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Improved Lower Bounds on the Size of Balls
Over Permutations With the Infinity Metric

Moshe Schwartz, Senior Member, IEEE, and Pascal O. Vontobel, Senior Member, IEEE

Abstract— We study the size (or volume) of balls in the metric
space of permutations, Sn, under the infinity metric. We focus
on the regime of balls with radius r = ρ · (n−1), ρ ∈ [0, 1],
i.e., a radius that is a constant fraction of the maximum possible
distance. We provide new lower bounds on the size of such balls.
These new lower bounds reduce the asymptotic gap to the known
upper bounds to at most 0.029 bits per symbol. Additionally,
they imply an improved ball-packing bound for error-correcting
codes, and an improved upper bound on the size of optimal
covering codes.

Index Terms— Asymptotic gap, infinity metric, permanent,
permutation, rank modulation, Sinkhorn theorem.

I. INTRODUCTION

G IVEN a metric space (M, d), perhaps one of the most
basic constructs is that of a ball

Br (x) �
{

x ′ ∈ M | d(x, x ′) � r
}
,

where x ∈ M is the ball’s center and r is the ball’s radius.
Since many coding-theoretic problems may be viewed as the
study of packing or covering of a metric space by balls,
properties of balls and their parameters have been studied
extensively in a wide range of metrics [10], [11], [33].

An important feature of a ball is its size (or volume), i.e.,
the number of points in the ball. It is an important component
in many bounds on code parameters, most notably, the ball-
packing bound and the Gilbert–Varshamov bound [33]. Thus,
the exact size, the asymptotic size, or bounds on the size of
balls in various metrics are of interest.

Lately, metric spaces over permutations have received
increased attention. This is motivated, in particular, by the
recent application of rank modulation to non-volatile memory
systems [24]: in such applications, the charge levels of mem-
ory cells are compared against each other, and a permutation is
induced by the relative ranking of the cells’ charge levels. For
designing error-correcting codes or covering codes over the
space of permutations, one needs to choose a suitable metric
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and so several metrics have been studied for the space of
permutations, including Hamming’s metric [1], [3], [4], [7],
[8], [13], [14], [26], [35], Kendall’s τ -metric [2], [5], [6], [9],
[25], [34], [46], [49], and Ulam’s metric [18], [19].

This paper focuses on the infinity metric (whose formal
definition will follow in the next section), which is moti-
vated by applications to rank modulation in some non-volatile
memory systems (e.g., flash memory or phase-change memory
systems). Recall that in a flash memory system, each cell has
a charge level which can be changed or read out by a suitable
circuit. The idea behind rank modulation is that information
is encoded in terms of the rank of the charge values. More
precisely, consider n flash cells, each with some charge level.
Let f1 be the rank of the charge level of the first cell, f2 be
the rank of the charge level of the second flash cell, etc. The
information encoded in these n flash cells corresponds to the
permutation ( f1, f2, . . . , fn). However, charge levels may be
set imprecisely during the storing process, they may change
over time due to physical processes, or they may be read out
imprecisely due to noise, thereby giving rise to a distorted
permutation ( f ′

1, f ′
2, . . . , f ′

n). In a typical setting, we may have
some bound on the charge-level distortion, which translates to
a bound on d � maxi

∣
∣ fi − f ′

i

∣
∣, i.e., each cell may change its

rank by a limited amount. We say d is the distance between
the two permutations under the infinity metric. With a metric
space in hand we can combat such distortion by designing
suitable error-correcting codes.

More generally, spaces of permutations with the infin-
ity metric have been used for error-correction [30], [39],
[42], [49], code relabeling [43], anticodes [37], covering
codes [17], [46], and snake-in-the-box codes [47], [48]. It is
therefore surprising that the asymptotic size of a ball in this
metric space is (to the best of our knowledge) unknown, and
a considerable gap exists between the known lower and upper
bounds.

The goal of this paper is to reduce the gap between the
lower and upper bounds on the asymptotic size of balls in
the space of permutations with the infinity metric. To that
end, we exploit a well-known connection between the size of
the aforementioned balls, and permanents of binary Toeplitz
matrices. We carefully employ lower bounds on permanents
of non-negative matrices to obtain the desired results. (One of
these bounds is well known, one is somewhat recent.)

The paper is organized as follows. In Section II we present
notations and definitions. Result-wise, the main section is
Section III, where we collect not only known, but also our
new results on the asymptotic gap between upper and lower
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bounds. Whereas in Section IV we discuss how the known
results in Section III are obtained, we devote Section V to
the presentation of the new lower bounds that lead to the new
results in Section III. We conclude the paper in Section VI.

II. NOTATION

For the rest of this paper, n will denote a positive integer.
With this, we define [n] � {1, 2, . . . , n} and let Sn be the
set of all permutations over [n]. The identity permutation in
Sn is denoted by Idn . Additionally, the composition of any
two permutations f, g ∈ Sn is denoted by f g and represents
the mapping i �→ f (g(i)).

For any f, g ∈ Sn , the infinity metric (or infinity distance)
between them, denoted d∞( f, g), is defined as

d∞( f, g) � max
i∈[n]

∣
∣ f (i) − g(i)

∣
∣.

Since d∞( · , · ) is the only metric we will be using, we shall
simply denote it by d( · , · ). Observe that for any f, g ∈ Sn ,
we have 0 � d( f, g) � n − 1.

We define the ball of radius r centered at f ∈ Sn as the set

Br,n( f ) � {g ∈ Sn | d( f, g) � r} .

The infinity metric over Sn is right invariant [12], i.e., for all
f, g, h ∈ Sn we have d( f h, gh) = d( f, g). Thus, the size of
a ball depends only on r and n, and not on the choice of the
center. We will therefore denote by

∣
∣Br,n

∣
∣ the size of a ball of

radius r in Sn .
For an n × n matrix, M = (mi, j ), the permanent of M is

defined as

per(M) �
∑

f ∈Sn

∏

i∈[n]
mi, f (i).

Definition 1: A matrix of particular interest is the Toeplitz
matrix Ar,n = (ai, j ) of size n × n defined by

ai, j �
{

1 |i − j | � r

0 otherwise
, i, j ∈ [n]. (1)

�

The following lemma is well known [27], [29], [36], [42].
Lemma 2: With the above definitions, it holds that

∣∣Br,n
∣∣ = per(Ar,n).

Proof: This result follows from

per(Ar,n) =
∑

f ∈Sn

∏

i∈[n]
ai, f (i)

= ∣
∣ { f ∈ Sn | ∀i ∈ [n] : |i − f (i)| � r} ∣∣

= ∣∣ { f ∈ Sn | d(Idn, f ) � r} ∣∣
= ∣
∣Br,n(Idn)

∣
∣ = ∣

∣Br,n
∣
∣ .

Note that for any fixed radius r , tight asymptotic bounds
on

∣
∣Br,n

∣
∣ are known [28], [31], [36], [41]. However, in this

paper we are interested in the case of radius r = ρ · (n−1),
where ρ ∈ [0, 1] is a real constant. This is motivated by the
scaling of rank-modulation schemes. Consider flash-memory
cells as an example, with fixed minimal and maximal charge

levels. When increasing the number of cells, n, and assuming
a bounded charge level distortion, we obtain a distance (due to
distortion) that grows linearly with n. Note that in expressions
like r = ρ · (n−1) we always implicitly assume that ρ is such
that r is an integer, and we shall therefore assume throughout
the paper that ρ is in fact rational. We call ρ the normalized
radius.

