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Abstract— The ability to store data in the DNA of a living
organism has applications in a variety of areas including synthetic
biology and watermarking of patented genetically modified
organisms. Data stored in this medium are subject to errors
arising from various mutations, such as point mutations, indels,
and tandem duplication, which need to be corrected to maintain
data integrity. In this paper, we provide error-correcting codes
for errors caused by tandem duplications, which create a copy
of a block of the sequence and insert it in a tandem manner,
i.e., next to the original. In particular, we present two families
of codes for correcting errors due to tandem duplications of a
fixed length: the first family can correct any number of errors,
while the second corrects a bounded number of errors. We also
study codes for correcting tandem duplications of length up to
a given constant k, where we are primarily focused on the cases
of k = 2, 3. Finally, we provide a full classification of the sets
of lengths allowed in tandem duplication that result in a unique
root for all sequences.

Index Terms— Error-correcting codes, DNA, string-duplication
systems, tandem-duplication errors.

I. INTRODUCTION

DATA storage in the DNA of living organisms (henceforth
live DNA) has a multitude of applications. It can enable

in-vivo synthetic-biology methods and algorithms that need
“memory,” e.g., to store information about their state or record
changes in the environment. Embedding data in live
DNA also allows watermarking genetically-modified organ-
isms (GMOs) to verify authenticity and to track unauthorized
use [1], [9], [19], as well as labeling organisms in biological
studies [24]. DNA watermarking can also be used to tag
infectious agents used in research laboratories to identify
sources of potential malicious use or accidental release [13].
Furthermore, live DNA can serve as a protected medium for
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storing large amounts of data in a compact format for long
periods of time [2], [24]. An additional advantage of using
DNA as a medium is that data can be disguised as part of the
organisms’ original DNA, thus providing a layer of secrecy [3].

While the host organism provides a level of protection
to the data-carrying DNA molecules as well as a method
for replication, the integrity of the stored information suffers
from mutations such as tandem duplications, point mutations,
insertions, and deletions. Furthermore, since each DNA repli-
cation may introduce new mutations, the number of such
deleterious events increases with the number of generations.
As a result, to ensure decodability of the stored information,
the coding/decoding scheme must be capable of a level of error
correction. Motivated by this problem, we study designing
codes that can correct errors arising from tandem duplications.
In addition to improving the reliability of data storage in
live DNA, studying such codes may help to acquire a better
understanding of how DNA stores and protects biological
information in nature.

Tandem duplication is the process of inserting a copy of a
segment of the DNA adjacent to its original position, resulting
in a tandem repeat. A process that may lead to a tandem
duplication is slipped-strand mispairings [20] during DNA
replication, where one strand in a DNA duplex is displaced
and misaligned with the other. Tandem repeats constitute
about 3% of the human genome [15] and may cause important
phenomena such as chromosome fragility, expansion diseases,
silencing genes [22], and rapid morphological variation [7].

Different approaches to the problem of error-control for
data stored in live DNA have been proposed in the literature.
In the work of Arita and Ohashi [1], each group of five
bits of information is followed by one parity bit for error
detection. Heider and Barnekow [9] use the extended [8, 4, 4]
binary Hamming code or repetition coding to protect the data.
Yachie et al. [25] propose to enhance reliability by inserting
multiple copies of the data into multiple regions of the genome
of the host organism. Finally, Haughton and Balado [8] present
an encoding method satisfying certain biological constraints,
which is studied in a substitution-mutation model. None of
the aforementioned encodings, with the possible exception of
repetition coding, are designed to combat tandem duplications,
which is the focus of this paper. While repetition coding can
correct duplication errors, it is not an efficient method because
of its high redundancy.

It should also be noted that error control for storage in live
DNA is inherently different from that in DNA that is stored
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outside of a living organism (see [26] for an overview), since
the latter is not concerned with errors arising during organic
DNA replication.

In this work, we ignore the potential biological effects
of embedding data into the DNA. Furthermore, constructing
codes that, in addition to tandem-duplication errors, can com-
bat other types of errors, such as substitutions, are postponed
to a future work.

We also note that tandem duplication, as well as other dupli-
cation mechanisms, were studied in the context of information
theory [5], [6], [12]. However, these works used duplications
as a generative process, and attempted to measure its capacity
and diversity. In contrast, we consider duplications as a noise
source, and design error-correcting codes to combat it.

We will first consider the tandem-duplication channel with
duplications of a fixed length k. For example with k = 3, after
a tandem duplication, the sequence AC AGT may become
AC AGC AGT , which may then become AC AAC AGC AGT
where the copy is underlined. In our analysis, we provide
a mapping in which tandem duplications of length k are
equivalent to insertion of k zeros. Using this mapping, we
demonstrate the strong connection between codes that correct
duplications of a fixed length and Run-Length Limited (RLL)
systems. We present constructions for codes that can correct
an unbounded number of tandem duplications of a fixed length
and show that our construction is optimal, i.e., of the largest
size. A similar idea was used in [4], where codes were
constructed for duplication-error correction with the number
of tandem duplications restricted to a given size r and a
duplication length of 1 only. In this paper, we generalize
their result by constructing optimal (i.e., maximum size) error-
correcting codes for arbitrary duplication length k and with no
restriction on the number of tandem duplications.

We then turn our attention to codes that correct t tandem
duplications (as opposed to an unbounded number of dupli-
cations), and show that these codes are closely related to
constant-weight codes in the �1 metric.

We also consider codes for correcting duplications of
bounded length. Here, our focus will be on duplication errors
of length at most 2 or 3, for which we will present a
construction that corrects any number of such errors. In the
case of duplication length at most 2 the codes we present are
optimal.

Finally, when a sequence has been corrupted by a tandem-
duplication channel, the challenge arises in finding the root
sequences from which the corrupted sequence could be gener-
ated. A root sequence does not contain any tandem-duplicated
subsequences. For example, for the sequence ACGT GT , with
GT GT as a tandem-duplication error, a root sequence would
be ACGT since ACGT GT can be generated from ACGT
via a tandem duplication of length 2 on GT . But there can
be sequences that have more than one root. For example,
the sequence ACGC ACGCG can be generated from ACG
through a tandem duplication of CG first, followed by a
tandem duplication of ACGC . Alternatively, it can also be
generated from ACGC ACG by doing a tandem duplication
of the suffix CG. Hence, ACGC ACGCG has two roots.
However, if we restrict the length of duplication to 2 in the

previous example, then ACGC ACGCG has only one root
i.e., ACGC ACG. This means that the number of roots that a
sequence can have depends on the set of duplication lengths
that are allowed, and the size of the alphabet. We provide in
Section V a complete classification of the parameters required
for the unique-root property. This unique-root property of the
fixed length, 2-bounded and 3-bounded tandem-duplication
channels allows us to construct error-correcting codes for
them.

The paper is organized as follows. The preliminaries and
notation are described in Section II. In Sections III and IV we
present the results concerning duplications of a fixed length k
and duplications of length at most k, respectively. In Section V,
we fully characterize tandem-duplication channels which have
a unique root. We conclude with some open questions
in Section VI.

II. PRELIMINARIES

We let � denote some finite alphabet, and �∗ denote the
set of all finite strings (words) over �. The unique empty
word is denoted by ε. The set of finite non-empty words is
denoted by �+ = �∗ \ {ε}. Given two words x, y ∈ �∗,
their concatenation is denoted by xy, and xt denotes the
concatenation of t copies of x , where t is some positive integer.
By convention, x0 = ε. The length of a string x ∈ �∗ is
denoted by |x |. We normally index the letters of a word starting
with 1, i.e., x = x1 x2 . . . xn , with xi ∈ �. With this notation,
the t-prefix and t-suffix of x are defined by

Pref t (x) = x1 x2 . . . xt ,

Suff t (x) = xn−t+1xn−t+2 . . . xn.

Given a string x ∈ �∗, a tandem duplication of length k is
a process by which a contiguous substring of x of length k is
copied next to itself. More precisely, we define the tandem-
duplication rules, Ti,k : �∗ → �∗, as

Ti,k (x) =
{

uvvw if x = uvw, |u| = i , |v| = k

x otherwise.

We note that the “otherwise” case describes a degenerate case
when |x | < k + i , and therefore x cannot be decomposed into
a prefix u of length i , an inner part v of length k, and some
suffix w. Two specific sets of duplication rules are of interest
to us throughout the paper.

Tk = {Ti,k
∣∣ i ≥ 0

}
,

T≤k = {Ti,k′
∣∣ i ≥ 0, 1 ≤ k ′ ≤ k

}
.

Given x, y ∈ �∗, if there exist i and k such that

y = Ti,k(x),

non-degenerately,1then we say y is a direct descendant of x ,
and denote it by

x �⇒
k

y.

If a sequence of t non-degenerate tandem duplica-
tions of length k is employed to reach y from x we say y is

1Here, and throughout the paper, non-degenerately refers to tandem dupli-
cations that avoid the “otherwise” case in the definition of Ti,k .
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a t-descendant of x and denote it by

x
t�⇒
k

y.

More precisely, we require the existence of t non-negative
integers i1, i2, . . . , it , with 0 ≤ i j ≤ |x | + k( j − 2), such that

y = Tit ,k(Tit−1,k(. . . Ti1,k(x) . . . )).

Finally, if there exists a finite sequence of tandem duplications
of length k transforming x into y, we say y is a descendant
of x and denote it by

x
∗�⇒
k

y.

We note that x is its own descendant via an empty sequence
of tandem duplications.

Example 1: Let � = {0, 1, 2, 3} and x = 02123. Since,
T1,2(x) = 0212123 and T0,2(0212123) = 020212123, the
following hold

02123 �⇒
2

0212123, 02123
2�⇒
2

020212123,

where in both expressions, the relation could be replaced
with

∗�⇒
2

.
�

We define the descendant cone of x as

D∗
k (x) =

{
y ∈ �∗

∣∣∣∣ x
∗�⇒
k

y

}
.

In a similar fashion we define the t-descendant cone Dt
k(x)

by replacing
∗�⇒
k

with
t�⇒
k

in the definition of D∗
k (x).

