
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017 6487

File Updates Under Random/Arbitrary
Insertions and Deletions

Qiwen Wang, Sidharth Jaggi, Muriel Médard, Fellow, IEEE, Viveck R. Cadambe, Member, IEEE,
and Moshe Schwartz, Senior Member, IEEE

Abstract— The problem of one-way file synchronization, hence-
forth called “file updates”, is studied in this paper. Specifically,
a client edits a file, where the edits are modeled by insertions
and deletions (InDels). An old copy of the file is stored
remotely at a data-centre, and is also available to the client.
We consider the problem of throughput- and computationally-
efficient communication from the client to the data-centre,
to enable the data-centre to update its old copy to the newly
edited file. Two models for the source files and edit patterns are
studied: the random pre-edit sequence left-to-right random InDel
(RPES-LtRRID) process, and the arbitrary pre-edit sequence
arbitrary InDel (APES-AID) process. In both models, we consider
the regime, in which the number of insertions and deletions is a
small (but constant) fraction of the length of the original file. For
both models, information-theoretic lower bounds on the best pos-
sible compression rates that enable file updates are derived (up
to first order terms). Conversely, a simple compression algorithm
using dynamic programming (DP) and entropy coding (EC),
henceforth called DP-EC algorithm, achieves rates that are
within constant additive gap (which diminishes as the alphabet
size increases) to information-theoretic lower bounds for both
models. For the RPES-LtRRID model, a dynamic-programming-
run-length-compression (DP-RLC) algorithm is proposed, which
achieves a compression rate matching the information-theoretic
lower bound up to first order terms. Therefore, when the
insertion and deletion probabilities are small (such that first
order terms dominate), the achievable rate by DP-RLC is nearly
optimal for the RPES-LtRRID model.

Index Terms— Synchronization, insertions, and deletions.

I. INTRODUCTION

AS THE paradigm of cloud storage becomes pervasive,
storing and transmitting files and their edited versions

consumes a huge amount of resources (storage, bandwidth,

Manuscript received June 8, 2016; revised April 18, 2017; accepted
April 30, 2017. Date of publication May 17, 2017; date of current version
September 13, 2017. Q. Wang was supported by the Knut and Alice Wal-
lenberg Foundation. This paper was presented at the 2015 IEEE Information
Theory Workshop, and the 2016 IEEE Information Theory Workshop.

Q. Wang is with the Department of Information Science and
Engineering, KTH Royal Institute of Technology, SE-100 44 Stockholm,
Sweden (e-mail: qiwenw@kth.se).

S. Jaggi is with the Department of Information Engineering, The Chinese
University of Hong Kong, Hong Kong (e-mail: jaggi@ie.cuhk.edu.hk).

M. Médard is with the Research Laboratory of Electronics, Massa-
chusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail:
medard@mit.edu).

V. R. Cadambe is with the Department of Electrical Engineering,
State College, Pennsylvania State University, PA 16802 USA (e-mail:
viveck@engr.psu.edu).

M. Schwartz is with the Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel (e-mail:
schwartz@ee.bgu.ac.il).

Communicated by J. Chen, Associate Editor for Shannon Theory.
Color versions of one or more of the figures in this paper are available

online at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TIT.2017.2705100

computation etc.) in client-datacentre communication, and
intra-datacentre traffic. If a file is “lightly edited”, storing
and transmitting the entire new file from clients to servers
wastes a significant amount of storage space and bandwidth.
Scenarios in which the number of edits is a small frac-
tion of the file length are very common in real-life editing
behavior. For example, data-backup systems such as Dropbox
and Time Machine keep regular snapshots of users’ files.
In revision-control software such as CVS, Git and Mercurial,
users (programmers) are likely to periodically commit and
store their code after a small number of edits. Currently,
many online-backup services use delta encoding (also known
as delta compression), and only upload the edited pieces of
files [1]–[3]. However, to the best of our knowledge, no exist-
ing techniques provide information-theoretically optimal com-
pression guarantees, and this is the principle contribution of
our work.

There are potentially many other types of edits besides
symbol insertions and deletions, for instance block insertions
and deletions, substitutions, transpositions, copy-paste, crop,
etc. – these and other edit models have been considered in,
among other works [4]–[9]. Since these other edit models are
in general a combination of symbol insertions and deletions,
we focus on the “base case” of symbol insertions and
deletions.1

A. Our Work/Contributions

In this work, we study the problem of one-way communi-
cation of file updates to a data-centre. The client (henceforth
called the encoder) has a file X (henceforth called the pre-
edit source sequence PreESS) drawn from some distribution,
and modifies it through some edits – we shortly describe both
the source sequence and the edit patterns in more detail – to
generate the new file Y. The encoder has both the old file X
and the edited version of the file Y.2 The encoder transmits
a function of (X, Y) to the data-centre (henceforth called the
decoder). The pre-edit source sequence X is available at the
decoder as side-information. The goal of communication is
for the decoder to reconstruct Y. A “good” communication
scheme manages to achieve this while requiring minimal
communication from the encoder to the decoder.

1As is common in the literature, we characterize the compression perfor-
mance of our file update scheme in terms of the number of symbols inserted
and deleted. However, explicitly modeling other common user operations can
lead to different schemes and possibly better compression performance in
other setting.

2The encoder may actually ALSO have access to the actual edit pattern,
but as we shall see this doesn’t necessarily help in our problem.

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

6488 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

We now discuss the pre-edit source sequence, and edit
patterns. There are many possible combinations of different
pre-edit source sequences and edit patterns. Some of those
that have been studied in the literature include: arbitrary input
sequences [8], [10], random input sequences [9], [11]–[13],
(partial) permutations [4], duplications [14]; uniformly random
edits [8]–[12], Markov edit processes [13].

In this work, we consider two models. In the Random Pre-
Edit Sequence Left-to-Right Random InDel (RPES-LtRRID)
model, a file is modeled as a sequence of i.i.d symbols drawn
uniformly at random from an alphabet A. The new file is
obtained from the old file through a left-to-right random
InDel pattern, which is generated from a Markov chain with
three states: the “insert symbol” state, the “delete symbol”
state, and the “no-operation” state. Briefly speaking, these
three states correspond to the cursor moving “from left to
right”, and at each point, either a uniformly random symbol is
inserted, or the symbol at the cursor is deleted, or the cursor
jumps ahead without making any change. This model attempts
to capture a “one-pass/streaming” edit behavior. There are
potentially many ways to model stochastic InDels. Some
other stochastic InDel models are discussed in Section V-A.
Our results should in general translate over to those models
in the regime with small (but constant) fractions of insertions
and deletions.

We also study an Arbitrary Pre-Edit Sequence Arbitrary
InDel (APES-AID) model. In this model, the old file is
modeled as an arbitrary sequence of symbols from the source
alphabet A. The new file is generated from the old file
through an arbitrary/worst-case InDel sequence, meaning that
the number of edit operations is at most a small but possibly
constant fraction of the file length n. The edits including
insertions and deletions occur in arbitrary positions, and the
insertions insert arbitrary symbols from the alphabet A. Both
these models are described formally in Section II-B.

In both models, we consider arbitrary alphabet sizes. We
first derive information-theoretic lower bounds (in first order
terms) on the compression rates needed for the decoder
to reconstruct Y for both models. To do so, for the
RPES-LtRRID model we build non-trivially on [15] about
the capacity of deletion channels (see Theorem 8), and for the
APES-AID model we provide a combinatorial argument (see
Theorem 9). We then design computationally-efficient achiev-
ability schemes based on dynamic programming and entropy
coding (see Theorem 11, Theorem 12 and Theorem 13). The
compression rates achieved by the dynamic-programming-
entropy-coding (DP-EC) algorithm is within an explicitly
computable additive gap to the lower bounds (in first order
terms) for almost all alphabet-sizes,3 and number of edits.
In the regime where the number of edits is a small but
possibly constant fraction of the length of X and the alphabet
size is large, the gap is small and converges to zero as the
alphabet size increases (details in Section IV-B). For the
RPES-LtRRID model, the dynamic-programming-run-length-

3In the RPES-LtRRID model, we actually have no restriction on the
alphabet-size; in the APES-AID model, for technical reasons, our lower bound
holds only for alphabets of size at least 3.

Fig. 1. Synchronization model: To reconstruct the edited version Y at the
decoder using the original version X as side-information. The transmission
between the encoder and the decoder can be either one-way communica-
tion or interactive communication, with or without the dashed line from the
decoder to the encoder in the figure. The original version X might be also
available at the encoder, shown by the dashed line from X to the encoder.

compression (DP-RLC) algorithm achieves a compression rate
that matches the lower bound up to first order terms. In the
regime when the insertion and deletion probabilities are small
such that first order terms dominate, the achievable rate by
DP-RLC algorithm for RPES-LtRRID model is nearly optimal.

B. Related Work

There are two lines of related work – file synchronization,
and InDel channels. The problem considered in our work
follows the file synchronization problem. However, the tech-
niques for InDel channels and InDel-correcting codes are
usually helpful for file synchronization problems.

The general communication model for the synchronization
problem is as shown in Fig. 1. The encoder knows the new
file Y and may also know the old file X. The decoder knows
the old file X. The purpose is to let the decoder learn Y (the
encoder may or may not learn X) through communication,
either one-way or interactively. The one-way synchronization
problem, without the dashed line from the decoder to the
encoder in Fig. 1, can be interpreted as a problem of source
coding with decoder side-information. It is well-known that
source coding with decoder side-information is closely related
to channel coding [16], [17], and indeed our work on one-way
synchronization develops techniques from some prior works in
the channel coding literature [15], [18], [19].

Various models of synchronization with edits problems have
been considered in the literature – see Table I for a summary.
In the early 1990s, Orlitsky had a series of works [20]–[24]
on interactive communication for the synchronization of two
random variables, providing information-theoretic bounds on
the amount of communication needed when different num-
bers of rounds of communication are allowed. Specifically,
in [22], [24] the synchronization of correlated files is con-
sidered, where the files (modeled by binary sequences) are
within a small edit distance from each other. Later, a widely-
used file synchronization algorithm called rsync was firstly
released by Andrew Tridgell and Paul Mackerras in 1996,
and was discussed in detail in Tridgell’s PhD thesis [25].
In 2001, Orlitsky and Viswanathan [6] considered both com-
munication and computation efficiency of the file synchro-
nization problem. They derived information-theoretic upper
bound on the number of bits needed to be transmitted when
the edit distance between two files is unknown a priori. They
also proposed a computationally efficient protocol requiring
number of bits with about a 2 log n multiplicative factor from
their upper bound, where n denotes the file length. At the

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6489

TABLE I

Related works on file synchronization. The Content of Each Column Is as Follows – 1 Two Aspects of Each Communication Model Are Shown Here.
The First Aspect Concerns What Information Is Available to Which Party. Depending on the Specific Model Considered, Either the Original File (the Pre-
Edit Source Sequence) X, or the New File (the Post-Edit Source Sequence) Y, or Both may be Available at the Encoder And The Decoder. The Second
Aspect Considered Is Whether Interactive/Two-Way Transmissions Between The Encoder and Decoder Are Allowed, or only the Encoder Is Allowed to
Transmit (One-Way Communication). 2The Size of the Source Alphabet – 2 Denotes a Binary Source Alphabet, and |A| Denotes a General Alphabet.
3Pre-Edit Source Sequence – ‘Arb’ Represents an Arbitrary (“worst-case”) Pre-Edit Source Sequence; ‘Ran’ Represents the Pre-Edit Sequences Drawn i.i.d.
From The Alphabet. 4‘Arb’ Represents the Positions and Contents of the Edits Being Arbitrary; ‘Ran’ Represents Random Positions and Contents of Edits;
‘Markov’ Represents the Edit Process Being a Markov Chain. 5Here ‘Ins’,‘Del’ and ‘Sub’ Respectively Represent Insertion, Deletion and Substitution Edit
Operations. Reference [6] Proposed Practical Protocol for Various Edit Operations Including Insertion, Deletion, Replacement of a Character, Transposition,
Block Deletion and Block Replication. 6Upper bounds on the Number of Edits in Each Work, as a Function of n (Length of the Pre-Edit Source Sequence
X). 7Whether an Explicit Information-Theoretical Lower Bound Is Presented, Where ‘Y’ and ‘N’ Stands for ‘Yes’ and ‘No’ Respectively, and ‘-’ for the
Case Where the Number of Edits Is o(n) or Within a Factor of Order-Optimal Lower Bounds in Some Two-Way Communication Models. 8Whether the
Algorithm Is Deterministic (‘D’) or Random (‘R’). 9The Complexity of the Algorithm, as a Function of n (Length of the Pre-Edit Source Sequence X).
10Whether the Algorithm Has “small” Error – ε-Error, or Zero Error. 11 The Number of Bits Transmitted. In Our Notation, ε Stands for the Fraction (of n) of
Insertions, and δ for the Fraction of Deletions. In [8], [10]–[12], the Fractions of Insertions and Deletions Vanish With n, Hence the Corresponding Variables
Are Denoted as εn and δn . 12 This Column has Additional Remarks on Specific Works. Reference [24] Investigates Cases Where Edits do Not Introduce
New Runs Or Destroy Existing Runs, Where a Run Is a Maximal Block of Contiguous Identical Symbols

same time, Cormode et al. [5] also proposed computation-
ally efficient schemes to synchronize documents, and showed
that the number of bits needed to transmit is of the same
order as [6]. They considered different types of metrics for
measuring the distance between two files: Hamming distance,
edit distance (Levenshtein distance), and Lempel-Ziv (LZ)
distance proposed in their work motivated by the Lempel-Ziv
data-compression algorithm which also takes block edits into
account.