Because of this particular asymptotic setup, Aρ,n and Bρ,n

will in the following, with a slight abuse of notation, stand
for Aρ·(n−1),n and Bρ·(n−1),n, respectively. Moreover, because∣
∣Bρ,n

∣
∣ = 1 for ρ = 0 and

∣
∣Bρ,n

∣
∣ = n! for ρ = 1, i.e., the

size of balls for ρ = 0 and ρ = 1 are known exactly, in the
following we will typically focus on the range 0 < ρ < 1
instead of the range 0 � ρ � 1.

We conclude this section by recalling a variety of definitions
and results that we will use throughout the paper.

• Stirling’s approximation of n! (see [20]) is

n! =
(n

e

)n · 2o(n).

• The binary entropy function is defined to be

h(x) � −x · log2(x) − (1−x) · log2(1−x).

• The Lambert W function is defined by

z = W (z) · exp
(
W (z)

)
.

(In this paper, z is limited to non-negative real values.)
• A doubly-stochastic matrix is a square n × n matrix with

non-negative real entries for which the sum of each row
and each column equals 1.

• The expression 0 · log2(0) and the expression 0 · log2
( 0

0

)

are both defined to be equal to 0.

III. RESULTS

The main results of this paper are new lower bounds on
the size of balls over permutations with the infinity metric.
The quality of these new lower bounds is measured by the
asymptotic gap between the known upper bounds and the new
lower bounds. In this section, we first define what we mean by
an asymptotic gap. We then state this gap for known upper and
known lower bounds in Section III-A and for known upper and
new lower bounds in Section III-B. All derivations for these
results will be given in Sections IV and V.

Definition 3: Fix some real constant ρ ∈ (0, 1). Given some
upper bound � and some lower bound ϕ on the ball size, i.e.,

ϕ(ρ, n) �
∣
∣Bρ,n

∣
∣ � �(ρ, n),

where the inequalities are assumed to hold for all positive
integers n for which ρ · (n −1) is an integer, we define the
asymptotic gap between the upper bound � and the lower
bound ϕ to be

Gap�
ϕ (ρ) � lim sup

n→∞
1

n
log2

(
�

(

ρ, n
)

ϕ
(

ρ, n
)

)

.

�

In Section VI-A, we will discuss some ball-packing and
some Gilbert–Varshamov type bounds (see [33, Sec. 17.7]),
both of which depend on the asymptotic size of balls. Clearly,
the better we know the asymptotic size of balls, i.e., the smaller
the gap Gap�

ϕ (ρ) is, the stronger the statements will be.
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A. Gap Based on Known Upper and Known Lower Bounds

Based on a known upper bound �1 and a known lower
bound ϕ1, both detailed in Theorem 8, we obtain the following
result.

Theorem 4: It holds that

Gap�1
ϕ1

(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
4−2 log2(e)

) · ρ 0 < ρ � 1

2
2 · (ρ−1) · log2(e)

−(2ρ+1) · log2(ρ)
1

2
� ρ < 1

�

The lower bound of ϕ1 was very recently improved, and an
asymptotic analysis of this improvement, which we denote ϕ′

1,
is given in Theorem 9. This improvement, however, holds
only for half the range of ρ. By comparing the upper bound
of �1 and the improved known lower bound ϕ′

1, we obtain
the following result.

Theorem 5: For all 0 < ρ < 1
2 it holds that

Gap�1
ϕ′

1
(ρ) = 2 · (h(μ∗) + log2(μ

∗)
) · ρ,

where μ∗ is the constant defined by

μ∗ � 1

1 + W (e−1)
≈ 0.782.

�

The result of Theorems 4 and 5 are visualized by
curves (a) and (a’), respectively, in Fig. 1.

B. Gap Based on Known Upper and New Lower Bounds

We present two new lower bounds on the size of balls over
permutations with the infinity metric. The first new lower
bound, denoted ϕ2, is given in Theorem 13. The other new
lower bound, denoted ϕ3, is detailed in Theorems 16 and 21.
Based on a known upper bound �1 and the new lower bounds
ϕ2 and ϕ3, we obtain the following results.

Theorem 6: It holds that

Gap�1
ϕ2

(ρ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
3−2 log2(e)

) · ρ 0 < ρ � 1

2
2 · (1−ρ) · (1−ρ − log2 e)

−2ρ · log2 ρ
1

2
� ρ < 1

�

Theorem 7: It holds that

Gap�1
ϕ3

(ρ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

log2

(
4

e · log2(e)

)
0 < ρ � 1

2

log2

(
t̂

log2(e)

)
− t̂(2ρ − 1)

− log2(1 − ρ)

−2(1 − ρ) · log2(e)

−2ρ · log2(ρ)
1

2
< ρ < 1

where

t̂ � log2(e) ·
⎛

⎝2(1−ρ)

2ρ − 1
− W

⎛

⎝
(1−ρ) · exp

(
2(1−ρ)
2ρ−1

)

2ρ − 1

⎞

⎠

⎞

⎠ .

�

Figure 1. (a) Gap�1
ϕ1 (ρ) of Theorem 4; (a’) Gap�1

ϕ′
1

(ρ) of Theorem 5;

(b) Gap�1
ϕ2 (ρ) of Theorem 6; (c) Gap�1

ϕ3 (ρ) of Theorem 7.

The result of Theorems 6 and 7 are visualized by curves (b)
and (c), respectively, in Fig. 1. Note that the curves (b) and
(c) cross at

ρ =
log2

(
4

e·log2(e)

)

3−2 log2(e)
≈ 0.249.

IV. ANALYSIS OF KNOWN BOUNDS

The following theorems summarize, to the best of our
knowledge, the tightest known bounds for balls in (Sn, d∞).

Theorem 8: It holds that

ϕ1(ρ, n) �
∣
∣Bρ,n

∣
∣ � �1(ρ, n),

where

log2 ϕ1(ρ, n)

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · log2(n)

−n · [ log2(e) − 1 + 2ρ − log2(ρ)
]

+o(n) 0 < ρ � 1

2

n · log2(n)

−n · [ log2(e) − log2(ρ)
]

+o(n)
1

2
� ρ < 1

and

log2 �1(ρ, n)

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · log2(n)

−n · [( log2(e)−1
) · (2ρ+1) − log2(ρ)

]

+o(n) 0 < ρ � 1

2

n · log2(n)

−n · [ log2(e) · (3 − 2ρ) + 2ρ · log2(ρ)
]

+o(n)
1

2
� ρ < 1
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Proof: These bounds follow from results in [17],
[27], [29], and [42]. For more details, see Appendix A.

Comparing the upper bound �1 with the lower bound ϕ1,
one obtains immediately the result stated in Theorem 4.

Theorem 9: For all 0 < ρ � 1
2 , it holds that

∣
∣Bρ,n

∣
∣ � ϕ′

1(ρ, n),

where

log2 ϕ′
1(ρ, n) = n · log2 n

− n · [( log2(e)−1
) · (2ρ+1) − log2(ρ)

+ 2 · (h(μ∗)+log2(μ
∗)
) · ρ]

+ o(n),

and where μ∗ is the constant defined by

μ∗ � 1

1 + W (e−1)
≈ 0.782.

Proof: This result follows from an asymptotic analysis of
the conjectured lower bound in [29], which was very recently
proven in [21]. The asymptotic analysis is briefly sketched in
Appendix B.