The set of definitions given thus far was focused on tandem-
duplication rules of substrings of length exactly k, i.e., for rules
from Tk . These definitions as well as others in this section
are extended in the natural way for tandem-duplication rules
of length up to k, i.e., T≤k . We denote these extensions by
replacing the k subscript with the ≤ k subscript. Thus, we also
have D∗≤k(x) and Dt

≤k(x).
Example 2: Consider � = {0, 1} and x = 01. It is not

difficult to see that

D2
1(x) = {0001, 0011, 0111} ,

D∗
1(x) =

{
0i 1 j
∣∣∣ i, j ∈ N

}
,

D∗
2(x) =

{
(01)i
∣∣∣ i ∈ N

}
,

D∗≤2(x) = {0s1 | s ∈ �∗} .
�

Using the notation D∗
k , we restate the definition of the

tandem string-duplication system given in [6]. Given a finite
alphabet �, a seed string s ∈ �∗, the tandem string-
duplication system is given by

Sk = S(�, s,Tk ) = D∗
k (s),

i.e., it is the set of all the descendants of s under tandem
duplication of length k.

The process of tandem duplication can be naturally reversed.
Given a string y ∈ �∗, for any positive integer, t > 0,
we define the t-ancestor cone as

D−t
k (y) =

{
x ∈ �∗

∣∣∣∣ x
t�⇒
k

y

}
,

or in other words, the set of all words for which y is a
t-descendant.

Yet another way of viewing the t-ancestor cone is by
defining the tandem-deduplication rules, T −1

i,k : �∗ → �∗, as

T −1
i,k (y) =

{
uvw if y = uvvw, |u| = i , |v| = k

ε otherwise,

where we recall ε denotes the empty word. This opera-
tion takes an adjacently-repeated substring of length k, and
removes one of its copies. Thus, a string x is in the t-ancestor
cone of y (where we assume x, y 
= ε to avoid trivialities)
iff there is a sequence of t non-degenerate deduplication
operations transforming y into x , i.e., there exist t non-
negative integers i1, i2, . . . , it , such that, non-degenerately,

x = T −1
it ,k

(T −1
it−1,k(. . . T −1

i1,k(y) . . . )).

In a similar fashion we define the ancestor cone of y as

D−∗
k (y) =

{
x ∈ �∗

∣∣∣∣ x
∗�⇒
k

y

}
.

By flipping the direction of the derivation arrow, we let ⇐�
denote deduplication. Thus, if y may be deduplicated to obtain
x in a single step, we write

y ⇐�
k

x .

For multiple steps we add ∗ in superscript.
Example 3: We have

0212123 ⇐�
2

02123, 020212123
2⇐�
2

02123,

and

D−∗
2 (020212123) = {020212123, 0212123, 0202123, 02123} .

�

A word y ∈ �∗ is said to be irreducible (with respect to
duplications of length k) if there is nothing to deduplicate in
it, i.e., y is its only ancestor, meaning

D−∗
k (y) = {y} .

The set of irreducible words is denoted by Irrk . We will find
it useful to denote the set of irreducible words of length n by

Irrk(n) = Irrk ∩�n .

The ancestors of y ∈ �∗ that cannot be further deduplicated,
are called the roots of y, and are denoted by

Rk(y) = D−∗
k (y) ∩ Irrk .

Note that since the aforementioned definitions extend to
tandem-duplication rules of length up to k, we also have
S≤k , D−t

≤k(y), D−∗
≤k (y), Irr≤k , Irr≤k(n), and R≤k(y). In some
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previous works (e.g., [17]), Sk is called the uniform-bounded-
duplication system, whereas S≤k is called the bounded-
duplication system.

Example 4: For the binary alphabet � = {0, 1},
Irr≤2 = {0, 1, 01, 10, 010, 101} ,

and for any alphabet that contains {0, 1, 2, 3},
R2(020212123) = {02123} ,

R≤4(012101212) = {012, 0121012} .
�

Inspired by the DNA-storage scenario, we now define error-
correcting codes for tandem string-duplication systems.

Definition 5: An (n, M; t)k code C for the k-tandem-
duplication channel is a subset C ⊆ �n of size |C| = M,
such that for each x, y ∈ C, x 
= y,

Dt
k(x) ∩ Dt

k(y) = ∅.

Here t stands for either a non-negative integer, or ∗. In the
former case we say the code can correct t errors, whereas in
the latter case we say the code can correct all errors. In a
similar fashion, we define an (n, M; t)≤k by replacing all “k”
subscripts by “≤ k”.

Assume the size of the finite alphabet is |�| = q . We then
denote the size of the largest (n, M; t)k code over � by
Aq(n; t)k . The capacity of the channel is then defined as

capq(t)k = lim sup
n→∞

1

n
logq Aq(n; t)k .

Analogous definitions are obtained by replacing k with ≤ k
or by replacing t with ∗.

In certain places we shall point out connections between
string-duplication systems and formal languages. These con-
nections have not gone unnoticed, and appear in papers
such as [17], which we describe in the appropriate context.
A language, L, is nothing but a set of words, L ⊆ �∗,
where � is some finite alphabet. A type of language we
shall encounter frequently is a regular language, which is
exactly a set of words that may be recognized by a finite
automaton. Intuitively, such an automaton is defined by a finite
set of states, and a finite set of transitions between states, each
transition labeled by a symbol from �. Additionally, a single
state is assigned the role of a starting state, and a subset of
the states is assigned the role of accepting states. A word is
recognized, if it is the result of concatenating the symbols of
transitions describing a path from the starting state to some
accepting state. Regular languages may also be described by
regular expressions. The interested reader is referred to [10].

III. k-TANDEM-DUPLICATION CODES

In this section we consider tandem string-duplication sys-
tems where the substring being duplicated is of a constant
length k. Such systems were studied in the context of for-
mal languages [17] (also called uniform-bounded-duplication
systems), and also in the context of coding and information
theory [6].

In [17] it was shown that for any finite alphabet � and any
word x ∈ �∗, under k-tandem duplication, x has a unique
root, i.e.,

|Rk(x)| = 1.

Additionally, finding the unique root may be done efficiently,
even by a greedy algorithm which searches for occurrences of
ww as substrings of x , with |w| = k, removing one copy of
w, and repeating the process. This was later extended in [16],
where it was shown that the roots of a regular language also
form a regular language. In what follows we give an alternative
elementary proof to the uniqueness of the root. This proof will
enable us to easily construct codes for k-tandem-duplication
systems, as well as to state bounds on their parameters. The
proof technique may be seen as an extension of the string-
derivative technique used in [4], which was applied only for
k = 1 over a binary alphabet.

The system Sk was also studied in [6] from a coding and
information-theoretic perspective. In particular, it was proved
in [6] that the capacity of Sk is 0. This fact will turn out to
be extremely beneficial when devising error-correcting codes
for k-tandem-duplication systems.

Throughout this section, without loss of generality,
we assume � = Zq . We also use Z

∗
q to denote the set of

all finite strings of Zq (not to be confused with the non-zero
elements of Zq ), and Z

≥k
q to denote the set of all finite strings

over Zq of length k or more.
We shall require the following mapping, φk : Z

≥k
q →

Z
k
q × Z

∗
q . The mapping is defined by,

φk(x) = (Prefk(x), Suff|x |−k(x) − Pref |x |−k(x)),

where subtraction is performed entry-wise over Zq . We easily
observe that φk is a bijection between Z

n
q and Z

k
q × Z

n−k
q

by noting that we can recover x from φk(x) in the following
manner: first set xi = φk(x)i , for all 1 ≤ i ≤ k, and for
i = k + 1, k + 2, . . . , set xi = xi−k + φk(x)i , where φk(x)i

denotes the i th symbol of φk(x). Thus, φ−1
k is well defined.

Another mapping we define is one that injects k consecutive
zeros into a string. More precisely, we define ζi,k : Z

k
q ×Z

∗
q →

Z
k
q × Z

∗
q , where

ζi,k(x, y) =
{

(x, u0kw) if y = uw, |u| = i

(x, y) otherwise.

The following lemma will form the basis for the proofs to
follow.

Lemma 6: The following diagram commutes:

Z
≥k
q

Ti,k−−−−→ Z
≥k
q⏐⏐�φk

⏐⏐�φk

Z
k
q × Z

∗
q

ζi,k−−−−→ Z
k
q × Z

∗
q

i.e., for every string x ∈ Z
≥k
q ,

φk(Ti,k (x)) = ζi,k(φk(x)).
Before presenting the proof, we provide an example for the

diagram of the lemma.
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Example 7: Assume � = Z4. Starting with 02123 and
letting i = 1 and k = 2 leads to

02123
T1,2−−−−→ 0212123⏐⏐�φ2

⏐⏐�φ2

(02, 102)
ζ1,2−−−−→ (02, 10002)

where the inserted elements are underlined. �

Proof: Let x ∈ Z
≥k
q be some string, x = x1 x2 . . . xn .

Additionally, let φk(x) = (y, z) with y = y1 . . . yk , and
z = z1 . . . zn−k . We first consider the degenerate case, where
i ≥ n − k +1. In that case, Ti,k(x) = x , and then by definition
ζi,k(y, z) = (y, z) since z does not have a prefix of length at
least n − k + 1. Thus, for i ≥ n − k + 1 we indeed have

φk(Ti,k(x)) = φk(x) = (y, z) = ζi,k(y, z) = ζi,k (φk(x)).

We are left with the case of 0 ≤ i ≤ n − k. We now write

Ti,k (x) = x1 x2 . . . xi+k xi+1xi+2 . . . xn.

Thus, if we denote φk(Ti,k(x)) = (y, z), then

y = x1 . . . xk = Prefk(x),

z = xk+1 − x1, . . . , xk+i − xi , 0k,

xk+i+1 − xi+1, . . . , xn − xn−k .

This is exactly an insertion of 0k after i symbols in the second
part of φk(x). It therefore follows that

φk(Ti,k (x)) = (y, z) = ζi,k(φk(x)),

as claimed.
Recalling that φk is a bijection between Z

n
q and Z

k
q ×Z

n−k
q ,

together with Lemma 6 gives us the following corollary.
Corollary 8: For any x ∈ Z

≥k
q , and for any sequence of

non-negative integers i1, . . . , it ,

Tit ,k(. . . Ti1,k(x) . . . ) = φ−1
k (ζit ,k(. . . ζi1,k(φk(x)) . . . )).

Example 9: Continuing Example 7 and using the notation
of Corollary 8, let x = 02123, k = t = 2, i1 = 1, and i2 = 0.
Then

T0,2(T1,2(02123)) = T0,2(0212123)

= 020212123

= φ−1
k ((02, 0010002))

= φ−1
k (ζ0,2((02, 10002)))

= φ−1
k (ζ0,2(ζ1,2((02, 102))))

= φ−1
k (ζ0,2(ζ1,2(φk(02123)))).

�

Corollary 8 paves the way to working in the φk-transform
domain. In this domain, a tandem-duplication operation of
length k translates into an insertion of a block of k consec-
utive zeros. Conversely, a tandem-deduplication operation of
length k becomes a removal of a block of k consecutive zeros.