The above-mentioned works consider file synchroniza-
tion with arbitrary file sequences and arbitrarily distributed
edits. Some recent works consider randomly distributed edits
performed on arbitrary files or randomly distributed edits on
random files, see column 3 and column 4 in Table I. In [8],
an interactive synchronization algorithm was introduced which
corrects o(n) random insertions, deletions and substitutions
under binary source alphabets. Reference [8] quantified the
trade-off between the number of rounds and the transmission
rate of communication. Its algorithm can deal with bursty
insertions and deletions, and can also differentiate substitutions
from InDels. This is generalized from the previous work by the
authors of [8] which is able to correct o(n/log n) insertions

and deletions [10]. An algorithm was designed in [10] that
splits the source sequence into pieces with only a single
insertion/deletion or a single burst of insertions/deletions, then
uses VT codes, a code by Varshamov and Tenengoltz [26]
which is able to correct a single insertion or deletion, to correct
edits in those pieces. That algorithm was used as a component
in [11] where the synchronization algorithm is able to correct a
small constant fraction of deletions over the binary alphabet.
In [12] the authors designed synchronization algorithms for
insertions and deletions for non-binary non-uniform sources.
A one-way file synchronization model was studied in [13] with
Markov deletions over the binary alphabet, in which a first-
order (in deletion probability) approximation of the optimal
rate was derived by using an information-spectrum method.
Later, in [9], by allowing both files to be available at the
encoder, the authors designed a one-way file synchronization
algorithm that can synchronize random insertions, deletions
and substitutions over binary alphabets, with communica-
tion rate matching the implicit information-theoretic bound
limn→∞ 1

n H (Y|X) up to first-order terms.
Since our work follows those works on file synchronization,

here we address the differences between our work and some

6490 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

prior works mentioned in Table I, and we show that our
work differs from each of the prior works in significant ways.
For instance, in our model the encoder knows both files,
hence we design one-way communication protocols, rather
than the multi-round protocols required in the models where
the encoder and the decoder each has one version of the file
as in [5], [6], [8], [10]–[12]. In those works, an information-
theoretic lower bound, which is called the genie-aided lower
bound in [10] (because it assumes that a genie tells the encoder
the old file), is shown to be log

(n
s

)
where n is length of the

file and s is the total number of insertions and deletions. This
genie-aided lower bound is usually used as a benchmark to
be compared with in those works with interactive synchro-
nization models, and schemes with achievable rates in the
same order as the genie-aided lower bound are considered
good (see column 11 of Table I). In our work, we improve
the lower bound to be log

(n
s

) − C|A| · s (see Theorem 8)
where C|A| is a constant that depends only on the alphabet
size |A|. This improvement is due to the generalization from
the observation in [13] that, one does not need to know the
exact locations of the deletions that happened in a block
of identical symbols to update the sequence. The one-way
communication model studied in [9] and [13] is the closest
to the RPES-LtRRID model in our work (Section II-B.1). The
main difference is that in [13] an information-theoretic lower
bound for a random model with only deletions is derived,
while our work derives a lower bound for the case with
both deletions and insertions. Allowing insertions at the same
time with deletions adds significant difficulty to the analysis.
Moreover, our strategies differ. In [13], the authors use an
information-spectrum approach. In this work, the strategy is
to consider “typical” edits and align the original sequence
with the output sequence after applying only those “typical”
edits. Besides, our work considers arbitrary alphabet instead of
binary alphabet, and also considers an arbitrary model where
both file sequences and edits are arbitrary. Furthermore, our
DP-EC scheme is “universal” for both random and arbitrary
models (Section IV-A). Our DP-RLC algorithm for the RPES-
LtRRID model shares the same essense with the algorithm
in [9], that is, to encode edits according to the lengths of the
runs where they occur. However, our model differs from the
one in [9], and we calculate explicitly the achievable rate of
DP-RLC scheme, which matches our lower bound in all first
order terms.

To address the relation between the InDel channel prob-
lem and the file synchronization problem, the InDels
in the channel can be modeled the same way as the
InDels in the file synchronization problem. The purposes
of these two problems are different. In InDel chan-
nels, one need to choose the input distribution to max-
imize the channel capacity limn→∞maxPr(X)

1
n I (X;Y) =

limn→∞maxPr(X)
1
n (H (Y)− H (Y|X)). In the file synchro-

nization problem, the input distribution is given, e.g., arbi-
trary input sequences or random input sequences etc. The
purpose is to find the minimum amount of information the
encoder needs to send to the decoder minPr(Y|X) H (Y|X),
where the probability Pr(Y|X) is predetermined by the InDel
model.

II. MODEL

A. Notational Convention

The notational conventions in this work are as follows.
Uppercase nonboldface symbols such as X are used to denote
random variables; and lowercase nonboldface symbols such
as x are used to denote sample values of those random
variables. Sequences of random variables or their sample
values are denoted by boldface symbols, for example, X
and x are sequences of random variable X and its sample
values x respectively. The length of a sequence X is denoted
by l(X). The length of a subsequence of X is denoted by
lX, to specify that the subsequence comes from X. Sets are
denoted by calligraphic symbols, such as S. The cardinality
of a set S is denoted by |S|. We use H (·) for entropy and
conditional entropy of random variables. We denote stan-
dard binary entropy by H(·), that is, H(p) = −p log p −
(1 − p) log (1− p). We also use H(·) for entropy of gener-
alized Bernoulli distribution, e.g., H(p1, p2, 1 − p1 − p2) =
−p1 log p1− p2 log p2− (1− p1− p2) log (1− p1 − p2). All
logarithms are binary.

B. Source Sequences and Edit Sequences

1) Random Pre-Edit Sequence Left-to-Right Random
InDel (RPES-LtRRID) Model: As noted in the introduction,
many different stochastic models for source sequences and
edits have been considered in the literature. In this work,
we are interested in a model where both source sequence and
edits are i.i.d. distributed as described below.

• Pre-Edit Source Sequence (PreESS): The source initially
has a pre-edit source sequence X̄ = (X̄1, X̄2, . . . , X̄n),
a length-n sequence of symbols drawn i.i.d. uniformly at
random from the source alphabet A = {0, . . . , a − 1}.
We artificially append an end of file symbol X̄n+1 = eof
to the end of X̄, to set a stopping rule for the InDel
process.

• InDel Sequences: the left-to-right edit process is modeled
as an i.i.d. sequence drawn from the following three edit
operations,

– insertion ῑ: insert (write) a symbol uniformly drawn
from A;

– deletion �̄: read one symbol rightwards in the pre-
edit source sequence X̄, and delete the symbol;

– no-operation η̄: read one symbol rightwards in the
pre-edit source sequence X̄, and do nothing.

The edit process ends when it reaches the end of file
X̄n+1 = eof. Let Ō denote a random edit operation, with
probability distribution P(Ō = ῑ) = ε, P(Ō = �̄) = δ,
and P(Ō = η̄) = 1− ε − δ. The edit operation sequence
Ōn+Kι is a sequence of i.i.d. edit operations with variable
length n+Kι, where Kι denotes the number of insertions.
The contents of insertions are drawn uniformly i.i.d. from
the source alphabet A, denoted by C̄ Kι . We denote an edit
pattern under this model by Ē = (Ōn+Kι , C̄ Kι), and name
it a random (ε, δ)-InDel sequence.

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6491

Fig. 2. Communication model: The source has both X̄ and Ȳ. The sequence
Ȳ is obtained from X̄ through random (ε, δ)-InDel sequences discussed
in Section II-B.1. The source encodes the source sequences (X̄, Ȳ) into
a transmission Enc(X̄, Ȳ) and sends it to the decoder through a noiseless
channel. The PreESS X̄ is available at the decoder as side-information.
The decoder receives Enc(X̄, Ȳ), and reconstructs the PosESS Ȳ′ from
(Enc(X̄, Ȳ), X̄). Here the bar superscript is used to denote the fact that the
source sequences and edit sequences are as described in Section II-B.1 rather
than Section II-B.2. The communication model for the APES-AID model
discussed in Section II-B.2 is similar, except that {X̄, Ȳ, Enc(X̄, Ȳ), Ȳ′} is
replaced with {X, Y, Enc(X, Y), Y′}.

• Post-Edit Source Sequence (PosESS): The post-edit
source sequence Ȳ = Ȳ(X̄, Ē) is a sequence obtained
from X̄ by applying the InDel pattern Ē = (Ōn+Kι , C̄ Kι).

• Runs: We define a run as a maximal block of con-
secutively identical symbols [27]. To avoid confusion,
we occasionally use X-run to emphasize the run is from
sequence X.

2) Arbitrary Pre-Edit Sequence Arbitrary InDel (APES-
AID) Model:

• Pre-Edit Source Sequence (PreESS): The source initially
has a pre-edit source sequence X = (X1, X2, . . . , Xn),
an arbitrary length-n sequence over the source
alphabet A.

• InDel Sequences: The arbitrary (ε, δ)-InDel model allows
at most εn insertions and δn deletions, happening in an
arbitrary order. Each insertion inserts an arbitrary symbol
from the source alphabet. Let Kι ≤ εn and K� ≤ δn
denote the numbers of insertions and deletions respec-
tively. The edit operation sequence On+Kι is a length-
(n + Kι) sequence with Kι insertions, K� deletions and
n−K� no-operations. The insertion contents are denoted
by a length-Kι sequence C Kι of arbitrary symbols
from A. We denote an edit pattern under this model by
E = (On+Kι , C Kι).

• Post-Edit Source Sequence (PosESS): A post-edit source
sequence, denoted by Y = Y(X, E), is the sequence
obtained from X by applying an arbitrary InDel sequence
E = (On+Kι , C Kι).

C. Communication Model

The communication system is as shown in Fig. 2. It is a
problem of source compression with decoder side information.
We define the communication model for both RPES-LtRRID
model and APES-AID model. For clarity, we state the com-
munication system for the RPES-LtRRID model, and repeat
for the APES-AID model using notation without bars.

In RPES-LtRRID model, the source has both the PreESS
X̄ and the PosESS Ȳ. The PosESS Ȳ is obtained from the
PreESS X̄ through a random (ε, δ)-InDel sequence. The edit
sequence is not available to the source. The PreESS X̄ and
PosESS Ȳ are encoded into a transmission Enc(X̄, Ȳ) using
an encoder Enc. Taking as inputs the transmission Enc(X̄, Ȳ)

and the PreESS X̄, the decoder Dec reconstructs the PosESS
Ȳ as Ȳ′. The code C̄ε,δ

n comprises the encoder-decoder pair
(Enc, Dec). The average rate R̄ of the code C̄ε,δ

n is the average
number of bits per source symbol transmitted by the encoder,
defined as 1

n

∑
X̄,Ȳ p(X̄, Ȳ) log |Enc(X̄, Ȳ)|. A code C̄ε,δ

n is
“(1 − Pe)-good” if the average probability of error, defined
as PrX̄,Ȳ{(X̄, Ȳ) : Dec (Enc (X̄, Ȳ), X̄) �= Ȳ}, is less than Pe.
A rate R̄ε,δ is said to be achievable on average if for any
Pe > 0, for all sufficiently large n, there is a code with
average rate R̄ε,δ that is (1− Pe)-good. The infimum (over all
such C̄ε,δ

n) of all achievable rates is called the optimal average
compression rate, and is denoted R̄∗ε,δ.

