
5774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

Limited-Magnitude Error-Correcting Gray
Codes for Rank Modulation

Yonatan Yehezkeally, Student Member, IEEE, and Moshe Schwartz, Senior Member, IEEE

Abstract— We construct error-correcting codes over permuta-
tions under the infinity-metric, which are also Gray codes in the
context of rank modulation, i.e., are generated as simple circuits
in the rotator graph. These errors model limited-magnitude or
spike errors, for which only single-error-detecting Gray codes
are currently known. Surprisingly, the error-correcting codes
we construct achieve a better asymptotic rate than that of
presently known constructions not having the Gray property, and
exceed the Gilbert-Varshamov bound. Additionally, we present
efficient ranking and unranking procedures, as well as a decoding
procedure that runs in linear time. Finally, we also apply
our methods to solve an outstanding issue with error-detecting
rank-modulation Gray codes (also known in this context as
snake-in-the-box codes) under a different metric, the Kendall
τ -metric, in the group of permutations over an even number of
elements S2n, where we provide asymptotically optimal codes.

Index Terms— Gray codes, error-correcting codes, permuta-
tions, spread-d circuit codes, rank modulation.

I. INTRODUCTION

RANK modulation is a method for storing information in
non-volatile memories [23], which has been researched

in recent years. It calls for encoding information in relative
values in a group of cells rather than the absolute values of
each single cell. More precisely, it stores information in the
permutation suggested by sorting a group of cells by their
relative values; Such values may be charge levels in flash
memory cells or electrical resistance in phase-change mem-
ory [30]. Rank modulation allows for increased robustness
against certain noise mechanisms (e.g., charge leakage in flash
memory cells), as well as alleviating some inherent challenges
in flash memories (e.g., programming/erasure-asymmetry and
programming-overshoot). Permutation codes in general have
also previously seen usages in source-encoding [3]–[5], [38]
and signal detection [7], as well as other fields [6], [9], [11],
and more recently been used in power-line communica-
tions [41].

Several error models have been studied for rank modula-
tion, including the Kendall τ -metric [2], [24], [28], [47], the
�∞-metric [27], [36], [39], [40] and other examples [12], [18].
In this paper we focus on the �∞-metric, which models

Manuscript received June 19, 2016; revised April 12, 2017; accepted
June 7, 2017. Date of publication June 26, 2017; date of current version
August 16, 2017. This work was supported by ISF under Grant 130/14.
This paper was presented at the 2016 IEEE International Symposium on
Information Theory.

The authors are with the Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel (e-mail:
yonatany@post.bgu.ac.il; schwartz@ee.bgu.ac.il).

Communicated by C.-C. Wang, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2017.2719710

limited-magnitude or spike noise, i.e., we assume that the
rank of any given cell–its position when sorting the group of
cells–could not have changed by more than a given amount.
References [27] and [39] have presented constructions for
error-correcting codes under this metric, as well as explored
some non-constructive lower- and upper-bounds on the para-
meters of existing codes. Reference [40] has since employed
methods of relabeling to optimize the minimal distance of
known constructions.

In the context of rank modulation, a generalization of
the Gray code has been shown to reduce write-time–by
eliminating the risk of programming-overshoot–and allow
integration with other multilevel-cells coding schemes [13],
[14], [23]. Gray codes were first considered over the space
of binary vectors, where they were generally defined as
a listing of distinct vectors–sometimes exhaustive–such that
each pair of consecutive vectors differed by a single bit-
flip [19]; the concept has since been generalized in some
contexts to include codes over arbitrary alphabets, requiring
only that codewords could be ordered in a sequence, where
each codeword is derived from the previous by one of a
predefined set of functions. Put differently, Gray codes may
be considered as simple paths on the digraph whose nodes
are elements of the alphabet, and edges are induced by the
aforementioned functions set (e.g., Cayley graphs). Suggested
usages of Gray codes in contexts other than rank modulation,
surveyed in [33], include permanent-computation [29], circuit-
testing [31], image-processing [1], hashing [17], coding [15],
[23], [34] and data storing/extraction [8]. Within rank modu-
lation, particular Cayley graphs were used, which were first
proposed (for use in multiprocessor networks) in [10] and [16]
as Faber–Moore- or rotator graphs, and later rediscovered (the
authors being apparently unaware) for use in Flash memories
in [23] (including one of its constructions). These codes are in
fact also an example of greedily constructed Gray codes [43].

Gray codes with error-correction capabilities have some-
times been referred to as spread-d circuit codes (see [21] and
references therein). Specifically, in the context of rank modula-
tion, such codes were so far only studied for the case of single-
error detection, where they were dubbed (see [20]–[22], [42],
[44]–[46]) snake-in-the-box codes (or, more appropriately,
coil-in-the-box codes, when they are cyclic); this, again, draws
on terminology first used with Gray codes in the hypercube,
where snake-in-the-box codes are defined as spread-2 codes
using the Hamming distance [37]. Reference [44] studied such
rank-modulation codes under both the Kendall τ -metric and
the �∞-metric, and more recent papers [20], [22], [45] have

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5775

Fig. 1. An error-correcting rank-modulation Gray code in S6 with minimal �∞ distance d = 3, presented in more detail later in Example 19.

categorized and constructed optimally sized coil-in-the-box
codes under the former metric for odd orders, although the
case of even orders proved more challenging (see [46] in
addition to the aforementioned papers).

In this work we focus on the �∞-metric and present a
construction of error-correcting Gray codes capable of cor-
recting an arbitrary number of limited-magnitude errors. The
allowed transitions between codewords are the “push-to-the-
top” operations, used in most previous works [13], [14], [20],
[22], [23], [44], [45] (which are isomorphic to the prefix-
rotations of [10]). An example of such a code, generated
in the paper in Example 19, is presented in Figure 1. The
resulting codes will be shown to have greater size than known
constructions in the case of fixed minimal distance, as well as
achieve better asymptotic rates than known codes in the case of
d = �(n); both size and rate are also compared against known
bounds. In particular, in the case of error-detecting codes (i.e.,
d = 2), where some codes with the Gray property are already
known (that is, snake-in-the-box codes, developed in [44]),
our new construction outperforms known codes by a factor of
∼ n2

8 (we note that in this specific case of d = 2, an equivalent
construction was also concurrently published in a preprint in
[42]).

We will also briefly examine error-detecting codes under the
Kendall τ -metric for even orders, since methods developed
for the application of our main construction can readily be
adapted to that purpose. We provide an asymptotically optimal
construction which nearly completes the categorization of
available codes for that scheme.

The paper is organized as follows. In Section II we present
notations and definitions. In Section III we study a new kind of
auxiliary codes which are required for our construction, before
presenting it in Section IV and discussing its performance in
comparison with known constructions and bounds. We devise
a decoding algorithm for the generated codes in Section V,
and discuss ranking and unranking procedures in Section VI.
We briefly present an adaptation of the developed auxiliary
codes to error-detecting codes under the Kendall τ -metric in
Section VII. Finally, we conclude in Section VIII by reviewing
our results and suggesting problems for future study.

II. PRELIMINARIES

For n ∈ �, we let Sn denote the symmetric group, the
set of all permutations on [n] = {1, 2, . . . , n} (i.e., bijections

σ : [n] 1−1−→
onto
[n]), with composition as group action:

στ(k) = (σ ◦ τ) (k) = σ(τ(k)).

Throughout the paper we shall denote the identity permutation
Id ∈ Sn defined for all k ∈ [n]: Id(k) = k.

We use the cycle notation for permutations, i.e., for distinct{
a j
}k

j=1 ⊆ [n] we let σ = (a1, a2, . . . , ak) be the permutation
such that σ(a j) = a(j mod k)+1 and σ(b) = b for all b ∈
[n] \ {a j

}k
j=1. Trivially, every permutation can be represented

as a composition of disjoint cycles. It is also well known
that every permutation can be represented as a composition
of transpositions, cycles of length 2, and that the parity of
the number of transpositions in that representation is unique
(although the representation itself is not). We therefore have
even and odd permutations, and we use sign(σ) = ±1 to
indicate the parity of the number of elements in transposition
representation (with no particular importance given to which
is which). The set of even permutations forms a subgroup
An � Sn named the alternating group. We will say that
C ⊆ Sn is parity-preserving if every two elements σ, τ ∈ C
have the same parity, that is, sign σ = sign τ (put differently,
either C ⊆ An or C ⊆ Sn \ An).

We also use the vector notation for permutations,

σ = [σ(1), σ (2), . . . , σ (n)] .

This allows us to more easily notate, for 1 � i < j � n, the
“push-to-the-i th-index” transition ti↑ j : Sn → Sn by

ti↑ j
([

a1, a2, . . . , ai−1, ai , ai+1, . . . , a j−1, a j , a j+1, . . . , an
])

= [
a1, a2, . . . , ai−1, a j , ai , ai+1, . . . , a j−1, a j+1, . . . , an

]
.

We follow recent works [22], [23], [44], [45] (among others)
in dubbing “push-to-the-1st-index” transitions as “push-to-the-
top” transitions (although these operations–or more precisely
their inverse–were originally introduced as prefix-rotations in
[10]); We denote t↑ j = t1↑ j . Finally, we define the “push-to-
the-bottom” transition on the j th index, t↓ j : Sn → Sn ,

t↓ j
([

a1, a2, . . . , a j−1, a j , a j+1, . . . , an
])

= [
a1, a2, . . . , a j−1, a j+1, . . . , an, a j

]
.

Given any set S, and a collection of transitions

T ⊆ { f | f : S → S} ,
we define a T -Gray code over the set S to be a sequence
C = (cr)

M
r=1 ⊆ S such that for all 1 � r < r ′ � M we

have cr �= cr ′ and such that for all 1 � r < M there exists
tr ∈ T satisfying cr+1 = tr (cr). We say that a sequence C is
contained in S, by abuse of notation, if cr ∈ S for all r . That
is, we may refer to a Gray code as an unordered set–or simply
a code–when desired for simplicity. Conversely, we say that
a code has the Gray property, or is a Gray code, if it can

5776 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

be so ordered. We call M = |C| the size of the code, and
t1, t2, . . . , tM−1 the transition sequence generating C . If there
exists t ∈ T such that c1 = t (cM) we say that C is cyclic, and
include tM = t in its generating transition sequence. If C = S,
we say that C is a complete code.

Example 1: In the classic example of a Gray code we have,
e.g., S = �2

3, with T consisting of the group action of
{001, 010, 100} ⊆ S on S, defined

v(u) = u + v.

We then have the complete cyclic Gray code given by

000 001 011 010

110111101100

001 010 001

100

001010001

100

�
In this paper, we fix S = Sn . Since we intend to work with

minutely distinct classes of codes on the symmetric group in
this paper, we will introduce notations to distinguish them,
which are organized in Table I for the readers’ comfort. We say
that C = (c1, c2, . . . , cM) ⊆ Sn is a Gi↑(n, M) if it is a cyclic
Gray code with transition set T = {

ti↑ j
∣
∣ i < j � n

}
. When

i = 1 we refer to C as a “push-to-the-top” code and denote it
G↑(n, M), and we likewise denote “push-to-the-bottom” codes
G↓(n, M).

Example 2: We observe (a fact that has been remarked
in [23]) that
⎡

⎣
1
2
3

⎤

⎦ t↑2−→
⎡

⎣
2
1
3

⎤

⎦ t↑3−→
⎡

⎣
3
2
1

⎤

⎦ t↑3−→
⎡

⎣
1
3
2

⎤

⎦ t↑2−→
⎡

⎣
3
1
2

⎤

⎦ t↑3−→
⎡

⎣
2
3
1

⎤

⎦
t↑3�

is a G↑(3, 6), i.e., a complete cyclic “push-to-the-top” Gray
code over S3. �

It is worthwhile to note that when S is a group, and
T consists of the group action of some subset on S, and
C is a (complete- and/or cyclic-) Gray code generated by
t1, t2, . . . , tM−1 (, tM), then C can be viewed as a simple path
(or circuit) in the Cayley graph with generators from T . More-
over for all σ ∈ S we observe that (σ, t1(σ), t2(t1(σ)), . . .)
is also a (complete- and/or cyclic- respectively) Gray code.
In other words, the code is shift invariant as Cayley graphs are
vertex-transitive. In these cases we might refer to the transition
sequence generating the code as the code itself, when desirable
for simplicity. It is of particular interest to observe that
ti↑ j (σ) = σ ◦ (j, j − 1, . . . , i), i.e., “push-to-the-i th-index”
transitions are indeed group actions, hence we shall make that
simplification in places. We remark that the Cayley graphs
generated by {(j, j − 1, . . . , 1) | j ∈ [n]}, i.e., prefix-rotations
or “push-to-the-top” operations, were named (n−1, n)-Faber–
Moore graphs in [16], or (the transpose/converse to) n-rotator
graphs in [10]; as mentioned above, we follow the terminology
used in more recent works.

When S is equipped with a metric dM : S × S → �+,
and C ⊆ S has the property that for all σ, τ ∈ C either
σ = τ or dM(σ, τ) � d , for some constant d > 0, then C
(when considered as an unordered set) is commonly referred
to as an error-correcting code with minimal distance d .
If dM(·, ·) models an error mechanism, such that a single

error corresponds to distance 1, and 2 p + q < d , it is well
known that C can then correct p errors, and also detect q
additional errors (e.g., see [32, Proposition 1.5]).

Error-correcting Gray codes were (as mentioned above)
named spread-d circuit codes (e.g., in [21]), where they were
defined by requiring that for all cr , cr ′ ∈ C ,

(r − r ′ mod |C|) � d �⇒ dM(cr , cr ′) � d.

In that way, e.g., spread-1 circuit codes are simply Gray codes.
This eased requirement was made necessary since, working
with the Hamming distance dH in the n-cube, one cannot
have codewords at distance less than d in the code sequence
attain a distance of at least d . We shall depart from it here to
deal with Gray codes which are classic error-correcting codes,
but the codes presented in this paper are nevertheless also,
in particular, spread-d circuit-codes. This is naturally true in
the special case of d = 2, which to the authors’ knowledge
is the only case of error-correcting codes studied thus far in
the context of rank modulation with the Gray property. In an
analogue to classic Gray codes in the hypercube mentioned
above, using the Hamming distance [37], they were dubbed
snake-in-the-box codes regardless of the metric being used on
Sn , although only two such metrics were considered [44].