The uniqueness of the root, proved in [17], now comes for
free. In the φk-transform domain, given (x, y) ∈ Z

k
q × Z

∗
q ,

as long as y contains a substring of k consecutive zeros,
we may perform another deduplication. The process stops at

the unique outcome in which the length of every run of zeros
in y is reduced modulo k.

This last observation motivates us to define the following
operation on a string in Z

∗
q . We define μk : Z

∗
q → Z

∗
q which

reduces the lengths of runs of zeros modulo k in the following
way. Consider a string x ∈ Z

∗
q , where

x = 0m0w10m1w2 . . . wt 0mt ,

where mi are non-negative integers, and w1, . . . , wt ∈ Zq \{0},
i.e., w1, . . . , wt are single non-zero symbols. We then define

μk(x) = 0m0 mod kw10m1 mod kw2 . . . wt 0mt mod k .

For example, for z = 0010002,

μ2(z) = 102.

Additionally, we define

σk(x) =
(⌊m0

k

⌋
,
⌊m1

k

⌋
, . . . ,
⌊mt

k

⌋)
∈ (N ∪ {0})∗

and call σ(x) the zero signature of x . For z given above,

σ2(z) = (1, 1, 0).

We note that μk(x) and σ(x) together uniquely determine x .
We also observe some simple properties. First, the Hamming

weight of a vector, denoted wtH , counts the number of
non-zero elements in a vector. By definition we have for every
x ∈ Z

n
q ,

wtH (x) = wtH (μk(x)).

Additionally, the length of the vector σk(x), denoted |σk(x)|,
is given by

|σk(x)| = wtH (x) + 1 = wtH (μk(x)) + 1. (1)

Note that for z = 0010002 as above, we have

|σ2(z)| = 3 = wtH (z) + 1 = wtH (102) + 1.

Thus, our previous discussion implies the following
corollary.

Corollary 10: For any string x ∈ Z
≥k
q ,

Rk(x) =
{
φ−1

k (y, μk(z))
∣∣∣ φk(x) = (y, z)

}
.

We recall the definition of the (0, k − 1)-RLL system over
Zq (for example, see [11], [18]). It is defined as the set of all
finite strings over Zq that do not contain k consecutive zeros.
We denote this set as CRLLq (0,k−1). In our notation,

CRLLq (0,k−1) =
{

x ∈ Z
∗
q

∣∣∣ σk(x) ∈ 0∗} .
By convention, CRLLq (0,k−1) ∩ Z

0
q = {ε}. The following is

another immediate corollary.
Corollary 11: For all n ≥ k,

Irrk(n) =
{
φ−1

k (y, z)
∣∣∣ y ∈ Z

k
q , z ∈ CRLLq (0,k−1) ∩ Z

n−k
q

}
.

Proof: The proof is immediate since x is irreducible iff
no deduplication action may be applied to it. This happens iff
for φk(x) = (y, z), z does not contain k consecutive zeros,
i.e., z ∈ CRLLq (0,k−1) ∩ Z

n−k
q .
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Given two strings, x, x ′ ∈ Z
≥k
q , we say x and x ′ are

k-congruent, denoted x ∼k x ′, if Rk(x) = Rk(x ′). It is easily
seen that ∼k is an equivalence relation.

Corollary 12: Let x , x ′ ∈ Z
∗
q be two strings, and denote

φk(x) = (y, z) and φk(x ′) = (y ′, z′). Then x ∼k x ′ iff y = y ′
and μk(z) = μk(z′).

Proof: This is immediate when using Corollary 10 to
express the roots of x and x ′.

Example 13: For instance, 02123, 0212323, 0212123, and
020212123 are all 2-congruent, since they have the unique
root 02123. In the φ2-transform domain, for each sequence x
in the preceding list, if we let φ2(x) = (y, z), then y = 02
and μ2(z) = 102.

�

The following lemma appeared in [17, Proposition 2].
We restate it and give an alternative proof.

Lemma 14: For all x, x ′ ∈ Z
≥k
q , we have

D∗
k (x) ∩ D∗

k (x ′) 
= ∅
if and only if x ∼k x ′.

Proof: In the first direction, assume x 
∼k x ′. By the
uniqueness of the root, let us denote Rk(x) = {u} and
Rk(x ′) = {u′}, with u 
= u′. If there exists w ∈ D∗

k (x) ∩
D∗

k (x ′), then w is a descendant of both u and u′, therefore
u, u′ ∈ Rk(w), which is a contradiction. Hence, no such w
exists, i.e., D∗

k (x) ∩ D∗
k (x ′) = ∅.

In the other direction, assume x ∼k x ′. We construct a word
w ∈ D∗

k (x) ∩ D∗
k (x ′). Denote φk(x) = (y, z) and φk(x ′) =

(y ′, z′). By Corollary 12 we have

y = y ′,
μk(z) = μk(z

′).

Let us then denote

z = 0m0v10m1v2 . . . vt 0mt ,

z′ = 0m′
0v10m′

1v2 . . . vt 0
m′

t ,

with vi a non-zero symbol, and

mi ≡ m′
i (mod k),

for all i . We now define

z′′ = 0max(m0,m′
0)v10max(m1,m′

1)v2 . . . vt 0max(mt ,m′
t ).

Since z′′ differs from z and z′ by insertion of blocks of k
consecutive zeros, it follows that

w = φ−1
k (y, z′′) ∈ D∗

k (x) ∩ D∗
k (x ′),

which completes the proof.
We now turn to constructing error-correcting codes. The first

construction is for a code capable of correcting any number
of tandem duplications of length k.

Construction A: Fix � = Zq and k ≥ 1. For any n ≥ k we
construct

C =
�n/k�−1⋃

i=0

{
φ−1

k (y, z0ki )
∣∣∣ φ−1

k (y, z) ∈ Irrk(n − ik)
}

.

Theorem 15: The code C from Construction A is an
(n, M; ∗)k code, with

M =
�n/k�−1∑

i=0

qk MRLLq (0,k−1)(n − (i + 1)k).

Here MRLLq (0,k−1)(m) denotes the number of strings of length
m which are (0, k − 1)-RLL over Zq , i.e.,

MRLLq (0,k−1)(m) =
∣∣∣CRLLq (0,k−1) ∩ Z

m
q

∣∣∣ .
Proof: The size of the code is immediate, by Corollary 11.

Additionally, the roots of distinct codewords are distinct as
well, since we constructed the code from irreducible words
with blocks of k consecutive zeros appended to their end.
Thus, by Lemma 14, the descendant cones of distinct code-
words are disjoint.

We can say more about the size of the code we constructed.
Theorem 16: The code C from Construction A is optimal,

i.e., it has the largest cardinality of any (n; ∗)k code.
Proof: By Lemma 14, any two distinct codewords of

an (n; ∗)k code must belong to different equivalence classes
of ∼k . The code C of Construction A contains exactly one
codeword from each equivalence class of ∼k , and thus, it is
optimal.

The code C from Construction A also allows a sim-
ple decoding procedure, whose correctness follows from
Corollary 10. Assume a word x ′ ∈ Z

≥k
q is received, and let

φk(x ′) = (y ′, z′). The decoded word is simply

x̃ = φ−1
k (y ′, μk(z

′)0n−k−|μk(z′)|), (2)

where n is the length of the code C . In other words, the decod-
ing procedure recovers the unique root of the received x ′, and
in the φk-transform domain, pads it with enough zeros.

Example 17: Let n = 4, q = 2, and k = 1. By inspection,
the code C of Construction A can be shown to equal

C = {0000, 0111, 0100, 0101, 1111, 1000, 1011, 1010
}
,

where in each codeword the k-irreducible part is underlined.
As an example of decoding, both 01100 and 01000 decode to
0100. Specifically for the former case, x ′ = 01100, we have
φk(x ′) = (y ′, z′) = (0, 1010). So μk(z′) = 11 and

x̃ = φ−1
k (0, 110) = 0100.

�

Encoding may be done using any of the many various
ways for encoding RLL-constrained systems. The reader is
referred to [11] and [18] for further reading. After encoding
the RLL-constrained string z, a string y ∈ Z

k
q is added, and

φ−1
k employed, to obtain a codeword.
Finally, the asymptotic rate of the code family may also be

obtained, thus, giving the capacity of the channel.
Corollary 18: For all q ≥ 2 and k ≥ 1,

capq (∗)k = cap(RLLq(0, k − 1)),

where cap(RLLq(0, k − 1)) is the capacity of the q-ary
(0, k − 1)-RLL constrained system.
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Proof: We use Cn to denote the code from Construction A,
where the subscript n is used to denote the length of the code.
It is easy to see that for n ≥ k,

qk MRLLq (0,k−1)(n − k) ≤ |Cn | ≤ nqk MRLLq (0,k−1)(n − k).

Then by standard techniques [18] for constrained coding,

lim
n→∞

1

n
log2 |Cn | = cap(RLLq(0, k − 1)).

It is well known (see e.g. [18]) that

cap(RLLq(0, k − 1)) = log2 λ(Aq(k − 1)),

where λ(Aq(k−1)) is the largest eigenvalue of the k×k matrix
Aq(k − 1) defined as

Aq(k − 1) =

⎛
⎜⎜⎜⎜⎜⎝

q − 1 1
q − 1 1

...
. . .

q − 1 1
q − 1

⎞
⎟⎟⎟⎟⎟⎠ . (3)

As a side note, we comment that an asymptotic (in k)
expression for the capacity may be given by

cap(RLLq (0, k)) = log2 q − (q − 1) log2 e

qk+2 (1 + o(1)). (4)

This expression agrees with the expression for the binary case
q = 2 mentioned in [14] without proof or reference. For
completeness, we bring a short proof of this claim in the
appendix.

Having considered (n, M; ∗)k codes, we now turn to study
(n, M; t)k codes for t ∈ N∪{0}. We note that Z

n
q is an optimal

(n, qn; 0)k code. Additionally, any (n, M; ∗)k code is trivially
also an (n, M; t)k code, though not necessarily optimal.

We know by Lemma 14 that the descendant cones of two
words overlap if and only if they are k-congruent. Thus, the
strategy for constructing (n, M; ∗)k codes was to pick single
representatives of the equivalence classes of ∼k as codewords.
However, the overlap that is guaranteed by Lemma 14 may
require a large number of duplication operations. If we are
interested in a small enough value of t , then an (n, M; t)k code
may contain several codewords from the same equivalence
class. This observation will be formalized in the following,
by introducing a metric on k-congruent words, and applying
this metric to pick k-congruent codewords.