In APES-AID model, the source has both the PreESS X
and the PosESS Y. The PosESS Y is obtained from the
PreESS X through an arbitrary (ε, δ)-InDel sequence. Again,
the edit sequence is not available to the source. The PreESS
X and PosESS Y are encoded using an encoder Enc into a
transmission Enc(X, Y) from the set {1, 2, . . . , 2nR}, where
R denotes the rate of the encoder Enc. Taking as inputs the
transmission Enc(X, Y) and the PreESS X, the decoder Dec
reconstructs the PosESS Y as Y′. The code Cε,δ

n comprises
the encoder-decoder pair (Enc, Dec). A code Cε,δ

n is said to
be “good” if for every pair of (X, Y), the decoder outputs
the correct PosESS, i.e. Y′ = Y. A rate Rε,δ is said to be
achievable if for all sufficiently large n, there exists a good
code with rate at most Rε,δ . The infimum (over all such Cε,δ

n)
of all achievable rates is called the optimal compression rate,
and is denoted R∗ε,δ.

Remark: For the RPES-LtRRID model, we allow small
probability of error, because there are some atypical sequences
and edit patterns which can be neglected. But there is no such
notion in the APES-AID model. Hence, we require zero-error
decodability for the APES-AID model.

III. LOWER BOUND

A. RPES-LtRRID Model: Proof Roadmap
Since the decoder already has access to the PreESS X̄,

the entropy of Enc(X̄, Ȳ) merely needs to equal H (Ȳ|X̄),
the conditional entropy of the entire PosESS given the PreESS
(see the details in Lemma 2). The challenge is to char-
acterize this conditional entropy in single-letter/computable
form, rather than as a function dependent on the blocklength
n – indeed the same challenge is faced in providing
information-theoretic converses for many problems in which
information is processed and/or communicated. For scenarios
when the relationship from X̄ to Ȳ corresponds to a memory-
less channel, standard techniques often apply – unfortunately,
this is not the case in our file updates problem. We follow
the lead of [15], which noted that for InDel processes that
are independent of the sequence being edited (as in our
case), characterizing H (Ȳ|X̄) is equivalent to characterizing
H (Ē|X̄, Ȳ). (Recall that Ē denotes the random variable corre-
sponding to the edit pattern.) In fact H (Ȳ|X̄) can be written
as H (Ē)− H (Ē|X̄, Ȳ). This is because of the aforementioned
independence between Ē and X̄, and the fact that Ȳ is a
deterministic function of X̄ and Ē. We argue this formally
in Lemma 3. The entropy of the edit patterns H (Ē) equals
exactly to the entropy of specifying the locations of deletions,

6492 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

the locations of insertions and their contents (this is argued
formally in Lemma 4).4 Since multiple edit patterns can take
a PreESS X̄ to the same PosESS Ȳ, the term H (Ē|X̄, Ȳ)
corresponds to the uncertainty in the edit pattern given both X̄
and Ȳ. The intuition is that disambiguating this uncertainty is
useless for the problem of file updating, hence this quantity is
called “nature’s secret” in [13]. For instance, given X̄ = 00000
and Ȳ = 000, the decoder does not know, nor does it need
to know, which specific pattern of two deletions converted X̄
to Ȳ; all the encoder needs to communicate to the decoder is
that there were two deletions. In general, if a symbol is deleted
from a run or the same symbol generating a run is inserted in
the run (edits that shorten or lengthen runs in X̄), the encoder
does not need to specify to the decoder the exact locations of
deletions or insertions in X̄-runs.

However, characterizing H (Ē|X̄, Ȳ) is still a non-trivial
task, since it corresponds to an entropic quantity of variables
with long dependance. One challenge is that it is hard to align
X̄-runs and Ȳ-runs. In other words, it is in general difficult to
tell which run(s) in X̄ lead to a specific run in Ȳ. We call this
run(s) in X̄ the parent run(s) of the run in Ȳ [15]. We develop
the approach in [15]:

• We first carefully “perturb” the original edit pattern Ē
to a typicalized edit pattern Ê (described in details in
Definition 1).

• We compute the typicalized PosESS Ŷ corresponding to
operating the typicalized edit pattern Ê on the PreESS X̄
(see Definition 2 for details).

• We show via non-trivial case analysis and Lemma 5
that with a “small amount” (O(max(ε, δ)2 n) bits) of
additional information, X̄ and Ŷ can be aligned.

• We show two implications of the above alignment:
Lemma 6 provides a bound on H (Ê|X̄, Ŷ), named typi-
calized nature’s secret, which is the uncertainty of the
typicalized edit pattern given PreESS X̄ and typical-
ized PosESS Ŷ (Definition 2); Lemma 7 shows that
H (Ê|X̄, Ŷ) is close to H (Ē|X̄, Ȳ).

Pulling together the implications of the steps above enables
us to characterize H (Ȳ|X̄), up to first order in ε and δ.
We summarize the steps of our proof in Fig. 3.

One major difference between our work and the analysis
in [15] is that since we consider both insertions and dele-
tions, our case-analysis is significantly more intricate. Another
difference is that we explicitly characterize our bounds for
sequences over all (finite) alphabet sizes, whereas [15] con-
cerned itself only with binary sequences. Also, besides the
difference in models and techniques, the underlying motivation
differs. The authors of [15] focused on characterizing the
capacity of deletion channels, and hence they need to optimize
over all statistics of the channel input. On the other hand
we focus on the file updates problem, and hence we have no
channel input but source sequences drawn according to source
statistics.

4Recall in our left-to-right InDel model a symbol that is inserted will not
be deleted. Even in other models, the reduction in the entropy of Ē due to
interaction of insertions and deletions would be a multiplicative factor of ε×δ,
which is a higher-order term we do not focus on in this work in the regime
of small ε,δ.

B. Converse (Lemmas 2-4)

Recall in the InDel model (described in Section II-B.1),
the total number of deletions and no-operations equals n,
with probability of an edit to be a deletion and to be a no-
operation (conditioning on that the edit is not an insertion)
equals δ

1−ε and 1−ε−δ
1−ε respectively. Hence, the total number

of deletions K� follows a binomial distribution B(n, δ
1−ε) with

mean δ
1−ε n. Recall that in our model we allow insertions in

front of the first symbol and after the last symbol – this is the
reason why the index of number of insertions Kι is parame-
trized by (n+1) rather than n in the following. The distribution
of the number of insertions in the beginning of the InDel
process and after each deletion or no-operation is Geo0(1−ε),
the geometric distribution on the support of {0, 1, 2, . . . } with
parameter (1−ε) [28]. The InDel process stops when the total
number of deletions and no-operations is n. Hence, Kι is the
sum of n+1 i.i.d. random variables whose distributions follow
Geo0(1−ε). On the other hand, Kι is the number of insertions
with probability ε until n + 1 deletions/no-operations occur,
which follows a negative binomial distribution NB(n + 1; ε)
with mean (n + 1) ε

1−ε [28].
Throughout this section, because we deal with sequences

with random lengths, we use Theorem 3 in [29] multiple times.
We restate the theorem here as a preliminary for our later
proofs.

Theorem 1 [29]: [Theorem 3 (Determined Stopping
Time)] A stopping time N is said to be a determined
stopping time for the i.i.d. sequence X1, X2, . . . if the
event {N = n} ∈ σ(X1, X2, . . . , Xn) for all n =
1, 2, . . . , where σ(X1, X2, . . . , Xn) is the σ -field generated
by X1, X2, . . . , Xn. Then, for a determined stopping time N,

H (X N) = E[N]H (X1),

where X N ∈ A∗ denotes the randomly stopped sequence.
Lemma 2 (Converse): For the RPES-LtRRID model,

any achievable rate R̄ε,δ is bounded from below by
limn→∞ 1

n H (Ȳ|X̄).
Proof: We first prove a modified version of the conventional

Fano’s inequality H (Ȳ|Ȳ′) ≤ 1+ Pe log |Ȳ|, where Ȳ denotes
the support of Ȳ. Because in our model with unbounded
number of insertions, the length of Ȳ can be arbitrarily large
as the block-length n grows without bound. Hence, the upper
bound on the term H (Ȳ|Ȳ′, Ȳ′ �= Ȳ) ≤ log |Ȳ| for proving the
conventional Fano’s inequality does not work in our problem.
We modify Fano’s inequality by bounding the term with
H (Ȳ|Ȳ′, Ȳ′ �= Ȳ) ≤ H (Ȳ). The PosESS Ȳ is a sequence
of symbols drawn uniformly i.i.d. from A, where its length
(n − K� + Kι) is a determined stopping time for Ȳ. Hence
by Theorem 1, H (Ȳ) = (n − E[K�] + E[Kι]) log |A| =(

1−δ
1−ε n + ε

1−ε

)
log |A|. Hence, our modified Fano’s inequality

follows as in (1) below. There exists a σn such that σn → 0
as n→∞, and

H (Ȳ|X̄,Enc(X̄, Ȳ))≤1+Pe

(
1− δ

1− ε
n+ ε

1− ε

)
log |A|≤nσn,

(1)

where Pe is the average probability of error (recall

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6493

Fig. 3. Flowchart of the proof: The natural lower bound of the amount of information that the encoder needs to send to the decoder is given by the conditional
entropy H (Ȳ|X̄), which we show in Lemma 3 equals to the amount of information to describe the edit pattern H (Ē) subtracted by an amount called “nature’s
secret” H (Ē|X̄, Ȳ). We characterize H (Ē) in Lemma 4. These are included in Section III-B. To characterize nature’s secret H (Ē|X̄, Ȳ), we perturb the edit
pattern Ē to a typicalized edit pattern Ê, and introduce some relating concepts in Section III-C. We show in Lemma 7 that nature’s secret H (Ē|X̄, Ȳ) is within
at most an order O(max (ε, δ)2)n gap from the typicalized nature’s secret H (Ê|X̄, Ŷ), which we characterize in Lemma 6. Both Lemma 6 and Lemma 7
involve a term ÂX̄,Ŷ, which we introduce in Section III-C and quantify its uncertainty in Lemma 5. The lower bound hence follows directly. These are
included in Section III-D.

Section II-C). Because we require Pe goes to zero as n→∞,
σn should also go to zero as n→∞.

We have the following chain of inequalities,

n R̄ε,δ ≥ H (Enc(X̄, Ȳ))

≥ H (Enc(X̄, Ȳ)|X̄)

= H(Ȳ|X̄)+H(Enc(X̄, Ȳ)|X̄,Ȳ)−H(Ȳ|X̄,Enc(X̄, Ȳ))
(a)= H (Ȳ|X̄)− H (Ȳ|X̄, Enc(X̄, Ȳ))
(b)≥ H (Ȳ|X̄)− nσn, (2)

where equality (a) holds since Enc(X̄, Ȳ) is a deterministic
function of (X̄, Ȳ). Inequality (b) follows from our modified
Fano’s inequality (1).

Dividing both sides of (2) by n deduces our converse. �
Lemma 3: The conditional entropy H (Ȳ|X̄) equals the

entropy of the edit pattern H (Ē), less “nature’s secret”
H (Ē|X̄, Ȳ), i.e., H (Ȳ|X̄) = H (Ē)− H (Ē|X̄, Ȳ).