We shall focus on the �∞-metric defined on Sn by

d∞(σ, τ) = max
j∈[n] |σ(j)− τ (j)| .

That is, it is the metric induced on Sn by the embedding into
�

n (and, indeed, �n) implied by the vector notation, and the
�∞-metric in these spaces.

Example 3: In S4, the code
⎡

⎢
⎢
⎣

1
2
3
4

⎤

⎥
⎥
⎦

t↑2−→

⎡

⎢
⎢
⎣

2
1
3
4

⎤

⎥
⎥
⎦

t↑3−→

⎡

⎢
⎢
⎣

3
2
1
4

⎤

⎥
⎥
⎦

t↑2−→

⎡

⎢
⎢
⎣

2
3
1
4

⎤

⎥
⎥
⎦

t↑3�

has minimal distance 2 (e.g., d∞([1, 2, 3, 4] ,
[2, 3, 1, 4]) = 2, but as 4 is fixed no two codewords
have distance 3). In contrast,

⎡

⎢
⎢
⎣

4
1
2
3

⎤

⎥
⎥
⎦

t↑3−→

⎡

⎢
⎢
⎣

2
4
1
3

⎤

⎥
⎥
⎦

t↑3−→

⎡

⎢
⎢
⎣

1
2
4
3

⎤

⎥
⎥
⎦

t↑3

�

has minimal distance 3 (which we can verify to be the diameter
of the metric space (S4, d∞)). �

Error-correcting codes in Sn with d∞ were studied in [39],
where they were dubbed limited-magnitude rank-modulation
codes. A code C with minimal distance d was denoted as an
(n, |C| , d)-LMRM code. In our case, if a Gi↑(n, M) is also
an (n, M, d)-LMRM code, we shall denote it a Gi↑(n, M, d)
(likewise for G↑ and G↓).

III. AUXILIARY CONSTRUCTION

Before we present the main construction of our paper,
we first describe in this section a construction for auxiliary
codes which will be a component of the main construction.

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5777

TABLE I

CODE NOTATIONS FOR C ⊆ Sn

We say that C ⊆ Sk is j -nontransposing, for some j ∈ [k],
if for all q ∈ [k] \ { j} it holds that

σ ∈ C �⇒ (q, j) ◦ σ �∈ C.

Unlike some of the codes mentioned thus far, if we
shift the first permutation of a j -nontransposing Gi↑(k, M)
code C , or rotate the generating sequence of transitions,
it is no longer assured that the resulting code will be j -
nontransposing. We therefore make further requirements and
define an auxiliary code Gaux↑ (k, M) as a G↑(k, M) which is
k-nontransposing, beginning at Id, and its first transition is
t↑k . We will use such codes in our main construction, and we
therefore study their existence.

Firstly, note that the only existing Gaux↑ (2, M) codes are the
singletons {Id} , {(1, 2)}. However, for k � 3 there do exist
Gaux↑ (k, M) codes with M � 3, as one such example is

(
Id, t↑3 Id, t↑3

2 Id
)

.

We also note the following:
Lemma 4: If C ⊆ Sk is k-nontransposing, then M � |Sk |

2 .
Proof: Take q ∈ [k−1], and observe that σ �→ (q, k)σ is

an Sk -automorphism, under which C and its image are disjoint.
Hence 2M � |Sk |.

This motivates us to examine another family of codes,
namely, parity-preserving codes, due to the following obser-
vations.

Lemma 5: If C ⊆ Sk is parity-preserving then |C| � |Sk |
2 .

Proof: Either C ⊆ Ak or C ⊆ Sk \ Ak . It is well-known
that |Ak | = |Sk |

2 .
Lemma 6: If C ⊆ Sk is a parity-preserving G↑(k, M), then

C is k-nontransposing.
Proof: Take σ ∈ C and observe that sign σ �= sign(q, k)σ

for all q ∈ [k − 1], hence (q, k)σ �∈ C , since C is parity-
preserving.

Parity-preserving Gaux↑ (2m+1, M) codes are known to exist,
achieving the aforementioned bound.

Lemma 7 [20]: For all m �= 2, there exist parity-preserving
G↑(2m + 1, (2m+1)!

2) codes. The largest parity-preserving
G↑(5, M) codes have M = 57.

Although not declared, it is shown in [20] that such codes
can be assumed to have t↑2m+1 as the first transition in their
generating transition sequence, and furthermore, that they also
employ at least one t↑2m−1 transition.

In comparison, as noted in [44], a parity-preserving
G↑(2m, M) must satisfy M � |S2m |

2m , as it must never employ
a t↑2m transition. This evidently yields much smaller codes
than the case of odd orders, and we therefore examine more
general Gaux↑ codes, which are not parity-preserving. We begin
by noting the following lemma.

Lemma 8 [10, Th. 4]: For all n � 1 there exist G↑(n, n!)
codes, that is, complete and cyclic “push-to-the-top” Gray
codes over the symmetric group Sn .

Relying on these codes, we construct auxiliary codes
in the following theorem. The method we apply here
of using “push-to-the-bottom” transitions was also used
in [10] and [23] as a building block for their proposed
constructions of a complete and cyclic Gray code in Sn (which
are equivalent), then later in [44] for parity-preserving codes
in S2m+1.

Theorem 9: For all m � 2 there exists a Gaux↑ (2m, |S2m |
2m−1).

Proof: Take a G↑(2m−2, (2m−2)!) code C ′, provided by
Lemma 8. We follow the concept of [23, Th. 7] in extending
C ′ to S2m . Let us define

σ0 = t↑2m Id = [2m, 1, . . . , 2m − 1] .

If we take t↑i1 , t↑i2 , . . . , t↑i(2m−2)! to be the transition sequence
generating C ′, then the transition sequence

t↓2m+1−i1 , t↓2m+1−i2 , . . . , t↓2m+1−i(2k−2)!

of “push-to-the-bottom” operations, applied in succession
to σ0, generates C ′′ ⊆ S2m , a G↓(2m, (2m − 2)!),
all of whose elements’ vector notations begin with
[2m, 1].

We now note that t↓2m+1− j = t↑2m
2m−1t↑ j . Thus, by replac-

ing each t↓2m+1− j with t↑ j followed by a sequence of 2m−1
occurrences of t↑2m , we get C ⊆ S2m , a G↑(2m, (2m−2)!2m),
where every block of 2m elements is comprised of cyclic shifts
of some σ ∈ C ′′.

The code C is known to be a Gray code [23, Th. 7].
Moreover, if σ ∈ C satisfies τ = (q, 2m)σ ∈ C , note that
both have a vector notation with 1 immediately (cyclically)
following 2m, but since τ = (q, 2m)σ its vector notation has
1 following q . It follows (by abuse of notation) that q = 2m.
Hence, C is 2m-nontransposing.

Finally, note that C is generated by a transition sequence
ending with 2m − 1 instances of t↑2m , and begins with
σ0 = t↑2m Id. Therefore, it includes Id followed by a
t↑2m transition. A cyclic shift of C therefore satisfies the
theorem.

Example 10: To construct a Gaux↑ (4, 8) we utilize the
complete G↑(2, 2) code

{
Id, t↑2 Id

}
, generated by t↑2, t↑2,

to arrive by the G↓(4, 2) code starting with σ0 = t↑4
Id = [4, 1, 2, 3]:

C ′′ = {[4, 1, 2, 3] , [4, 1, 3, 2]} ,

5778 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

which is generated by t↓3, t↓3. We recall that t↓3 = t↑4
3 ◦ t↑3,

allowing us to expand C ′′ in the following manner:
⎡

⎢⎢
⎣

4
1
2
3

⎤

⎥⎥
⎦

∈

C′′

t↑3→

⎡

⎢⎢
⎣

2
4
1
3

⎤

⎥⎥
⎦

t↑4→

⎡

⎢⎢
⎣

3
2
4
1

⎤

⎥⎥
⎦

t↑4→

⎡

⎢⎢
⎣

1
3
2
4

⎤

⎥⎥
⎦

t↑4→

⎡

⎢⎢
⎣

4
1
3
2

⎤

⎥⎥
⎦

∈

C′′

t↑3→

⎡

⎢⎢
⎣

3
4
1
2

⎤

⎥⎥
⎦

t↑4→

⎡

⎢⎢
⎣

2
3
4
1

⎤

⎥⎥
⎦

t↑4→

⎡

⎢⎢
⎣

1
2
3
4

⎤

⎥⎥
⎦

t↑4

�

Finally, we observe that as seen in the proof to Theorem 9,
the code we constructed has Id as its last codeword, followed
by a t↑4 operation. A cyclic shift of the code now begins with
Id and the required operation, which satisfies Theorem 9. �

We remark that, while Theorem 9 does not produce codes
much larger than the parity-preserving code of size |S2m |

2m ,
it does at least allow us to permute the last element 2m while
preserving the property of being 2m-nontransposing, and thus
construct auxiliary codes.

Next, we present another construction which yields larger
codes, for even k � 6 (but not k = 4). From now on,
we fix m � 2 and let k = 2m + 2. We also define
ϕ : S2m+2 → S2m+2 by

ϕ = t↑2m+2
2 ◦ t↑2m−1

−1.

We note that

ϕ(π) = π ◦ (1, 2m + 1)(2m + 2, 2m, 2m − 1, . . . , 2),

Hence, informally, in π’s vector notation, ϕ transposes the
elements in indices 1, 2m + 1, and cyclically shifts all other
elements once to the bottom (i.e., as if applying a “push-to-
the-top” operation on the last index – acting only on these
indices). We can also observe that ϕ2m = Id.

We conveniently define, for all r � 0, the permutations

π̂r = ϕr (Id)

= (1, 2m + 1)r (2m + 2, 2m, 2m − 1, . . . , 2)r ∈ S2m+2,

In particular, we note that when r ≡ r ′ (mod 2m), and only
then, we have π̂r = π̂r ′ .

Lemma 11: For all r � 0 a parity-preserving
G↑(2m + 2, M2m+2) code Pr exists which begins with
π̂r and ends with t↑2m−1

−1π̂r , where

M2m+2 =
{

57 m = 2,
(2m+1)!

2 m > 2.

Proof: The claim follows trivially from the codes provided
by Lemma 7, if we shift the generating transition sequence
such that it ends with t↑2m−1 and apply it to π̂r .

We note in particular that for all r , π̂r is even, and thus
Pr ⊆ A2m+2. Moreover, since the parity-preserving code Pr

does not employ t↑2m+2, for all π ∈ Pr it holds that

π(2m + 2) = π̂r (2m + 2)

=
{

2m + 2 r ≡ 0 (mod 2m),

2m + 1− (r mod 2m) r �≡ 0 (mod 2m).

Thus, when considered as sets,

Pr ∩ Pr ′ = ∅,
for all 0 � r < r ′ < 2m.

We shall construct a Gaux↑ (2m + 2, M) code by stitching
together P1, P2, . . . , P2m−1. We will need to amend P0 before
incorporating it into our code, for reasons we shall discuss
below. First, we describe the stitching method in the following
lemma.

Lemma 12: For all r � 0 (including, in particular,
r = 2m − 1), we may concatenate Pr , Pr+1 into a (non-
cyclic) “push-to-the-top” code by applying the transitions
t↑2m+2, t↑2m+2 to the last permutation of Pr , which is
t↑2m−1

−1π̂r . Additionally, the only odd permutation in the
resulting code is

βr+1 = t↑2m+2
−1(π̂r+1).

We shall refer to it as the (r + 1)-bridge.
Proof: The claim follows trivially from the definition

π̂r+1 = ϕ(π̂r) = t↑2m+2 ◦
(

t↑2m+2 ◦ t↑2m−1
−1(π̂r)

)
,

since Pr , Pr+1 are parity-preserving, and t↑2m+2 flips parity.

Lemma 12 can be used iteratively to concatenate
P1, P2, . . . , P2m−1, with a single odd permutation–the r -
bridge–between each pair of Pr−1, Pr . Thus, we obtain the
sequence

P1, β2, P2, β3, . . . , β2m−1, P2m−1.

Note that if any two permutations π1, π2 in the resulting
sequence satisfy π1 = (q, 2m+2)◦π2 for some q ∈ [2m+1],
then w.l.o.g π2 is odd and hence an r -bridge for some r , and
π1 is even and thus not a bridge. Since in every bridge the
last element is

βr (2m + 2) = π̂r (1) ∈ {1, 2m + 1} ,
and in every non-bridge it is not, it must follow, then, that
q = βr (2m + 2), and in particular

π1(2m + 2) = (βr (2m + 2), 2m + 2) ◦ βr (2m + 2)

= 2m + 2,

thus π1 ∈ P0.
We witness, therefore, that no such pair of permutations

exist, since we have not yet incorporated P0 into our code.
Hence, so far we have a (2m+2)-nontransposing code. It also
becomes apparent that P0 must necessarily be amended prior
to its inclusion, so it does not include any permutations of the
form

(βr (2m + 2), 2m + 2) ◦ βr , 0 < r � 2m.

In order to do so, we note that for all r � 0

βr (2m) = π̂r (2m + 1) ∈ {1, 2m + 1} ,
and in particular βr (2m) �= 2m + 2, hence

(βr (2m + 2), 2m + 2) ◦ βr (2m) = βr (2m) ∈ {1, 2m + 1} .
It follows that if we let P ′0 be generated by the transi-

tion sequence t↑2m−1
2m−1 applied to π̂0, then it is parity-

preserving, its last permutation is t↑2m−1
−1π̂0, and for all

π ∈ P ′0 we have π(2m) = 2m �∈ {1, 2m + 1}, thus

P ′0 ∩ {(βr (2m + 2), 2m + 2) ◦ βr }2m
r=1 = ∅.