Fix a length n ≥ 1, and let x, x ′ ∈ Z
n
q , x ∼k x ′, be two

k-congruent words of length n. We define the distance between
x and x ′ as

dk(x, x ′) = min
{
t ≥ 0

∣∣ Dt
k(x) ∩ Dt

k(x ′) 
= ∅} .
Since x and x ′ are k-congruent, Lemma 14 ensures that dk is
well defined.

Lemma 19: Let x, x ′ ∈ Z
n
q , x ∼k x ′, be two k-congruent

strings. Denote φk(x) = (y, z) and φk(x ′) = (y, z′).
Additionally, let

σk(z) = (s0, s1, . . . , sr ),

σk(z
′) = (s′

0, s′
1, . . . , s′

r ).

Then

dk(x, x ′) = 1

2

r∑
i=0

∣∣si − s′
i

∣∣ = 1

2
d�1(σk(z), σk(z

′)),

where d�1 stands for the �1-distance function.
Proof: Let x and x ′ be two strings as required.

By Corollary 12 we indeed have y = y ′, and μk(z) = μk(z′).
In particular, the length of the vectors of the zero signatures
of z and z′ are the same,

|σk(z)| = ∣∣σk(z
′)
∣∣ = r + 1.

We now observe that the action of a k-tandem duplication
on x corresponds to the addition of a standard unit vector ei

(an all-zero vector except for the i th coordinate which
equals 1) to σk(z).

Let x̃ denote a vector that is a descendant both of x and x ′,
and that requires the least number of k-tandem duplications
to reach from x and x ′. If we denote φk(x̃) = (ỹ, z̃), then we
have

ỹ = y = y ′,
μk(z̃) = μk(z) = μk(z

′),
σk(z̃) = (max(s0, s′

0), . . . , max(sr , s′
r )).

Thus,

dk(x, x ′) =
r∑

i=0

(max(si , s′
i ) − si )

=
r∑

i=0

(max(si , s′
i ) − s′

i )

= 1

2

r∑
i=0

∣∣si − s′
i

∣∣ = 1

2
d�1(σk(z), σk(z

′)).

From Lemma 19 we also deduce that dk is a metric over
any set of k-congruent words of length n.

The following theorem shows that a code is (n; t)k if
and only if the zero signatures of the z-part of k-congruent
codewords in the φk-transform domain, form a constant-weight
code in the �1-metric with distance at least 2(t +1). We recall
that the �1-metric weight of a vector s = s1 s2 . . . sn ∈ Z

n is
defined as the �1-distance to the zero vector, i.e.,

wt�1(s) =
n∑

i=1

|si | .

Theorem 20: Let C ⊆ Z
n
q , n ≥ k, be a subset of size M.

Then C is an (n, M; t)k code if and only if for each y ∈ Z
k
q ,

z ∈ Z
n−k
q , the following sets

C(y, z) =
{
σk(z

′)
∣∣∣ z′ ∈ Z

n−k
q , μk(z) = μk(z

′),

φ−1
k (y, z′) ∈ C

}
are constant-weight (n(y, z), M(y, z), 2(t + 1)) codes in the
�1-metric, with constant weight

wt�1(σ (z)) = n − k − |μk(z)|
k

,
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and length

n(y, z) = wtH (z) + 1 = wtH (μk(z)) + 1,

where wtH denotes the Hamming weight.
Proof: In the first direction, let C be an (n, M; t)k code.

Fix y and z, and consider the set C(y, z). Assume to the
contrary that there exist distinct σk(z′), σk(z′′) ∈ C(y, z),
z′, z′′ ∈ Z

n−k
q , such that d�1(σk(z′), σk(z′′)) ≤ 2t (note that

d�1 between two vectors of the same weight is even).
The length of the code, n(y, z), is obvious given (1).

We note that σk(z′) 
= σk(z′′) implies z′ 
= z′′. By definition,
we have

μk(z) = μk(z
′) = μk(z

′′).

Thus,

wt�1(σ (z)) = wt�1(σ (z′)) = wt�1(σ (z′′))

= n − k − |μk(z)|
k

,

where |μk(z)| denotes the length of the vector μk(z).
Additionally, the two codewords

c′ = φ−1
k (y, z′) ∈ C and c′′ = φ−1

k (y, z′′) ∈ C

are k-congruent and distinct. By Lemma 19,

dk(c
′, c′′) = 1

2
d�1(σk(z

′), σk(z
′′)) ≤ t . (5)

However, that contradicts the code parameters since we have
(5) imply Dt

k(c
′)∩Dt

k(c
′′) 
= ∅, whereas in an (n, M; t)k code,

the t-descendant cones of distinct codewords have an empty
intersection.

In the other direction, assume that for every choice
of y and z, the corresponding C(y, z) is a constant-weight
code with minimum �1-distance of 2(t + 1). Assume to the
contrary C is not an (n, M; t)k code. Therefore, there exist
two distinct codewords, c′, c′′ ∈ C such that dk(c′, c′′) ≤ t .

By Lemma 14 we conclude that c′ and c′′ are k-congruent.
Thus, there exist y ∈ Z

k
q and z ∈ Z

n−k
q (z is not necessarily

unique) such that,

φk(c
′) = (y, z′)

φk(c
′′) = (y, z′′)

μk(z) = μk(z
′) = μk(z

′′).

We can now use Lemma 19 and obtain

d�1(σk(z
′), σk(z

′′)) = 2 dk(c
′, c′′) ≤ 2t,

which contradicts the minimal distance of C(y, z).
With the insight given by Theorem 20 we now give a

construction for (n, M; t)k codes.
Construction B: Fix � = Zq , k ≥ 1, n ≥ k, and t ≥ 0.

Furthermore, for all

1 ≤ m ≤ n − k + 1,

0 ≤ w ≤
⌊

n − k

k

⌋
,

fix �1-metric codes over Zq , denoted C1(m, w), which are
of length m, constant �1-weight w, and minimum �1-distance
2(t + 1). We construct

C =
{
φ−1

k (y, z)

∣∣∣∣ y ∈ Z
k
q , z ∈ Z

n−k
q ,

σk(z) ∈ C1

(
wtH (μk(z)) + 1,

n − k − |μk(z)|
k

)}
.

Corollary 21: The code C from Construction B is an
(n, M; t)k code.

Proof: Let c, c′ ∈ C be two k-congruent codewords,
i.e., φk(c) = (y, z), φk(c′) = (y, z′), and μk(z) = μk(z′).
It follows, by construction, that σk(z) and σk(z′) belong to
the same �1-metric code with minimum �1-distance at least
2(t + 1). By Theorem 20, C is an (n, M; t)k code.

Due to Theorem 20, a choice of optimal �1-metric codes in
Construction B will result in optimal (n, M; t)k codes. We are
unfortunately unaware of explicit construction for such codes.
However, we may deduce such a construction from codes for
the similar Lee metric (e.g., [21]), while applying a standard
averaging argument for inferring the existence of a constant-
weight code. We leave the construction of such codes for a
future work.

IV. ≤ k-TANDEM-DUPLICATION CODES

In this section, we consider error-correcting codes that
correct duplications of length at most k, which correspond
to S≤k . In particular, we present constructions for codes that
can correct any number of duplications of length ≤ 3 as well as
a lower bound on the capacity of the corresponding channel.
In the case of duplications of length ≤ 2 we give optimal
codes, and obtain the exact capacity of the channel.

It is worth noting that the systems S≤k were studied in the
context of formal languages [17] and also in the context of
coding and information theory [12]. In [17], it was shown
that S≤k , with k ≥ 4, is not a regular language for alphabet
size |�| ≥ 3. However, it was proved in [12] that S≤3 is
indeed a regular language irrespective of the seed string and
the alphabet size.

In this paper, we will show that strings that can be generated
by bounded tandem string-duplication systems with maximum
duplication length 3 have a unique duplication root, a fact
that will be useful for our code construction. Theorem 24
formalizes this statement. To simplify our description, we use
the term square to denote a sequence of the form α2 = αα,
where α ∈ �∗. We begin with the following definition.

Definition 22: Let two squares y1 = αα ∈ �+ and y2 =
ββ ∈ �+ appear as substrings of some string u ∈ �∗, i.e.,

u = x1 y1 z1 = x2 y2 z2,

with |x1| = i , |x2| = j . We say y1 and y2 are overlapping
squares in u if the following conditions both hold:

1) i ≤ j ≤ i + 2 |α| − 1 or j ≤ i ≤ j + 2 |β| − 1.
2) If i = j , then α 
= β.
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TABLE I

A LIST OF ALL OVERLAPPING SQUARES OF LENGTH AT MOST 3 (UP TO A PERMUTATION OF THE ALPHABET SYMBOLS)

Example 23: Consider the sequence u,

u = 0 1

αα︷ ︸︸ ︷
2 3 2 3︸ ︷︷ ︸
β1β1

4 5 2 4 5 2︸ ︷︷ ︸
β2β2

3 2 3 4 5 2 4 5 6 2 4 5 6︸ ︷︷ ︸
β3β3

7,

where αα and βiβi for each i ∈ {1, 2, 3} are overlapping
squares. �

The following theorem shows that every word has a unique
root under tandem deduplication of length up to 3.

Theorem 24: For any z ∈ �∗ we have
∣∣R≤3(z)

∣∣ = 1.
Proof: Fix some z ∈ �∗, and assume z has exactly m

distinct roots, R≤3(z) = {y1, y2, . . . , ym}. Let us assume to
the contrary that m ≥ 2.

Let us follow a deduplication sequence starting at x0 = z.
At each step, we deduplicate xi ⇐�≤3

xi+1, and we must have∣∣R≤3(xi )
∣∣ ≥ ∣∣R≤3(xi+1)

∣∣. At each step, out of the possible
immediate ancestors of xi , we choose xi+1 to be one with∣∣R≤3(xi+1)

∣∣ ≥ 2 if possible. Since the end-point of a dedu-
plication process is an irreducible sequence, we must reach
a sequence x in the deduplication process with the following
properties:

1) z
∗⇐�≤3

x

2)
∣∣R≤3(x)

∣∣ ≥ 2
3) For each x ′ ∈ �∗ such that x ⇐�≤3

x ′,
∣∣R≤3(x ′)

∣∣ = 1.

4) There exist v,w ∈ �∗ such that x ⇐�≤3
v and x ⇐�≤3

w

with
∣∣R≤3(v)

∣∣ = ∣∣R≤3(w)
∣∣ = 1.

5) R≤3(v) = {yi } 
= {y j
} = R≤3(w).