Proof:

H (Ȳ|X̄)
(a)= H (Ē|X̄)+ H (Ȳ|X̄, Ē)− H (Ē|X̄, Ȳ)
(b)= H (Ē)+ H (Ȳ|X̄, Ē)− H (Ē|X̄, Ȳ)

(c)= H (Ē)− H (Ē|X̄, Ȳ),

where equality (a) is by the Chain Rule; (b) is because the edit
pattern Ē is independent of the PreESS X̄; and (c) is because
the PosESS Ȳ is a deterministic function of (X̄, Ē). �

Lemma 4: The entropy of the edit pattern equals the
entropy of specifying the locations of deletions, the loca-
tions of insertions and the contents of insertions, specifically,
limn→∞ 1

n H (Ē) ≥ H(δ)+H(ε)+ε log |A|+2 min(ε, δ)2−τ +
O(max(ε, δ)2), for some τ ∈ (0, 1).

Proof: The probabilistic model of the edit process is well-
defined, hence the entropy of it can be calculated. We use
Taylor series expansion to obtain the result up to second order
in ε and δ. The details are in Appendix A. �

C. Typicalized Edit Patterns, Local and Global Alignments

As discussed in Section III-A and Fig. 3, the next quantity
we need to bound is the nature’s secret H (Ē|X̄, Ȳ). However,

this quantity is in general difficult to calculate because X̄ and Ȳ
are difficult to align. Hence, we perturb the edit pattern Ē to
a typicalized edit pattern Ê, for which an analogue of nature’s
secret H (Ê|X̄, Ŷ) can be calculated (see Lemma 6 for details).
We now formally define the typicalized edit pattern Ê and
some sequences that depend on Ê:

Definition 1 (Typicalized Edit Pattern): The typicalized
edit pattern Ê is determined from (X̄, Ē) by choosing a
subset of edits in the original edit pattern Ē in the following
way. The extended run [15] of a run in X̄ includes the run
and its two neighbouring symbols, one on each side. Given
(X̄, Ē), for all X̄-runs, count the number of edits per extended
run.5 If there is no more than one edit in the extended run,
the edit pattern in this run is set to be the same in the
typicalized edit pattern. If there is more than one edit in the
extended run, the typicalized edit pattern Ê has no edits in
that run, that is, the X̄-run and the corresponding Ŷ-run are
identical.

Remark: Whether to eliminate the deletions of neighbour-
ing symbols or not is decided by checking the extended runs
of the runs they belong to. For example, for Ē : 0�111�223,
there are two edits in the extended run 01112 of the second
run 111, hence the edit in the second run – the deletion of
the left-most 1 – is eliminated in Ê. The right-neighbour 2
of the run 111 belongs to the third run 22, whose extended
run 1223 contains only one edit. Hence, the deletion of the
right-neighbour 2 of the run 111 is not eliminated in Ê. The
typicalized edit pattern in this example is Ê : 0111�223.

Denote the numbers of insertions and deletions in Ê by K̂ι

and K̂� respectively. Since in our model the way we define
edit patterns ensures that the sum of the number of deletions
and no-operations in any edit pattern (including typicalized
edit patterns) always equals exactly n, the length of Ê equals
n + K̂ι.

5Deletion of any symbol in the extended run (including deletion of either of
the two symbols neighbouring the X̄-run) adds one to the count. Insertion of
a symbol adds one to the count only if the insertion happens to the right
of the left-neighbour of the X̄-run, and to the left of the right-neighbour of
the X̄-run.

6494 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

Fig. 4. An example of source sequences, edit sequences and typicalized sequences.

Definition 2 (Typicalized PosESS): The typicalized PosESS
Ŷ is the post-edit source sequence obtained by operating the
typicalized edit pattern Ê on the PreESS X̄. The length of Ŷ
equals n − K̂� + K̂ι.

Definition 3 (Complement of typicalized edit pattern):
The complement of typicalized edit pattern describes the
eliminated edits. Let ‘−’ denote no elimination, and
underlined characters ‘ῑ’ and ‘�̄’ denote eliminations of
insertions and deletions respectively. A length-(n + Kι − K̂ι)

sequence Ō
(n+Kι−K̂ι) over {−, ῑ, �̄} specifies the eliminated

edits. A length-(Kι − K̂ι) sequence C̄
(Kι−K̂ι) over the source

alphabet A specifies the contents of insertions that are

eliminated. Let Êc = (Ō
(n+Kι−K̂ι), C̄

(Kι−K̂ι)) denote the
complement of typicalized edit pattern.

In Fig. 4 we show an example of all the sequences we
define. In the example, the first row shows a length n =
13 PreESS X̄ sequence over the alphabet {0, 1, 2, 3, 4, 5}.
The second row shows in shorthand edits performed on X̄,
the notation of which is more visual and appears throughout
the section in examples. A superscript of a downarrow together
with a number denotes an insertion of the corresponding
source symbol, e.g., ↓1 denotes an insertion of 1. A line
through a symbol denotes a deletion of that symbol, e.g., �1
denotes a deletion of 1. The third row shows the corresponding
edit pattern Ē. As defined in the model section, insertions
are represented by ῑ, deletions by �̄, and no operations by η̄.
Here, for the sake of brevity we abuse notation by representing
the contents of insertions as subscripts to the corresponding
ῑ, rather than as a separate C̄ Kι . For instance in the example
in this figure, the operation of inserting a 4 after the fifth
symbol is represented by ῑ4. Since there are three insertions
in the edit sequence, the length of the edit sequence Ē equals
n + 3 = 16. The resulting PosESS Ȳ is shown in the fourth
row. Note that X̄ has 6 runs – 000, 1111, 22, 3, 2 and
33 (single symbols distinct from their neighbors also count
as runs). The corresponding extended runs are respectively
0001, 011112, 1223, 232, 323, and 233. The number of edits
in each of these runs is therefore respectively 1, 3, 1, 0,
0, 1, and in the corresponding extended runs is 1, 4, 1, 0,
1, 1. Hence the only edits eliminated from Ē to get Ê are
the three edits in the second X̄-run (since the corresponding
extended X̄-run has 4 edits and by our definition typicalized
edit patterns may only have at most one edit per extended
run). The complement’ of typicalized edit pattern therefore has

blanks ‘−’ everywhere except in the locations corresponding
to the three edits in the second run of X̄, as shown in the fifth
row. The sixth row shows the typicalized edit process with all
the edit operations present in Ē, except those corresponding to
the three in the second run of X̄. Finally, the last row shows
the resulting typicalized PosESS Ŷ resulting from operating
Ê on X̄. We shall reuse this example later multiple times to
explain different concepts.

In Fig. 5, we represent the dependencies of all the sequences
we define above, and some internal random variables we define
and use in later proofs.

We recall the definition of parent run and introduce the term
local alignment, both will appear many times throughout this
section.

• Parent run: parent run(s) of a Ȳ-run are the run(s) in X̄
which lead to the Ȳ-run.

• Local alignment: it refers to identifying the parent X̄-
run(s) for a specific Ŷ-run.

We first show that Ŷ-runs can be mostly aligned to the
parent run(s) in X̄. The intuition is that, since X̄-runs undergo
at most one edit in the typicalized edit pattern, for any Ŷ-run,
there are only a few possible cases for its parent run(s), and
the corresponding length(s). There are only two events where
the cases of the parent run-length intersect, which are named
ambiguous local alignment events and defined formally in
Definition 4. The local alignment might be ambiguous. How-
ever, the ambiguity might be resolved later. Because it is
possible that for one of the ambiguous local alignments,
no typicalized edit pattern (roughly speaking, with no more
than one edit per run) can convert X̄ to Ŷ for the remaining
runs. Otherwise, both local alignments are possible and results
in different global alignments, defined formally in Defini-
tion 5. Hence, one can align (X̄, Ŷ) in a left-to-right manner
by checking the lengths of Ŷ-runs and X̄-runs, with the aid
of some extra information indicating which global alignment
it is. The extra information ÂX̄,Ŷ is defined in Definition 5.
Its entropy is bounded from above in Lemma 5. Example 1
is shown to illustrate both the case where an ambiguous local
alignment is resolved by aligning further runs, and the case
where an ambiguous local alignment is not resolved and hence
leads to two possible global alignments. Once (X̄, Ŷ) are
aligned, the uncertainty of the typicalized edit pattern Ê only
lies in the uncertainty of positions of deletions, and positions
of insertions that lengthen runs (inserting the same symbol as

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6495

Fig. 5. The dependency of all the sequences and internal random variables for the proofs.

Fig. 6. All possible cases of the parent run(s) in X̄ for a length-lŶ Ŷ-run.

those constructing the run). We characterize this uncertainty
in Lemma 6.

For a Ŷ-run with length denoted by lŶ, its possible parent
run(s) are categorized into the following cases, as shown
in Fig. 6 (we give examples corresponding to the Ŷ-run being
00000):

• Case 1 (single parent-run): The parent X̄-run is a single
run with length denoted by lX̄.

– Case 1.1 (1-parent-0-edit): No edit in the parent
run, hence lX̄ = lŶ. Eg: 00000→ 00000.

– Case 1.2 (1-parent-1-ins): One insertion in the
parent run, hence lX̄ = lŶ−1. Eg: 00↓000→ 00000.

– Case 1.3 (1-parent-1-del): One deletion in the par-
ent run, hence lX̄ = lŶ + 1. Eg: 0000�00→ 00000.

• Case 2 (sub-parent): The parent run is a sub-run of a
length-lX̄ run, that is, an insertion of a different symbol
within a parent run breaks it into two runs. In this case,
lX̄ > lŶ. Eg: 00000↓100 → 00000100. The next two
runs (1 and 00 in this example) in Ŷ are also aligned to
this X̄-run.

• Case 3 (multi-parent): There are multiple parent runs.
The number of parent runs is odd, denoted by 2t + 1
(t ≥ 1). Among these X̄-runs, t + 1 runs (the odd-
numbered ones) comprise the same symbol (0, in this
example) as the corresponding Ŷ-run, with lengths
l1, . . . , lt+1 respectively. Interleaved among these are the

even-numbered X̄-runs, comprising of just one symbol
each, which must be different from the symbols that
comprise Ŷ. In this case, all the length-1 even-numbered
X̄-runs get deleted and there is no edit in the other t + 1
odd-numbered X̄-runs (of the same symbol as in the
Ŷ-run). Hence lŶ =

∑t+1
j=1 l j and lX̄ = l1 < lŶ. Eg:

00�100�20→ 00000.

Noting the parent run-lengths in all the above cases and
examining the run-lengths of Ŷ and X̄ in a left-to-right
manner, Ŷ-runs can be mostly aligned to X̄-runs, except for
the following two ambiguous local alignment events. We show
later that with the help of some small amount additional
information, (X̄, Ŷ) can be aligned.

Definition 4 (Ambiguous Local Alignment): In the follow-
ing two types of events, simply comparing the run-lengths łX̄
and lŶ cannot resolve which case the edit is.

• Ambiguous local alignment type-1
1 (lX̄ = lŶ − 1):
Recall in Case 3 (lX̄ < lŶ), when t = 1 and
lX̄ = l1 = lŶ − 1, l2 = 1, the length of the parent run is
the same as in Case 1.2 (lX̄ = lŶ − 1). Hence, for a pair
of X̄-run and Ŷ-run to be aligned, if the length of Ŷ-run
is lŶ and the length of X̄-run equals lŶ − 1, one cannot
tell immediately whether it is Case 1.2 or Case 3.

• Ambiguous local alignment type-2
2 (lX̄ = lŶ + 1):
Recall in Case 2 (lX̄ > lŶ), when lX̄ = lŶ + 1 and an

6496 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

Fig. 7. An example with cases where both ambiguous local alignment
resolved and unresolved: with Alignment 1, there is no typicalized edit
pattern that leads to Ŷ, hence the ambiguity in the first half is resolved; both
Alignment 2 and Alignment 3 lead to Ŷ, hence the ambiguity in the second
half remains.

insertion of a different symbol occurs in front6 of the
last symbol of the X̄-run, leading to a length-lŶ Ŷ-run,
the length of the X̄-run is the same as in Case 1.3
(lX̄ = lŶ + 1). Hence, for a pair of X̄-run and Ŷ-run to
be aligned, if the length of Ŷ-run is lŶ and the length
of X̄-run equals lŶ + 1, one cannot tell immediately
whether it is Case 1.3 or Case 2.