V. NEW LOWER BOUNDS

In this section we present new lower bounds on the size
of balls in (Sn, d∞). These lower bounds are based on the
following theorem, which is a variant of a result in [32]. The
art in using this theorem is to find Q matrices that yield large
right-hand sides in (2) and that are analytically tractable.

Theorem 10: Let M � (mi, j ) be an n × n matrix with non-
negative entries and per(M) > 0, and let Q � (qi, j ) be an
n × n doubly-stochastic matrix such that qi, j = 0 whenever
mi, j = 0. Then

log2 per(M) � log2

(
n!
nn

)
+

∑

i, j∈[n]

(
−qi, j log2

qi, j

mi, j

)
. (2)

Proof: Let ε > 0 and let M(ε) �
(
m(ε)

i, j

)
be the matrix

that is obtained from M by replacing zeros by ε. Because
M(ε) contains only strictly positive entries, it follows from
a theorem by Sinkhorn [40] that there exist two diagonal
matrices D and D′ with positive diagonal elements such
that D · M(ε) · D′ is a doubly-stochastic matrix. Let D and D′
be given by

D � diag(d1, . . . , dn),

D′ � diag(d ′
1, . . . , d ′

n),

where di , i ∈ [n], and d ′
j , j ∈ [n], are positive real numbers.

Note that the element in the i -th row and the j -th column
of D · M(ε) · D′ is given by di · m(ε)

i, j · d ′
j . Then

log2 per
(
M(ε)

)

(a)= log2 per
(
D · M(ε) · D′)−

∑

i∈[n]
log2(di ) −

∑

j∈[n]
log2(d

′
j )

(b)
� log2

(
n!
nn

)
−
∑

i∈[n]
log2(di ) −

∑

j∈[n]
log2(d

′
j )

(c)
� log2

(
n!
nn

)
−
∑

i∈[n]
log2(di ) −

∑

j∈[n]
log2(d

′
j )

−
∑

i, j∈[n]
qi, j · log2

(
qi, j

di · m(ε)
i, j · d ′

j

)

= log2

(
n!
nn

)
−

∑

i, j∈[n]
qi, j · log2

(
qi, j

m(ε)
i, j

)

(d)
� log2

(
n!
nn

)
−

∑

i, j∈[n]
qi, j · log2

(
qi, j

mi, j

)
. (3)

We justify the steps taken: Step (a) follows by noting that
M(ε) is obtained from D · M(ε) · D′ by factoring out di from
the i th row and d ′

j from the j th column, for all i, j ∈ [n].
Step (b) follows from Van der Waerden’s conjecture (proven
by Falikman [16] and by Egorychev [15]), which states that
for any n × n doubly-stochastic matrix U , we have per(U) �
n!/nn . Step (c) follows from the non-negativity of relative
entropy. Finally, Step (d) follows from m(ε)

i, j � mi, j for
all i, j ∈ [n], and by noting that we require qi, j = 0
whenever mi, j = 0.

Note that limε→0 per
(
M(ε)

) = per(M), because the perma-
nent of a matrix is a multilinear function of the entries of the
matrix. With this, applying the limit ε → 0 to the expression
in (3), we obtain (2).

We note that D and D′ are auxiliary matrices in the proof of
Theorem 10. Only their existence matters, while their entries
do not play a role in (2). For matrices M with strictly positive
entries (and possibly some other classes of matrices), the
right-hand side of (2) can be maximized with the help of
Sinkhorn’s balancing algorithm [40], see, e.g., the discussions
in [23], [32], and [45].1

In the following, we will apply Theorem 10 with M =
Ar,n and with two classes of Q matrices. The first class of Q
matrices will ultimately yield Theorem 6, whereas the second
class of Q matrices will ultimately yield Theorem 7.

A. First Class of Q Matrices

Definition 11: For 0 � r � n−1
2 , we define the matrix

Qr,n = (qi, j ) with entries

qi, j �

⎧
⎪⎨

⎪⎩

2

2r + 1
i + j � r +1 or i + j � 2n−r +1

ai, j

2r + 1
otherwise.

(4)

For n−1
2 � r � n − 1, we define the matrix Qr,n = (qi, j ) with

entries

qi, j �

⎧
⎪⎨

⎪⎩

2

n
i + j � n − r or i + j � n + r + 2

ai, j

n
otherwise.

(5)

�

Lemma 12: The matrix Qr,n in Definition 11 is a doubly-
stochastic matrix with the same support as Ar,n.

1Strictly speaking, we do not need Sinkhorn’s balancing algorithm to prove
our results. However, we mention this algorithm here because it played a key
role for analyzing setups with finite n and r and coming up with the Qr,n
matrices in Definitions 14 and 17 for general n and r .
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Figure 2. Matrices Qr,n used in this paper to obtain various lower bounds.
Note that for every instance, the support of Qr,n equals the support of Ar,n .

Proof: See Appendix C.
For n = 20 and r = 6, the resulting Qr,n matrix is depicted

in Fig. 2(a), whereas for n = 20 and r = 14, the resulting
Qr,n matrix is depicted in Fig. 2(b).

Theorem 13: Fix some ρ, 0 < ρ < 1. It holds that
∣∣Bρ,n

∣∣ � ϕ2(ρ, n),

where we define

log2 ϕ2(ρ, n)

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n · log2(n)

−n · [ log2(e) − 1 + ρ − log2(ρ)
]

+o(n) 0 < ρ � 1

2

n · log2(n)

−n · [ log2(e) + 2 · (1 − ρ)2
]

+o(n)
1

2
� ρ < 1

Proof: See Appendix D.
Comparing the upper bound �1 with the new lower

bound ϕ2, one obtains immediately the result stated in
Theorem 6.

We conclude this section with several comments on the
matrices Qr,n . The matrix Qr,n that we defined in (4) already
appeared in [29] and [21], and that of (5) already appeared
in [17]. Although [17], [21], and [29] introduce the same
matrices, they consider a different approach to obtain a lower
bound on per(Ar,n) than the one presented in this paper, and
with that they obtain a different lower bound on

∣
∣Bρ,n

∣
∣.

We also note that the definition of the matrix Qr,n in (4)
works not only for the range 0 < ρ � 1

2 , but for the entire
range 0 < ρ < 1. However, we define these matrices only for
the range 0 < ρ � 1

2 , because they yield a weaker lower bound
than the lower bound in Theorem 13 for the range 1

2 � ρ < 1.

B. Second Class of Q Matrices
Our second class for the Q matrices are more sophisticated

than our first class. In the following, we will separately discuss

the cases 0 < ρ � 1/2 and 1
2 < ρ < 1. Note that the Q matrix

that we will use for the case 1
2 < ρ < 1 maximizes the right-

hand side of (2) for M = Ar,n . This is in contrast to the
Q matrix that we will use for the case 0 < ρ � 1/2. This
Q matrix does not, in general, maximize the right-hand side
of (2) for M = Ar,n . An exception is the case where n is even
and r = n−2

2 .
1) Range 0 < ρ � 1

2 : We start our discussion of this case
with the following definition.