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5779

Lemma 13: The following sequence P ,

P = P ′0, β1, P1, β2, P2, β3, . . . , β2m−1, P2m−1, β2m ,

is a cyclic and k-nontransposing G↑(k, M).
Proof: By Lemma 12, and since when considered as sets,

Pr ∩ Pr ′ = ∅
for all 0 < r < r ′ < 2m, and similarly P ′0 is disjoint from
P1, P2, . . . , P2m−1, we know that P is a G↑(2m + 2, M).

As seen above, if for any two permutations π1, π2 ∈ P and
q ∈ [2m + 1] we have π1 = (q, 2m + 2) ◦ π2, then w.l.o.g.
π2 = βr for some 0 < r � 2m and q = βr (2m + 2). In
particular, π1(2m + 2) = 2m + 2, thus

π1 �∈ {βr }2m
r=1 ∪

2m−1⋃

r=1

Pr ,

thus π1 ∈ P ′0. But

P ′0 ∩ {(βr (2m + 2), 2m + 2) ◦ βr }2m
r=1 = ∅,

in contradiction.
The code from Lemma 13 is almost what we need. The

only property lacking is the fact that Id is not followed in P
by the transition t↑2m+2. We fix this in the following theorem.

Theorem 14: Let k � 6 be even. Then there exists a
Gaux↑ (k, M), with

M =
{

178 k = 6,

(k − 3)
(

(k−1)!
2 + 2

)
+ 1 k > 6.

In particular, for all k > 6,

M >
k − 3

k
· k!

2
.

Proof: Denote k = 2m+2 for m � 2, and let P = (c j)
M
j=1

be the code from Lemma 13. Since Id ∈ Sk is not followed
with a t↑k transition in P , we denote the last permutation of
P ′0 by π̃ , and replace P with

P̃ = π̃−1 P =
(
π̃−1 ◦ c j

)M

j=1
.

We observe that P̃ is still a “push-to-the-top” code since
“push-to-the-top” transitions are group actions by right-
multiplications. Moreover, since π̃ (k) = k, if for some
π1, π2 ∈ P we have π̃−1 ◦ π1 = (q, k) ◦ (π̃−1 ◦ π2

)
, where

q ∈ [k − 1], then

π1 = π̃ ◦
[
(q, k) ◦

(
π̃−1 ◦ π2

)]

=
[
π̃ ◦ (q, k) ◦ π̃−1

]
◦ π2 = (π̃(q), k) ◦ π2,

and π̃(q) ∈ [k − 1], in contradiction.
As for the size of the code, note that

∣
∣P ′0

∣
∣ = 2m−1 = k−3

and

|P1| = |P2| = . . . = |P2m−1| =
{

57 k = 6,
(k−1)!

2 k > 6.

Counting β1, . . . , β2m , the claim is thus substantiated, up to a
rotation to make Id the first permutation.

To conclude this section, we combine Lemma 7, Theorem 9
and Theorem 14 into the following corollary.

Corollary 15: For all k � 3 there exists a Gaux↑ (k, M̃k),
where

M̃k =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8 k = 4

57 k = 5

178 k = 6
k!
2 5 �= k ≡ 1 (mod 2)

ρk
k!
2 6 < k ≡ 0 (mod 2),

and ρk > k−3
k .

IV. CODE CONSTRUCTION

In this section we present the main construction of our
paper, and discuss the size and asymptotic rate of the resulting
codes. We will show, surprisingly, that our method generates
codes which are larger than formerly known families of codes,
even though we require the additional structure of a Gray code.

A. Main Code Construction

We now present a construction of G↑(n, M, d) codes, for
d < n, which we base on Corollary 15 and Lemma 8.

It will simplify the presentation to assume n = kd for some
positive k � 2, since in that case every congruence class
modulo d of [n] has size k. Nonetheless, the construction is
applicable to any n > d with natural amendments. We discuss
these changes, focusing on special cases, after presenting the
simple construction first.

Construction A: Let n, k, d ∈ �, with n = kd and
k � 2. We recursively construct a sequence of codes,
Cd , Cd−1, . . . , C1. An explicit construction is given for Cd

and a recursion step constructs Cm from Cm+1.
Recursion base: We construct the code Cd by starting at the

permutation σ0 ∈ Sn defined by

σ0(j) = d (j mod k)+
⌈

j

k

⌉
.

We obtain a transition sequence t↑r1 , t↑r2 , . . . , t↑rk! which
generates the G↑(k, k!) provided by Lemma 8. The code Cd

starts with σ0, and uses the transition sequence

tk(d−1)+1↑k(d−1)+r1,

tk(d−1)+1↑k(d−1)+r2, , tk(d−1)+1↑k(d−1)+rk! .

Recursion step: Assume Cm+1 has already been constructed,
starting with permutation σ0. Additionally, let

t↑k+1, t↑i2 , . . . , t↑iM̃k+1
(1)

be a transition sequence generating a Gaux↑ (k+ 1, M̃k+1) code
provided by Corollary 15.

We construct the code Cm as follows: replace each
tkm+1↑ j transition of Cm+1 with tk(m−1)+1↑ j , followed by
tk(m−1)+1↑k(m−1)+i2 , tk(m−1)+1↑k(m−1)+i3 , and so on until
tk(m−1)+1↑k(m−1)+iM̃k+1

. �
Lemma 16: For all n = kd , k � 2, the code Cd from

Construction A is a Gk(d−1)+1↑(n, k!, d).

5780 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

Proof: The parameters of the code are obvious, except
perhaps the minimal distance d . The fact that the codewords
of Cd are distinct follows from Lemma 8.

To prove the minimal distance d , note that for all 0 � u < d
and ku + 1 � i < j � k(u + 1) it holds that σ0(i) ≡ σ0(j)
(mod d). Thus, for every distinct σ, τ ∈ Cd , there exists j ,
k(d − 1) < j � kd = n, such that σ(j) �= τ (j). Since by
construction σ(j) ≡ τ (j) ≡ 0 (mod d), we observe

d∞(σ, τ) � |σ(j)− τ (j)| � d,

implying that Cd is a Gk(d−1)+1↑(n, k!, d).
Example 17: We let d = 3, k = 2, and n = kd = 6.

We construct the code C3 starting at

σ0 = [4, 1, 5, 2, 6, 3] ∈ S6.

We use the complete G↑(2, 2) shown in Example 10, which is
generated by the sequence t↑2, t↑2. We arrive at a generating
sequence t5↑6, t5↑6 for C3. Hence, in our example

C3 = ([4, 1, 5, 2, 6, 3] , [4, 1, 5, 2, 3, 6]) ,

which is readily seen to be a G5↑(6, 2, 3) code. �
We shall follow Construction A to develop this example into

a G↑(6, 18, 3) in Example 19. First, we prove the validity of
the construction.

Theorem 18: For all n = kd , k � 2, the code C1 from
Construction A is a G↑(n, M̃k+1

d−1 · k!, d).
Proof: To prove the claim we will prove by induc-

tion that Cm from Construction A, for all m ∈ [d], is a
Gk(m−1)+1↑(n, M̃k+1

d−m · k!, d). The base case of Cd was
proved in Lemma 16. Assume the claim holds for Cm+1 and
we now prove it for Cm .

Recall (1) gives the sequence of transitions for a
Gaux↑ (k + 1, M̃k+1). Then

t↑iM̃k+1
t↑iM̃k+1−1

· · · t↑i3 t↑i2 = t↑k+1
−1.

Thus,

tkm+1↑ j =
⎛

⎝
M̃k+1∏

r=2

tk(m−1)+1↑k(m−1)+ir

⎞

⎠ tk(m−1)+1↑ j

(where the product is expanded right-to-left). Therefore, Cm

expands each “push-to-the-(km + 1)st-index” transition of
Cm+1 into M̃k+1 “push-to-the-[k(m − 1) + 1]st-index” tran-
sitions.

It follows that Cm contains the codewords of Cm+1 in the
same order, with M̃k+1 − 1 new words inserted between any
two words originally from Cm+1. We say that each codeword
of Cm+1 (now appearing in Cm) is the Cm+1-parent of each of
the M̃k+1 preceding codewords in Cm (including itself), since
their vector notations agree on the order of the elements

σ0(km + 1), σ0(km + 2), . . . , σ0(n).

We note here (and will further examine later) that when
x = σ ′(km + 1) and σ ′ is a Cm+1-parent of M̃k+1 codewords
in Cm (inclusive), then that subsequence of Cm is an x-
nontransposing Gk(m−1)+1↑(n, M̃k+1) code. This follows since
we used an auxiliary code to construct that subsequence, of

which the parent takes the role of first permutation, and in σ ′,
x is the last element among the indices being permuted.

Now, suppose that σ, τ ∈ Cm satisfy d∞(σ, τ) < d . Let σ ′,
τ ′ be their Cm+1-parents, respectively. To complete the proof
we will show that σ = τ .

Case 1: σ ′ = τ ′. Denote

x = σ ′(km + 1) = τ ′(km + 1)

and s = σ−1(x), a = τ (s).
If a = x then for all j �= s, k(m − 1) < j � km + 1, we

have σ(j) ≡ τ (j) (mod d) and

|σ(j)− τ (j)| � d∞(σ, τ) < d,

hence σ(j) = τ (j), and σ = τ .
Otherwise, a �= x , and denote t = τ−1(x) �= s. It similarly

holds for all j �∈ {s, t}, k(m − 1) < j � km + 1, that σ(j) =
τ (j). We therefore observe τ = σ ◦ (s, t). This implies that,
if we let σ̂ , τ̂ ∈ Sk+1 be the permutations in the Gaux↑ we
obtained, generated similarly to σ, τ , respectively (i.e., by their
corresponding transition sequences), then

τ̂ = σ̂ ◦ (s − k(m − 1), t − k(m − 1)) = (q, k + 1)σ̂

for some q ∈ [k], in contradiction to the fact it was a
Gaux↑ (k + 1, M̃k+1).

Case 2: σ ′ �= τ ′. Since σ ′, τ ′ ∈ Cm+1 we have by
assumption d∞(σ ′, τ ′) � d , and note that for all j satisfying
j � k(m − 1) or j > km + 1, it holds that σ(j) = σ ′(j) and
τ (j) = τ ′(j). Hence there exists j , k(m − 1) < j � km + 1,
such that

|σ(j)− τ (j)| < d but
∣
∣σ ′(j)− τ ′(j)

∣
∣ � d.

Note particularly, since for all k(m − 1) < j � km it holds
that σ ′(j) = σ0(j) = τ ′(j), that we have

∣
∣σ ′(km + 1)− τ ′(km + 1)

∣
∣ � d.

Denote x = σ ′(km + 1), y = τ ′(km + 1), and note that

{σ(j)}km+1
j=k(m−1)+1 = {ai }ki=1 ∪ {x} ;

{τ (j)}km+1
j=k(m−1)+1 = {ai }ki=1 ∪ {y} ,

where {ai }ki=1 is a congruence class modulo d of [n], of which
x, y are not members.

Let s = σ−1(x) and denote a = τ (s). Since

|x − a| = |σ(s)− τ (s)| � d∞(σ, τ) < d

we have a �= y. Let t = σ−1(a). Since a ∈ {ai }ki=1 is a
congruence class modulo d , for all b ∈ {ai }ki=1\{a} we observe
|a − b| � d , but

|a − τ (t)| = |σ(t)− τ (t)| � d∞(σ, τ) < d

and therefore τ (t) = y. For all j �∈ {s, t} satisfying
k(m − 1) < j � km + 1 we then have σ(j) ≡ τ (j) (mod d)
and |σ(j)− τ (j)| � d∞(σ, τ) < d , hence σ(j) = τ (j).

This implies that, if we again let σ̂ , τ̂ ∈ Sk+1 be the per-
mutations in the Gaux↑ generated similarly to σ, τ respectively,
then

τ̂ = σ̂ ◦ (s − k(m − 1), t − k(m − 1)) = (q, k + 1)σ̂

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5781

Fig. 2. Construction A as demonstrated in the case d = 3, k = 2.

where q is given by a = aq ∈ {ai }ki=1, again contradicting the
properties of a Gaux↑ (k + 1, M̃k+1). Hence Cm has minimal
�∞-distance of at least d , as required.

Example 19: We complete Example 17 into a G↑(6, 32 ·
2, 3) code by applying the recursion step twice. In each step,
since k = 2, we utilize the trivial parity-preserving Gaux↑ (3, 3)
code generated by the sequence t↑3, t↑3, t↑3.

Firstly, recall that we used

σ0 = [4, 1, 5, 2, 6, 3] ∈ S6,

and the sequence t5↑6, t5↑6 generates

C3 = ([4, 1, 5, 2, 6, 3] , [4, 1, 5, 2, 3, 6]) .

We build C2 by exchanging each t5↑6 transition by t3↑6
followed by 2 instances of t2+1↑2+3 = t3↑5; the middle level
of Figure 2 shows the resulting code.

Secondly, as seen in the same figure, each t3↑ j transition of
C2, j ∈ {5, 6}, can be replaced by t1↑ j = t↑ j , followed by 2
instances of t0+1↑0+3 = t↑3, to generate C1.

Note that C3 ⊆ C2 ⊆ C1, and that they are G5↑(6, 2, 3),
G3↑(6, 6, 3) and G↑(6, 18, 3) codes, respectively. �

We now describe the changes needed in Construction A to
allow general n and d parameters. We first consider n not
necessarily being a multiple of d , but still n � 2d . For all
i ∈ [d], let

Ri = {i, i + d, i + 2d, . . . , n − ((n − i) mod d)} ,
be the i th congruence class modulo d of [n]. Then

|Ri | =
{⌈ n

d

⌉
1 � i � (n mod d),

⌊ n
d

⌋
(n mod d) < i � d.

We define the starting permutation

σ0 = [R1|R2| . . . |Rd] ∈ Sn,

to be comprised of a concatenation of the congruence
classes, where the order of elements within the congruence
class is arbitrary. Additionally, the recursion base uses a
G↑(|Rd | , |Rd |!). As for the recursion step of constructing Cm

from Cm+1, we can still apply it with the following changes:

• We choose Gaux↑ (|Rm | + 1, M̃|Rm |+1).

• We use push operations to position 1+∑m−1
i=1 |Ri |.