Intuitively, in the deduplication process starting from z,
we reach a sequence x with more than one root, but any fol-
lowing single deduplication moves us into a single descendant
cone of one of the roots of z. We note that all ancestors of v
must have a single root yi , and all ancestors of w must have
a single root y j .

Thus, x must contain a square uvuv whose deduplication
results in v, and a square uwuw whose deduplication results
in w. We contend that the squares uvuv and uwuw overlap.
Otherwise, if uvuv and uwuw do not overlap in x , we may

deduplicate them in any order to obtain the same result. Hence,
there exists t ∈ �∗ such that v ⇐�≤3

t and w ⇐�≤3
t . But then,

since t is an ancestor both of v and w,

{yi } = R≤3(v) = R≤3(t) = R≤3(w) = {y j
}
,

a contradiction.
We now know that uvuv and uwuw must overlap. We also

note |uv | , |uw| ≤ 3. Let a, b, c ∈ � be three distinct symbols.
If the alphabet is smaller, then some of the cases below may
be ignored, and the proof remains the same. We use brute
force to enumerate all the overlapping squares, and the results
are given in Table I. In the table, each string describes the
shortest subsequence that contains the overlapping squares.
The enumeration is complete, up to a permutation of the
alphabet symbols. For example, if uv = abc and uw = cbc,
the corresponding string appears in the table as abcabcbccbc
since we have,

uv︷ ︸︸ ︷
a b c

uv︷ ︸︸ ︷
a b ︸ ︷︷ ︸

uw

c b c ︸ ︷︷ ︸
uw

c b c

It is tedious, yet easy, to check that each of the cases
in Table I has a unique root if deduplication of maximum
length 3 is allowed.2 In the above example, indeed, the only
possible root is abc,

abcabcbccbc ⇐�≤3
abcbccbc

∗⇐�≤3
abc,

abcabcbccbc ⇐�≤3
abcabcbc

∗⇐�≤3
abc.

Let x = αβγ ∈ �∗, where β covers exactly the overlapping
squares, and is one of the above listed cases. Then, by dedu-
plication of uvuv from β in x , we get v, and by deduplication
of uwuw from β in x , we get w. However, since β has a
unique root, we may deduplicate v and w to the same word
t = αβ ′γ ∈ �∗, where R(β) = {β ′}, i.e., β ′ is the unique

2We used a computer to verify the list of overlapping squares and the fact
that they each have a unique root.
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root of β. Thus, t is an ancestor of both v and w. Again,

{yi } = R≤3(v) = R≤3(t) = R≤3(w) = {y j
}
,

which is a contradiction.
Corollary 25: For any z ∈ �∗ we have

∣∣R≤k(z)
∣∣ = 1 for

k = 1, 2.
In a similar fashion to the previous section, we define the

following relation. We say x, x ′ ∈ �∗ are ≤ 3-congruent,
denoted x ∼≤3 x ′, if R≤3(x) = R≤3(x ′). Clearly ∼≤3 is an
equivalence relation. Having shown any sequence has a unique
root when duplicating up to length 3, we obtain the following
corollary.

Corollary 26: For any two words x, x ′ ∈ �∗, if

D∗≤3(x) ∩ D∗≤3(x ′) 
= ∅
then x ∼≤3 x ′.

We note that unlike Lemma 14, we do not have x ∼≤3 x ′
necessarily imply that their descendant cones intersect. Here
is a simple example illustrating this case. Fix q = 3, and let
x = 012012 and x ′ = 001122. We note that x ∼≤3 x ′, since

R≤3(x) = R≤3(x ′) = {012} .

However, D∗≤3(x) ∩ D∗≤3(x ′) = ∅ since all the descendants of
x have a 0 to the right of a 2, whereas none of the descendants
of x ′ do.

We are missing a simple operator which is required to define
an error-correcting code. For any sequence x ∈ �+, we define
its k-suffix-extension to be

ξk(x) = x (Suff1(x))k,

i.e., the sequence x with its last symbol repeated an extra
k times.

Construction C: Let � be some finite alphabet. We construct
the code

C =
n⋃

i=1

{
ξn−i (x) | x ∈ Irr≤3(i)

}
.

Theorem 27: The code C from Construction C is an
(n, M; ∗)≤3 code, where

M =
n∑

i=1

∣∣Irr≤3(i)
∣∣ .

Proof: The parameters of the code are obvious. Since the
last letter duplication induced by the suffix extension may be
deduplicated, we clearly have exactly one codeword from each
equivalence class of ∼≤3. By Corollary 26, the descendant
cones of the codewords do not intersect and the code can
indeed correct all errors.

Example 28: Let n = 4 and � = {0, 1, 2}. The code C≤3
obtained by Construction C is given by

C≤3 =
⋃

{a,b,c}=�

{
aaaa, abbb, abaa, abcc, abac, abca, abcb

}
,

where in each codeword, the irreducible part is underlined,
and the union is taken over all possible assignments of a, b,
and c, to distinct symbols of �. Thus

∣∣C≤3
∣∣ = 7 · 3! = 42.

�

For the remainder of the section we denote by Irrq;≤3 the
set of irreducible words with respect to ⇐�≤3

over Zq , in order

to make explicit the dependence on the size of the alphabet.
We also assume q ≥ 3, since q = 2 is a trivial case with

Irr2;≤3 = {0, 1, 01, 10, 010, 101} . (6)

We observe that Irrq;≤3 is a regular language. Indeed, it is
defined by a finite set of subsequences we would like to avoid.
This set is exactly

Fq =
{

uu ∈ Z
∗
q

∣∣∣ 1 ≤ |u| ≤ 3
}

.

We can easily construct a finite directed graph with labeled
edges such that paths in the graph generate exactly Irrq;≤3.
This graph is obtained by taking the De Bruijn graph Gq =
(Vq , Eq) of order 5 over Zq , i.e., Vq = Z

5
q , and edges of

the form (a1, a2, a3, a4, a5) → (a2, a3, a4, a5, a6), for all
ai ∈ Zq (for more on De Bruijn graphs the reader is referred
to [23, Ch. 8]). Thus, each edge is labeled with a word
w = (a1, a2, a3, a4, a5, a6) ∈ Z

6
q . We then remove all edges

labeled by words αβγ ∈ Z
6
q such that β ∈ Fq . We call

the resulting graph G′
q . It is easy to verify that each path

in G′
q generates a sequence of sliding windows of length 6.

Reducing each window to its first letter we get exactly Irrq;≤3.
An example showing G′

3 is given in Figure 1. Finally, using
known techniques [18], we can calculate cap(Irrq;≤3).

Corollary 29: For all q ≥ 3,

capq(∗)≤3 ≥ cap(Irrq;≤3).
Proof: Let Mn denote the size of the length n code over

Zq from Construction C. By definition, Aq(n; ∗)≤3 ≥ Mn .
We note that trivially

Mn =
n∑

i=1

∣∣Irrq;≤3(i)
∣∣ ≥ ∣∣Irrq;≤3(n)

∣∣ .
Plugging this into the definition of the capacity gives us the
desired claim.

Example 30: Using the constrained system presented
in Figure 1 that generates Irr3;≤3, we can calculate

cap3(∗)≤3 ≥ 0.347934.
�

Stronger statements may be given when the duplication
length is upper bounded by 2 instead of 3.

Lemma 31: For all x, x ′ ∈ �∗, we have

D∗≤2(x) ∩ D∗≤2(x ′) 
= ∅
if and only if x ∼≤2 x ′.

Proof: In the first direction, assume x �≤2 x ′. By
the uniqueness of the root from Corollary 25, let us denote
R≤2(x) = {u} and R≤2(x ′) = {u′}, with u 
= u′. If there exists
w ∈ D∗≤2(x) ∩ D∗≤2(x ′), then w is a descendant of both u and
u′, therefore u and u′ ∈ R≤2(w), which is a contradiction.
Hence, no such w exists, i.e., D∗≤2(x) ∩ D∗≤2(x ′) = ∅.

In the other direction, assume x ∼≤2 x ′. We con-
struct a word w ∈ D∗≤2(x) ∩ D∗≤2(x ′). Let R≤2(x) =
R≤2(x ′) = {v}, and denote v = a1a2 . . . am , where ai ∈ �.
Consider the tandem-duplication string system S≤2 =
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Fig. 1. The graph G′
3 producing the set of ternary irreducible words Irr3;≤3. Vertices without edges were removed as well.

(�, v,T≤2). Using [12], the regular expression for the lan-
guage generated by S≤2 is given by

a+
1 a+

2 (a+
1 a+

2 )
∗
a+

3 (a+
2 a+

3 )
∗
. . . a+

m (a+
m−1a+

m )
∗
.

Since x, x ′ ∈ S, we have

x =
α1∏

i=1

(a p1i
1 aq1i

2 ) aq21
3

α2∏
i=2

(a p2i
2 aq2i

3 )

. . . a
q(m−1)1
m

αm−1∏
i=2

(a
p(m−1)i
m−1 a

q(m−1)i
m ),

and

x ′ =
β1∏

i=1

(ae1i
1 a f1i

2 ) a f21
3

β2∏
i=2

(ae2i
2 a f2i

3 )

. . . a
f(m−1)1

m

βm−1∏
i=2

(a
e(m−1)i
m−1 a

f(m−1)i
m ),

where
∏

represents concatenation and p j i , q j i , e j i , f j i , α j ,
β j ≥ 1. Now, it is easy to observe that we can obtain

w =
γ1∏

i=1

(ag1
1 ah1

2 ) ah2
3

γ2∏
i=2

(ag2
2 ah2

3 ) . . . ahm−1
m

γm−1∏
i=2

(agm−1
m−1 ahm−1

m )

by doing tandem duplication of length up to 2 on x and x ′,
and choosing γ j = max

{
α j , β j

}
, g j = maxi

{
p j i , e j i

}
, and

h j = maxi
{
q j i , f j i

}
. Note, p j i and q j i are assumed to be 0

for i > α j and e j i and f j i are assumed to be 0 for i > β j .
Thus, w ∈ D≤2(x) ∩ D≤2(x ′).

Construction 1: Let � be some finite alphabet. The con-
structed code is

C =
n⋃

i=1

{
ξn−i (x) | x ∈ Irr≤2(i)

}
.

Theorem 32: The code C from Construction 1 is an optimal
(n, M; ∗)≤2 code, where

M =
n∑

i=1

∣∣Irr≤2(i)
∣∣ .
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Proof: The correctness of the parameters follows the same
reasoning as the proof of Theorem 27. By Lemma 31, any two
distinct codewords of an (n; ∗)≤2 code must belong to different
equivalence classes of ∼≤2. The code C of Construction 1
contains exactly one codeword from each equivalence class
of ∼≤2, and thus, it is optimal.