Definition 14: Fix some r, 1 � r � n−2
2 . Let Qr,n � (qi, j )

be the n × n-matrix with entries

qi, j � ai, j · C · q̃i, j ,

where

q̃i, j =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

α
(r+1−i)+(r+1− j )
r 1 � i � r + 1, 1 � j � r + 1

α
i−(n−r)+ j−(n−r)
r n−r � i � n, n−r � j � n

α
|i− j |
r otherwise

,

where C is given by

C � (αr − 1) · α−r−1
r = αr − 1

αr + 1
, (6)

and where αr > 0 satisfies

αr+1
r − αr − 1 = 0. (7)

�

Note that the second expression for C in (6) follows from
the first expression for C in (6), along with (7). Moreover,
note that the αr > 0 satisfying (7) is unique. (This can be
proven by analyzing the function α �→ αr+1 − α − 1.)

For n = 20 and r = 6, the resulting Qr,n matrix is depicted
in Fig. 2(c).

Lemma 15: The matrix Qr,n in Definition 14 is a doubly-
stochastic matrix with the same support as Ar,n.

Proof: See Appendix E.
Theorem 16: Fix some ρ, 0 < ρ � 1

2 . It holds that
∣
∣Bρ,n

∣
∣ � ϕ3(ρ, n),

where we define

log2 ϕ3(ρ, n)

� n · log2(n)

− n ·
[(

log2(e)−1
) · 2ρ−log2(ρ)−log2

(
log2(e)

)+1
]

+ o(n).

Proof: See Appendix F.
Comparing the upper bound �1 with the new lower

bound ϕ3, one obtains immediately the result stated in
Theorem 7 for the case 0 < ρ � 1

2 .
2) Range 1

2 < ρ < 1: We start our discussion of this case
with the following definition.

Definition 17: Fix some r, n−1
2 < r < n−1. Let Qr,n � (qi, j )

be the n × n-matrix with entries

qi, j = ai, j · C · exp2(λi ) · exp2(λ
′
j ), i, j ∈ [n], (8)
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where

λi �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(
(n−r) − i

) · log2(αr,n) 1 � i � n − r

0 n − r � i � r + 1
(
i − (r +1)

) · log2(αr,n) r + 1 � i � n

,

λ′
j � λ j , j ∈ [n],

C � (αr,n −1) · α−(n−r)
r,n (9)

= αr,n −1

(2r −n+2) − (2r −n) · αr,n
, (10)

where αr,n > 0 satisfies

αn−r
r,n + (2r −n) · αr,n − (2r −n+2) = 0. (11)

�

We note that

• λn+1−i = λi , i ∈ [n],
• λ′

n+1− j = λ′
j , j ∈ [n].

Additionally, we observe that the second expression for C
in (10) follows from the first expression for C in (9), along
with (11). Moreover, note that the αr,n > 0 satisfying (11)
is unique. (This can be proven by analyzing the function
α �→ αn−r + (2r −n) · α − (2r −n+2).)

For n = 20 and r = 14, the resulting Qr,n matrix is depicted
in Fig. 2(d).

Lemma 18: The matrix Qr,n in Definition 17 is a doubly-
stochastic matrix with the same support as Ar,n.

Proof: See Appendix G.
Lemma 19: Fix some r, n−1

2 < r < n−1. It holds that

log2

∣
∣Br,n

∣
∣ � log2(n!) − n log2(n) − n · log2(αr,n −1)

+ (n − r) · (2r − n + 2) · log2(αr,n),

where αr,n was specified in (11).
Proof: See Appendix H.

Note that the lower bound in Lemma 19 contains the
constant αr,n . In order to get rid of this constant, the
upcoming Lemma 20 suitably approximates this constant and
Theorem 21 will then show the updated expression for the
lower bound.

Lemma 20: Fix some ρ with 1
2 < ρ < 1. Let r � ρ · (n−1).

Then αr,n from (11) satisfies

αr,n = 1 +
(

t̂+	
(
n−1)

)
·
(

2
1

(n−1)(1−ρ)+1 −1
)

,

where

t̂ � log2(e) ·
⎛

⎝2(1−ρ)

2ρ − 1
− W

⎛

⎝
(1−ρ) · exp

(
2(1−ρ)
2ρ−1

)

2ρ − 1

⎞

⎠

⎞

⎠ .

(12)

Proof: See Appendix I.
Theorem 21: Fix some ρ with 1

2 < ρ < 1 a constant. Let
r � ρ · (n−1). It holds that

∣
∣Br,n

∣
∣ � ϕ3(ρ, n),

where

log2 ϕ3(ρ, n)

� n · log2(n)

− n ·
[

log2

(
e · t̂

log2(e)

)
− t̂ · (2ρ−1) − log2(1−ρ)

]

+ o(n),

and where t̂ is given by (12).
Proof: See Appendix J.

Comparing the upper bound �1 with the new lower
bound ϕ3, one obtains immediately the result stated in
Theorem 7 for the case 1

2 < ρ < 1.

VI. CONCLUSION AND OUTLOOK

We conclude this paper by commenting about the newly
obtained lower bounds and by stating some open problems.

A. Implications of the New Bounds

Previous works on error-correcting codes over permutations
with the infinity norm [30], [42], [48] used bounds on the
size of balls in this metric to state ball-packing and Gilbert–
Varshamov-like bounds. Since in this paper we improved the
lower bound on the size of balls, these new bounds affect
the ball-packing bound (stated in [42]). If we consider error-
correcting codes in Sn of rate R and normalized distance δ,
the ball-packing bound2 states that

2Rn � n!
∣
∣B
(δ(n−1)−1)/2�,n

∣
∣ ,

or in asymptotic form,

R � log2 n − log2 e − 1

n
log2

∣
∣Bδ/2,n

∣
∣+ o(1).

Using the bounds on
∣
∣Bδ/2,n

∣
∣ known at that time, it was stated

in [42, Th. 27] that

R � δ + log2
1

δ
+ o(1).

However, now we can use the improved lower bounds
ϕ2 and ϕ3, and obtain a stronger asymptotic form for the ball-
packing bound,

R �

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

δ

2
+ log2

1

δ
+ o(1) 0 � δ

2
� ξ,

(log2(e) − 1)(δ − 1) + log2
1

δ
+ 1

− log2(log2(e)) + o(1) ξ � δ

2
� 1

2
,

where ξ � 2−log2(e)−log2(log2(e))
3−2 log2(e)

≈ 0.249 is the crossover point

of curves (b) and (c) in Fig. 1. The ball-packing bound for
error-correcting codes is shown in Fig. 3, before and after
the improvement of this paper. We do note that while the
improvement in the bound is substantial, it is still weaker
than the code-anticode bound described in [42]. (However,
the bound in [42] does not have the geometric interpretation
of packing balls.)

2We comment that in [42], δ was defined in a slightly different manner,
by δ � d/n, where d is the minimum distance of the code. We instead use
δ � d/(n − 1), to be consistent with the normalization used throughout the
paper. The change due to the difference in normalization is subsumed in the
o(1) additive factor in the upper bound on the rate.
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Figure 3. Upper bounds on the size of error-correcting codes over permuta-
tions with the infinity norm (rate R as a function of the normalized minimum
distance δ): (a) The code-anticode bound of [42]; (b) The ball-packing bound
of [42]; (c) The ball-packing bound using the new bounds of this paper.

In contrast, in the case of covering codes over permutations
with the infinity norm, the new bounds in this paper do
improve the best upper bounds on the rate of the codes. Let us
now consider covering codes in Sn of rate R and normalized
covering radius ρ. The upper bound of [17, Th. 3] is

2Rn � n!(1 + ln(n!))
∣
∣Bρ,n

∣
∣ .