We obtain C1 which is a G↑ (n, M, d), where

M = M̃�n/d�+1
n mod d · M̃�n/d�+1

d−(n mod d)−1 ·
⌊n

d

⌋
!.

Finally, we discuss the special case of n < 2d , in which
all but (n mod d) congruence classes are singletons. We will
amend our construction by replacing the recursion base with

Cm =
{
σ0, t2m−1↑2m+1σ0, t2m−1↑2m+1

2σ0

}
,

where m = n mod d , and continuing the recursion step as
discussed above. Thus, we are effectively only using the
first member of Rm+1 together with the previous congruence
classes, fixing σ0(j) for j > 2m + 1. In this case, we obtain
C1 which is a G↑(n, 3n mod d , d).

Thus, in what follows, whenever we mention Construc-
tion A, we refer to its most general version applying to all
n and d .

B. Code-Size Analysis and Comparison

We would like to give an explicit expression for the size of
the codes constructed by Construction A. This would enable
a comparison with previously known results.

Lemma 20: Let C1 be the code from (the general version
of) Construction A. Then its size, |C1|, is given by (2), as
shown at the bottom of the next page.

Proof: Let us first assume n � 2d . We note the asymmetry
in Construction A between congruence classes Ri of odd and
even sizes. Indeed, a class of size |Ri | = k � 2 (for all classes
other than Rd , which is used in the recursion base and whose
contribution is based on the G↑(k, k!) code) contributes to the
code size, according to Corollary 15, a multiplicative factor of

M̃k+1 =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

8 k = 3;
57 k = 4;
178 k = 5;
(k+1)!

2 4 �= k ≡ 0 (mod 2);
ρk+1

(k+1)!
2 5 < k ≡ 1 (mod 2),

where, again, ρk+1 > k−2
k+1 .

It is therefore important to note that when
⌊ n

d

⌋ ≡ 0
(mod 2), [n] has (n mod d) congruence classes modulo d of
odd size

⌈ n
d

⌉
, and d − (n mod d) classes of even size

⌊ n
d

⌋
.

5782 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

Thus, if additionally
⌊ n

d

⌋
> 4, the constructed code C1 is of

size

|C1| =
(

ρ�n/d�+1
(�n/d� + 1)!

2

)n mod d

·
⌊n

d

⌋
!

·
(

(�n/d� + 1)!
2

)d−(n mod d)−1

,

and simple rearranging gives us the first case of (2). Similar
considerations give us the next five cases of (2).

Finally, we consider the case of n < 2d , which implies⌊ n
d

⌋ = 1. In this special case we only permute (n mod d) =
(n − d) congruence classes of [n], (and each such class has
2 = ⌊ n

d

⌋+ 1 elements). As mentioned, we therefore construct
a code of size |C1| = 3n mod d .

We comment that it is also possible to achieve a slight gain
in code size by reordering σ0 so that the last block consists
of a congruence class of odd size, rather than even, where the
added complexity of index calculation is inconsequential. The
gains are negligible for large enough n.

We now turn to comparing the size of the resulting code
with that of previously constructed codes, as well as known
bounds on the cardinality of such codes.

The first comparison we make is with codes that have the
Gray property. Such codes were only studied for d = 2, i.e.,
snake-in-the-box codes or G↑(n, M, 2) codes in our notation.
These codes were studied in [44, Th. 24], where it was shown
that such codes can be constructed with sizes

M =
⌈n

2

⌉
!
(⌊n

2

⌋
+

(⌊n

2

⌋
− 1

)
!
)

.

Construction A improves this size by a factor of
1
2

(⌈ n
2

⌉+ 1
) ⌊n

2

⌋
, times a factor of ρ�n/2�+1 when n ≡ 2

(mod 4) (in the case of n ≡ 1 (mod 4), the factor ρ�n/2�+1 is
eliminated by changing the order of congruence classes in σ0).
We note that a similar improvement was made concurrently
by [42] in a preprint devoted solely to the case of d = 2, i.e.,
snake-in-the-box codes.

We now also compare our results to error-correcting codes
with the �∞-metric which are not necessarily Gray codes
(LMRM-codes). We observe that the best known general
LMRM-code construction to date, [39, Cst. 1, Th. 2] and
[27, Sec. III-A], presented (n, M, d)-LMRM codes with sizes

M =
⌈n

d

⌉
! n mod d ⌊n

d

⌋
! d−(n mod d)

,

which our construction improves upon, more pronouncedly the
more [n] has even-sized congruence classes modulo d (cf. (2)).

Finally, we also note the following lemma:
Lemma 21 [39, Th. 16]: If C ⊆ Sn is a code with minimal

�∞ distance d , then

|C| � n!
(d!)�n/d� (n mod d)!

We remark that in the case of d = 2, [44] confirmed that
the optimal size of error-correcting codes for n = 4, 5, 6 to
be 6, 30, 90 respectively, meeting the bound of Lemma 21.
It also presented Gray codes achieving these sizes by computer
search. Searches in higher dimension were reported unfeasible.
For higher values of d , the optimal size is unknown, as well
as whether Gray codes can achieve it. While the reader can
appreciate that the bound of Lemma 21 is exponentially greater
than the size provided by Lemma 20, we note anecdotally that
the G↑(6, 18, 3) code presented in Example 19 almost meets
the bound (M � 20).

In the asymptotic regime, we go on to examine the case of
d = �(n). For an (n, M, d)-LMRM code (and in particular a
G↑(n, M, d)), we follow the convention (e.g., [39]) of defining
the rate of the code

R = 1

n
log2 M,

and its normalized distance

δ = d

n
.

The following were proven in [39].
Lemma 22 [39, Th. 23]: For any (n, M, nδ)-LMRM code

it holds that

R � 2− 2δ

⌊
1

δ

⌋
−

(
δ

⌊
1

δ

⌋
− δ

)
log2(δ)

−
(

1+ δ − δ

⌊
1

δ

⌋)
log2

(
1+ δ − δ

⌊
1

δ

⌋)
+ o(1).

Lemma 23 [39, Th. 27]: For any 0 < δ � 1 the
construction of [39, Cst. 1, Th. 2] and [27, Sec. III-A] yields
codes with

R =
(

1− δ

⌊
1

δ

⌋)
log2

(⌈
1

δ

⌉
!
)

+
(

δ + δ

⌊
1

δ

⌋
− 1

)
log2

(⌊
1

δ

⌋
!
)

.

Previous works have also established the following lower
bound on achievable rates of error-correcting codes:

|C1| =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(⌈ n
d

⌉+ 1
)n mod d (⌊ n

d

⌋+ 1
)!d · ρ�n/d�+1

n mod d

2d−1(�n/d�+1)
4 <

⌊ n
d

⌋ ≡ 0 (mod 2),
(178

57

)n mod d · 57d−1 · 24
⌊ n

d

⌋ = 4,
(8

3

)n mod d · 3d−1 · 2 ⌊ n
d

⌋ = 2,
(⌈ n

d

⌉+ 1
)n mod d (⌊ n

d

⌋+ 1
)!d · ρ�n/d�+1

(d−1)−(n mod d)

2d−1(�n/d�+1)
5 <

⌊ n
d

⌋ ≡ 1 (mod 2),
(1260

89

)n mod d · (178)d · 120
178

⌊ n
d

⌋ = 5,
(

57
8

)n mod d · 8d · 3
4

⌊ n
d

⌋ = 3,

3n mod d
⌊ n

d

⌋ = 1.

(2)

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5783

Fig. 3. (a) The range of uncertainty for the Gilbert-Varshamov lower bound seen in Lemma 24. (b) The rate of codes from Lemma 23 constructed in [39].
(c) A lower bound for the rate of codes C1 from Construction A. (d) The upper bound of Lemma 22.

Lemma 24 (Gilbert-Varshamov): For any 0 < δ � 1 there
exist (n, M, d)-LMRM codes satisfying d

n � δ with rate R �
fGV(δ)− o(1), where �(δ) � fGV(δ) � ϕ(δ),

�(δ) =
{

log2
1
δ + 2δ

(
log2(e)− 1

)− 1 0 < δ � 1
2

−2δ log2
1
δ + 2(1− δ) log2(e)

1
2 < δ � 1,

ϕ(δ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

log2
1
δ + δ − 1 0 < δ � ρ

log2
1
δ + 2δ

(
log2(e)− 1

)

− log2
(
e log2(e)

)+ 1 ρ < δ � 1
2

log2

(
t̂(δ)

log2(e)

)
− t̂(δ) · (2δ − 1)

+ log2
1

1−δ
1
2 < δ � 1,

ρ = 2−log2(e log2(e))
3−2 log2(e)

, W (t) is the Lambert function, and

t̂(δ) = log2(e) ·
⎛

⎝2(1− δ)

2δ − 1
−W

⎛

⎝
(1− δ) · exp

(
2(1−δ)
2δ−1

)

2δ − 1

⎞

⎠

⎞

⎠.

Proof: We derive fGV from the Gilbert-Varshamov bound:

fGV(δ) = 1

n
log2

(
n!

∣∣Bδn,n
∣∣

)

= log2(n)− log2(e)−
1

n
log2(

∣
∣Bδn,n

∣
∣)+ o(1),

where
∣
∣Bδn,n

∣
∣ is the size of ball of radius δn in Sn , and is

independent of the center of the ball since the �∞ metric is
right-invariant, i.e., for all σ, π, τ ∈ Sn ,

d∞(σπ, τπ) = d∞(σ, τ).

Unfortunately, the asymptotic size of Bδn,n isn’t precisely
known as n →∞. Recently, however, [35] proved new lower

bounds on
∣
∣Bδn,n

∣
∣, namely:

n log2(n)− log2(
∣
∣Bδn,n

∣
∣)

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

n
[
log2

e
δ + δ − 1

]− o(n) 0 < δ � ρ

n
[
log2

e
δ + 2δ

(
log2(e)− 1

)

− log2
(
e log2(e)

)+ 1
]− o(n) ρ < δ � 1

2

n
[
log2

(
e·t̂(δ)

log2(e)

)

−t̂(δ) · (2δ − 1)+ log2
1

1−δ

]
− o(n) 1

2 < δ � 1.

An upper bound for
∣
∣Bδn,n

∣
∣ was established in [26, eq. (4)]

and [39, Lemma 25]:

n log2(n)− log2(
∣
∣Bδn,n

∣
∣)

�

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

n
[
log2

1
δ

+(2δ + 1)
(
log2(e)− 1

)]− o(n) 0 < δ � 1
2

n
[
(3− 2δ) log2(e)

−2δ log2
1
δ

]− o(n) 1
2 < δ � 1.

Deriving the lemma is now straightforward.
The works cited in Lemma 24 establish a narrow rate-range

for the Gilbert-Varshamov bound, as can be seen in Figure 3,
i.e., the true Gilbert-Varshamov bound passes somewhere
within the gray-shaded area in Figure 3.

Next, we aim to show that our construction can bridge some
of the gap between the given bounds and known constructions.

Lemma 25: Let C1 be the code from (the general
version of) Construction A. Then an estimate from below of
its rate R as a function of its normalized distance δ is given
by (3), as shown at the top of the next page.

Proof: The proof follows by a simple substitution of
(n mod d) = n − d

⌊ n
d

⌋
and d = nδ into (2). We also recall

that ρk > k−3
k .

In conclusion, these asymptotic rates and bounds are shown
in Figure 3. We note in particular that the rate of codes
produced by Construction A is strictly higher than that of pre-
viously known constructions (as in Lemma 23). Furthermore,

5784 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

R �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1− δ

⌊ 1
δ

⌋)
log2

(⌈1
δ

⌉+ 1
)+ δ log2

((⌊ 1
δ

⌋+ 1
)!)

+ (
1− δ

⌊1
δ

⌋)
log2

(�1/δ�−2
�1/δ�+1

)
− δ 4 < �1/δ� ≡ 0 (mod 2),

(1− 4δ)
(
log2(178)

)+ (5δ − 1) log2 (57) �1/δ� = 4,

(1− 2δ)
(
3− log2 (3)

)+ δ log2 (3) �1/δ� = 2,
(
1− δ

⌊ 1
δ

⌋)
log2

(⌈1
δ

⌉+ 1
)+ δ log2

((⌊ 1
δ

⌋+ 1
)!)

+ (
δ + δ

⌊ 1
δ

⌋− 1
)

log2

(�1/δ�−2
�1/δ�+1

)
− δ 5 < �1/δ� ≡ 1 (mod 2),

(1− 5δ) log2 (315)+ (6δ − 1) log2(89)+ 2− 9δ �1/δ� = 5,

(1− 3δ)
(
log2 (57)− 4

)+ 1 �1/δ� = 3,

(1− δ) log2(3) �1/δ� = 1.

(3)

it produces codes with rates higher than those guaranteed by
the Gilbert-Varshamov bound shown in Lemma 24 for all
δ greater than ≈ 0.1 except in a small neighborhood of 1

5 ,
whereas known constructions only bypassed these rates for δ
greater than ≈ 0.349.

V. DECODING ALGORITHM

This section is devoted to devising a decoding algorithm
capable of correcting a noisy received version of a transmitted
codeword.

Known constructions of (n, M, d)-LMRM codes, presented
in [39, Cst. 1, Th. 2] and [27, Sec. III-A], lend themselves to
straightforward decoding algorithms, efficiently done in O(n)
operations, since for any given codeword σ and index i ∈ [n],
r = [σ(i) mod d] is known. Hence, if a retrieved permutation
τ satisfies d∞(σ, τ) � �(d − 1)/2�, then σ(i) is known to
be the unique element k ∈ r + d� satisfying |k − τ (i)| �
�(d − 1)/2�.

Our proposed construction diverges from that rigid partition.
However, we can still efficiently decode noisy information,
provided errors of magnitude no more than t have occurred,
where 2t + 1 � d . More precisely, we assume that for every
stored permutation σ and retrieved permutation τ it holds that
d∞(σ, τ) � t � �(d − 1)/2�.

To simplify our presentation we assume n = kd , since
then our construction only makes (repeated) use of a single
auxiliary Gaux↑ (k + 1, M̃k+1) code. Extensions to the general
version of Construction A are easily obtainable.