Corollary 33: For all q ≥ 3,

capq(∗)≤2 = cap(Irrq;≤2).
Proof: Let Mn denote the size of the length n code over

Zq from Construction 1. By definition, Aq(n; ∗)≤2 ≥ Mn .
We note that trivially

Mn =
n∑

i=1

∣∣Irrq;≤2(i)
∣∣ ≥ ∣∣Irrq;≤2(n)

∣∣ .
Additionally,

∣∣Irrq;≤2
∣∣ (n) is monotone increasing in n since

any irreducible length-n word x may be extended to an
irreducible word of length n + 1 by adding a letter that is
not one of the last two letters appearing in x . Thus,

Mn =
n∑

i=1

∣∣Irrq;≤2(i)
∣∣ ≤ n
∣∣Irrq;≤2(n)

∣∣ .
Plugging this into the definition of the capacity gives us the
desired claim.

V. DUPLICATION ROOTS

In Section III, we stated that if the duplication length
is uniform (i.e., a constant k ), then every sequence has a
unique root. Further in Section IV, we proved in Theorem 24
that if the duplication length is bounded by 3 (i.e. ≤ 3),
then again every sequence will have a unique root. The full
characterization of all cases that have a unique root is stated
in Theorem 40. Before moving to Theorem 40, we present an
example and some lemmas required to prove the theorem.

Example 34: Let U = {2, 3, 4} be a set of duplication
lengths and � = {1, 2, 3}. Consider

z =
αα︷ ︸︸ ︷

1 2 3 2 1 2 3 2 3︸ ︷︷ ︸
ββ

.

The sequence z has two tandem repeats αα and ββ with
|α| = 4 and |β| = 2. If we deduplicate αα first from z, we get

123212323 ⇐�
4

12323 ⇐�
2

123.

However, if we deduplicate ββ first from z we get

123212323 ⇐�
2

1232123.

Both 123 and 1232123 are irreducible and thus roots
of z. �

Theorem 40 generalizes the statement presented in the
example above to any set of duplication lengths. We naturally
extend all previous notation to allow duplication and dedupli-
cation of several lengths by replacing the usual k subscript
with a set U , where U ⊆ N. For example, RU (z) denotes the
set of roots obtained via a sequence of deduplications with
lengths from U , starting with the string z. The property we
would like to study is formally defined next.

Definition 35: Let � 
= ∅ be an alphabet, and U ⊆ N,
U 
= ∅, a set of tandem-duplication lengths. We say (�, U)
is a unique-root pair, iff for all z ∈ �∗ we have |RU (z)| = 1.
Otherwise, we call (�, U) a non-unique-root pair.

We observe that the actual identity of the letters in the
alphabet is immaterial, and only the size of � matters.
Additionally, simple monotonicity is evident: If (�, U) is a
unique-root pair, then so is (�′, U), for all �′ ⊆ �. Similarly,
if (�, U) is a non-unique-root pair, then so is (�′, U), for all
� ⊆ �′.

The following sequence of lemmas will provide the basis
for a full classification of unique-root pairs.

Lemma 36: Let � = {a} be an alphabet with only a single
letter. Let U ⊆ N, and denote k = min(U). Then (�, U) is a
unique-root pair if and only if k|m for all m ∈ U.

Proof: If k|m for all m ∈ U , then any sequence an , n ∈ N

has a unique root

an ∗⇐�
U

ak+(n mod k),

where in the expression above n mod k denotes the unique
integer from {1, 2, . . . , k} with the same residue mod-
ulo k as n.

In the other direction, if there exists m ∈ U such that k � m,
let us consider the sequence ak+2m . By first deduplicating a
length m sequence, and then via as many deduplications of
length k as needed, we obtain

ak+2m ⇐�
U

ak+m ∗⇐�
U

ak+(m mod k) = x .

However, by only deduplicating length k sequences, we also
get

ak+2m ∗⇐�
U

ak+(2m mod k) = y.

Both x and y are irreducible since 1 ≤ |x | , |y| ≤ k. However,
since m 
≡ 0 (mod k), we have

m 
≡ 2m (mod k),

and therefore x 
= y, and ak+2m has two distinct roots.
Lemma 37: Let � be an alphabet, |�| ≥ 2, km > 1, and

U = {k, k + m} ∪ V , where V ⊆ N \ {1, 2, . . . , k + m}. Then
(�, U) is a non-unique-root pair.

Proof: By Lemma 36 and monotonicity, if k � m, then
(�, U) is already a non-unique-root pair, and we are done.
Thus, for the rest of the proof we assume m = �k, for some
� ∈ N.

Let a, b ∈ � be two distinct letters, and let v1 v2 . . . vk+m ∈
�k+m be a sequence defined as follows:

vi =

⎧⎪⎨
⎪⎩

a i < k + m and �i/k� is odd,

b i < k + m and �i/k� is even,

vm i = k + m.

Consider now the sequence

z = v1 v2 . . . vk+mv1 v2 . . . vk+mvm+1 . . . vk+m−1.

We can write z as

z = (v1 v2 . . . vk+m−1vm)2 vm+1 . . . vk+m−1

= v1 v2 . . . vk+m−1vmv1 v2 . . . vm−1(vmvm+1 . . . vk+m−1)
2.
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As is evident, there are two squares in z, one of which is of
length 2k + 2m and the other is of length 2k. Deduplicating
the square of length 2k + 2m in z first gives

z ⇐�
U

v1 v2 . . . vk+m−1vmvm+1 . . . vk+m−1

⇐�
U

v1 v2 . . . vk+m−1 = y.

Deduplicating the square of length 2k first gives

z ⇐�
U

v1 v2 . . . vk+m−1vmv1 v2 . . . vk+m−1 = x .

We note that |x | = 2k + 2m − 1 and |y| = k + m − 1.
Thus, if further deduplications are possible, they must be
deduplications of length k, since both x and y are too short
to allow deduplications of other allowed lengths from U .
We observe that y is certainly irreducible, since it is made up
of alternating blocks of a’s and b’s of length k. However, it is
conceivable that x may be further deduplicated to obtain y.

We recall m = �k. Depending on the parity of �, we have
two cases. If � is even, we can write explicitly

y = (akbk)�/2ak−1,

x = (akbk)�/2ak−1b (akbk)�/2ak−1.

The sequence x may be further deduplicated, by noting the
square bak−1bak−1, to obtain

x ⇐�
U

(akbk)�ak−1 = x ′.

We easily observe that x ′ is irreducible, and x ′ 
= y since their
lengths differ, |y| = (� + 1)k − 1, |x | = (2� + 1)k − 1, and
� ≥ 1.

If � is odd, we explicitly write

y = (akbk)(�−1)/2akbk−1,

x = (akbk)(�−1)/2akbk−1a (akbk)(�−1)/2akbk−1.

We recall our requirement that km > 1, which translates to
k ≥ 1, � ≥ 1 and odd, but not k = � = 1. If k 
= 1 and � 
= 1,
we easily see that x is irreducible, x 
= y. If � = 1 and k 
= 1,
we have x = akbk−1ak+1bk−1 which is again irreducible, and
x 
= y. The final case is k = 1 and � 
= 1, in which

x = (ab)(�−1)/2a2(ab)(�−1)/2a
∗⇐�
U

(ab)�−1a = x ′

by twice deduplicating the square a2. However, y =
(ab)(�−1)/2a, and y 
= x since |y| = 1+(�−1)/2 and |x | = �,
while � ≥ 3.

Lemma 38: For any alphabet �, |�| ≥ 3, and for any V ⊆
N \ {1, 2, 3}, V 
= ∅, if U = {1, 2} ∪ V , then (�, U) is a non-
unique-root pair.

Proof: Let a, b, c ∈ � be distinct symbols, and let m =
min(V ). Consider the sequence

z = abm−3caabm−3ca.

We now have the following two distinct roots,

z ⇐�
U

abm−3ca
∗⇐�
U

abca,

z ⇐�
U

abm−3cabm−3ca
∗⇐�
U

abcabca.

Lemma 39: For any alphabet �, |�| ≥ 3, and for any
V ⊆ N \ {1, 2, 3}, V 
= ∅, if U = {1, 2, 3} ∪ V , then (�, U)
is a non-unique-root pair.

Proof: Let a, b, c ∈ � be 3 distinct symbols. Consider
the sequence

z = abm−3cbabm−3cbc,

where m = min(V ). We now have the following two distinct
roots,

z ⇐�
U

abm−3cbc
∗⇐�
U

abcbc ⇐�
U

abc,

z ⇐�
U

abm−3cbabm−3c
∗⇐�
U

abcbabc.

We are now in a position to provide a full classification of
unique-root pairs.

Theorem 40: Let � 
= ∅ be an alphabet, and U ⊆ N,
U 
= ∅, a set of tandem-duplication lengths. Denote
k = min(U). Then (�, U) is a unique-root pair if and only if
it matches one of the following cases:

|�| = 1 U ⊆ kN

|�| = 2
U = {k}
U ⊇ {1, 2}

|�| ≥ 3
U = {k}
U = {1, 2}
U = {1, 2, 3}

Proof: The case of |�| = 1 is given by Lemma 36. The
case of |U | = 1 was proved in [17], and with an alternative
proof, in Section III. The case of |�| = 2 and {1, 2} 
⊆ U ,
was proved in Lemma 37. It is also folklore that having
|�| = 2 and {1, 2} ⊆ U gives a unique-root pair, since
we can always deduplicate runs of symbols to single letters,
and then deduplicate pairs, to obtain one of only six possible
roots: a, b, ab, ba, aba, bab. The choice of root depends
only on the first letter of the word, its last letter, and when
they’re the same, on the existence of a different letter inside.
No deduplication actions change those, regardless of the length
of the deduplication.

When |�| ≥ 3, the unique-root property for U = {1, 2} and
U = {1, 2, 3} was established in Corollary 25 and Theorem 24,
respectively. The non-unique-root property for the other cases
was proved in Lemma 37, Lemma 38, and Lemma 39.

VI. CONCLUSION

We provided error-correcting codes, and in some cases,
exact capacity, for the tandem-duplication channel. These
codes mostly rely on unique-root pairs of alphabets and dupli-
cation lengths, which we also investigated. Several interesting
questions remain open. In particular, we do not know yet how
to construct general (n, M; ∗)U over �, especially when we
do not necessarily have unique roots. We also mention the
interesting combinatorial problem of counting the number of
distinct roots of a string, and finding strings of a given length
with as many roots as possible.
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APPENDIX

We provide a short proof of (4). We need to estimate the
largest eigenvalue of Aq(k) from (3), i.e., to estimate the
largest root λ of its characteristic polynomial

χAq (k)(x) = xk+2 − qxk+1 + q − 1

x − 1
.