Using the asymptotic bounds on
∣
∣Bρ,n

∣
∣ known at that time, an

asymptotic form was given in [17, Th. 15] as

R �

⎧
⎪⎨

⎪⎩

2ρ + log2
1

ρ
+ o(1) 0 � ρ � 1

2
,

2(1 − ρ) + o(1)
1

2
� ρ � 1.

Now, using ϕ2 and ϕ3, we can state an improved upper bound

R �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ − 1 + log2
1

ρ
+ o(1) 0 � ρ � ξ,

(2ρ − 1)(log2(e) − 1)

+ log2
1

ρ
+ log2(log2(e)) ξ � ρ � 1

2
,

log2(t̂) − log2(log2(e))

−(2ρ − 1)t̂ − log2(1 − ρ)
1

2
� ρ � 1,

where ξ as defined above, and t̂ as defined in Theorem 7.
We observe that the largest improvement in Fig. 1 (between

the previous lower bounds and our new lower bounds) occurs
at ρ = 1

2 . This manifests in Fig. 4 in a similar manner, showing
the largest improvement between curves (b) and (c) occurring
at ρ = 1

2 . However, in Fig. 3, the largest improvement between
curves (b) and (c) occurs at δ = 1. This is due to the fact that
the ball-packing bound uses

∣
∣Bδ/2,n

∣
∣.

B. Open Problems

We now turn to discuss some open problems. As mentioned
at the beginning of Section V-B, the Q matrix that we use
there for the case 1

2 < ρ < 1 maximizes the right-hand side
of (2) for M = Ar,n . This is in contrast to the Q matrix that
we use for the case 0 < ρ � 1/2, which in general does not

Figure 4. Upper bounds on the size of optimal covering codes over
permutations with the infinity norm (rate R as a function of the normalized
covering radius ρ): (a) The covering-code construction of [17]; (b) The upper
bound of [17]; (c) The upper bound using the new bounds of this paper.

maximize the right-hand side of (2) for M = Ar,n . We leave
it as an open problem to find the Q matrix that maximizes
the right-hand side of (2) for the case 0 < ρ � 1/2. (So far,
analytical considerations, along with some numerical evidence
for somewhat small choices of n and r , have not led to a
closed-form expression for the optimal Q matrix.)

We mention another open problem. Instead of Theorem 10,
one can also use the following approach to obtain a lower
bound on log2 per(M). Namely, let perB(M) be the Bethe
permanent of an n × n-matrix with non-negative entries [44].
The following theorem is due to Gurvits [22]. (See also the
discussion in [44].)

Theorem 22: Let M � (mi, j ) be an n × n matrix with non-
negative entries and per(M) > 0. Let Qr,n � (qi, j ) be any
n × n doubly-stochastic matrix such that qi, j = 0 whenever
mi, j = 0. Then

log2 per(M)

� log2 perB(M)

�
∑

i, j∈[n]

(
−qi, j log2

(
qi, j

mi, j

)
+ (1−qi, j ) log2(1−qi, j )

)
.

�

For the asymptotic setup of interest in this paper, i.e., r � ρ ·
(n−1), and the Q-matrices which were defined in Sections V-A
and V-B, it turns out that Theorems 10 and 22 lead to the same
lower bounds (modulo o(n) terms) except for the boundary
case ρ = 0. It is conceivable that an optimal choice of a
Q-matrix for Theorem 22 may result in a lower bound that
outperforms the bounds obtained in this paper. We leave it
as an open problem to analytically find the Q matrix which
maximizes the right-hand side of the expression in Theorem 22
for M = Ar,n .

APPENDIX A
PROOF OF THEOREM 8

To the best of our knowledge, the tightest known bounds
for balls in (Sn, d∞) are as follows:

ϕ1(ρ, n) �
∣
∣Bρ,n

∣
∣ � �1(ρ, n),
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where

ϕ1(ρ, n) �

⎧
⎪⎨

⎪⎩

n! · (2r + 1)n

22r · nn
0 < ρ � 1

2
n! · (2r + 1)n

2n · nn

1

2
� ρ < 1

,

�1(ρ, n) �

⎧
⎪⎨

⎪⎩

(
(2r + 1)!) n−2r

2r+1
∏2r

i=r+1(i !)
2
i 0 < ρ � 1

2

(n!) 2r+2−n
n

∏n−1
i=r+1(i !)

2
i

1

2
� ρ < 1

where r � ρ · (n−1). These bounds are a consequence of the
following results:

• For the range 0 < ρ � 1
2 , the upper bound was given

in [27, eq. (4)], and the lower bound was given in
[29, eqs. (3) and (5)].

• For the range 1
2 � ρ < 1, the upper bound was given

in [42, Lemma 25].
• For the range 1

2 � ρ < 1, a slightly weaker lower
bound was given in [17, Lemma 14]. However, the bound
we cite here, though never presented explicitly, may be
deduced from [29, eqs. (3) and (5)] while noting that (in
the notation of [29])

per
(
A(r,n)

) = 1

2n
· per

(
2A(r,n)

)

� 1

2n
· per

(
B(r,n)

)

� n! · (2r + 1)n

2n · nn
.

We would now like to convert these bounds to a more
pleasing asymptotic form. We start with the range 0 < ρ � 1

2 .
For ϕ1(ρ, n) we obtain

ϕ1(ρ, n) = n! · (2ρ · (n−1) + 1)n

22ρ·(n−1)nn
= (2ρn)n

22ρnen
· 2o(n),

where we used Stirling’s approximation.
On the other hand, the expression for �1(ρ, n) follows from

�1(ρ, n) = (
(2ρ(n−1) + 1)!) n−2ρ·(n−1)

2ρ·(n−1)+1 ·
2ρ·(n−1)∏

i=ρ·(n−1)+1

(i !) 2
i

=
(

2ρn

e

)n(1−2ρ)

·
⎛

⎝
2ρ·(n−1)∏

i=ρ·(n−1)+1

(i !) 2
i

⎞

⎠ · 2o(n)

=
(

2ρn

e

)n(1−2ρ)

·
⎛

⎝
2ρ·(n−1)∏

i=ρ·(n−1)+1

((
i

e

)2

2o(1)

)⎞

⎠ · 2o(n)

=
(

2ρn

e

)n(1−2ρ)

· 1

e2ρ·(n−1)
·
(

(2ρ · (n−1))!
(ρ · (n−1))!

)2

· 2o(n)

=
(

2ρn

e

)n(1−2ρ)

· 1

e2ρn
· 24ρn ·

(ρn

e

)2ρn · 2o(n)

=
(

2ρn

e

)n

·
(

2

e

)2ρn

· 2o(n),

where we used Stirling’s approximation whenever a factorial
appears. The case of 1

2 � ρ < 1 is handled analogously.
Namely, after following similar steps we get

ϕ1(ρ, n) = (2ρn)n

2nen
· 2o(n),

�1(ρ, n) = nn

en(3−2ρ)ρ2ρn
· 2o(n).

Clearly, the obtained expressions for �1 and ϕ1 imply the
expressions given in the theorem statement.

APPENDIX B
PROOF OF THEOREM 9

We recall that the asymptotic regime of interest to us is
r = ρ · (n − 1) for some fixed ρ. The conjecture of [29],
proven in [21], asserts that for 0 < ρ � 1

2 ,

∣∣Bρ,n
∣∣ >

√
2π(n + 2r)

ω2
r

·
(

2r + 1

e

)n

, (13)

where

ωr � �r ·er

(2r+1)r , (14)

and

�r �
r∑

m=0

(
r

m

)
· (m + 1)r .

