, redefine � ← �′ − �, hence, 1 � � � r − 1.
Each binomial (αiu ⊕ αiv), (αiu ⊕ αt), and (αiu ⊕ αt ′), above
is invertible, so it remains to be proven that (α−t ⊕ α−n�−t ′)
is invertible. If it is not,

n�+ t ′ − t ≡ 0 (mod O(α)). (14)

But

0 < n�+ t ′ − t � n(r − 1)+ t ′ − t � n(r − 1)+ (n − 1)

= nr − 1 < O(α),

so, n�+ t ′ − t �≡ 0 (mod O(α)), contradicting (14).
Next, let us prove a similar result for PMDS codes. In fact,

the codes C(r, n, m, 2; fα(x)) and C(r, n, m, 2;Mp(x)) are not
PMDS, but we will obtain PMDS codes with a modification
that requires a larger field or ring. Let

N = (m + 1)(n − m − 1)+ 1, (15)

α ∈ GF(2w) and r N � O(α). For example, if m = 1,
N = 2n − 3. As in the case of SD codes, we construct a
PMDS code consisting of r × n arrays over GF(2w), such
that m of the columns correspond to parity and in addition,
two extra symbols also correspond to parity. When read
row-wise, the codewords belong in an [rn, r(n−m)−2] code
over GF(2w).

Construction B: Let α ∈ GF(2w) and r N � O(α), where
N = (m + 1)(n −m − 1)+ 1, and let C ′(r, n, m, 2; fα(x)) be
the [rn, r(n−m)− 2] code whose (mr + 2)× rn parity-check
matrix is given by

H′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

H0 0 . . . 0
0 H0 . . . 0
...

...
. . .

...

0 0 . . . H0

H ′1 H ′2 . . . H ′r

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(16)

where H0 is given by (2) and, for 0 � j � r − 1,

H ′j+1 =
(

1 αm α2m . . . αm(n−1)

α− j N α− j N−1 α− j N−2 . . . α− j N−(n−1)

)

.

(17)

�
As before, the construction is also valid over the ring of

polynomials Mp(x), p prime, in which case we denote the
codes C ′(r, n, m, 2;Mp(x)). Let us give an example.

Example 6: Let n = 5, m = 1 and r = 3. According to (15),
N = 7. Thus, we need O(α) � r N = 21. For instance we
may consider the field GF(32) and α primitive in GF(32),
i.e., O(α) = 31 > 21 (we can also handle r = 4 in this
example). Thus, the parity-check matrix of C ′(3, 5, 1, 2; fα(x))
is given by (18), as shown at the bottom of this page. �

Theorem 7: The codes C ′(r, n, m, 2; fα(x)) and
C ′(r, n, m, 2;Mp(x)) from Construction B are PMDS
codes.

Proof: The case of m + 2 erasures in the same row and
at most m erasures in the remaining rows is handled as in
Theorem 5.

Assume, without loss of generality, that row 0 has m + 1
erasures in locations

0 � i0 < i1 < . . . < im � n − 1

and row �, 1 � � � r − 1 has m + 1 erasures in locations

0 � j0 < j1 < . . . < jm � n − 1,

while the remaining rows have no erasures. We have to prove
that the matrix

M(i0, i1, . . . , im; j0, j1, . . . , jm; r; N; �)
as given by (6) is invertible, which will occur if and only if(
α−

∑m
u=0 iu ⊕ α−N�−∑m

u=0 ju
)

is invertible by Lemma 3. If it
is not,

N� +
m∑

u=0

ju −
m∑

u=0

iu ≡ 0 (mod O(α)). (19)

Notice that

m(m + 1)

2
=

m∑

u=0

u �
m∑

u=0

iu (20)

and
m∑

u=0

iu �
m∑

u=0

(n − m − 1)+ u

= (m + 1)(n − m − 1)+
m∑

u=0

u

= N − 1+ m(m + 1)

2
, (21)

H′ =

⎛

⎜
⎜
⎜
⎜
⎝

1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
1 α α2 α3 α4 1 α α2 α3 α4 1 α α2 α3 α4

1 α30 α29 α28 α27 α24 α23 α22 α21 α20 α17 α16 α15 α14 α13

⎞

⎟
⎟
⎟
⎟
⎠

(18)

BLAUM et al.: CONSTRUCTION OF PMDS AND SD CODES WITH TWO GLOBAL PARITY SYMBOLS 2679

by (15). The same is valid for
∑m

u=0 ju . Combining
bounds (20) and (21), we obtain

−(N − 1) �
m∑

u=0

ju −
m∑

u=0

iu � N − 1.