Since this largest root is strictly greater than 1, we can
alternatively find the largest root of the polynomial

f (x) = xk+2 − qxk+1 + q − 1.

We shall require the following simple bounds. Taking the
first term in the Taylor expansion of ex , and the error term,
we have for all x > 0,

ex = 1 + xex ′
,

for some x ′ ∈ [0, x]. Since x > 0 and ex is increasing, we have

ex = 1 + xex ′ ≤ 1 + xex,

or alternatively,

1 − ex ≥ −xex . (7)

Similarly, taking the first two terms of the Taylor expansion,
for all x > 0, we get the well-known bound

ex > 1 + x . (8)

We return to the main proof. In the first direction, let us
first examine what happens when we set

x = qe
− q−1

qk+2 .

Then

f (x) = qk+2e
− q−1

qk+2 (k+2) − qk+2e
− q−1

qk+2 (k+1) + q − 1

= qk+2e
− q−1

qk+2 (k+2)
(

1 − e
q−1

qk+2

)
+ q − 1

(a)≥ (q − 1)

(
1 − e

− q−1
qk+2 (k+1)

)
> 0,

where (a) follows by an application of (7).
In the other direction, we examine the value of f (x) when

we set

x = qe
− q−1

qk+2 α
,

where α is a constant depending on q and k. To specify α
we recall W (z), z ≥ − 1

e , denotes the Lambert W -function,
defined by

W (z)eW (z) = z.

We define

α =
W
(
− q−1

qk+2 (k + 2)
)

− q−1
qk+2 (k + 2)

= e
−W
(
− q−1

qk+2 (k+2)
)
.

Except for k = 1 and q = 2, for all other values of the
parameters we have

−q − 1

qk+2 (k + 2) ≥ −1

e
,

rendering the use of the W function valid. We also note that
for these parameters we have α ≥ 1.

Let us calculate f (x),

f (x) = qk+2e
− q−1

qk+2 (k+2)α − qk+2e
− q−1

qk+2 (k+1)α + q − 1

= qk+2e
− q−1

qk+2 (k+2)α
(

1 − e
q−1

qk+2 α
)

+ q − 1

(a)
< (q − 1)

(
1 − αe

− q−1
qk+2 (k+2)α

)
(b)= (q − 1) (1 − 1) = 0,

where (a) follows by an application of (8), and (b) follows by
substituting the value of α.

In summary, f (x) is easily seen to be decreasing in the
range [1, (k + 1)q/(k + 2)], and increasing in the range
[(k + 1)q/(k + 2),∞), and therefore, its unique largest root λ
is in the range

qe
− q−1

qk+2 α ≤ λ ≤ qe
− q−1

qk+2 .

It is easy to verify that α = 1 + o(1), where o(1) denotes a
function decaying to 0 as k → ∞. Hence,

λ = qe
− q−1

qk+2 (1+o(1))
,

and therefore

cap(RLLq(0, k)) = log2 λ

= log2 q − (q − 1) log2 e

qk+2 (1 + o(1)).

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and
the anonymous reviewers for improving the presentation of
this paper.

REFERENCES

[1] M. Arita and Y. Ohashi, “Secret signatures inside genomic DNA,”
Biotechnol. Progr., vol. 20, no. 5, pp. 1605–1607, Jan. 2004.

[2] F. Balado, “Capacity of DNA data embedding under substitution muta-
tions,” IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 928–941, Feb. 2013.

[3] C. T. Clelland, V. Risca, and C. Bancroft, “Hiding messages in DNA
microdots,” Nature, vol. 399, no. 6736, pp. 533–534, Jun. 1999.

[4] L. Dolecek and V. Anantharam, “Repetition error correcting sets:
Explicit constructions and prefixing methods,” SIAM J. Discrete Math.,
vol. 23, no. 4, pp. 2120–2146, 2010.

[5] F. Farnoud, M. Schwartz, and J. Bruck, “A stochastic model for genomic
interspersed duplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 1731–1735.

[6] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-
duplication systems,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 811–824, Feb. 2016.

[7] J. W. Fondon and H. R. Garner, “Molecular origins of rapid and
continuous morphological evolution,” Nat. Acad. Sci., vol. 101, no. 52,
pp. 18058–18063, Aug. 2004.

[8] D. Haughton and F. Balado, “BioCode: Two biologically compatible
algorithms for embedding data in non-coding and coding regions of
DNA,” BMC Bioinform., vol. 14, no. 1, p. 121, Apr. 2013.

[9] D. Heider and A. Barnekow, “DNA-based watermarks using the DNA-
Crypt algorithm,” BMC Bioinform., vol. 8, no. 1, pp. 1–10, May 2007.

[10] J. E. Hopcroft, R. Motwani, and J. D. Ullman, Introduction to Automata
Theory, Languages, and Computation. 3rd ed. Englewood Cliffs, NJ,
USA: Prentice Hall, 2004.

[11] K. A. S. Immink, Coding Techniques for Digital Recorders.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.



5010 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 8, AUGUST 2017

[12] S. Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness
of genomic tandem duplication,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Hong Kong, Jun. 2015, pp. 1946–1950.

[13] D. C. Jupiter, T. A. Ficht, J. Samuel, Q.-M. Qin, and P. De Figueiredo,
“DNA watermarking of infectious agents: Progress and prospects,” PLoS
Pathog, vol. 6, no. 6, p. e1000950, Jun. 2010.

[14] A. Kato and K. Zeger, “On the capacity of two-dimensional run-
length constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5,
pp. 1527–1540, Jul. 1999.

[15] E. S. Lander et al., “Initial sequencing and analysis of the human
genome,” Nature, vol. 409, no. 6822, pp. 860–921, 2001.

[16] P. Leupold, “Duplication roots,” in Proc. Int. Conf. Develop. Lang.
Theory, vol. 4588, pp. 290–299, Jul. 2007.

[17] P. Leupold, C. Martin-Vide, and V. Mitrana, “Uniformly bounded
duplication languages,” Discrete Appl. Math., vol. 146, no. 3,
pp. 301–310, Mar. 2005.

[18] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1985.

[19] M. Liss et al., “Embedding permanent watermarks in synthetic genes,”
PLoS ONE, vol. 7, no. 8, p. e42465, Aug. 2012.

[20] N. I. Mundy and A. J. Helbig, “Origin and evolution of tandem repeats
in the mitochondrial DNA control region of shrikes (Lanius spp.),”
J. Molecular Evol., vol. 59, no. 2, pp. 250–257, Aug. 2004.

[21] R. M. Roth and P. H. Siegel, “Lee-metric BCH codes and their
application to constrained and partial-response channels,” IEEE Trans.
Inf. Theory, vol. 40, no. 4, pp. 1083–1096, Jul. 1994.

[22] K. Usdin, “The biological effects of simple tandem repeats: Lessons
from the repeat expansion diseases,” Genome Res., vol. 18, no. 7,
pp. 1011–1019, 2008.

[23] J. H. Van Lint and R. M. Wilson, A Course in Combinatorics, 2nd ed.
Cambridge, U.K.: Cambridge Univ. Press, 2001.

[24] P. C. Wong, K.-K. Wong, and H. Foote, “Organic data memory using the
DNA approach,” Commun. ACM, vol. 46, no. 1, pp. 95–98, Jan. 2003.

[25] N. Yachie, Y. Ohashi, and M. Tomita, “Stabilizing synthetic data in the
DNA of living organisms,” Syst. Synth. Biol., vol. 2, nos. 1–2, pp. 19–25,
Jun. 2008.

[26] S. M. H. T. Yazdi, H. M. Kiah, E. R. Garcia, J. Ma, H. Zhao, and
O. Milenkovic, “DNA-based storage: Trends and methods,” IEEE Trans.
Molecular, Biol. Multi-Scale Commun., vol. 1, no. 3, pp. 230–248,
Sep. 2015, [Online]. Available: http://arxiv.org/abs/1507.01611.

Siddharth Jain (S’15) is a Ph.D. Candidate in the department of Electrical
Engineering at Caltech.

His research interests include information and coding theory, machine
learning, information theoretic and statistical analysis of genomic data, pattern
recognition, data compression and computational biology.

Siddharth received Bachelors and Masters degree from Indian Institute
of Technology (IIT) Kanpur, India in 2013. He was awarded the profi-
ciency medal at IIT Kanpur for excellent academic performance in Electrical
Engineering.

Farzad Farnoud (Hassanzadeh) (M’13) is an Assistant Professor in the
Department of Electrical and Computer Engineering and the Computer
Science Department at the University of Virginia. Previously, he was a
postdoctoral scholar at the California Institute of Technology.

He received his M.S. degree in Electrical and Computer Engineering from
the University of Toronto in 2008. From the University of Illinois at Urbana-
Champaign, he received his M.S. degree in mathematics and his Ph.D. in
Electrical and Computer Engineering in 2012 and 2013, respectively. His
research interests include the information-theoretic and probabilistic analysis
of genomic evolutionary processes; rank aggregation and gene prioritization;
and coding for flash memory and DNA storage.

Dr. Farnoud is the recipient of the 2013 Robert T. Chien Memorial Award
from the University of Illinois for demonstrating excellence in research in
electrical engineering and the recipient of the 2014 IEEE Data Storage Best
Student Paper Award.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and Ph.D.
degrees from the Technion - Israel Institute of Technology, Haifa, Israel, in
1997, 1998, and 2004 respectively, all from the Computer Science Department.
He was a Fulbright post-doctoral researcher in the Department of Electrical
and Computer Engineering, University of California San Diego, and a post-
doctoral researcher in the Department of Electrical Engineering, California
Institute of Technology. While on sabbatical 2012-2014, he was a visiting
scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage, and the 2010
IEEE Communications Society Best Student Paper Award in Signal Processing
and Coding for Data Storage.

Jehoshua Bruck (S’86–M’89–SM’93–F’01) is the Gordon and Betty Moore
Professor of computation and neural systems and electrical engineering at the
California Institute of Technology (Caltech). His current research interests
include information theory and systems and the theory of computation in
nature.

Dr. Bruck received the B.Sc. and M.Sc. degrees in electrical engineering
from the Technion-Israel Institute of Technology, in 1982 and 1985, respec-
tively, and the Ph.D. degree in electrical engineering from Stanford University,
in 1989. His industrial and entrepreneurial experiences include working with
IBM Research where he participated in the design and implementation of
the first IBM parallel computer; cofounding and serving as Chairman of
Rainfinity (acquired in 2005 by EMC), a spin-off company from Caltech
that created the first virtualization solution for Network Attached Storage; as
well as cofounding and serving as Chairman of XtremIO (acquired in 2012
by EMC), a start-up company that created the first scalable all-flash enterprise
storage system.