In order to complete the analysis, we need to find an
asymptotic expression for �r . To that end, let us denote

�̃r � max

{(
r

m

)
· (m + 1)r

∣
∣∣
∣ 0 � m � r

}
.

Then

�̃r � �r � (r + 1) · �̃r .

In the limit n → ∞, these inequalities imply

log2(�r ) = log2(�̃r ) + o(n).

In order to find �̃r , we look for the maximal summand in
the definition of �r . We do so by looking at the ratio of two
successive summands,

( r
m

) · (m + 1)r

( r
m−1

) · mr
,

and note that this ratio is monotone decreasing in m.
We denote m = μ · r for some suitable μ, and thus we would
like to find the value of μ for which

( r
μr

) · (μr + 1)r

( r
μr−1

) · (μr)r
= 1.

Since r tends to infinity, in the limit, this equation becomes

1 − μ

μ
· e1/μ = 1,

whose exact solution is

μ = 1
1+W (e−1)

� μ∗.

Thus the value of m we are looking for is

m = μ∗ · r · (1 + o(1)),
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and so

log2(�r ) = log2(�̃r ) + o(n)

= n · (h(μ∗) + log2(μ
∗ρn)

) · ρ + o(n).

Plugging this back into (13) and (14), we obtain the promised
result.

APPENDIX C
PROOF OF LEMMA 12

We begin by noting that the support of Qr,n is the same
as that of Ar,n . We need to verify that all entries of Qr,n are
non-negative, that all columns sum to 1, and that all rows sum
to 1. It follows immediately from the definition of Qr,n that all
entries are non-negative. Because Qr,n is symmetric, it only
remains to show that all columns sum to 1.

First let us consider the case of 0 � r � n−1
2 . In this case,

for columns 1 � j � r we have

n∑

i=1

qi, j =
r+1− j∑

i=1

2

2r + 1
+

r+ j∑

i=r+2− j

1

2r + 1
= 1.

A similar statement holds for columns n − r + 1 � j � n. For
the rest of the columns, i.e., for r + 1 � j � n − r , we have

n∑

i=1

qi, j =
j+r∑

i= j−r

1

2r + 1
= 1.

Let us now consider the case n−1
2 � r � n−1. For columns

1 � j � n − r − 1 we have

n∑

i=1

qi, j =
n−r− j∑

i=1

2

n
+

r+ j∑

i=n−r− j+1

1

n
= 1,

and a symmetric claim holds for columns r + 2 � j � n.
Finally, for columns n − r � j � r + 1 we have

n∑

i=1

qi, j =
n∑

i=1

1

n
= 1.

APPENDIX D
PROOF OF THEOREM 13

Let r � ρ · (n−1). We distinguish two cases, namely the
case 0 < ρ � 1

2 and the case 1
2 � ρ < 1.

Consider the first case, i.e., 0 < ρ � 1
2 . We make the

following observations about the matrix Qr,n in Definition 11:
• r(r + 1) entries take on the value 2

2r+1 ,
• n(2r + 1) − 2r(r + 1) entries take on the value 1

2r+1 ,
• the remaining entries take on the value 0.

We obtain

log2

∣∣Bρ,n
∣∣

= log2 per(Aρ,n)

� log2

(
n!
nn

)
− r · (r + 1) · 2

2r + 1
· log2

(
2

2r + 1

)

− (
n(2r + 1) − 2r(r + 1)

) · 1

2r + 1
· log2

(
1

2r + 1

)

= log2(n!) − 2r · (r + 1)

2r + 1
+ n · log2

(
2r + 1

n

)
,

where the first equality follows from Lemma 2 and where the
inequality follows from Theorem 10 with M � Aρ,n and with
Q � Qr,n , where Qr,n was specified in Definition 11. For the
asymptotics, we make note of the following:

log2(n!) = log2

((n

e

)n · 2o(n)
)

= n log2(n) − n log2(e) + o(n),

by Stirling’s approximation, as well as

2r · (r + 1)

2r + 1
= 2ρ(n − 1)(ρ(n − 1) + 1)

2ρ(n − 1) + 1
= ρn + o(n),

and

n · log2

(
2r + 1

n

)
= n · log2

(
2ρ(n − 1) + 1

n

)

= n · log2(2ρ + o(1))

= n · log2(2ρ) + o(n).

Combining these together, asymptotically we get

n · log2(n) − n · [ log2(e) − 1 + ρ − log2(ρ)
]+ o(n),

which confirms the expression in the theorem statement.
We now turn to the second case, i.e., 1

2 � ρ < 1.
We make the following observations about the matrix Qr,n

in Definition 11:

• (n − r − 1)(n − r) entries take on the value 2
n ,

• n2 − 2(n − r − 1)(n − r) entries take on the value 1
n ,

• the remaining entries take on the value 0.

We therefore obtain

log2

∣
∣Bρ,n

∣
∣

= log2 per(Aρ,n)

� log2

(
n!
nn

)
− (n − r − 1)(n − r) · 2

n
· log2

(
2

n

)

− (n2 − 2(n − r − 1)(n − r)) · 1

n
· log2

(
1

n

)

= log2(n!) − 2 · (n − r − 1) · (n − r)

n
,

where the first equality follows from Lemma 2 and where
the inequality follows from Theorem 10 with M � Aρ,n and
with Q � Qr,n , where Qr,n was specified in Definition 11.
For an asymptotic expression we follow the same steps as in
the previous case. Thus, asymptotically, the last expression
becomes

n · log2(n) − n · log2(e) − 2n · (1 − ρ)2 + o(n),

which confirms the expression in the theorem statement.

APPENDIX E
PROOF OF LEMMA 15

The following lemma collects some results that will prove
useful for simplifying some upcoming computations in this
appendix and also in Appendix F.
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Lemma 23: We define

S(0)
r �

r∑

�=0

α�
r = αr+1

r − 1

αr − 1
= αr

αr − 1
,

S(1)
r �

r∑

�=0

� · α�
r = r · αr+2

r − (r + 1) · αr+1
r + αr

(αr − 1)2

= r · α2
r − r − 1

(αr − 1)2 ,

S(2)
r �

r∑

�=0

�2 · α�
r = r2 · αr+1

r − 2 · S(1)
r

αr − 1
+ αr+1

r − αr

(αr − 1)2

= r2 · (αr + 1)

αr − 1
+ 1

(αr − 1)2 − 2 · r · α2
r − r − 1

(αr − 1)3 .

Proof: In each case, the the first summation expression is
obtained by standard algebraic techniques, whereas the second
summation expression is obtained by simplifying the first
summation expression with the help of (7).

We now continue with the proof of Lemma 15. First we
note that by definition, Qr,n has the same support as Ar,n .
We need to verify that all entries of Qr,n are non-negative, that
all columns sum to 1, and that all rows sum to 1. It follows
immediately from the definition of Qr,n that all entries are
non-negative. Because Qr,n is symmetric, it only remains to
show that all columns sum to 1.

For 1 � j � r + 1, we obtain

n∑

i=1

qi, j = C ·
r+1∑

i=1

α
(r+1−i)+(r+1− j )
r + C ·

r+ j∑

i=r+2

α
i− j
r

= C · α
r+1− j
r · S(0)

r + C · αr+1
r − α

r+2− j
r

αr − 1

= C · α
r+1− j
r · αr

αr − 1
+ C · αr+1

r − α
r+2− j
r

αr − 1
= 1.