Example 1: The ambiguous local alignments might be
resolved when aligning further X̄-runs and Ŷ-runs. Not all
local ambiguous alignments lead to different global align-
ments (different alignments of all X̄-runs and Ŷ-runs, see
Definition 5 for details). In Fig. 7, there is an ambiguous
local alignment type-2 event
2 (lX̄ = lŶ + 1) in aligning
the first X̄-run and Ŷ-run. The first Ŷ-run (00) is of length
2, and the first X̄-run (000) to be aligned with the Ŷ-run is
of length 3 – they comprise the same symbol 0. The edit in
the first X̄-run may be Case 1.3 (single-deletion) or Case 2
(single-insertion breaking the X̄-run). We therefore examine
the next symbols in X̄ and Ŷ. First of all, we examine the next
one or two symbols in X̄ and Ŷ, the local ambiguity is still
not resolved. Specifically, the symbol after the first Ŷ-run (00)
is a 1, the same as the symbol after the first X̄-run (000),
which means Case 1.3 (single-deletion) is possible. The second
symbol after the Ŷ-run (00) is a 0, the same as the symbol
the first Ŷ-run (00) comprise, which means Case 2 (single-
insertion breaking the X̄-run) is possible. However, ambiguity
is resolved when aligning the second X̄-run to Ŷ:

• Alignment 1: This must mean that a 0 was inserted after
the first 1 in the second X̄-run (1111), breaking it into two
runs of 1’s in Ŷ separated by a 0 (respectively the third
to the eighth symbols in Ŷ). This scenario is shown in the
third line of the figure. Since the second X̄-run has four
1’s, the resulting Ŷ-run has three more 1’s, with no more
edits (since it is a typicalized Ŷ-run). However, there are
four 1’s in Ŷ after the inserted 0. Hence, alignment 1 is
not possible.

• Alignment 2: The first three runs in Ŷ (0010) are aligned

to the first X̄-run. The next X̄-run and Ŷ-run to align
both have four 1’s, hence can be aligned correctly and
unambiguously.

6Hereinafter, by an edit occurs in front of a particular symbol in a sequence,
it means that the edit occurred immediately after the previous symbol and
before this particular symbol.

Starting from the third X̄-run, the edits in both
alignment 2 and alignment 3 convert X̄ to Ŷ. Hence, the local
ambiguous alignment is unresolved. The challenge therefore is
to characterize the probability of such local ambiguity being
globally unresolvable. This is the thrust of Lemma 5.

We formally define the global alignment (we sometimes call
it alignment for short) of a pair of PreESS and typicalized
PosESS (X̄, Ŷ), and also the partial alignment of their subse-
quences.

Definition 5 (Global Alignment): Denote the number of
runs in a typicalized PosESS Ŷ by ρŶ. The typicalized PosESS
Ŷ can then be decomposed into Ŷ-runs as

Ŷ = Ŷ (1)Ŷ (2) . . . Ŷ (ρŶ).

We then divide X̄ into “segments that leads to corresponding
Ŷ-runs”. Denote X̄Ŷ(i) to be the segment in X̄ that leads to
the i th Ŷ-run, for all i = 1, 2, . . . , ρŶ, hence,

X̄ = X̄Ŷ(1)X̄Ŷ(2) . . . X̄Ŷ(ρŶ).

Note that X̄Ŷ(i)’s are in general not runs of X̄. Recall
in Fig. 6 that the parent run(s) can be one X̄-run, a part
of X̄-run, or multiple X̄-runs. To eliminate uncertainty in the
way of dividing the segments, for any Ŷ (i) that is created by
insertions, set the corresponding X̄Ŷ(i) to be an empty run
φ with length 0. For any X̄-run that is deleted and the two
neighbouring runs of it on both sides are comprised of different
symbols, we force the deleted run to join the segment of its
right neighbouring run. The alignment of X̄ and Ŷ is defined
by the vector of the lengths of the segments X̄Ŷ(i)’s,

ÂX̄,Ŷ �
(|X̄Ŷ(1)|, |X̄Ŷ(2)|, . . . , |X̄Ŷ(ρŶ)|) .

Definition 6 (Partial Alignment): For the subsequence of
a typicalized PosESS Ŷ consisting of the first iŶ runs
Ŷ (1)Ŷ (2) . . . Ŷ (iŶ) where iŶ ≤ ρŶ, suppose the segments of
X̄ that lead to the Ŷ-runs are X̄Ŷ(1)X̄Ŷ(2) . . . X̄Ŷ(iŶ). The
partial alignment of X̄ and Ŷ up to depth iŶ is defined by the
vector of the lengths of the segments X̄Ŷ(i)’s,

Â
iŶ
X̄,Ŷ

�
(|X̄Ŷ(1)|, |X̄Ŷ(2)|, . . . , |X̄Ŷ(iŶ)|) .

Definition 7 (Alignment Tree): The alignment tree of a pair
of PreESS and typicalized PosESS (X̄, Ŷ) is a binary tree with
depth ρŶ. Each path PÂ of the tree corresponds to a sample
value of the global alignment ÂX̄,Ŷ, with the i th entry of ÂX̄,Ŷ
at the node in depth-i . Every split (node with two children)
in the alignment tree represents an unresolved ambiguous
local alignment. Denote the number of splits on a path PÂ
by Ns (PÂ). If a particular PreESS x̄ and an edit pattern
ē are given, they determine the typicalized edit pattern ê,
hence determine the typicalized PosESS ŷ and also the global
alignment. Hence, we use notation Ns(PÂ(x̄, ē)) when x̄ and
ē are known.

Remark: Global alignment is a way to classify typicalized
edit patterns, hence also original edit patterns. For any pair
(x̄, ŷ), denote the set of all typicalized edit patterns ê which

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6497

Fig. 8. Example of global alignments and alignment tree.

takes x̄ to ŷ by {ê : (x̄, ê)→ ŷ}, where (x̄, ê)→ ŷ means that
processing ê on x̄ results in ŷ. The global alignment Âx̄,ŷ is
a random variable in a vector form, of lengths of segments in
x̄ which lead to the ŷ-runs. Let
(Âx̄,ŷ) denode the sample
space of Âx̄,ŷ, and |
(Âx̄,ŷ)| denote its size. The set {ê :
(x̄, ê) → ŷ} are classified into |
(Âx̄,ŷ)| groups, denoted by

{Êx̄,ŷ
(�a)
} based on the global alignment, where Êx̄,ŷ

(�a)
denotes the

set of ê associated with the global alignment �a ∈
(Âx̄,ŷ).
This concept is useful in our later proofs.

Example 2: An example of global alignments and align-
ment tree is shown in Fig. 8. In this example, there are
two global alignments of (X̄, Ŷ) – (2, 1, 1, 2) and (1, 0, 1, 4).
Corresponding to the alignment (2, 1, 1, 2), besides the typi-
calized edit pattern 0�0101↓11 shown in the figure, there are
five other typicalized edit patterns. Because deletion of either
the first or the second 0, and an insertion of 1 in front
of, between or after the last two 1’s result in the same Ŷ.
There is only one typicalized edit pattern associated with
alignment (1, 0, 1, 4), which is 0↓101�011 as shown in the
figure. The example illustrates how global alignments classify
typicalized edit patterns into different groups. The alignment
tree is a structure of describing global alignments which helps
illustrating the align module in Fig. 15 in Appendix B.

D. RPES-LtRRID Model: Lower Bound

Recall that nature’s secret is the uncertainty of the edit pat-
tern given PreESS and PosESS. We now bound the typicalized
nature’s secret H (Ê|X̄, Ŷ) from above by H (Ê, ÂX̄,Ŷ|X̄, Ŷ).
We further bound the latter quantity from above by the sum of
two terms: the uncertainty H (ÂX̄,Ŷ) of the global alignment,

and the uncertainty H (Ê|X̄, Ŷ, ÂX̄,Ŷ) of the typicalized edit
pattern given the global alignment.

Lemma 5: The asymptotic entropy rate of the
global alignment of (X̄, Ŷ) is bounded from above by
limn→∞ 1

n H (ÂX̄,Ŷ) ≤ O(max(ε, δ)2).
Proof: See Appendix B. �
Lemma 6 below characterizes the entropy rate of the typi-

calized nature’s secret.
Lemma 6: The asymptotic rate of the typical-

ized nature’s secret is bounded from above by
limn→∞ 1

n H (Ê|X̄, Ŷ) ≤ C|A|(δ + ε)+O(max(ε, δ)2),

where C|A| =
∞∑

l=1

(
1

|A|
)l−1 (

1− 1

|A|
)2

l log l is a constant

that depends only on the alphabet size |A|.
Proof: Knowing the global alignment of a pair of PreESS

and PosESS (x̄, ŷ), the uncertainty in the typicalized edit
pattern lies only in the uncertainty of locations of single-
deletions and single-insertions of the same symbol (as those
composing the run) within the X̄-runs. Recall that we denote
the number of runs in x̄ by ρx̄, and the run lengths by
{l1, l2, . . . , lρx̄ }. From Definition 1 of typicalized edit pattern,
an X̄-run undergoes at most one edit. Hence, we derive the
probability of insertions and deletions in typicalized edit pat-
tern from both symbol-perspective and run-perspective, which
is helpful in calculating H (Ê|X̄, Ŷ, ÂX̄,Ŷ).
• Symbol-perspective typicalized insertion/deletion proba-

bilities: For any j = 1, 2, . . . , ρx̄, let δ̂ j denote the
probability that any specific symbol in the j th x̄-run is
deleted,

δ̂ j = δ(1− ε − δ)l j+1 ∈
(
δ − (l j + 1)(δ2 + εδ), δ

)
. (3)

Similarly, let ε̂ j denote the probability that there is an
insertion between two specific symbols in the extended
run of the j th x̄-run,

ε̂ j = ε(1− ε − δ)l j+2 ∈ (ε − (l j + 2)(ε2 + εδ), ε). (4)

In fact, we only need inequalities δ̂ j ≤ δ and ε̂ j ≤ ε
for bounding the nature’s secret of the typicalized edit
process from above.7 The intuition of δ̂ j ≤ δ and
ε̂ j ≤ ε is that, because we eliminate some edits when
typicalizing Ē to Ê, the probability of insertions and
deletions are smaller in typicalized edit patterns than the
original insertion/deletion probability.

• Run-perspective typicalized insertion/deletion probabili-
ties: Recall in Definition 5 that the global alignment
Âx̄,ŷ is a random variable in a vector form, of lengths
of segments in x̄ which lead to the ŷ-runs. Recall that
|
(Âx̄,ŷ)| denote the size of the sample space
(Âx̄,ŷ)

of Âx̄,ŷ. The set of all typicalized edit patterns ê which
takes x̄ to ŷ is denoted by {ê : (x̄, ê)→ ŷ}. Given PreESS
x̄, the probability that the typicalized PosESS is ŷ equals
the sum of the probabilities over all ê such that processing
ê on x̄ results in ŷ, i.e., p(ŷ|x̄) =∑

{ê:(x̄,ê)→ŷ} p(ê). The

set {ê : (x̄, ê)→ ŷ} are classified into |
(Âx̄,ŷ)| groups

{Êx̄,ŷ
(�a)} based on the global alignments, where Êx̄,ŷ

(�a) denotes
the set of ê associated with global alignment �a of (x̄, ŷ).
Hence, for any �a ∈
(Âx̄,ŷ),

p(Âx̄,ŷ = �a) =

⎛

⎜
⎜
⎝

∑

ê∈Êx̄,ŷ
(�a)

p(ê)

⎞

⎟
⎟
⎠ /

⎛

⎝
∑

{ê:(x̄,ê)→ŷ}
p(ê)

⎞

⎠

=

⎛

⎜
⎜
⎝

∑

ê∈Êx̄,ŷ
(�a)

p(ê)

⎞

⎟
⎟
⎠ /p(ŷ|x̄).

7The specific distribution of the typicalized edit process might be of interest
for future research on the capacity of InDel channels.