Therefore,

1 = N − (N − 1) � N� +
m∑

u=0

ju −
m∑

u=0

iu

� N(r − 1)+ N − 1 = Nr − 1 < O(α),

so,

N� +
m∑

u=0

ju −
m∑

u=0

iu �≡ 0 (mod O(α)),

contradicting (19).
Let us point out that Lemma 3 and Theorems 5 and 7

not only prove that the codes C(r, n, m, 2; fα(x)) and
C ′(r, n, m, 2; fα(x)) are SD and PMDS respectively, but
also provide for efficient encoding and decoding algorithms.
In effect, solving the linear systems corresponding to erasures,
for instance, using Cramer’s rule, involves inverting either
Vandermonde determinants or determinants of matrices

M(i0, i1, . . . , im−1, t; j0, j1, . . . , jm−1, t ′; r; n; �′ − �),

as given by (6) in Lemma 3. Both types of determinants
involve products of binomials, which are easily inverted both
in GF(q) and in the ring of polynomials modulo Mp(x) [5].

III. DISJOINT-SECTOR-DISK CODES

In this section we study a narrower case of SD codes which
we call disjoint-sector-disk (DSD) codes. These are SD codes
whose extra sector erasures reside within disjoint disks,
i.e., within distinct columns of the arrays.

Definition 8: Let C be a linear [rn, r(n−m)−s] code over
a field such that when codewords are taken row-wise as r × n
arrays, each row belongs in an [n, n −m, m + 1] MDS code.
Then C is an (m; s) disjoint-sector-disk (DSD) code if, for any
l1, l2, . . . , lm such that

0 � l1 < l2 < · · · < lm � n − 1,

for any (s1, s2, . . . , st) such that each s j � 1 and∑t
j=1 s j = s, and for any i1, i2, . . . , it such that

0 � i1 < i2 < · · · < it � r − 1,

C can correct up to s j+m erasures in each row i j , 1 � j � t ,
of an array in C provided that locations l1, l2, . . . lm in each
of the rows i j have been erased, and provided the rest of the
s sector erasures occur in s distinct columns.

We will construct general (m; s) DSD codes for all m and s,
and with a small field size, much smaller than those required
by Construction A for SD codes.

The general strategy we employ is to replace the underlying
Vandermonde construction, with one based on Cauchy matri-
ces. We again assume F = GF(2w) for ease of presentation
only (the results carry over to general fields as well). Let
x, y ∈ Fn ,

x = x1, x2, . . . , xn y = y1, y2, . . . , yn,

be two sequences of elements from the field, where

{x1, . . . , xn} ∩ {y1, . . . , yn} = ∅.
The Cauchy matrix C = (Ci, j) is defined as

Ci, j = 1

xi + y j
.

It is well-known that

det(C) =
∏

i< j (xi + x j)(yi + y j)
∏

i, j (xi + y j)
.

To make the notation easier, we denote by C (x, y) the Cauchy
matrix defined by the sequences x and y, which are not
necessarily of the same length, i.e., C is not necessarily square.

Construction C: Fix F = GF(2w), and let x ∈ Fm, y ∈ Fn,
x ∈ Fs, be three sequences of elements of F, where in total,
there are m + n + s distinct elements appearing in x, y,
and x together.

Define C ′′(r, n, m, s) to be the [rn, r(n−m)−s] code whose
(mr + s)× rn parity-check matrix is given by

H′′ =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T 0 . . . 0
0 T . . . 0
...

...
. . .

...

0 0 . . . T
B B . . . B

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(22)

where

T = C (x, y) and B = C (x, y), (23)

i.e., T is an m× n Cauchy matrix, and B is an s × n Cauchy
matrix. �

Theorem 9: The code C ′′(r, n, m, s) from Construction C is
a DSD code.