For n − r � j � n, because of symmetries of the Qr,n

matrix, the calculations are analogous to the calculations for
1 � j � r + 1.

Finally, for r + 2 � j � n−r −1, we obtain

n∑

i=1

qi, j = C ·
j+r∑

i= j−r

α
|i− j |
r = 2 · C · S(0)

r − C · α0
r = 1.

APPENDIX F
PROOF OF THEOREM 16

Recall that r � ρ · (n −1). In the following, in order to
simplify the notation, we define α � αr . As in Appendix D,
the proof here is based on Lemma 2 and Theorem 10. To this
end, we compute the quantity

T �
∑

i, j∈[n]
qi, j log2

qi, j

mi, j
,

where Qr,n = (qi, j ) is the matrix specified in Definition 14
and where M = (mi, j ) = Ar,n . We decompose T as follows

T = T1 + T2 + T3 + T4 + T5 ,

where

T1 �
r+1∑

j=1

r+1∑

i=1

qi, j log2
qi, j

mi, j
,

T2 �
r+1∑

j=2

j+r∑

i=r+2

qi, j log2
qi, j

mi, j
,

T3 �
n−r−1∑

j=r+2

j+r∑

i= j−r

qi, j log2
qi, j

mi, j
,

T4 �
n−1∑

j=n−r

n−r−1∑

i= j−r

qi, j log2
qi, j

mi, j
,

T5 �
n∑

j=n−r

n∑

i=n−r

qi, j log2
qi, j

mi, j
.

Because of the symmetries of the setup, we have T1 = T5 and
T2 = T4. Therefore, we only need to determine T1, T2, and T3.
We get, using the notation from Lemma 23 in Appendix E,

T1 =
r+1∑

j=1

r+1∑

i=1

C ·α(r+1−i)+(r+1− j ) log2

(
C ·α(r+1−i)+(r+1− j )

)

= C · (S(0)
r

)2 · log2(C) + 2 · C · S(0)
r · S(1)

r · log2(α) ,

T2 =
r+1∑

j=2

j+r∑

i=r+2

qi, j log2
qi, j

mi, j

=
r∑

�=0

� · C · α� · log2

(
C · α�

)

= C · S(1)
r · log(C) + C · S(2)

r · log(α) ,

T3 =
n−r−1∑

j=r+2

j+r∑

i= j−r

qi, j log2
qi, j

mi, j

= (
(n−r −1) − (r +2) + 1

) ·
r∑

�=−r

C · α|�| · log2

(
C · α|�|)

= (n−2r −2) · C · (2S(0)
r − 1

) · log(C)

+ (n−2r −2) · C · (2S(1)
r − 0

) · log(α) .

Recall that α satisfies αr+1 − α − 1 = 0. The following
lemma gives an approximation of α which is precise enough
for the upcoming computations.

Lemma 24: It holds that

α = 1 + ln(2)

r
+ o(1/r).

Proof: Consider the following two functions

g(r) � αr+1 − α − 1
∣
∣
∣
α=1+ ln(2)

r+1

,

g(r) � αr+1 − α − 1
∣
∣
∣
α=1+ ln(2)

r

.

One can show that g(r) is a strictly increasing function
of r > 0, ultimately converging to 0 as r → ∞, and
that g(r) is a strictly decreasing function of r > 0, ultimately
converging to 0 as r → ∞. (We omit the straightforward, but
tedious, details.)
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From these observations, it follows that α satisfies

1 + ln(2)

r + 1
= α � α � α = 1 + ln(2)

r
,

which implies the expression in the lemma statement.
In the following, we will therefore use α = 1 + ln(2)

r +
o(1/r). With this, we obtain C = ln(2)

2ρn + o(1/n).
Putting everything together, and using Lemma 2 and

Theorem 10, we get

log2 |Bρ,n|

� log2

(
n!
nn

)
− T

= n · log2(n)

− n ·
[(

log2(e)−1
) · 2ρ−log2(ρ)−log2

(
log2(e)

)+1
]

+ o(n).

APPENDIX G
PROOF OF LEMMA 18

We begin by noting that the support of Qr,n is the same
as that of Ar,n . We need to verify that all entries of Qr,n are
non-negative, that all columns sum to 1, and that all rows sum
to 1. It follows immediately from the definition of Qr,n that all
entries are non-negative. Because Qr,n is symmetric, it only
remains to show that all columns sum to 1. In order to simplify
the notation, in the following we set α � αr,n .

For 1 � j � n − r , we obtain

n∑

i=1

qi, j = C · αn−r− j ·
(
αn−r−1 + · · · + α2 + α + 1

+ (2r − n) · 1

+ 1 + α + α2 + · · · + α j−1
)

= C · αn−r− j ·
(

αn−r − 1

α − 1
+ 2r − n + α j − 1

α − 1

)

= α− j ·
(

αn−r − 1 + (2r − n) · (α−1) + α j − 1

)

= 1,

where the third equality follows from plugging in the expres-
sion for C from (9) and where the fourth equality follow from
using (11) to simplify the expression.

For n − r + 1 � j � r , we obtain

n∑

i=1

qi, j =
n∑

i=1

qi,n−r = 1,

where the first equality follows from qi, j = qi,n−r , i ∈ [n],
and where the second equality follows from the above
computations.

For r + 1 � j � n, we can use the symmetries of
the matrix Qr,n and the above computations to argue that∑n

i=1 qi, j = 1.

APPENDIX H
PROOF OF LEMMA 19

In the following, in order to simplify the notation, we define
α � αr,n . As in Appendices D and F, the proof here is based
on Lemma 2 and Theorem 10. To this end, we compute the
quantity

T �
∑

i, j∈[n]
qi, j log2

qi, j

mi, j
,

where Qr,n is the matrix specified in Definition 17 and where
M = Ar,n . We get

T =
∑

i, j∈[n]
qi, j · log2

(
C · exp2(λi ) · exp2(λ

′
j )
)

= n · log2(C) +
∑

i∈[n]
λi +

∑

j∈[n]
λ′

j

= n · log2(α − 1) − n · (n − r) · log2(α)

+ 2 · (n − r) · (n − r − 1) · log2(α)

= n · log2(α − 1) − (n − r) · (2r − n + 2) · log2(α).

Using Lemma 2 and Theorem 10, we therefore obtain

log2

∣
∣Bρ,n

∣
∣

= log2 per(Aρ,n)

� log2

(
n!
nn

)
− T

= log2(n!) − n log2(n) − n · log2(α − 1)

+ (n − r) · (2r − n + 2) · log2(α).

APPENDIX I
PROOF OF LEMMA 20

Let α � αr,n . We define the function f : R → R,

f (x) = xn−r + (2r −n) · x − (2r −n+2).

By definition, α is the unique positive root of f (x). We note
that

f (1) = 1 + (2r −n) − (2r −n+2) = −1 < 0,

f
(
2

1
n−r

) = 2 + (2r −n) · 2
1

n−r − (2r −n+2) > 0.

It follows that

α ∈
[
1, 2

1
n−r

]
.

We rewrite α by introducing a real parameter t ∈ [0, 1],
α = 1 + t ·

(
2

1
n−r −1

)
.

In order to find the value of t we need to solve

0 = f (α)

=
(

1 + t ·
(

2
1

n−r − 1
))n−r + (2r − n) · t ·

(
2

1
n−r − 1

)
− 2.