6498 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

For any global alignment �a ∈
(Âx̄,ŷ), let Dρx̄
(�a)
∈ {0, 1}ρx̄

denote the run-perspective single-deletion pattern, where
D(�a), j = 1 indicates that there is one deletion in the
j th x̄-run when the global alignment of (x̄, ŷ) is �a.
Similarly, denote I ρx̄

same(�a) ∈ {0, 1}ρx̄ to be the run-
perspective single-same-symbol-insertion pattern, where
Isame(�a), j = 1 indicates that there is one insertion of the
same symbol (insertion that extends the run) in the j th
x̄-run when the global alignment of (x̄, ŷ) is �a. Note that
when typicalized edit pattern ê is given, the corresponding
global alignment �a is fixed. Hence, the probability that
there is one deletion in the j th x̄-run averaging over all
typicalized edit patterns is
∑

ŷ p(ŷ|x̄)
∑
�a∈
(Âx̄,ŷ) p(Âx̄,ŷ = �a)p(D(�a), j = 1)

= ∑
ŷ
∑
�a∈
(Âx̄,ŷ)

∑
ê∈Êx̄,ŷ

(�a)

p(ê)p(D(�a), j = 1)

= ∑
ê p(ê)p(D(�a), j = 1)

= l j δ̂ j . (5)

Similarly, the probability that there is an insertion of
the same symbol in the j th x̄-run averaging over all
typicalized edit patterns is
∑

ŷ p(ŷ|x̄)
∑
�a∈
(Âx̄,ŷ) p(Âx̄,ŷ = �a)p(Isame(�a), j = 1)

= ∑
ê p(ê)p(Isame(�a), j = 1)

= 1

|A| (l j + 1)ε̂ j . (6)

Given the global alignment of (X̄, Ŷ), the uncertainty of the
typicalized edit pattern is

H (Ê|X̄, Ŷ, ÂX̄,Ŷ)

=
∑

x̄,ŷ

p(x̄, ŷ)
∑

�a∈
(Âx̄,ŷ)

p(Âx̄,ŷ = �a)H (Ê|x̄, ŷ, �a)

(a)=
∑

x̄,ŷ

p(x̄, ŷ)
∑

�a∈
(Âx̄,ŷ)

p(Âx̄,ŷ = �a)

ρx̄∑

j=1

(
D(�a), j log l j +

Isame(�a), j log (l j + 1)
)

=
∑

x̄

p(x̄)
∑

ŷ

p(ŷ|x̄)
∑

�a∈
(Âx̄,ŷ)

p(Âx̄,ŷ = �a) ·

ρx̄∑

j=1

(
D(�a), j log l j + Isame(�a), j log (l j + 1)

)

=
∑

x̄

p(x̄)

ρx̄∑

j=1

∑

ŷ

p(ŷ|x̄)
∑

�a∈
(Âx̄,ŷ)

p(Âx̄,ŷ = �a) ·
(

p(D(�a), j = 1) log l j + p(Isame(�a), j = 1) log (l j+1)
)

(b)=
∑

x̄

p(x̄)

ρx̄∑

j=1

(
δ̂ j l j log l j + 1

|A| ε̂ j (l j + 1) log (l j + 1)

)

(c)≤
∑

x̄

p(x̄)

ρx̄∑

j=1

(
δl j log l j + 1

|A|ε(l j + 1) log (l j + 1)

)

(d)= δn
∞∑

l=1

(
1

|A|
)l−1 (

1− 1

|A|
)2

l log l +

1

|A|εn
∞∑

l=1

(
1

|A|
)l−1 (

1− 1

|A|
)2

(l+1) log (l+1)+o(n)

(e)= (δ + ε)n
∞∑

l=1

(
1

|A|
)l−1 (

1− 1

|A|
)2

l log l + o(n),

where step (a) follows because when the global alignment of
(x̄, ŷ) is known, the uncertainty only lies in the locations of
the edits within those x̄-runs which undergo single-deletion
and single-same-symbol-insertion. Step (b) follows from equa-
tions (5) and (6). Inequality (c) is because we have shown
in (3) and (4) that δ̂ j ≤ δ and ε̂ j ≤ ε. Step (d) is because
asymptotically in n, the average number of length-l runs in

X̄ is np(l)
E[L] + o(n) [30], where p(l) =

(
1
|A|

)l−1 (
1− 1

|A|
)

is

the run length distribution of X̄ and E[L] = 1/
(

1− 1
|A|

)
is

the expectation of the run length. Hence, by taking the sum
of l log l based on the number of length-l runs in x̄ then aver-
aging over x̄,

∑
x̄ p(x̄)

∑ρx̄
j=1 l j log l j = ∑∞

l=1
np(l)
E[L] l log l +

o(n), Similar calculation follows for
∑

x̄ p(x̄)
∑ρx̄

j=1(l j + 1)
log (l j + 1). Step (e) follows by changing the term (l + 1)
to l.

Finally, the asymptotic entropy rate of the typicalized
nature’s secret can be bounded from above by

lim
n→∞

1

n
H (Ê|X̄, Ŷ)

≤ lim
n→∞

1

n
H (Ê, ÂX̄,Ȳ|X̄, Ŷ)

= lim
n→∞

1

n

[
H (ÂX̄,Ȳ|X̄, Ȳ)+ H (Ê|X̄, Ȳ, ÂX̄,Ȳ)

]

= lim
n→∞

1

n

[
H (ÂX̄,Ȳ)+ H (Ê|X̄, Ȳ, ÂX̄,Ȳ)

]

≤ (δ + ε)

∞∑

l=1

(1

|A|
)l−1(

1− 1

|A|
)2

l log l +O(max(ε, δ)2).

�
In Lemma 7 below, we show that nature’s secret (of the

original edit pattern) is close to typicalized nature’s secret.
We first reprise a useful fact from [27].

Fact 1 [27][Fact V.25]: Suppose U, Û , and V are random
variables with the property that U is a deterministic function
of Û and V , and also Û is a deterministic function of U and V .

(Denote this property by U
V←→ Û .) Then

|H (U)− H (Û)| ≤ H (V).

We use Fact 1 to bound |H (Ē, X̄, Ȳ) − H (Ê, X̄, Ŷ)| by
H (Êc). To do so, we map (Ē, X̄, Ȳ) as U , (Ê, X̄, Ŷ) as Û , and
Êc as V in Fact 1, and further, show below that the conditions
required in Fact 1 are satisfied. Similarly, by mapping (X̄, Ȳ)
as U , (X̄, Ŷ) as Û , and (Êc, ÂX̄,Ŷ) as V in Fact 1, and showing
below that the conditions required in Fact 1 are also satisfied,
we can bound |H (X̄, Ŷ)−H (X̄, Ȳ)| by H (Êc, AX̄,Ŷ). The two
sets of mappings in the following hold:

• (Ē, X̄, Ȳ)
Êc←→ (Ê, X̄, Ŷ)

– “→”: The typicalized edit pattern Ê (Definition 1)
is a deterministic function of Ē and X̄. Given Ê

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6499

Fig. 9. Example of Ē
Êc←− Ê.

Fig. 10. Example of Ȳ
(Êc, ÂX̄,Ŷ)
←−−−−−−− Ŷ.

and X̄, one can compute the typicalized PosESS Ŷ
(Definition 2).

– “←”: The intuition of (Ē, X̄, Ȳ) being a determinis-
tic function of (Ê, X̄, Ŷ) and Êc is that, the original
edit pattern Ē is a union of typicalized edits Ê and
eliminated edits Êc . Specifically, one firstly aligns
the no-operations ‘η̄’s and the deletions ‘�̄’s in Ê
(in total n of them), to the no-eliminations ‘−’s and
eliminated deletions ‘�̄’s in Êc (also n of them in
total). Then one can obtain the original edit pattern
Ē from the typicalized edit pattern Ê by changing
the no-operations ‘η̄’s to deletions ‘�̄’s where the
symbols aligned with those no-operations ‘η̄’s in Êc

is no-eliminations ‘�̄’s, and placing insertions ‘ῑ’s
back where eliminated insertions ‘ῑ’s appear in Êc.
A corresponding example is shown in Fig. 9. After
determining Ē, Ȳ can be determined from (X̄, Ē).

• (X̄, Ȳ)
(Êc, ÂX̄,Ŷ)←−−−−→ (X̄, Ŷ)

– “→”: Firstly, by the definitions of X̄ and Êc, they
can be aligned. The no-elimination sections of Êc

(comprises of only ‘−’s) align with those X̄-runs
where no edits correspondingly in Ē are elimi-
nated. In other words, the edits Ē, hence PosESS
Ȳ in the corresponding sections are typical (they
don’t change after typicalization), the alignment
of which are specified by ÂX̄,Ŷ. For sections in

the eliminated edit pattern Êc with some elimi-
nated insertions ‘ῑ’ or deletions ‘�̄’, the corre-
sponding sections in Ȳ can be verified by apply-
ing those eliminated edits to X̄. The corresponding

sections in Ŷ should be the same as X̄, because
the edits are all eliminated in those sections after
typicalization.

– “←”: With ÂX̄,Ŷ, Ŷ-runs can be aligned to parent
run/runs in X̄ without any ambiguity. Also, the elim-
inated edits Êc can be aligned to X̄. Hence, given
typicalized PosESS Ŷ and eliminated edits Êc , one
can reconstruct Ȳ as follows. If the corresponding
section in Êc for an X̄-run-Ŷ-run match is “empty”
(comprises of only ‘−’s), then we reconstruct the
corresponding Ȳ-run(s) the same as the Ŷ-run(s).
For sections in the eliminated edit pattern Êc with
some eliminated insertions ‘ῑ’ or deletions ‘�̄’, to
reconstruct corresponding Ȳ-runs, we only need to
apply the eliminated edits stored in Êc back to
the corresponding X̄-runs. An example is shown
in Fig. 10.

Lemma 7: The difference between the asymptotic entropy
rates of nature’s secret and typicalized nature’s secret
is bounded from above by limn→∞ 1

n |H (Ē|X̄, Ȳ) −
H (Ê|X̄, Ŷ)| ≤ 56 max (ε, δ)2−τ + O(max (ε, δ)2), for
some τ ∈ (0, 1).

Proof: With Fact 1 and the two sets of mappings as shown
above, |H (Ē, X̄, Ȳ)−H (Ê, X̄, Ŷ)| can be bounded by H (Êc),
and|H (X̄, Ŷ) − H (X̄, Ȳ)| can be bounded by H (Êc, AX̄,Ŷ).
Hence,

|H (Ē|X̄, Ȳ)− H (Ê|X̄, Ŷ)|
= |(H (Ē, X̄, Ȳ)− H (Ê, X̄, Ŷ))+ (H (X̄, Ŷ)− H (X̄, Ȳ))|
≤ H (Êc)+ H (Êc, ÂX̄,Ŷ)

≤ 2 H (Êc)+ H (ÂX̄,Ŷ).

6500 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

In Êc = (Ō
(n+Kι−K̂ι), C̄

(Kι−K̂ι)), let ζ
�̄
j denote the prob-

ability that Ō j is an elimination of deletion �̄, we have

ζ
�̄
j = δ − δ(1 − ε − δ)l(j)+1 ≤ (l(j) + 1)(εδ + δ2), where

ł(j) is the length of the X̄-run where the eliminated deletion

occurs. Averaging over X̄, EX̄[ζ �̄
j] ≤ (EX̄[l(j)]+1)(εδ+ δ2).

Note that the average length of an X̄-run is EX̄[l(j)] =|A|
|A|−1 ≤ 2, where equality holds when |A| = 2. Hence,

on average the probability that a deletion in Ē gets eliminated
is ζ �̄ ≤ 3(εδ + δ2) ≤ 6 max (ε, δ)2. Similarly, there is
an elimination of an insertion in Êc with probability ζ

ῑ
j =

ε− ε(1− ε− δ)l(j)+2 ≤ (l(j)+ 2)(εδ+ ε2). Hence, averaging
over X̄, an insertion in Ē gets eliminated with probability
ζ ῑ ≤ (EX̄[l(j)] + 2)(εδ + ε2) ≤ 4(εδ + ε2) ≤ 8 max (ε, δ)2.