Proof: Consider a transmitted r × n array, with each of
its rows containing m erasures, except for t rows, with indices
i1, i2, . . . , it , that contain m + sk erasures, k = 1, 2, . . . , t ,
where sk � 1, and s1 + s2 + · · · + st = s. The rows having
only m erasures may be corrected using the Cauchy-code for
the row. We are therefore left only with rows ik with m + sk

erasures each, 1 � k � t .
For additional notation, for each k = 1, 2, . . . , t , let us

denote the column locations of the m + sk erasures in row

ik as j (k)
1 , j (k)

2 , . . . , j (k)
m+sk

. In our setting, m entire columns
are erased, and so we assume

j (1)
� = j (2)

� = · · · = j (t)
� , (24)

for all � = 1, 2, . . . , m. The remaining s erased sectors are all
in distinct columns, i.e.,

∣
∣
∣
∣
∣

t⋃

k=1

{
j (k)
m+1, . . . , j (k)

m+sk

}
∣
∣
∣
∣
∣
= s.

We project the sequence y that defines the Cauchy matrices
onto to the appropriate indices, i.e.,

y(k) = y
j (k)
1

, y
j (k)
2

, . . . , y
j (k)
m+sk

.

2680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 5, MAY 2016

As we did in the previous constructions, we take the columns
of the parity-check matrix H′′ that correspond to the erasures,
and obtain the matrix

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

T (1) 0 . . . 0
0 T (2) . . . 0
...

...
. . .

...

0 0 . . . T (t)

B(1) B(2) . . . B(t)

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where

T (k) = C (x, y(k)),

is an m × (m + sk) Cauchy matrix, and

B(k) = C (x, y(k)),

is an s × (m + sk) Cauchy matrix.
The erasures are correctable if and only if

det(M) �= 0.

We show this by showing an exact expression for det(M). For
ease of presentation, we refer to the columns of M containing
T (k) (and B(k)) as the kth column-block of H . Similarly, the
rows of M containing T (k) are referred to as the kth row-block
of M . Finally, the bottom s rows of M are called the bottom
row-block of H .

To calculate det(M) we perform the following procedure:
1) For � = 1, 2, . . . , m do:

a) For each column-block k = 1, 2, . . . , t , add
column � in the block to columns � + 1,
�+ 2, . . . , m + sk in the block.

b) Collect 1/(xi+ y(k)
�), i = �, �+1, . . . , m, from the

i th row of each of the top t row-blocks.
c) Collect 1/(xi + y(k)

�), i = 1, 2, . . . , s, from the
i th row of the bottom row-block.

d) For each column-block k, collect (y(k)
� + y(k)

j),
j = �+ 1, �+ 2, . . . , m+ sk , from the j th column
of the kth column block.

e) For each row-block k = 1, 2, . . . , t , add row � in
the block to rows �+ 1, �+ 2, . . . , m in the block,
as well as to rows 1, 2, . . . , s of the bottom block.

f) For each column-block k, collect 1/(x� + y(k)
j),

j = �+ 1, �+ 2, . . . , m+ sk , from the j th column
of the kth column block.

g) Collect (x�+ xi), i = �, �+ 1, . . . , m from the i th
row of each of the top t row-blocks.

h) Collect (x�+ xi), i = 1, 2, . . . , s, from the i th row
of the bottom row-block.

At the end of the procedure, we move the last sk columns
of each of the column blocks to form a new rightmost column
block with s1+ s2+ . . . , st = s columns. We call the resulting
matrix M ′. Following the procedure carefully, we can verify
that

M ′ =
(

Itm 0
0 N

)

,

where Itm is the tm × tm identity matrix, and N is an s × s
Cauchy matrix, N = C (x, y), with

y = (y(1)
m+1, . . . , y(1)

m+s1
, . . . , y(t)

m+1, . . . , y(t)
m+st

).

We also conveniently denote

y = (y(k)
1 , y(k)

2 , . . . , y(k)
m),

where the choice of k does not matter according to (24).
Finally, we denote

y = (y | y), and x = (x | x),

where (· | ·) denotes concatenation of vectors.
With this notation, we get

det M = det(C (x, y)) · det(C (x, y))t−1

=
∏

i< j (xi + x j)(yi + y j)
∏

i, j (xi + y j)

·
(∏

i< j (xi + x j)(yi + y j)
∏

i, j (xi + y j)

)t−1

.

Since the elements of x and y are together all distinct, we have
det(M) �= 0.