We first require a function ValidAux capable of detecting
whether a given permutation π ∈ Sk+1 belongs to the auxiliary
Gaux↑ (k + 1, M̃k+1) code.

Lemma 26: For an auxiliary Gaux↑ (k + 1, M̃k+1) code pro-
vided by Lemma 7, Theorem 9 or Theorem 14, a function
ValidAux can be implemented to operate in O(k) steps.

Proof: If we use Lemma 7, then the auxiliary code consists
of all even permutations, and it is well known that we can
determine the signature of a permutation π ∈ Sk+1 in O(k)
operations, e.g., by finding a cycle decomposition of π . The
case of k + 1 = 5 requires special attention, as M̃5 = 57.
In fact, in that case [44] showed that a parity-preserving code
of size 57 exists consisting of

A5 \
{
σ, t↑3σ, t↑3

2σ
}

,

for every choice of σ ∈ A5. The user may arbitrarily decide
on σ , and check for the missing codewords in O(k).

If we instead use Theorem 9, then we know that the
vector notation of every codeword in the auxiliary code has 1
following k + 1 (cyclically). Since there are

|Sk+1|
k
= k! + (k − 1)! = k!

(
1 · k − 1

k
+ 2 · 1

k

)

such codewords, we observe that the auxiliary code consists
of precisely all permutations so characterized (when count-
ing valid permutations, we partition permutations on [k] by
whether the first index in their vector notation equals 1. If so,
we may insert k + 1 either at the beginning or the end
of their vector notation; otherwise, its position is uniquely
determined), i.e.,

π
(
(π−1(k + 1) mod (k + 1))+ 1

)
= 1,

which again requires O(k) steps to verify.
Finally, for Theorem 14 we note that the problem can equiv-

alently be solved for the codes of Lemma 13, as composition
with π̃ can be done in O(1) steps with a simply implemented
rule, or naively in at most O(k) steps. If we divide into cases
according to π(k+1) = j we may identify r such that π must
belong to Pr , or not belong to our code. For values j = 1, k,
we know π can only be a bridge; For j = k + 1, it must
belong to P ′0. In these cases, only cyclic shifts (on a subset
of indices, by case) of a known permutation are valid, which
we can easily verify in linear time. For all other elements Pr

consists of all even permutations satisfying π(k + 1) = j ,
hence the problem again reduces to determining sign π , as in
the case based on Lemma 7 (or managed as discussed above
for k = 5).

An important notion of a window will be useful. Let σ ∈ Sn

be a permutation, n = kd . For all j ∈ [d] we define the j th
window as the set of indices

W j = {k(j − 1)+ 2, k(j − 1)+ 3, . . . , k j + 1} ∩ [n].
The windows partition [n] \ {1}, and are all of size k except
Wd which is of size k − 1.

Given a set I ⊆ [n], we conveniently denote

σ(I) = {σ(i) | i ∈ I } .
We prove a simple lemma concerning properties of windows
of codewords from Construction A.

Lemma 27: Let σ be a codeword of C1 from
Construction A, with n = kd . Then for all j ∈ [d],

k − 1 �
∣
∣σ(W j) ∩R j

∣
∣ � k,

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5785

i.e., at most one element of σ(W j) does not leave a residue
of j modulo d . In particular, σ(Wd) ⊆ Rd .

Additionally, if
∣
∣σ(W j) ∩R j

∣
∣ = k−1, j ∈ [d−1], and we

denote {x} = σ(W j) \R j , then there exists some j ′ > j such
that x ∈ R j ′ .

Proof: Take any 1 < j ∈ [d], and let σ j be the
C j -parent of σ . Then, in C1, no transition between σ and σ j is
induced by C j , and hence σ j is derived from σ by a (perhaps
empty) sequence of t↑i ′ transitions, for i ′ ∈ W1 ∪ · · · ∪W j−1.
Therefore, for all i ∈ W j ∪· · ·∪Wd we have σ j (i) = σ(i), and
the same also holds for j = 1 (since σ1 = σ). In particular,
σ(W j) = σ j (W j).

Now, since C j only applies “push-to-the-
k(j − 1)+ 1st-index” transitions, and

σ0
({k(j − 1)+ 1} ∪W j ∪ · · · ∪Wd

) = R j ∪ · · · ∪Rd ,

if for any i ∈ W j we have σ(i) = σ j (i) �∈ R j , then by
necessity σ(i) ∈ R j ′ for some j ′ > j . In particular, σ(Wd) ⊆
Rd .

For all j ∈ [d−1], we also consider σ j+1, the C j+1-parent
of both σ and σ j . Since C j+1 only applies “push-to-the-k j +
1st-index” transitions,

σ j+1
(
({k(j − 1)+ 1} ∪W j) \ {k j + 1})

= σ0
(
({k(j − 1)+ 1} ∪W j) \ {k j + 1}) = R j .

Finally, since σ j+1 is derived from σ j by a sequence of
tk(j−1)+1↑i ′ transitions for i ′ ∈ W j , it follows that

σ j+1
({k(j − 1)+ 1} ∪W j

) = σ j
({k(j − 1)+ 1} ∪W j

)

thus

σ j (W j) ⊆ σ j+1
({k(j − 1)+ 1} ∪W j

)

= R j ∪
{
σ j+1(k j + 1)

}
.

Noting that
∣
∣σ j (W j)

∣
∣ = ∣

∣R j
∣
∣ = k and recalling that σ(W j) =

σ j (W j), we are done.
Corollary 28: Let σ be a codeword of C1 from Construc-

tion A, with n = kd . Then for each j ∈ [d], there is a unique
element xσ

j ∈ R j ∪ · · · ∪Rd satisfying

σ(W j ∪ · · · ∪Wd) = R j ∪ · · · ∪Rd \
{

xσ
j

}
.

Proof: The proposition follows from Lemma 27 for j = d
since |σ(Wd)| = |Wd | = k−1 � |Rd ∩ σ(Wd)|. Now suppose
the proposition holds for j+1, and we prove that it holds for j .

We again observe by Lemma 27 that |R j ∩ σ(W j)| ∈
{k − 1, k}. If |R j ∩ σ(W j)| = k, since |σ(W j)| = |W j | = k,
then R j = σ(W j) and xσ

j = xσ
j+1 satisfies the claim.

Otherwise σ(W j) \ R j = {y} for some y ∈ [n]; it would
suffice to show y = xσ

j+1, since then R j \ σ(W j) = {xσ
j }

would satisfy the claim.
Consider then σ j , the C j -parent of σ . Note that σ j (W j) =

σ(W j), and since C j employs “push-to-the-(k(j − 1)+ 1)st-
index” transitions only, and

σ0(W j ∪ · · · ∪Wd) ⊆ R j ∪ · · · ∪Rd ,

we know that σ(W j) ⊆ R j ∪ · · · ∪ Rd . We now use the
induction hypothesis

σ(W j+1 ∪ · · · ∪Wd) = (R j+1 ∪ · · · ∪Rd
) \

{
xσ

j+1

}
,

and it follows that σ(W j) ⊆ R j ∪
{

xσ
j+1

}
, hence y = xσ

j+1.

From now on, we denote iσ
j = σ−1(xσ

j). Another useful
notation we shall employ is a function that quantizes any
integer to the nearest integer leaving a residue of j modulo d .
We denote this function by q j

d : �→ d�+ j , defined by

q j
d (a) = argmin

b∈d�+ j
|a − b| ,

where we assume argmin returns a single value, and ties are
broken arbitrarily.

For the decoding procedure description, let us fix the
parameters n = kd , and the code C1 from Construction A.
Additionally, we denote by σ ∈ C1 the transmitted permu-
tation, by τ ∈ Sn the received permutation, and by σ̂ ∈ Sn

the decoded permutation. We denote the decoding radius by
t = �(d − 1)/2�, and assume d∞(σ, τ) � t .

We will decode τ iteratively by window, from W1 to Wd . We
shall make sure–inductively–that when we begin the process
of decoding W j , for some j ∈ [d], we know iσ

j . Initially, as
mentioned, we set j = 1. Trivially, iσ

1 = 1.
Step I: We set the decoding window

Ŵ j = W j ∪
{

iσ
j

}
,

and naively decode Ŵ j by setting for all i ∈ Ŵ j ,

σ̂ (i) = q j
d (τ (i)).

Lemma 29: After Step I, for all i ∈ Ŵ j such that σ(i) ∈ R j

it holds that σ̂ (i) = σ(i).
Proof: For all such i we have σ̂ (i) ≡ σ(i) (mod d) and
∣
∣σ̂ (i)− σ(i)

∣
∣ �

∣
∣σ̂ (i)− τ (i)

∣
∣+ |τ (i)− σ(i)|

=
∣
∣
∣q j

d (τ (i))− τ (i)
∣
∣
∣+ |τ (i)− σ(i)|

� �d/2� + t < d.

Corollary 30: After Step I,

σ̂ (Ŵ j) = σ̂
(

Ŵ j \
{

iσ
j+1

})
= R j .

Proof: By Corollary 28 we know that R j ⊆ σ
(

Ŵ j

)
. We

further recall that σ(iσ
j+1) �∈ R j , hence

R j ⊆ σ
(

Ŵ j \
{

iσ
j+1

})
,

and since
∣
∣
∣σ

(
Ŵ j \

{
iσ

j+1

})∣∣
∣ =

∣
∣
∣Ŵ j \

{
iσ

j+1

}∣∣
∣ = k = ∣

∣R j
∣
∣

we have equality. The claim now follows from
Lemma 29.

Corollary 30 implies that after Step I, σ̂ (Ŵ j) contains a
unique element of R j which appears twice, and every other
element appears exactly once; by Lemma 29 these other
elements have been decoded correctly. Before we can continue
inductively to decode W j+1, it only remains to find iσ

j+1; the

other instance in Ŵ j of σ̂ (iσ
j+1) we therefore also know to

have been decoded correctly.

5786 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

We shall identify iσ
j+1 using Caux, the auxiliary

Gaux↑ (k + 1, M̃k+1) code used in Construction A.
By construction, if we examine σ j , the C j -parent of σ ,
then for all i ∈ W j we observe σ(i) = σ j (i), and
σ(iσ

j) = σ j (k(j − 1)+ 1). The ordering of the k+ 1 elements

of σ(Ŵ j) = σ j
({k(j − 1)+ 1} ∪W j

)
is then induced by a

permutation of Caux. We construct this induced permutation
from the auxiliary code Caux, which we denote π̂ ∈ Sk+1.
We first define a simple bijection α j : R j → [k], which is
the inverse of the enumeration of R j given by the arbitrary
initial order of elements in σ0 used in Construction A, e.g.,
in the simple case n = kd ,

α j (m) =
{⌊m

d

⌋
j < m ∈ R j ,

k m = j.

With α j we define π̂ as,

π̂(i) =
{

α j (σ̂ (iσ
j)) i = 1;

α j (σ̂ (k(j − 1)+ i)) i ∈ {2, 3, . . . , k + 1} ,
and note that–as it currently stands–π̂ is not a permutation of
[k + 1] because its range is [k] and some unique a ∈ [k] has
two distinct pre-images.

Theorem 31: Let s, t ∈ [k+1] be the unique pair of indices
such that π̂(s) = π̂(t) = a ∈ [k]. There is a unique way to
re-define π̂ �{s,t} (the restriction of π̂ to {s, t}) as a bijection
onto {a, k + 1} that yields π̂ ∈ Caux. Furthermore, if we define
I j : [k + 1] × [n] → [n] by

I j (q, r) =
{

r q = 1,

k(j − 1)+ q otherwise

then after performing that correction

iσ
j+1 = I j (π̂

−1(k + 1), iσ
j).

Proof: First, arbitrarily set π̂(t) = k + 1, where t > s.
Once corrected, π̂ ∈ Sk+1 by Corollary 30 and because α j :
R j → [k] is a bijection.

Now, we take π ∈ Caux which generates σ j in the recursion
step of Construction A–while constructing C j –from its C j+1-
parent. Hence

π(i) =
{

α j (xσ
j) i = 1,

α j (σ (k(j − 1)+ i)) i ∈ {2, 3, . . . , k + 1} ,
and therefore either π̂ = π or π̂ = (k + 1, a) ◦ π . Crucially,
we observe that in the latter case π̂ �∈ Caux since Caux is a
Gaux↑ (k+1, M̃k+1) code and π ∈ Caux; we utilize ValidAux
to discover whether our original arbitrary correction should be
reversed.

To complete the proof, we note by the recursion step of
Construction A that, indeed, iσ

j+1 = I j (π
−1(k + 1), iσ

j).
We can therefore complete our iterative decoding round with

the following step.
Step II: We construct π̂ as described, identify s, t , s < t ,

and arbitrarily correct π̂(t) = k+1. We test ValidAux(π̂): if
true, we have iσ

j+1 = I j (t, iσ
j); otherwise, it holds that iσ

j+1 =
I j (s, iσ

j).

Finally, observe that when decoding Wd it’s known that
σ(Ŵd) = Rd , hence by Lemma 29 Ŵd is decoded correctly,
and we need not (and–indeed–cannot) perform Step II.

Example 32: We shall demonstrate the decoding process
assuming once again n = kd for simplicity, and using the
parameters d = 3 (hence t = 1), k = 2 and code constructed
in Example 19. Recall that the Gaux↑ (3, 3) code used in that
example is

Caux = {[1, 2, 3] , [3, 1, 2] , [2, 3, 1]} .
We choose the transmitted codeword σ = [1, 2, 4, 6, 5, 3], and
a noisy received permutation τ = [1, 3, 4, 5, 6, 2].

We start by defining i1 = 1 and observing (by abuse of
the vector notation) τ �Ŵ1

= [1; 3, 4] (the first element is
differentiated because–generally although never when j = 1–it
does not immediately precede the rest in τ ’s vector notation).