With similar calculations as in equation (8) in the proof of
Lemma 4 in Appendix A,

H (Ō1)= H(ζ �̄, ζ ῑ, 1 − ζ �̄ − ζ ῑ)

= H(ζ �̄)+H(ζ ῑ)− (log e)ζ �̄ζ ῑ +O(max(ζ �̄, ζ ῑ)3)

= −ζ �̄ log (ζ �̄)− (1− ζ �̄) log (1− ζ �̄)+ H (ζ ῑ)

+O(max (ε, δ)4)

=−ζ �̄ log (ζ �̄)− (1− ζ �̄)(log e)(−ζ �̄ +O((ζ �̄)2))

+H (ζ ῑ)+O(max (ε, δ)4)

= −ζ �̄ log (ζ �̄)+ (log e)ζ �̄ − ζ ῑ log (ζ ῑ)+ (log e)ζ ῑ

+O(max (ε, δ)4)

≤ 12 max (ε, δ)2−τ+16 max (ε, δ)2−τ+O(max (ε, δ)2)

= 28 max (ε, δ)2−τ +O(max (ε, δ)2).

Hence,

H (Êc)

= H (Ō
(n+Kι−K̂ι), C̄

(Kι−K̂ι))

= H (Ō
(n+Kι−K̂ι))+ H (C̄

(Kι−K̂ι)|Ō(n+Kι−K̂ι))

(a)= (n + E[Kι] − E[K̂ι])H (Ō1)+ H (C̄
(Kι−K̂ι)|(Kι − K̂ι))

= (n + E[Kι] − E[K̂ι])H (Ō1)+
(

E[Kι] − E[K̂ι]
)

log |A|
≤ n + ε

1− ε
H (Ō1)+

n + ε

1− ε
ζ ῑ log |A|

≤ n + ε

1− ε

(
28 max (ε, δ)2−τ +O(max (ε, δ)2)

+8 max (ε, δ)2 log |A|
)

= n + ε

1− ε

(
28 max (ε, δ)2−τ +O(max (ε, δ)2)

)

where step (a) is by Theorem 1.
Hence, we have from the beginning of the

proof that limn→∞ 1
n |H (Ē|X̄, Ȳ) − H (Ê|X̄, Ŷ)| ≤

limn→∞ 1
n

(
2H (Êc)+ H (ÂX̄,Ŷ)

)
≤ 56 max (ε, δ)2−τ +

O(max (ε, δ)2) for some τ ∈ (0, 1). (Recall in Lemma 5 we
have shown that H (ÂX̄,Ŷ) ≤ O(max (ε, δ)2)n.) �

Remark: For our purpose of bounding the achiev-
able rate from below, we only need one direction of the
inequality, that is, limn→∞ 1

n (H (Ē|X̄, Ȳ) − H (Ê|X̄, Ŷ)) ≥

−56 max (ε, δ)2−τ+O(max (ε, δ)2). Including the other direc-
tion of bounding in Lemma 7 might be useful for ongoing
research on InDel channel capacity.

Theorem 8 below is our main result which characterizes the
information-theoretic lower bound of the optimal compression
rate for updating with RPES-LtRRID model.

Theorem 8: The optimal average transmission rate
for updating with RPES-LtRRID process R̄∗ε,δ =
limn→∞ 1

n H (Ȳ|X̄) ≥ H(δ) + H(ε) + ε log |A| −
(δ + ε)C|A| − 56 max (ε, δ)2−τ + O(max (ε, δ)2), for
some τ ∈ (0, 1).

Proof: Combine Lemma 3, 4, 6, and 7, we have

lim
n→∞

1

n
H (Ȳ|X̄)

= lim
n→∞

1

n
[H (Ē)− H (Ē|X̄, Ȳ)]

= lim
n→∞

1

n
H (Ē)− lim

n→∞
1

n
H (Ê|X̄, Ŷ)−

lim
n→∞

1

n
(H (Ē|X̄, Ȳ)− H (Ê|X̄, Ŷ))

≥ H(δ)+H(ε)+ ε log |A| + 2 min(ε, δ)2−τ − (δ + ε)C|A|
−56 max (ε, δ)2−τ +O(max (ε, δ)2)

≥ H(δ)+H(ε)+ ε log |A| − (δ + ε)C|A|
−56 max (ε, δ)2−τ +O(max (ε, δ)2),

for some τ ∈ (0, 1). �
Remark: When ε = 0 and |A| = 2, our result matches with

result in Corollary IV.5. for binary deletion channel in [15].

E. APES-AID Model: Lower Bound

Given an arbitrary length-n pre-edit source sequence x over
A, let the set Yε,δ(x), called the post-edit set, denote the
set of all sequences over A that can be obtained from x via
any arbitrary (ε, δ)-InDel pattern. For zero-error decodability,
the encoder needs to send log |Yε,δ(x)| bits to decoder. The
larger the set Yε,δ(x), the larger the corresponding lower bound
on the optimal achievable rate. Hence to find a good lower
bound on the optimal achievable rate, one needs to find a pre-
edit sequence x with a large post-edit set.

In two special cases, that is, an insertion model with
arbitrary εn insertions, and an deletion model with arbitrary
δn deletions, the sizes of post-edit sets have been well studied
in the literature. We here reprise the results in [18] and [19],
with our notation. For an arbitrary ε-insertion process, the size
of any post-edit set |Yε,0(X)| = ∑εn

j=0

(n+εn
j

)
(|A| − 1) j ≥

(n+εn
εn

)
(|A|−1)εn , which is independent of the PreESS X. For

the arbitrary δ-deletion process, the size of the largest post-
edit set |Y0,δ(X)| ≥ ∑δn

j=0

(n−δn
j

) ≥ (n−δn
δn

)
depends on the

PreESS X. In the following, we give examples of the PreESSs
and intuitions of the lower bounds for these two special cases.

For an arbitrary ε-insertion process, consider a PreESS
denoted by Xα , which is a single length-n run consisting of
only symbol α ∈ A. Consider insertions of the form that
out of the n + εn locations in the PosESS Y, exactly εn
locations correspond to insertions of symbols other than α.
For such a PreESS Xα and such insertion patterns, all the

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6501

possible resulting PosESS Y’s are distinct. The number of
such insertion patterns is bounded below by

(n+εn
εn

)
(|A|−1)εn .

Hence, a lower bound on the number of PosESS |Yε,0(Xα)|
is

(n+εn
εn

)
(|A| − 1)εn . The corresponding lower bound on the

optimal achievable rate is 1
n log |Yε,0(Xα)|. As n goes to

infinity, by Stirling’s approximation [31], the lower bound
converges to (1+ ε)H(ε

1+ε)+ ε log (|A| − 1).
For an arbitrary δ-deletion process, consider a PreESS

denoted by Xdiff, where each symbol is different from its
preceding symbol, in other words, Xdiff consists of n length-1
runs. Consider the set of deletion patterns which delete an
arbitrary subset of δn non-neighboring symbols from Xdiff,
hence we require δ ≤ 1/2 here. Note that each such deletion
pattern results in a distinct PosESS Y. The number of these
deletion patterns is

(n−δn+1
δn

)
. The corresponding lower bound

on the optimal achievable rate is 1
n log |Y0,δ(Xdiff)|. As n goes

to infinity, by Stirling’s approximation [31], the lower bound
converges to (1− δ)H(δ

1−δ).
Theorem 9: When the source alphabet has size |A| ≥ 3 and

the deletion fraction δ ≤ 1/2, the optimal transmission rate
for updating with APES-AID process R∗ε,δ ≥ H(δ) +H(ε)+
ε log (|A| − 2)− (δ2 + δε − ε2) log e +O(max(ε, δ)3).

Proof: Consider a PreESS XLB constructed by alternating
two source symbols, e.g. 0101 . . .01. This PreESS has largest
number of runs – n runs, at the same time composes least
number of symbols – two symbols, to form n runs. (If the
sequence is composed of one source symbol, it must have
only one run.)

We now describe a set of arbitrary (ε, δ)-InDel patterns that
result in a large XLB-post-edit set. In this set of InDel patterns,
we require that all δn deletions precede all εn insertions.
Further, the deletions may delete any δn non-neighboring
symbols (hence no contiguous deletions). This can happen
because we require δ ≤ 1/2. The insertions can insert only
symbols from {2, . . . , |A| − 1}, i.e., symbols different from
those composing XLB. This can be satisfied given that |A| ≥ 3.

It can be verified that each such edit pattern results in a
distinct PosESS Y, by noting that given XLB and Y, one can
reconstruct the edit pattern unambiguously. To do so, one first
checks for the symbols different from those composing XLB
(those from the set {2, . . . , |A| − 1}) to identify the insertion
pattern uniquely. Then one takes out those inserted symbols,
aligns the remaining sequence to XLB and checks for the
missing symbols (the 0’s and 1’s that are deleted) to identify
the deletion pattern uniquely. Because no pairs of neighboring
symbols get deleted, one can always identify the deleted 0’s
and 1’s unambiguously by comparing XLB and the remaining
sequence after taking away the insertions. The overall InDel
pattern is then the composition of the deletion pattern and the
insertion pattern.

The number of such InDel patterns as described above
is

(n−δn+1
δn

)(n−δn+εn
εn

)
(|A| − 2)εn , hence is a lower bound

on the number of PosESSs – |Yε,δ(XLB)|. The correspond-
ing lower bound on the optimal achievable rate R∗ε,δ, given

by 1
n log |Yε,δ(XLB)|, is asymptotically (1 − δ)H

(
δ

1−δ

)
+

(1− δ + ε)H
(

ε
1−δ+ε

)
+ ε log (|A| − 2) by Stirling’s approx-

imation [31]. By expanding the binary entropy functions and
taking Taylor series expansion, the optimal transmission rate
is at least H(δ)+H(ε)+ε log (|A| − 2)−(δ2+δε−ε2) log e+
O(max(ε, δ)3). �

F. Summary

To summarize in this section, we derive information-
theoretic lower bounds on optimal compression rates for
both the RPES-LtRRID model and the APES-AID model.
In Section III-B, we show that the optimal compression length
for the RPES-LtRRID model is the description length of the
edit sequence H (Ē), less the entropy of the nature’s secret
H (Ē|X̄, Ȳ). We characterize the lower bound up to first order
terms in ε and δ in Theorem 8. For the APES-AID model,
we show in Section III-E that for certain type of PreESSs,
the optimal compression rate is close to the entropy rate to
describe the locations of edits, and the contents of insertions.
We characterize the lower bound up to first order terms in ε
and δ in Theorem 9 when the alphabet size is at least 3. In the
next section, we propose algorithms for both models and show
that our algorithms achieve compression rates that are close
to the lower bounds in lower order terms.

IV. ALGORITHM AND PERFORMANCE

We first propose a unified dynamic-programming-entropy-
coding (DP-EC) compression scheme for both RPES-LtRRID
and APES-AID models in Section IV-A. The DP-EC scheme
is a combination of dynamic programming and entropy cod-
ing. Note that using DP to find the edit distance between
two sequences is well-known in the literature – the contri-
bution here is to demonstrate that for large alphabet and
small amount of edits, this algorithmic procedure results in
expected description lengths that are within small constant
additive gap to the information-theoretic lower bounds that
we provide in Section III, which we show in Section IV-B.
In Section IV-C, we present a dynamic-programming-run-
length-compression (DP-RLC) scheme for the RPES-LtRRID
model, which is modified slightly from the scheme in [9]
to suit our model. The DP-RLC scheme has only one step
different from the DP-EC scheme – after DP-encoder outputs
an edit pattern, the DP-RLC scheme groups edits output by
DP according to the lengths of the runs where those edits
occur, and uses entropy codes to compress the grouped edit
sequences. In Section IV-D, we show that the DP-RLC scheme
achieves a compression rate matching the lower bound up to
first order terms in ε and δ, including the first order term of
the nature’s secret, hence outperforms the DP-EC scheme for
the RPES-LtRRID model.

A. Dynamic-Programming-Entropy-Coding (DP-EC)
Scheme – Algorithm

For this section of a unified algorithm for APES-AID
and PRES-LtRRID models, we unify presentation by using
notation without bars. The encoding process is summarized in
Algorithm 1.

6502 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

Algorithm 1 Dynamic-Programming-Entropy-Coding
Encoder
Input: The PreESS X and the PosESS Y
Output: A transmission Enc(X, Y)
1: DP-enc: Run a dynamic program on the input (X, Y) to

output an edit pattern Ẽ.
2: Repre-enc: Represent the edit pattern Ẽ as a pair of

sequences (Õn+ε̃n, C̃ ε̃n).
3: Entro-enc: Use standard entropy codes [31] to compress

sequences Õn+ε̃n and C̃ ε̃n .