IV. CONCLUSIONS

We described constructions of SD and PMDS codes where
the number s of additional sectors equals two. The minimal
field size required by the construction for SD codes is only the
total number of sectors in the array, and in the case of PMDS
codes, at most of linear order on the total number of sectors.

We also presented a general construction for DSD codes
using Cauchy matrices. These codes are more limited in
their erasure-correction capabilities than SD codes, but the
construction spans all possible parameters and requires a much
smaller field size, which is linear in the number of disks and
erased sectors.

The problem of constructing PMDS and SD codes for
s > 2 is still open. An option for addressing this problem
is by using existing constructions, like the ones given in [3]
and in [17], to obtain suboptimal codes for a fixed value of s.
For example, the construction in [3] is based upon generalized
concatenated (GC) codes to correct erasure patterns which are
more restricted than the ones PMDS and SD codes correct.
However, the advantage of these codes is that they exist for all
parameters while their field size is much smaller than the one
required by PMDS and SD codes. It can be shown that in order
to correct s extra erasures using these codes, the redundancy
is given by rm + D(s), where

D(s) =
s∑

h=1

⌊ s

h

⌋
.

In particular,

D(s) �
s∑

h=1

s

h
� s +

∫ s

1

s

h
dh = s ln(s)+ s,

D(s) �
s∑

h=1

(s

h
− 1

)
� −s +

∫ s+1

1

s

h
dh = s ln(s + 1)− s.

Assume next that we want to use the codes in [17] to correct
s extra erasures, and for simplicity, the minimum distance of
the code d satisfies d < n. Then, we can easily see that the

BLAUM et al.: CONSTRUCTION OF PMDS AND SD CODES WITH TWO GLOBAL PARITY SYMBOLS 2681

redundancy would be rm+2s−1. For s = 3, D(3) = (2)(3)−
1 = 5, and both constructions have the same extra redundancy.
For s = 4 and s = 5, the construction based on GC codes
has one more extra redundancy than the construction in [17].
The difference between the two constructions gets larger as
s increases. However, the construction in [3] requires a finite
field of size at least n, while the construction in [17] requires
a finite field of size at least mn. This also emphasizes the fact
that minimizing the size of the finite field in SD and PMDS
codes is another open problem in general constructions.

ACKNOWLEDGEMENT

The authors thank three anonymous reviewers as well as the
Associate Editor Prof. Alexandros Dimakis for their valuable
comments and suggestions, which have contributed for the
clarity of the paper and its presentation.

REFERENCES

[1] L. N. Bairavasundaram, G. R. Goodson, B. Schroeder,
A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau, “An analysis of
data corruption in the storage stack,” in Proc. 6th Usenix Conf. File
Storage Technol. (FAST), San Jose, CA, USA, Feb. 2008, Art. no. 8.

[2] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510–4519, Jul. 2013.

[3] M. Blaum and S. Hetzler. (Jul. 2014). “Generalized concate-
nated types of codes for erasure correction.” [Online]. Available:
http://arxiv.org/pdf/1406.6270.pdf.

[4] M. Blaum and J. S. Plank. (May 2013). “Construction of two SD codes.”
[Online]. Available: http://arxiv.org/abs/1305.1221.

[5] M. Blaum and R. M. Roth, “New array codes for multiple phased
burst correction,” IEEE Trans. Inf. Theory, vol. 39, no. 1, pp. 66–77,
Jan. 1993.

[6] M. Blaum. (Apr. 2013). “Construction of PMDS and SD codes extending
RAID 5.” [Online]. Available: http://arxiv.org/abs/1305.0032.

[7] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson,
“RAID: High-performance, reliable secondary storage,” ACM Comput.
Surv., vol. 26, no. 2, pp. 145–185, Jun. 1994.

[8] J. G. Elerath and M. Pecht, “A highly accurate method for assessing
reliability of redundant arrays of inexpensive disks (RAID),” IEEE
Trans. Comput., vol. 58, no. 3, pp. 289–299, Mar. 2009.

[9] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Trans. Inf. Theory, vol. 60, no. 9,
pp. 5245–5256, Sep. 2014.

[10] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to
trade space for access efficiency in reliable data storage systems,” ACM
Trans. Storage, vol. 9, no. 1, Mar. 2013, Art. no. 3.