(15)

Solving (15) is not easy. Instead of taking the direct route,
we observe that

lim
n→∞ f (α) = 2t + t · (2ρ − 1) ln(2)

1 − ρ
− 2. (16)
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We conveniently define the right-hand side of (15) as g(t),
and the right-hand side of (16) as ĝ(t). We would like to find
t∗ such that g(t∗) = 0, which appears to be a difficult task.
Instead, we find t̂ such that ĝ(t̂) = 0, and claim that it is not
too far from t∗.

We first note that t̂ from (12) indeed satisfies ĝ(t̂) = 0.
This is done by expanding ĝ(t̂) and remembering that
eW (z) = z

W (z) .
We now need to bound

∣
∣t∗ − t̂

∣
∣. Since ĝ(t) is continuous

and monotone increasing in [0, 1],
∣
∣t∗ − t̂

∣
∣ �

maxx∈[0,1]
∣
∣g(x) − ĝ(x)

∣
∣

minx∈[0,1]
∣
∣ d

dx ĝ(x)
∣
∣ .

It is easy to verify that
∣
∣g(x) − ĝ(x)

∣
∣ = 	

(
n−1), x ∈ [0, 1],

by noting that

lim
n→∞ n · (g(x) − ĝ(x)

)

= x ln(2)

2(1 − ρ)2

· ((2ρ−1) · ln(2) − 2x · (x −1) · (1−ρ) · ln(2) − 2ρ
)
.

Furthermore, we get

min
x∈[0,1]

∣
∣
∣
∣

d

dx
ĝ(x)

∣
∣
∣
∣ = ρ · ln(2)

1 − ρ
.

Combining everything together, we get that the sought after t∗,
for which g(t∗) = 0, is

t∗ = t̂ + 	
(
n−1)

which completes the proof the lemma.

APPENDIX J
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Let α � αr,n . With the help of Theorem 10 we obtain

log2

∣
∣Br,n

∣
∣ � log2(n!) − n · log2(n) − n · log2(α−1)

+ (n−r) · (2r −n+2) · log2(α)

= −n · log2(e) − n · log2(α−1)

+ (n−r) · (2r −n+2) · log2(α) + o(n),

where the last equality is due to Stirling’s approximation.
In order to evaluate −n · log2(α−1), we use Lemma 20 and
get

−n · log2(α−1) = −n · log2

[(
t̂ + 	

(
n−1)

)
·
(

2
1

n−r − 1
)]

= −n · log2

(
t̂ + 	

(
n−1)

)

− n · log2

(
1

(1−ρ)n log2(e)
+O

(
n−2)

)

= −n · log2(t̂) + n · log2
(
log2(e)

)

+ n · log2(1−ρ) + n · log2(n) + o(n),

where the derivation uses a Taylor series expansion of 2x

around x = 0.

Similarly, (n−r) · (2r −n+2) · log2(α) can be rewritten as

(n−r) · (2r −n+2) · log2(α)

= (n−r) · (2r −n+2)

· log2

[
1 +

(
t̂ + 	

(
n−1)

)
·
(

2
1

n−r − 1
) ]

= (n−r) · (2r −n+2)

· log2

[
1 +

(
t̂ + 	

(
n−1)

)

·
(

1

(1−ρ)n log2(e)
+ O

(
n−2)

) ]

= n2 · (1−ρ) · (2ρ−1) · t̂ · 1

(1−ρ) · n
+ o(n)

= n · (2ρ−1) · t̂ + o(n),

where the derivation uses a Taylor series expansion of 2x

around x = 0 and a Taylor series expansion of log2(1 + y)
around y = 0.

Combining everything together we get

log2

∣
∣Br,n

∣
∣ � log2

(
ϕ3(ρ, n)

) + o(n),

as claimed.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and the
anonymous reviewers, whose comments helped to improve the
presentation of this paper.

REFERENCES

[1] R. F. Bailey, “Error-correcting codes from permutation groups,” Discrete
Math., vol. 309, no. 13, pp. 4253–4265, 2009.

[2] A. Barg and A. Mazumdar, “Codes in permutations and error correc-
tion for rank modulation,” IEEE Trans. Inf. Theory, vol. 56, no. 7,
pp. 3158–3165, Jul. 2010.

[3] I. F. Blake, “Permutation codes for discrete channels (Corresp.),” IEEE
Trans. Inf. Theory, vol. 20, no. 1, pp. 138–140, Jan. 1974.

[4] I. F. Blake, G. Cohen, and M. Deza, “Coding with permutations,” Inf.
Control, vol. 43, pp. 1–19, Sep. 1979.

[5] S. Buzaglo and T. Etzion, “Perfect permutation codes with the Kendall’s
τ -metric,” in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA,
Jun. 2014, pp. 2391–2395.

[6] S. Buzaglo, E. Yaakobi, and T. Etzion, “Systematic codes for rank
modulation,” in Proc. IEEE Int. Symp. Inf. Theory, Honolulu, HI, USA,
Jun. 2014, pp. 2386–2390.

[7] P. J. Cameron, “Permutation codes,” Eur. J. Combinat., vol. 31,
pp. 482–490, Apr. 2010.

[8] P. J. Cameron and I. M. Wanless, “Covering radius for sets of permu-
tations,” Discrete Math., vol. 293, pp. 91–109, Apr. 2005.

[9] H. D. Chadwick and L. Kurz, “Rank permutation group codes based
on Kendall’s correlation statistic,” IEEE Trans. Inf. Theory, vol. IT-15,
no. 2, pp. 306–315, Mar. 1969.

[10] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes.
Elsevier, The Netherlands: North-Holland, 1997.

[11] J. H. Conway and N. J. A. Sloane, Sphere Packings, Lattices, and
Groups. New York, NY, USA: Springer-Verlag, 1988.

[12] M. Deza and T. Huang, “Metrics on permutations, a survey,” J. Combi-
nat. Inf. Syst. Sci., vol. 23, pp. 173–185, 1998.

[13] M. Deza and S. A. Vanstone, “Bounds for permutation arrays,” J. Statist.
Planning Inference, vol. 2, no. 2, pp. 197–209, 1978.

[14] M. Deza and P. Frankl, “On the maximum number of permutations with
given maximal or minimal distance,” J. Combinat. Theory A, vol. 22,
no. 3, pp. 352–360, 1977.

[15] G. P. Egorychev, “Proof of the van der Waerden conjecture for per-
manents (in Russian),” Sibirsk. Mat. Zh., vol. 22, no. 6, pp. 65–71,
Nov./Dec. 1981.



SCHWARTZ AND VONTOBEL: IMPROVED LOWER BOUNDS ON THE SIZE OF BALLS OVER PERMUTATIONS WITH THE INFINITY METRIC 6239

[16] D. I. Falikman, “Proof of the van der Waerden conjecture regarding the
permanent of a doubly stochastic matrix,” Math. Notes, vol. 29, no. 6,
pp. 475–479, 1981.

[17] F. Farnoud, M. Schwartz, and J. Bruck, “Bounds for permutation rate-
distortion,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 703–712,
Feb. 2016.

[18] F. Farnoud, V. Skachek, and O. Milenkovic, “Error-correction in flash
memories via codes in the Ulam metric,” IEEE Trans. Inf. Theory,
vol. 59, no. 5, pp. 3003–3020, May 2013.
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