Since j = 1, we define σ̂ �Ŵ1
= [1; 4, 4]. This leads us

to construct π̂ = [2, 1, 3] �∈ Caux, so we instead correct π̂ =
[2, 3, 1] and define i2 = 2. (So far we have σ̂ = [

1, 4, 4, ·, ·, ·],
where an underline marks iσ

j+1.)
Next, we have τ �Ŵ2

= [3; 5, 6], which (j = 2) we decode
σ̂ �Ŵ1

= [2; 5, 5]. This again generates π̂ = [2, 1, 3] �∈ Caux,
and we correct in similar fashion to π̂ = [2, 3, 1] and define
i2 = 4. (Up to this point, we have σ̂ = [

1, �42, 4, 5, 5, ·]).
Finally, we have τ �Ŵ3

= [5; 2] and since j = 3 we decode
σ̂ �Ŵ1

= [6; 3], and overall σ̂ = [
1, 2, 4, �56, 5, 3

] = σ . �
Example 33: We present another example, intended to

demonstrate the process in more detail, for which we depart
from the parameters used in Example 19 by setting d = 5
(allowing for t = 2 � �(d − 1)/2�), k = 3. In each recursion
step of Construction A the Gaux↑ (4, 8) code used is Caux

presented in Example 10.
The codeword

σ = [11, 1, 8, 6, 7, 2, 12, 13, 3, 5, 9, 14, 4, 10, 15]

appears in the code generated in this case, as can be seen by
identifying its C5, C4, C3, and C2 parents as, respectively,

σ5 = [6, 11, 1, 7, 12, 2, 8, 13, 3, 9, 14, 4, 5, 10, 15] ,

σ4 = [6, 11, 1, 7, 12, 2, 8, 13, 3, 5, 9, 14, 4, 10, 15] ,

σ3 = σ4,

σ2 = [6, 11, 1, 8, 7, 2, 12, 13, 3, 5, 9, 14, 4, 10, 15] .

We choose

τ = [12, 3, 9, 7, 5, 2, 11, 15, 1, 6, 8, 13, 4, 10, 14]

to be the noisy version of the transmitted codeword σ , and
verify that d∞(τ, σ) = 2 = t .

Beginning with j = 1, we have τ �Ŵ1
= [12; 3, 9, 7], which

we decode σ̂ �Ŵ1
= [11; 1, 11, 6], generating π̂ = [2, 3, 2, 1]

which is corrected to π̂ = [2, 3, 4, 1] ∈ Caux. We identify
i2 = 3, and keep

σ̂ = [
11, 1, 11, 6, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·, ·] .

Next, for j = 2, observe that τ �Ŵ2
= [9; 5, 2, 11], and we

decode σ̂ �Ŵ2
= [7; 7, 2, 12]. This generates π̂ = [1, 1, 3, 2],

which we initially correct to π̂ = [1, 4, 3, 2] �∈ Caux, so (skip

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5787

Function Decode (τ)

input : τ ∈ Skd satisfying d∞(τ, C1) � t � �(d − 1)/2�.
output: σ̂ ∈ C1 such that d∞(τ, σ̂) � t .

1 i ← 1
2 for j = 1, 2, . . . , d − 1 do

/* Naively decode Ŵ j */

3 σ̂ (i)← q j
d (τ (i))

4 π̂(1)← α j (σ̂ (i))
5 for r = 2, . . . , k + 1 do
6 m← q j

d (τ (k(j − 1)+ r))
7 if σ̂−1(m) is already set then
8 π̂(r)← k + 1
9 a← α j (m)

10 else
11 π̂(r)← α j (m)

12 σ̂ (r)← m

/* Define i j+1 */
13 if ValidAux(π̂) then
14 i ← I (π̂−1(k + 1), i)

15 else
16 i ← I (π̂−1(a), i)

/* Decode Ŵd */
17 σ̂ (i)← qd

d (τ (i))
18 for r = 2, . . . , k do
19 σ̂ (r)← q j

d (τ (k(d − 1)+ r))

20 return σ̂

correcting π̂ , as it has no further consequence) i3 = i2 = 3
instead of i3 = 4. We summarize

σ̂ = [
11, 1,��117, 6, 7, 2, 12, ·, ·, ·, ·, ·, ·, ·, ·] .

We turn to Ŵ3 and see that τ �Ŵ3
= [9; 15, 1, 6], decoded to

σ̂ �Ŵ3
= [8; 13, 3, 8]. We generate π̂ = [1, 2, 3, 1] and correct

it to π̂ = [1, 2, 3, 4] ∈ Caux, indicating that i4 = 10. We now
have

σ̂ = [
11, 1, �78, 6, 7, 2, 12, 13, 3, 8, ·, ·, ·, ·, ·] .

Moving on to j = 4, while decoding Ŵ4 we note
τ �Ŵ4

= [6; 8, 13, 4], which we decode as σ̂ �Ŵ4
= [4; 9, 14, 4].

This generates π̂ = [3, 1, 2, 3] which is corrected to π̂ =
[3, 1, 2, 4] �∈ Caux. We therefore define i5 = i4 = 10 instead
of i5 = 13. Up to now,

σ̂ = [
11, 1, 8, 6, 7, 2, 12, 13, 3, �84, 9, 14, 4, ·, ·] .

Finally, j = 5, and we get τ �Ŵ5
= [4; 10, 14] which we

decode to σ̂ �Ŵ5
= [5; 10, 15], and overall

σ̂ = [
11, 1, 8, 6, 7, 2, 12, 13, 3,�45, 9, 14, 4, 10, 15

] = σ.

�
The decoding algorithm is formalized in Decode(τ). With

appropriate simple data structures, the algorithm requires
O(kd) = O(n) steps. We assume simple integer operations
to take constant-time.

VI. RANKING AND UNRANKING

In this section we discuss the process of encoding data
m ∈ {0, 1, . . . , |C1| − 1} to a codeword σ ∈ C1, which is also
known as unranking m, and the inverse process of ranking
σ ∈ C1, i.e., obtaining its rank in the code. Throughout this
section, C1 stands for the code obtained via Construction A.

Due to the nature of our construction, performing these tasks
with the codes generated by Theorem 18 is reliant on our
ability to do the same with the codes provided by Lemma 8
and Corollary 15. We therefore recall the following known
result.

Lemma 34 [23]: The complete G↑(n, n!) codes provided
by Lemma 8 has a ranking algorithm operating in O(n) steps,
and an unranking scheme operating in O(n2) steps.

This gives rise to the following corollary.
Corollary 35 The Gaux↑ (2m, |S2m |

2m−1) codes generated by
Theorem 9 can be ranked in O(m) operations and unranked
in O(m2) operations.

Proof: Ranking a permutation σ in the code may proceed
by finding the cyclic shift required for [2m, 1] to be the first
two elements. After removing these two first elements, and
then reversing the permutation we may use a ranking algorithm
from Lemma 34. A simple combination of the results gives
the required ranking of σ . By Lemma 34, the entire proce-
dure takes O(m) operations. A symmetric argument gives an
O(m2) algorithm for unranking.

Unfortunately, no ranking and unranking schemes are
known for parity-preserving G↑(2m + 1, M2m+1) codes pro-
vided by Lemma 7 (developed in [20]), or previous construc-
tions presented in [22] and [45]. Consequentially, we rely on
Theorem 9 instead of Theorem 14 for even sized congruence
classes. In the case of odd sized classes, we can leverage the
following codes.

Lemma 36 [44]: For all m � 1 there exist parity-
preserving G↑(2m + 1, M̂2m+1) codes with sizes

M̂2m+1 =
(

(2m)!
m!

)2 (2m + 1)

22m
= (2m)!

m!222m
|S2m+1| .

These codes can be ranked and unranked in O(m2) operations.
We summarize those observations in the following

corollary.
Corollary 37: For all k � 3 there exist a Gaux↑ (k, M̂k) code,

which have ranking and unranking schemes operating in O(k2)
steps, where

M̂k =
{

(k−1)!
((k−1)/2)!22k−1 k! k ≡ 1 (mod 2);

k!
(k−1) k ≡ 0 (mod 2).

Note that we can now replace Corollary 15 by Corollary 37
in Construction A to obtain codes which we shall denote Ĉ1,
and each auxiliary code on a congruence class of size k > 1
contributes to

∣
∣
∣Ĉ1

∣
∣
∣ a multiplicative factor of

M̂k+1 =
{

k!
(k/2)!22k (k + 1)! k ≡ 0 (mod 2),
(k+1)!

k k ≡ 1 (mod 2).

5788 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

We also note, using Stirling’s approximation

e
1

12n+1 <
n!en

nn
√

2πn
< e

1
12n ,

that

k!
(k/2)!22k >

√
2

πk

(

e
1− 1

4+ 1
3k

)− 1
3k

>

√
2

πk
e−1/(4k).

We can then recalculate code size, in the case of
⌊ n

d

⌋ ≡ 0
(mod 2):

∣
∣
∣Ĉ1

∣
∣
∣ =

(
(�n/d� + 1)!
�n/d�

)n mod d

·
⌊n

d

⌋
!

·
(�n/d�!

(�n/d� /2)!22�n/d�
(⌊n

d

⌋
+ 1

)
!
)d−(n mod d)−1

>
⌈n

d

⌉
! n mod d ⌊n

d

⌋
! d−(n mod d)

·
(

1+ 1

�n/d�
)n mod d

·
(⌊n

d

⌋
+ 1

)(d−1)−(n mod d)

·
(√

2

π �n/d�e
−1/(4�n/d�)

)(d−1)−(n mod d)

,

and when
⌊ n

d

⌋ ≡ 1 (mod 2):

∣
∣
∣Ĉ1

∣
∣
∣ =

(�n/d�!
(�n/d� /2)!22�n/d�

(⌈n

d

⌉
+ 1

)
!
)n mod d

·
⌊n

d

⌋
! ·
(

(�n/d� + 1)!
�n/d�

)d−(n mod d)−1

>
⌈n

d

⌉
! n mod d ⌊n

d

⌋
! d−(n mod d)

·
(⌈n

d

⌉
+ 1

)n mod d ·
(

1+ 1

�n/d�
)(d−1)−(n mod d)

·
(√

2

π �n/d�e
−1/(4�n/d�)

)n mod d

,

and we note that in the special case
⌊ n

d

⌋ = 1 we have∣∣
∣Ĉ1

∣∣
∣ = |C1|.

We likewise observe the rates of codes based on
Corollary 37, and find for �1/δ� ≡ 0 (mod 2)

R̂ �
(

1− δ

⌊
1

δ

⌋)
log2

(⌈
1

δ

⌉
!
(

1+ 1

�1/δ�
))

+
(

δ + δ

⌊
1

δ

⌋
− 1

)
log2

((⌊
1

δ

⌋
+ 1

)
!
)

− 1

2

(
δ + δ

⌊
1

δ

⌋
− 1

)

·
(

log2

⌊
1

δ

⌋
+ log2(e)

2 �1/δ� + log2(π)− 1

)
− o(1),

Function Rank (σ)

input : σ ∈ Ĉ1.
output: m ∈

{
0, 1, . . . ,

∣∣
∣Ĉ1

∣∣
∣− 1

}
which is the rank of σ

in Ĉ1.
/* Build a permutation πd ∈ Sk */

1 for i ∈ Wd do
2 πd [i − k(d − 1)] ← αd (σ [i])
3 πd [1] ← [k] \ πd [2, . . . , k]
4 m ← ((RankComplete(πd)− 1) mod k!)
5 for j = d − 1, . . . , 1 do

/* Build a permutation π j ∈ Sk+1 */
6 for i ∈ W j do
7 π j [i − k(j − 1)] ← α j (σ [i])
8 π j [1] ← [k + 1] \ π j [2, . . . , k + 1]
9 m ← m · M̂k+1 +

(
(RankAux(π j)− 1) mod M̂k+1

)

10 return (m + 1) mod
∣
∣
∣Ĉ1

∣
∣
∣

and for �1/δ� ≡ 1 (mod 2)

R̂ �
(

1− δ

⌊
1

δ

⌋)
log2

((⌈
1

δ

⌉
+ 1

)
!
)

+
(

δ + δ

⌊
1

δ

⌋
− 1

)
log2

(⌊
1

δ

⌋
!
(

1+ 1

�1/δ�
))

− 1

2

(
1− δ

⌊
1

δ

⌋)

·
(

log2

⌈
1

δ

⌉
+ log2(e)

2 �1/δ� + log2(π)− 1

)
− o(1).

The losses in asymptotic rate are shown in Figure 4. We
observe in particular that we still manage to achieve better
rates than previously known error-correcting codes (with-
out the Gray property), even with the significantly smaller
Gaux↑ (k, M̂k) of Corollary 37.

Let us denote by RankComplete(π),
UnrankComplete(m) the ranking and unranking
procedures for the complete codes from Lemma 34.
Additionally, let RankAux(π) and UnrankAux(m) denote
the ranking and unranking procedures for the auxiliary codes
of Corollary 37. We can readily take advantage of Ĉ1’s tiered
structure to use these functions in order to perform the same
tasks for our construction. We include pseudo-code for these
algorithms, which we call Rank(σ) and Unrank(m), for
completeness. As before, we assume n = kd to simplify the
presentation.

Theorem 38: For the code Ĉ1 of length n = kd , the
algorithms Rank(σ), Unrank(m) operate in O(k2d) steps.

Proof: Both algorithms perform a single loop over
all indices of σ , making simple integer operations, which
requires O(n) steps. They also make a call to one of
RankComplete(π), UnrankComplete(m) and (d − 1)
calls to one of RankAux(π), UnrankAux(m), costing O(k2)
operations each.

We also note in particular that in the regime d = �(n), we
have k = �(1), and Theorem 38 yields linear run-time O(n).

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5789

Fig. 4. (a) The rate of codes from Lemma 23 constructed in [39]. (b) The rate of codes C1 from Construction A. (c) The rate of codes Ĉ1 constructed using
auxiliary codes from Corollary 37.

VII. SNAKE-IN-THE-BOX CODES IN S2m+2

As mentioned before in Section III, the issue of asymmetry
between “push-to-the-top” codes in the symmetric group of
odd and even orders has also frustrated research into error-
detecting codes under the Kendall τ -metric in the past.