Dr. Bruck is a recipient of the Feynman Prize for Excellence in Teaching,
the Sloan Research Fellowship, the National Science Foundation Young
Investigator Award, the IBM Outstanding Innovation Award and the IBM
Outstanding Technical Achievement Award.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Aachen-Bold
    /ACaslon-AltBold
    /ACaslon-AltBoldItalic
    /ACaslon-AltItalic
    /ACaslon-AltRegular
    /ACaslon-AltSemibold
    /ACaslon-AltSemiboldItalic
    /ACaslon-Bold
    /ACaslon-BoldItalic
    /ACaslon-BoldItalicOsF
    /ACaslon-BoldOsF
    /ACaslonExp-Bold
    /ACaslonExp-BoldItalic
    /ACaslonExp-Italic
    /ACaslonExp-Regular
    /ACaslonExp-Semibold
    /ACaslonExp-SemiboldItalic
    /ACaslon-Italic
    /ACaslon-ItalicOsF
    /ACaslon-Ornaments
    /ACaslon-Regular
    /ACaslon-RegularSC
    /ACaslon-Semibold
    /ACaslon-SemiboldItalic
    /ACaslon-SemiboldItalicOsF
    /ACaslon-SemiboldSC
    /ACaslon-SwashBoldItalic
    /ACaslon-SwashItalic
    /ACaslon-SwashSemiboldItalic
    /AGaramondAlt-Italic
    /AGaramondAlt-Regular
    /AGaramond-Bold
    /AGaramond-BoldItalic
    /AGaramond-BoldItalicOsF
    /AGaramond-BoldOsF
    /AGaramondExp-Bold
    /AGaramondExp-BoldItalic
    /AGaramondExp-Italic
    /AGaramondExp-Regular
    /AGaramondExp-Semibold
    /AGaramondExp-SemiboldItalic
    /AGaramond-Italic
    /AGaramond-ItalicOsF
    /AGaramond-Regular
    /AGaramond-RegularSC
    /AGaramond-Semibold
    /AGaramond-SemiboldItalic
    /AGaramond-SemiboldItalicOsF
    /AGaramond-SemiboldSC
    /AGaramond-Titling
    /AJensonMM
    /AJensonMM-Alt
    /AJensonMM-Ep
    /AJensonMM-It
    /AJensonMM-ItAlt
    /AJensonMM-ItEp
    /AJensonMM-ItSC
    /AJensonMM-SC
    /AJensonMM-Sw
    /AlbertusMT
    /AlbertusMT-Italic
    /AlbertusMT-Light
    /Americana
    /Americana-Bold
    /Americana-ExtraBold
    /Americana-Italic
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /AvantGarde-Demi
    /BBOLD10
    /BBOLD5
    /BBOLD7
    /BermudaLP-Squiggle
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chaparral-Display
    /CMB10
    /CMBSY10
    /CMBSY5
    /CMBSY6
    /CMBSY7
    /CMBSY8
    /CMBSY9
    /CMBX10
    /CMBX12
    /CMBX5
    /CMBX6
    /CMBX7
    /CMBX8
    /CMBX9
    /CMBXSL10
    /CMBXTI10
    /CMCSC10
    /CMCSC8
    /CMCSC9
    /CMDUNH10
    /CMEX10
    /CMEX7
    /CMEX8
    /CMEX9
    /CMFF10
    /CMFI10
    /CMFIB8
    /CMINCH
    /CMITT10
    /CMMI10
    /CMMI12
    /CMMI5
    /CMMI6
    /CMMI7
    /CMMI8
    /CMMI9
    /CMMIB10
    /CMMIB5
    /CMMIB6
    /CMMIB7
    /CMMIB8
    /CMMIB9
    /CMR10
    /CMR12
    /CMR17
    /CMR5
    /CMR6
    /CMR7
    /CMR8
    /CMR9
    /CMSL10
    /CMSL12
    /CMSL8
    /CMSL9
    /CMSLTT10
    /CMSS10
    /CMSS12
    /CMSS17
    /CMSS8
    /CMSS9
    /CMSSBX10
    /CMSSDC10
    /CMSSI10
    /CMSSI12
    /CMSSI17
    /CMSSI8
    /CMSSI9
    /CMSSQ8
    /CMSSQI8
    /CMSY10
    /CMSY5
    /CMSY6
    /CMSY7
    /CMSY8
    /CMSY9
    /CMTCSC10
    /CMTEX10
    /CMTEX8
    /CMTEX9
    /CMTI10
    /CMTI12
    /CMTI7
    /CMTI8
    /CMTI9
    /CMTT10
    /CMTT12
    /CMTT8
    /CMTT9
    /CMU10
    /CMVTT10
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /Cutout
    /EMB10
    /EMBX10
    /EMBX12
    /EMBX5
    /EMBX6
    /EMBX7
    /EMBX8
    /EMBX9
    /EMBXSL10
    /EMBXTI10
    /EMCSC10
    /EMCSC8
    /EMCSC9
    /EMDUNH10
    /EMFF10
    /EMFI10
    /EMFIB8
    /EMITT10
    /EMMI10
    /EMMI12
    /EMMI5
    /EMMI6
    /EMMI7
    /EMMI8
    /EMMI9
    /EMMIB10
    /EMMIB5
    /EMMIB6
    /EMMIB7
    /EMMIB8
    /EMMIB9
    /EMR10
    /EMR12
    /EMR17
    /EMR5
    /EMR6
    /EMR7
    /EMR8
    /EMR9
    /EMSL10
    /EMSL12
    /EMSL8
    /EMSL9
    /EMSLTT10
    /EMSS10
    /EMSS12
    /EMSS17
    /EMSS8
    /EMSS9
    /EMSSBX10
    /EMSSDC10
    /EMSSI10
    /EMSSI12
    /EMSSI17
    /EMSSI8
    /EMSSI9
    /EMSSQ8
    /EMSSQI8
    /EMTCSC10
    /EMTI10
    /EMTI12
    /EMTI7
    /EMTI8
    /EMTI9
    /EMTT10
    /EMTT12
    /EMTT8
    /EMTT9
    /EMU10
    /EMVTT10
    /EstrangeloEdessa
    /EUEX10
    /EUEX7
    /EUEX8
    /EUEX9
    /EUFB10
    /EUFB5
    /EUFB7
    /EUFM10
    /EUFM5
    /EUFM7
    /EURB10
    /EURB5
    /EURB7
    /EURM10
    /EURM5
    /EURM7
    /EuroMono-Bold
    /EuroMono-BoldItalic
    /EuroMono-Italic
    /EuroMono-Regular
    /EuroSans-Bold
    /EuroSans-BoldItalic
    /EuroSans-Italic
    /EuroSans-Regular
    /EuroSerif-Bold
    /EuroSerif-BoldItalic
    /EuroSerif-Italic
    /EuroSerif-Regular
    /EUSB10
    /EUSB5
    /EUSB7
    /EUSM10
    /EUSM5
    /EUSM7
    /Fences
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /FreestyleScript
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Giddyup
    /GreymantleMVB
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /ICMEX10
    /ICMMI8
    /ICMSY8
    /ICMTT8
    /ILASY8
    /ILCMSS8
    /ILCMSSB8
    /ILCMSSI8
    /Impact
    /jsMath-cmex10
    /Kartika
    /Khaki-Two
    /LASY10
    /LASY5
    /LASY6
    /LASY7
    /LASY8
    /LASY9
    /LASYB10
    /Latha
    /LCIRCLE10
    /LCIRCLEW10
    /LCMSS8
    /LCMSSB8
    /LCMSSI8
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LINE10
    /LINEW10
    /LOGO10
    /LOGO8
    /LOGO9
    /LOGOBF10
    /LOGOD10
    /LOGOSL10
    /LOGOSL8
    /LOGOSL9
    /LucidaBlackletter
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaBright-Oblique
    /LucidaBrightSmallcaps
    /LucidaBrightSmallcaps-Demi
    /LucidaCalligraphy-Italic
    /LucidaCasual
    /LucidaCasual-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaNewMath-AltDemiItalic
    /LucidaNewMath-AltItalic
    /LucidaNewMath-Arrows
    /LucidaNewMath-Arrows-Demi
    /LucidaNewMath-Demibold
    /LucidaNewMath-DemiItalic
    /LucidaNewMath-Extension
    /LucidaNewMath-Italic
    /LucidaNewMath-Roman
    /LucidaNewMath-Symbol
    /LucidaNewMath-Symbol-Demi
    /LucidaSans
    /LucidaSans-Bold
    /LucidaSans-BoldItalic
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /LucidaTypewriter
    /LucidaTypewriterBold
    /LucidaTypewriterBoldOblique
    /LucidaTypewriterOblique
    /Mangal-Regular
    /MicrosoftSansSerif
    /Mojo
    /MonotypeCorsiva
    /MSAM10
    /MSAM5
    /MSAM6
    /MSAM7
    /MSAM8
    /MSAM9
    /MSBM10
    /MSBM5
    /MSBM6
    /MSBM7
    /MSBM8
    /MSBM9
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MTEX
    /MTEXB
    /MTEXH
    /MTGU
    /MTGUB
    /MTLS
    /MTLSB
    /MTMI
    /MTMIB
    /MTMIH
    /MTMS
    /MTMSB
    /MTMUB
    /MTMUH
    /MTSY
    /MTSYB
    /MTSYH
    /MT-Symbol
    /MT-Symbol-Italic
    /MTSYN
    /MVBoli
    /Myriad-Tilt
    /Nyx
    /OCRA-Alternate
    /Ouch
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Pompeia-Inline
    /Postino-Italic
    /Raavi
    /Revue
    /RMTMI
    /RMTMIB
    /RMTMIH
    /RMTMUB
    /RMTMUH
    /RSFS10
    /RSFS5
    /RSFS7
    /Shruti
    /Shuriken-Boy
    /SpumoniLP
    /STMARY10
    /STMARY5
    /STMARY7
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-BoldOblique
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Oblique
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /UniversityRoman
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /WASY10
    /WASY5
    /WASY7
    /WASYB10
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /WNCYB10
    /WNCYI10
    /WNCYR10
    /WNCYSC10
    /WNCYSS10
    /WoodtypeOrnaments-One
    /WoodtypeOrnaments-Two
    /ZapfChancery-MediumItalic
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