[11] C. Huang, H. Simitci, Y. Xu, A. Ogus, B. Calder, P. Gopalan, J. Li,
and S. Yekhanin, “Erasure coding in windows azure storage,” in Proc.
USENIX Annu. Tech. Conf., 2012, pp. 15–26.

[12] M. Li and P. P. C. Lee, “STAIR codes: A general family of erasure codes
for tolerating device and sector failures in practical storage systems,” in
Proc. 12th USENIX Conf. File Storage Technol. (FAST), Santa Clara,
CA, USA, Feb. 2014, pp. 147–162.

[13] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1978.

[14] D. S. Papailiopoulos and A. G. Dimakis, “Locally repairable codes,”
in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Cambridge, MA, USA,
Jul. 2012, pp. 2771–2775.

[15] J. S. Plank and M. Blaum, “Sector-disk (SD) erasure codes for mixed
failure modes in RAID systems,” ACM Trans. Storage, vol. 10, no. 1,
Jan. 2014, Art. no. 4.

[16] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. Dimakis, R.
Vadali, S. Chen, and D. Borthakur, “XORing elephants: Novel erasure
codes for big data,” in Proc. 39th Int. Conf. Very Large Data Bases,
Aug. 2013, pp. 325–336.

[17] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

Mario Blaum (S’84–M’85–SM’92–F’00) was born in Buenos Aires,
Argentina, in 1951. He received the degree of Licenciado from the University
of Buenos Aires in 1977, the M. Sc. degree from the Israel Institute of
Technology in 1981 and the Ph. D. degree from the California Institute
of Technology in 1984, all these degrees in Mathematics. From January
to June, 1985, he was a Research Fellow at the Department of Electrical
Engineering at Caltech. In 1985, he joined the IBM Almaden Research
Center. In 2003, his division (data storage) was transferred to Hitachi Global
Storage Technologies, where he continued until 2009. In 2009 he rejoined the
IBM Almaden Research Center, where he is at present. Since 2001, he is an
Academic Adviser at the Universidad Complutense of Madrid, Spain. From
2009 to 2012 Dr. Blaum served as Associate Editor for IEEE TRANSACTIONS

ON INFORMATION THEORY. Dr. Blaum’s research interests include Storage
Technology, comprising all aspects of coding and synchronization. He has
authored and co-authored numerous articles in the scientific literature. He also
holds more than 60 US Patents. He was named an IEEE Fellow in 2000
“for Contributions to the Theory and Practice of Unidirectional and Array
Codes.”

James S. Plank (M’94) is a Professor in the EECS department at the
University of Tennessee. He received his BS from Yale in 1988, and his
PhD from Princeton in 1993. He has been at the University of Tennessee
ever since. Professor Plank’s research has spanned many areas of fault-
tolerance, including checkpointing systems, wide-area storage systems, and
erasure coding for storage systems. He is currently researching Neuromor-
phic computing systems. Professor Plank has been an associate editor of
IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, and
has chaired conferences in storage and applications. He has left a legacy of
publicly available software that includes the Unix graphing package Jgraph,
the checkpointing library Libckpt, and the erasure-coding library Jerasure.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and
Ph.D. degrees from the Technion - Israel Institute of Technology, Haifa,
Israel, in 1997, 1998, and 2004 respectively, all from the Computer Science
Department. He was a Fulbright post-doctoral researcher in the Department
of Electrical and Computer Engineering, University of California San Diego,
and a post-doctoral researcher in the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012-2014, he was a
visiting scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage, and the 2010
IEEE Communications Society Best Student Paper Award in Signal Processing
and Coding for Data Storage.

Eitan Yaakobi (S’07–M’12) is an Assistant Professor at the Computer Sci-
ence Department at the Technion–Israel Institute of Technology. He received
the B.A. degrees in computer science and mathematics, and the M.Sc. degree
in computer science from the Technion–Israel Institute of Technology, Haifa,
Israel, in 2005 and 2007, respectively, and the Ph.D. degree in electrical
engineering from the University of California, San Diego, in 2011. Between
2011-2013, he was a postdoctoral researcher in the department of Electrical
Engineering at the California Institute of Technology. His research interests
include information and coding theory with applications to non-volatile
memories, associative memories, data storage and retrieval, and voting theory.
He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