The Kendall τ -metric [25] on Sn is defined as

dK(σ, τ) = |{(i, j) | σ(i) < σ(j)∧ τ (i) > τ(j)}| .
Informally, as noted in [24], it measures the minimal number
of adjacent transpositions required to transform one permuta-
tion into the other, that is, the minimal r such that

σ = τ ◦ (i1, i1 + 1) ◦ (i2, i2 + 1) ◦ . . . , ◦(ir , ir + 1)

for some i1, i2, . . . , ir ∈ [n − 1]. An (n, M,K)-snake, or
K-snake for short, is a single-error-detecting rank-modulation
Gray code of size M , or more formally, a G↑(n, M) code C
such that for all σ, τ ∈ C , σ �= τ , it holds that dK(σ, τ) � 2.
Put differently, for no i ∈ [n − 1] does it hold that σ =
τ ◦ (i, i + 1).

The authors have shown in [44, Th. 17] that any K-snake
C ⊆ Sn which employs a “push-to-the-top” transition on
an even index t↑2m–for any m ∈ ⌊n

2

⌋
–must satisfy |C| �

n!
2 −�(n). Horovitz and Etzion posited in [22] that K-snakes
in S2m+2 do not exceed the size of those in S2m+1, a conjecture
refuted when Zhang and Ge demonstrated in [46] the existence
of K-snakes in S2m+2 of size (2m+2)!

4 . Concurrently and
independently, Holroyd conjectured in [20] that K-snakes can
be found in S2m+2 with size greater than (2m+2)!

2 − O(m2).
A resemblance is evident in the definitions of

(n, M,K)-snakes and Gaux↑ (n, M) codes, which is reinforced
by the observations that, similarly to properties seen in
Section III, any parity-preserving G↑(n, M) code is an
(n, M,K)-snake (see [44, Lemma 5]), and any (n, M,K)-
snake satisfies M � n!

2 (see [44, Th. 15]).
We wish to demonstrate how the principles behind

Theorem 14 can be applied to the construction of a K-snake
in S2m+2 of size M ≈ (2m+2)!

2 .

Lemma 39 [22, Th. 18] [45]: For m � 2, there exist parity-
preserving G↑(2m + 1, M2m+1) codes with

M2m+1 = |A2m+1| − (2m − 1) = (2m + 1)!
2

− (2m − 1).

In particular, such a code C was constructed such that, as a
group,

C = A2m+1 \
{
t↑2m−1

qσ
}2m−2

q=0

for some σ ∈ A2m+1. Finally, C only employed t↑2m−1,
t↑2m+1.

As before, we fix m � 2. We also reuse

ϕ(π) = t↑2m+2
2 ◦ t↑2m−1

−1(π)

= π ◦ (1, 2m + 1)(2m + 2, 2m, 2m − 1, . . . , 2)

and the permutations π̂r = ϕr (Id).
Theorem 40: For all r � 0 a parity-preserving

G↑
(

2m + 2, (2m+1)!
2 − (2m − 1)

)
code P̂r exists which

satisfy:
1) The first permutation in P̂r is π̂r .
2) The last permutation in P̂r is t↑2m−1

−1π̂r .
3) For all π ∈ P̂r it holds that

π(2m + 2) = π̂r (2m + 2)

=
{

2m + 2 r ≡ 0 (mod 2m),

2m + 1− (r mod 2m) r �≡ 0 (mod 2m).

4) σ̃r �∈ P̂r , where we denote

σ̃r =
(

t↑2m+2
−1π̂r

)
◦ (2m + 1, 2m + 2)

(and observe σ̃r = t↑2m+1
−1(π̂r), hence in particular

σ̃r (2m + 2) = π̂r (2m + 2)).
Proof: By Lemma 39 we know that there exist a parity-

preserving G↑(2m + 1, M2m+1) code P such that, as a set,

P = S2m+1 \
{
t↑2m−1

qσ
}2m−2

q=0

for some σ ∈ A2m+1. We also know that P only employs
t↑2m−1, t↑2m+1 transitions.

5790 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

Function Unrank (m)

input : m ∈
{

0, 1, . . . ,
∣
∣
∣Ĉ1

∣
∣
∣− 1

}
.

output: σ ∈ Ĉ1 with rank m in Ĉ1.
/* Convert m to local ranks R[1, 2, . . . , d]

*/
1 m ←

(
(m − 1) mod

∣
∣
∣Ĉ1

∣
∣
∣
)

2 for i = 1, 2, . . . , d − 1 do

3 R[i] ←
(
(m + 1) mod M̂k+1

)

4 m ←
⌊

m/M̂k+1

⌋

5 R[d] ← ((m + 1) mod k!)
/* Construct σ */

6 πd ← UnrankComplete(R[d])
7 for i ∈ Wd do
8 σ [i] ← πd [i − k(d − 1)] · d
9 x ← πd [1] · d

10 for j = d − 1, . . . , 1 do
11 π j ← UnrankAux(R[j])
12 for i ∈ W j do
13 if π j [i] = k + 1 then
14 σ [i] ← x

15 else
16 σ [i] ← π j [i − k(j − 1)] · d + j

17 if π j [1] �= k + 1 then
18 x ← π j [1] · d + j

19 σ [1] ← x
20 return σ

We apply its generating sequence to π̂r to generate the
G↑(2m + 2, M2m+1) code P̂ , which employs only t↑2m−1,
t↑2m+1 transitions (in particular, it never employs t↑2m+2,
hence point 3 is established), and note that as a set

P̂ = {
τ ∈ A2m+2

∣
∣ τ (2m + 2) = π̂r (2m + 2)

}

\ {t↑2m−1
q σ̂

}2m−2
q=0

for some σ̂ ∈ A2m+2, satisfying σ̂ (2m + 2) = π̂r (2m + 2).
Denote P̂ = (

c j
)M2m+1

j=1 . We modify our code by defining

P̂r =
(

c′j
)M2m+1

j=1
=

(
σ̃r σ̂
−1c j

)M2m+1

j=1
,

which is still a G↑(2m + 2, M2m+1) since “push-to-the-top”
transitions are group-actions by right-multiplication. More-
over, since σ̃r (2m + 2) = σ̂ (2m + 2) = π̂r (2m + 2), as a
set we have

P̂r =
{
τ ∈ A2m+2

∣
∣ τ (2m + 2) = π̂r (2m + 2)

}

\ {t↑2m−1
q σ̃r

}2m−2
q=0 .

Note in particular that

σ̃r (2m + 1) = π̂r (1) �= π̂r (2m + 1),

hence π̂r ∈ P̂r . In addition, point 4 is thus substantiated.

Finally, t↑2m+1
−1(π̂r) = σ̃r �∈ P̂r implies that π̂r must

necessarily be preceded in P̂r by t↑2m−1, which substantiates
point 2 (after a proper cyclic shift of P̂r).

As in Section III, P̂r ⊆ A2m+2 for all r . We construct a
(2m+2, M,K)-snake by stitching together P̂0, P̂1, . . . , P̂2m−1
in the following lemma.

Lemma 41: For all r � 0, we may concatenate P̂r , P̂r+1
into a (non-cyclic) “push-to-the-top” code by applying the
transitions t↑2m+2, t↑2m+2 to the last permutation of P̂r , which
is t↑2m−1

−1π̂r .
The only odd permutation in the resulting code is then

βr+1 = t↑2m+2
−1(π̂r+1),

which we again call the (r + 1)-bridge.
Proof: Exactly as in the proof of Lemma 12, given that

Pr , P̂r are parity-preserving, and have the same first and last
permutations.

Again, similarly to Section III, Lemma 41 can be used itera-
tively to cyclically concatenate P̂0, P̂1, . . . , P̂2m−1, with a sin-
gle odd permutation–the r -bridge–between P̂(r−1) mod 2m , P̂r .
Let us prove that fact in the following theorem.

Theorem 42: There exists a (2m + 2, M̌2m+2,K)-snake for
all m � 2, with

M̌2m+2 = 2m

2m + 2
· (2m + 2)!

2
− (2m − 2)2m

= 2m

2m + 2
· |S2m+2|

2
− (2m − 2)2m.

Proof: We define P , similarly to Section III, as the cyclic
concatenation

P̂0, β1, P̂r , β2, . . . , β2m−1, P̂2m−1, β0.

Suppose π1, π2 ∈ C satisfy

π1 = π2 ◦ (i, i + 1)

for some i ∈ [2m + 1], then w.l.o.g π2 is odd and hence
π2 = βr for some 0 � r < 2m, and π1 is even and thus not
a bridge; it must follow, then, that

π2(2m + 2) ∈ {1, 2m + 1} �� π1(2m + 2),

hence i = 2m + 1 and

π1 = π2 ◦ (2m + 1, 2m + 2)

=
(

t↑2m+2
−1(π̂r)

)
◦ (2m + 1, 2m + 2)

= t↑2m+1
−1(π̂r) = σ̃r .

This is in contradiction to Theorem 40, since π1(2m + 2) =
π̂r (2m + 2) and thus π1 ∈ P̂r . Hence P̂ is a K-snake. Now,
that

∣∣
∣P̂

∣∣
∣ = 2m

[
(2m + 1)!

2
− (2m − 1)

]
+ 2m

= 2m

2m + 2
· (2m + 2)!

2
− (2m − 2)2m

is trivial.
To conclude this section, we note that M̌2m+2

|S2m+2| −→m→∞
1
2 ,

which is optimal. The authors are unaware of any current
result achieving this. We add that, in particular, in the context

YEHEZKEALLY AND SCHWARTZ: LIMITED-MAGNITUDE ERROR-CORRECTING GRAY CODES FOR RANK MODULATION 5791

of K-snakes it is common to define the rate of codes as

R = limm→∞
log

∣
∣
∣M̌2m+2

∣
∣
∣

log|S2m+2| (see [44]), and we naturally observe
that in our case R = 1 (which, again, is optimal, although
R = 1 is also achieved by existing constructions, e.g., that
of [46]).

VIII. CONCLUSION

In this paper we proposed a new class of codes, which we
dubbed j -nontransposing, leveraging codes designed for the
rank-modulation scheme under the Kendall τ -metric, which
we show can be used in the construction of error-correcting
codes for the �∞-metric. By doing so, we were able to
construct codes that achieve better asymptotic rates than
previously known constructions, while also incorporating the
property of being Gray codes. As with previously known
constructions, we have shown that these codes allow for linear-
time encoding and decoding of noisy data.

However, there remains a gap between the best known
upper-bound for code sizes (either in the general case or in
the specific case of Gray codes), based on the code-anticode
approach presented in [39], and achievable sizes (both known
constructions and proven lower-bounds). We therefore propose
that more research into upper and lower bounds on achievable
code sizes is warranted.

Furthermore, much as in the case of codes designed
for the Kendall τ -metric, our auxiliary construction of
k-nontransposing codes in Sk has some asymmetry between
the cases of even- and odd-sized congruence classes. Although
mostly alleviated by Theorem 14–in particular for large k–this
creates an irregularity in the slope of the graph of asymptotic
rate; for rankable codes, certain regions of δ even admit
a positive slope, whereby a code with a higher normalized
distance also has a higher rate. We posit that, as Holroyd
conjectured in [20] for K-snakes, 2n-nontransposing codes in
S2n exist with size M > (2n)!/2 − O(n2). This irregularity
is especially pronounced when 2n = 6, where we have
constructed an auxiliary code of size 178 << 360 = 6!

2 .
We may note, however, that in the case of 2n = 4, the
constructed auxiliary code of size 8 can be confirmed to be
optimal by a manual search.

Finally, we have presented an adaptation of the solutions
discussed above to the problem of (2n, M,K)-snakes, which
although not yet validating Holroyd’s conjecture above, is
asymptotically tight.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the three anonymous
reviewers and associate editor, whose insight and meticulous
suggestions helped shape this paper.

REFERENCES

[1] D. J. Amalraj, N. Sundararajan, and G. Dhar, “Data structure based on
Gray code encoding for graphics and image processing,” Proc. SPIE,
vol. 1349, pp. 65–76, Nov. 1990.

[2] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[3] T. Berger, F. Jelinek, and J. K. Wolf, “Permutation codes for sources,”
IEEE Trans. Inf. Theory, vol. IT-18, no. 1, pp. 160–169, Jan. 1972.

[4] I. F. Blake, “Permutation codes for discrete channels,” IEEE Trans. Inf.
Theory, vol. 20, no. 1, pp. 138–140, Jan. 1974.

[5] I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,” Inf.
Control, vol. 43, no. 1, pp. 1–19, 1979.

[6] H. Chadwick and I. Reed, “The equivalence of rank permutation codes
to a new class of binary codes (Corresp.),” IEEE Trans. Inf. Theory,
vol. 16, no. 5, pp. 640–641, Sep. 1970.

[7] H. D. Chadwick and L. Kurz, “Rank permutation group codes based
on Kendall’s correlation statistic,” IEEE Trans. Inf. Theory, vol. IT-15,
no. 2, pp. 306–315, Mar. 1969.

[8] C. C. Chang, H. Y. Chen, and C. Y. Chen, “Symbolic Gray code as a
data allocation scheme for two-disc systems,” Comput. J., vol. 35, no. 3,
pp. 299–305, 1992.

[9] G. Cohen and M. Deza, “Decoding of permutation codes,” in Proc. Int.
CNRS Colloq., France, Jul. 1977.

[10] P. F. Corbett, “Rotator graphs: An efficient topology for point-to-point
multiprocessor networks,” IEEE Trans. Parallel Distrib. Syst., vol. 3,
no. 5, pp. 622–626, Sep. 1992.

[11] M. Deza and P. Frankl, “On the maximum number of permutations with
given maximal or minimal distance,” J. Combinat. Theory A, vol. 22,
no. 3, pp. 352–360, 1977.

[12] C. Ding, F.-W. Fu, T. Kløve, and V. K.-W. Wei, “Constructions
of permutation arrays,” IEEE Trans. Inf. Theory, vol. 48, no. 4,
pp. 977–980, Apr. 2002.

[13] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Constant-weight
Gray codes for local rank modulation,” IEEE Trans. Inf. Theory, vol. 57,
no. 11, pp. 7431–7442, Nov. 2011.

[14] E. En Gad, M. Langberg, M. Schwartz, and J. Bruck, “Generalized
Gray codes for local rank modulation,” IEEE Trans. Inf. Theory, vol. 59,
no. 10, pp. 6664–6673, Oct. 2013.

[15] T. Etzion, “Optimal codes for correcting single errors and detecting
adjacent errors,” IEEE Trans. Inf. Theory, vol. 38, no. 4, pp. 1357–1360,
Jul. 1992.

[16] V. Faber and J. W. Moore, “High-degree low-diameter interconnec-
tion networks with vertex symmetry: The directed case,” Comput.
Commun. Division, Los Alamos Nat. Lab., Los Alamos, NM, USA,
Tech. Rep. LA-UR-88-1051, 1988.

[17] C. Faloutsos, “Gray codes for partial match and range queries,” IEEE
Trans. Softw. Eng., vol. 14, no. 10, pp. 1381–1393, Oct. 1988.

[18] F.-W. Fu and T. Kløve, “Two constructions of permutation arrays,” IEEE
Trans. Inf. Theory, vol. 50, no. 5, pp. 881–883, May 2004.

[19] F. Gray, “Pulse code communication,” U.S. Patent 2 632 058,
Mar. 17, 1953.

[20] A. E. Holroyd, “Perfect snake-in-the-box codes for rank modulation,”
IEEE Trans. Inf. Theory, vol. 63, no. 1, pp. 104–110, Jan. 2017.

[21] S. Hood, D. Recoskie, J. Sawada, and D. Wong, “Snakes, coils, and
single-track circuit codes with spread k,” J. Combinat. Optim., vol. 30,
no. 1, pp. 42–62, Jul. 2015.

[22] M. Horovitz and T. Etzion, “Constructions of snake-in-the-box codes
for rank modulation,” IEEE Trans. Inf. Theory, vol. 60, no. 11,
pp. 7016–7025, Nov. 2014.

[23] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck, “Rank modulation for
flash memories,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp. 2659–2673,
Jun. 2009.

[24] A. Jiang, M. Schwartz, and J. Bruck, “Correcting charge-constrained
errors in the rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56,
no. 5, pp. 2112–2120, May 2010.

[25] M. Kendall and J. D. Gibbons, Rank Correlation Methods. Oxford, NY,
USA: Oxford Univ. Press, 1990.

[26] T. Kløve, “Spheres of permutations under the infinity norm—
Permutations with limited displacement,” Dept. Inform., Univ. Bergen,
Bergen, Norway, Tech. Rep. 376, Nov. 2008.

[27] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2611–2617, Jun. 2010.

[28] A. Mazumdar, A. Barg, and G. Zémor, “Constructions of rank modu-
lation codes,” IEEE Trans. Inf. Theory, vol. 59, no. 2, pp. 1018–1029,
Feb. 2013.

[29] A. Nijenhuis and H. S. Wilf, Combinatorial Algorithms for Comput-
ers and Calculators (Computer Science and Applied Mathematics).
New York, NY, USA: Academic, 1978.

[30] N. Papandreou et al., “Drift-tolerant multilevel phase-change memory,”
in Proc. 3rd IEEE Int. Memory Workshop (IMW), Monterey, CA, USA,
May 2011, pp. 22–25.

5792 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 9, SEPTEMBER 2017

[31] J. P. Robinson and M. Cohn, “Counting sequences,” IEEE Trans.
Comput., vol. C-30, no. 1, pp. 17–23, Jan. 1981.

[32] R. M. Roth, Introduction to Coding Theory. Cambridge, U.K.:
Cambridge Univ. Press, 2006.

[33] C. Savage, “A survey of combinatorial Gray codes,” SIAM Rev., vol. 39,
no. 4, pp. 605–629, Dec. 1997.

[34] M. Schwartz and T. Etzion, “The structure of single-track Gray
codes,” IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2383–2396,
Nov. 1999.

[35] M. Schwartz and P. O. Vontobel, “Improved lower bounds on the size
of balls over permutations with the infinity metric,” IEEE Trans. Inf.
Theory, to be published, doi: 10.1109/TIT.2017.2697423.

[36] M.-Z. Shieh and S.-C. Tsai, “Decoding frequency permutation arrays
under Chebyshev distance,” IEEE Trans. Inf. Theory, vol. 56, no. 11,
pp. 5730–5737, Nov. 2010.

[37] R. C. Singleton, “Generalized snake-in-the-box codes,” IEEE Trans.
Electron. Comput., vol. EC-15, no. 4, pp. 596–602, Aug. 1966.

[38] D. Slepian, “Permutation modulation,” Proc. IEEE, vol. 53, no. 3,
pp. 228–236, Mar. 1965.

[39] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[40] I. Tamo and M. Schwartz, “On the labeling problem of permutation
group codes under the infinity metric,” IEEE Trans. Inf. Theory, vol. 58,
no. 10, pp. 6595–6604, Oct. 2012.

[41] A. J. H. Vinck, J. Haering, and T. Wadayama, “Coded M-FSK for
power line communications,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Sorrento, Italy, Jun. 2000, p. 137.

[42] X. Wang and F.-W. Fu. (2016). “Constructions of snake-in-the-box
codes under the �∞-metric for rank modulation.” [Online]. Available:
https://arxiv.org/abs/1601.05539

[43] A. Williams, “The greedy Gray code algorithm,” in Algorithms and Data
Structures (Lecture Notes in Computer Science), vol. 8037, F. Dehne,
R. Solis-Oba, and J.-R. Sack, Eds. Berlin, Germany: Springer, 2013,
pp. 525–536. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
40104-6_46

[44] Y. Yehezkeally and M. Schwartz, “Snake-in-the-box codes for rank
modulation,” IEEE Trans. Inf. Theory, vol. 58, no. 8, pp. 5471–5483,
Aug. 2012.

[45] Y. Zhang and G. Ge, “Snake-in-the-box codes for rank modulation
under Kendall’s τ -metric,” IEEE Trans. Inf. Theory, vol. 62, no. 1,
pp. 151–158, Jan. 2016.

[46] Y. Zhang and G. Ge, “Snake-in-the-box codes for rank modulation under
Kendall’s τ -metric in S2n+2,” IEEE Trans. Inf. Theory, vol. 62, no. 9,
pp. 4814–4818, Sep. 2016.

[47] H. Zhou, M. Schwartz, A. A. Jiang, and J. Bruck, “Systematic error-
correcting codes for rank modulation,” IEEE Trans. Inf. Theory, vol. 61,
no. 1, pp. 17–32, Jan. 2015.

Yonatan Yehezkeally (S’12) is a graduate student at the Department of
Electrical and Computer Engineering, Ben-Gurion University of the Negev,
Beer-Sheva, Israel. His research interests include algebraic coding, combi-
natorial structures, and finite group theory. Yonatan received the B.Sc. and
M.Sc. degrees from Ben-Gurion University of the Negev in 2012 and 2016
respectively, from the department of Mathematics and the department of
Electrical and Computer Engineering.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences. Prof. Schwartz received the B.A. (summa
cum laude), M.Sc., and Ph.D. degrees from the Technion—Israel Institute of
Technology, Haifa, Israel, in 1997, 1998, and 2004 respectively, all from the
Computer Science Department. He was a Fulbright post-doctoral researcher
in the Department of Electrical and Computer Engineering, University of
California San Diego, and a postdoctoral researcher in the Department of
Electrical Engineering, California Institute of Technology. While on sabbatical
2012–2014, he was a visiting scientist at the Massachusetts Institute of
Technology (MIT). Prof. Schwartz received the 2009 IEEE Communications
Society Best Paper Award in Signal Processing and Coding for Data Storage.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Aachen-Bold
 /ACaslon-AltBold
 /ACaslon-AltBoldItalic
 /ACaslon-AltItalic
 /ACaslon-AltRegular
 /ACaslon-AltSemibold
 /ACaslon-AltSemiboldItalic
 /ACaslon-Bold
 /ACaslon-BoldItalic
 /ACaslon-BoldItalicOsF
 /ACaslon-BoldOsF
 /ACaslonExp-Bold
 /ACaslonExp-BoldItalic
 /ACaslonExp-Italic
 /ACaslonExp-Regular
 /ACaslonExp-Semibold
 /ACaslonExp-SemiboldItalic
 /ACaslon-Italic
 /ACaslon-ItalicOsF
 /ACaslon-Ornaments
 /ACaslon-Regular
 /ACaslon-RegularSC
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /ACaslon-SemiboldItalicOsF
 /ACaslon-SemiboldSC
 /ACaslon-SwashBoldItalic
 /ACaslon-SwashItalic
 /ACaslon-SwashSemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramondAlt-Italic
 /AGaramondAlt-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-BoldItalicOsF
 /AGaramond-BoldOsF
 /AGaramondExp-Bold
 /AGaramondExp-BoldItalic
 /AGaramondExp-Italic
 /AGaramondExp-Regular
 /AGaramondExp-Semibold
 /AGaramondExp-SemiboldItalic
 /AGaramond-Italic
 /AGaramond-ItalicOsF
 /AGaramond-Regular
 /AGaramond-RegularSC
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AGaramond-SemiboldItalicOsF
 /AGaramond-SemiboldSC
 /AGaramond-Titling
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AJensonMM
 /AJensonMM-Alt
 /AJensonMM-Ep
 /AJensonMM-It
 /AJensonMM-ItAlt
 /AJensonMM-ItEp
 /AJensonMM-ItSC
 /AJensonMM-SC
 /AJensonMM-Sw
 /AlbertusMT
 /AlbertusMT-Italic
 /AlbertusMT-Light
 /Algerian
 /Americana
 /Americana-Bold
 /Americana-ExtraBold
 /Americana-Italic
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /AvantGarde-Demi
 /BaskOldFace
 /BBOLD10
 /BBOLD5
 /BBOLD7
 /BermudaLP-Squiggle
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chaparral-Display
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /Cutout
 /EMB10
 /EMBX10
 /EMBX12
 /EMBX5
 /EMBX6
 /EMBX7
 /EMBX8
 /EMBX9
 /EMBXSL10
 /EMBXTI10
 /EMCSC10
 /EMCSC8
 /EMCSC9
 /EMDUNH10
 /EMFF10
 /EMFI10
 /EMFIB8
 /EMITT10
 /EMMI10
 /EMMI12
 /EMMI5
 /EMMI6
 /EMMI7
 /EMMI8
 /EMMI9
 /EMMIB10
 /EMMIB5
 /EMMIB6
 /EMMIB7
 /EMMIB8
 /EMMIB9
 /EMR10
 /EMR12
 /EMR17
 /EMR5
 /EMR6
 /EMR7
 /EMR8
 /EMR9
 /EMSL10
 /EMSL12
 /EMSL8
 /EMSL9
 /EMSLTT10
 /EMSS10
 /EMSS12
 /EMSS17
 /EMSS8
 /EMSS9
 /EMSSBX10
 /EMSSDC10
 /EMSSI10
 /EMSSI12
 /EMSSI17
 /EMSSI8
 /EMSSI9
 /EMSSQ8
 /EMSSQI8
 /EMTCSC10
 /EMTI10
 /EMTI12
 /EMTI7
 /EMTI8
 /EMTI9
 /EMTT10
 /EMTT12
 /EMTT8
 /EMTT9
 /EMU10
 /EMVTT10
 /EstrangeloEdessa
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /Fences
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /FreestyleScript
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Giddyup
 /GreymantleMVB
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /ICMEX10
 /ICMMI8
 /ICMSY8
 /ICMTT8
 /ILASY8
 /ILCMSS8
 /ILCMSSB8
 /ILCMSSI8
 /Impact
 /jsMath-cmex10
 /Kartika
 /Khaki-Two
 /LASY10
 /LASY5
 /LASY6
 /LASY7
 /LASY8
 /LASY9
 /LASYB10
 /Latha
 /LCIRCLE10
 /LCIRCLEW10
 /LCMSS8
 /LCMSSB8
 /LCMSSI8
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LINE10
 /LINEW10
 /LOGO10
 /LOGO8
 /LOGO9
 /LOGOBF10
 /LOGOD10
 /LOGOSL10
 /LOGOSL8
 /LOGOSL9
 /LucidaBlackletter
 /LucidaBright-Oblique
 /LucidaBrightSmallcaps
 /LucidaBrightSmallcaps-Demi
 /LucidaCasual
 /LucidaCasual-Italic
 /LucidaConsole
 /LucidaNewMath-AltDemiItalic
 /LucidaNewMath-AltItalic
 /LucidaNewMath-Arrows
 /LucidaNewMath-Arrows-Demi
 /LucidaNewMath-Demibold
 /LucidaNewMath-DemiItalic
 /LucidaNewMath-Extension
 /LucidaNewMath-Italic
 /LucidaNewMath-Roman
 /LucidaNewMath-Symbol
 /LucidaNewMath-Symbol-Demi
 /LucidaSans
 /LucidaSans-Bold
 /LucidaSans-BoldItalic
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /LucidaTypewriter
 /LucidaTypewriterBold
 /LucidaTypewriterBoldOblique
 /LucidaTypewriterOblique
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /Mojo
 /MonotypeCorsiva
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MTEX
 /MTEXB
 /MTEXH
 /MT-Extra
 /MTGU
 /MTGUB
 /MTLS
 /MTLSB
 /MTMI
 /MTMIB
 /MTMIH
 /MTMS
 /MTMSB
 /MTMUB
 /MTMUH
 /MTSY
 /MTSYB
 /MTSYH
 /MT-Symbol
 /MT-Symbol-Italic
 /MTSYN
 /MVBoli
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Regular
 /Myriad-Tilt
 /Nyx
 /OCRA-Alternate
 /Ouch
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Pompeia-Inline
 /Postino-Italic
 /Raavi
 /Revue
 /RMTMI
 /RMTMIB
 /RMTMIH
 /RMTMUB
 /RMTMUH
 /RSFS10
 /RSFS5
 /RSFS7
 /Shruti
 /Shuriken-Boy
 /SpumoniLP
 /STMARY10
 /STMARY5
 /STMARY7
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldOblique
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Oblique
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /UniversityRoman
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /WASY10
 /WASY5
 /WASY7
 /WASYB10
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