Some additional information of the algorithm is as follows:

• For DP-enc, denote the number of insertions and deletions
of Ẽ by ε̃n and δ̃n respectively, the edit pattern Ẽ satisfies
the condition that (ε̃ + δ̃)n is the minimum number of
edits needed to convert X to Y. Standard edit-distance
algorithms [32] typically run in time that scales as n1 n2
– the product of the lengths of the strings being compared.
We reference here Ukkonen’s work [33] since it gives an
algorithm that is O(min(n1, n2) · s), where s refers to the
edit distance between X and Y – the minimum number
of edits needed to process on X to get Y, and hence is
faster.

• For Repre-enc, the edit operation sequence Õn+ε̃n is a
length-(n + ε̃n) sequence over {ῑ, �̄, η̄} which specifies
the edit operations of Ẽ. The insertion content sequence
C̃ ε̃n is a length-ε̃n sequence over the source alphabet A
which specifies the content of insertions of Ẽ.

The decoder of the DP-EC algorithm decodes Õn+ε̃n and
C̃ ε̃n by corresponding decoders of the entropy codes in Entro-
enc in Algorithm 1, and reconstructs Y from (X, Õn+ε̃n, C̃ ε̃n).

B. Dynamic-Programming-Entropy-Coding (DP-EC)
Scheme – Performance

It is well known in the literature [32], [33] that dynamic
programming finds the edit distance between two sequences,
that is, DP minimizes ε̃n+ δ̃n – the total number of insertions
and deletions. In fact, ε̃n and δ̃n are both minimized in
the output of DP, because given X and Y, the numbers of
insertions and deletions satisfy ε̃n − δ̃n = l(Y) − l(X) – the
difference between the lengths of Y and X. Hence, minimizing
ε̃n + δ̃n over all edit patterns that convert X to Y minimizes
both ε̃n and δ̃n. Hence, for both APES-AID and RPES-
LtRRID models, denote Kι the number of insertions and K�

the number of deletions in the actual edit pattern, we have
ε̃n ≤ Kι and δ̃n ≤ K�. We conclude in Fact 2 below.

Fact 2: The number of insertions ε̃n (respectively the num-
ber of deletions δ̃n) of any edit pattern Ẽ output by DP-
encoder is always no larger than the number of insertions
Kι (respectively the number of deletions K�) of the actual
edit pattern. Hence,

• for APES-AID model, ε̃n ≤ Kι ≤ εn, δ̃n ≤ K� ≤ δn;
• for RPES-LtRRID model, ε̃n ≤ Kι, δ̃n ≤ K�.

In the limit as the block length n goes to infin-
ity, the compression rate of the above algorithm is
limn→∞ 1

n

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
. In Lemma 10 below,

we characterize the asymptotic entropy rate of the edit opera-
tion sequence Õn+ε̃n output by DP with ε̃n insertions and δ̃n
deletions. The proof is provided in Appendix C.

Lemma 10: The asymptotic entropy rate of Õn+ε̃n with ε̃n
insertions and δ̃n deletions is limn→∞ 1

n H (Õn+ε̃n) = H(δ̃)+
H(ε̃)+ (log e)ε̃2 +O(ε̃4).

In the following, we characterize upper bounds on the
compression rates of DP-EC algorithm for both RPES-LtRRID
and APES-AID models.

1) DP-EC Performance – RPES-LtRRID Model: In RPES-
LtRRID model, the numbers of deletions and insertions may
exceed their expectations δ

1−ε n and ε
1−ε (n+1), in which case

more bits may need to be transmitted. Moreover, the number of
insertions can be unbounded. In Theorem 11 below, we show
that these events contribute a negligible amount to the com-
pression rate as the block length n tends to infinity. Specifi-
cally, we use the Chernoff bound to show that the probability
of the events, where the number of insertions (deletions) is
much more than its expected value, is sub-exponentially small
in the block length n.

Theorem 11: For RPES-LtRRID model, the DP-EC algo-
rithm requires a compression rate of at most H(δ) +
H(ε)+ ε log |A| + εδ1−τ + ε2−τ + ε2 log |A| − δ2+ε2

2 log e+
O(max (ε, δ)3−τ), for some τ ∈ (0, 1).

Proof: The number of deletions K� is the sum of n i.i.d.
Bernoulli

(
δ

1−ε

)
random variables. Hence, by the Chernoff

bound Pr
(

K� ≥ δ
1−ε n + λ1 n

)
≤ e−2λ2

1 n . Taking λ1 =
n−1/4, we have Pr

(
K� ≥ δ

1−ε n + n3/4
) ≤ e−2

√
n .

The number of insertions Kι is the sum of n+ 1 i.i.d. Geo-
metric random variables denoted as Geo0(1− ε), hence is not
bounded from above. Standard concentration inequalities like
Chernoff bounds or Bernstein’s inequality etc. do not apply.
We found that the bound in [34] suffices, which states that

Pr
(
Kι ≥ (1+λ2)

ε
1−ε (n+1)

) ≤ exp
(−(1+λ2)(n+1)

(
1− 1

1+λ2

)2

2

)
.

Taking λ2 = n−1/4, we have Pr
(
Kι ≥ ε

1−ε (n+1)+ ε
1−ε (n3/4+

n−1/4)
) ≤ exp

(−(n+1)n−1/2

2(1+n−1/4)

) ≤ e−
√

n/4.

Case 1: From the above, with probability at least 1 −
e−2
√

n − e−
√

n/4, by Fact 2 we have δ̃ ≤ δ
1−ε + n−1/4

and ε̃ ≤ ε
1−ε + ε

1−ε (n−1 + n−1/4 + n−5/4). By Lemma 10,

the contribution to limn→∞ 1
n

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
in the

regime that Kι ≤ ε
1−ε (n + 1) + ε

1−ε (n3/4 + n−1/4) and
K� ≤ δ

1−ε n + n3/4 is at most

H(
δ

1−ε
)+H(

ε

1−ε
)+ ε

1−ε
log |A|

+ (
ε

1−ε
)2 log e +O

(
(

ε

1−ε
)4
)

. (7)

Case 2: Also, from the concentration inequalities above,
with probability at most e−2

√
n + e−

√
n/4, K� ∈ [δ

1−ε n +
n3/4, n] or Kι ∈ [ε

1−ε (n+1)+ ε
1−ε (n3/4+n−1/4)),∞). We first

investigate the case that Kι is also bounded above by n. The
probability of this event (K� ∈ [δ

1−ε n + n3/4, n] or Kι ∈
[ε

1−ε (n + 1)+ ε
1−ε (n3/4 + n−1/4)), n]) is still bounded above

by e−2
√

n + e−
√

n/4. The number of bits needed to specify

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6503

the edit pattern is at most linear in n (bounded from above
by 2n log |A|). However, the probability is sub-polynomial
small in n. Hence, as the block length n goes to infinity,
the contribution to limn→∞

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
by the

event that K� ∈ [δ
1−ε n + n3/4, n] or Kι ∈ [ε

1−ε (n + 1) +
ε

1−ε (n3/4 + n−1/4)), n] goes to zero.
Case 3: As mentioned above, the number of insertions Kι

can be unbounded. For the case Kι > n, when Kι is linear
in n (Kι = �(n)), the number of bits needed to specify
the edit pattern is linear in n, whereas the probability of
this event is bounded above by e−

√
n/4. When Kι is
(n),

recall that Kι is negative binomial distributed, the pmf of
which is Pr(Kι = k) = (k+n

k

)
(1 − ε)n+1εk . Hence, in this

case the number of bits needed to specify the edit pattern is
linear in Kι, with probability of exponentially small in Kι.
From both cases, as n goes to infinity, the contribution to
limn→∞ 1

n

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
by the event that Kι > n

goes to zero.
From the above analysis, the entropy rate contributed

to limn→∞ 1
n

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
by Case 2 and

Case 3 goes to zero. Hence, from (7), we have
limn→∞ 1

n

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
≤ H(δ

1−ε) + H(ε
1−ε) +

ε
1−ε log |A| + (log e)(ε

1−ε)2 + O
(
(ε

1−ε)4
)

. We conclude our
bound as a Taylor series expansion in ε and δ, by expanding
the terms individually by Taylor series expansion.

The rate achieved by DP-EC algorithm is bounded from
above by H(δ)+H(ε)+ε log |A|+εδ1−τ+ε2−τ+ε2 log |A|−
δ2+ε2

2 log e +O(max (ε, δ)3−τ), for some τ ∈ (0, 1). �

2) DP-EC Performance – APES-AID Model: The perfor-
mance analysis of DP-EC algorithm for APES-AID model
is less complicated, because APES-AID model restricts the
amount of insertions (deletions) to be at most εn (δn).

Theorem 12: For APES-AID model, the DP-EC algorithm
requires a compression rate of at most H(δ) + H(ε) +
ε log |A| + (log e)ε2 +O(ε4).

Proof: As we have mentioned above, the asymptotic
compression rate of the DP-EC algorithm is given
by limn→∞ 1

n

(
H (Õn+ε̃n)+ H (C̃ ε̃n)

)
. By Lemma 10,

the entropy rate of Õn+ε̃n is given by limn→∞ 1
n H (Õn+ε̃n) =

H(δ̃)+H(ε̃)+ (log e)ε̃2 +O(ε̃4). The contents of insertions
can be arbitrary symbols from A, hence limn→∞ 1

n H (C̃ ε̃n) =
limn→∞ 1

n ε̃n log |A| = ε̃ log |A|. So the compression rate
of DP-EC algorithm for the APES-AID model is at most
H(δ̃)+H(ε̃)+ ε̃ log |A|+ (log e)ε̃2+O(ε̃4). By Fact 2, ε̃ ≤ ε
and δ̃ ≤ δ. Hence, the compression rate for APES-AID model
is at most H(δ)+H(ε)+ ε log |A| + (log e)ε2 +O(ε4). �

Remark: Note that the achievable rates in Theorem 11 and
Theorem 12 are similar to Lemma 4. Although Lemma 4 is
for RPES-LtRRID model only, the similarity indicates that
directly compressing the output edit pattern of DP costs
a description length about the same as the entropy of the
edit sequences, i.e., the number of bits to describe the
locations of insertions and deletions, plus the contents of
insertions. For APES-AID model, the achievable rate of DP-
EC algorithm almost match the lower bound (Theorem 9)

in lower order terms. However, for RPES-LtRRID model the
lower bound (Theorem 8) indicates that one might need less
bits (amounted by the nature’s secret term) to enable updates.
In next Section IV-C, we present an algorithm for RPES-
LtRRID model which outperforms DP-EC algorithm.

C. Dynamic-Programming-Run-Length
Compression (DP-RLC) Scheme – Algorithm

In this section, we present the DP-RLC compression scheme
specifically for the RPES-LtRRID model. The scheme is
slightly modified from the compression scheme in [9], because
there are some differences between our model and the model
in [9] in both source sequences and edit sequences. Another
difference between our work and [9] is that we explicitly
calculate the lower order terms of the achievable rate in
Theorem 13.

Before going into details of the algorithm, we firstly classify
insertions into two types:
• Type-E insertions: this includes insertions which insert

the same symbol composing the runs where they occur,
hence they extend the lengths of X̄-runs.

• Type-O insertions: this includes all the other insertions,
hence they create new runs and/or break X̄-runs. Specifi-
cally, when they occur within runs, they break these runs
and form new runs themselves; when they occur at the
positions between two runs, if the source alphabet has
size at least three, it is possible that they create new runs
themselves.

The encoding process is summarized in Algorithm 2.

Algorithm 2 Dynamic-Programming-Run-Length Compres-
sion Encoder
Input: The PreESS X̄ and the PosESS Ȳ
Output: A transmission Enc(X̄, Ȳ)
1: DP-enc: Run a dynamic program on the input (X̄, Ȳ) to

output an edit pattern.
2: RL-Grouping-enc: Group deletions and type-E insertions

according to lengths of X̄-runs, denoted by {D̃l}lmax
l=1 and

{ĨE
l }lmax

l=1 . Type-O insertions are described in respect of the
whole sequence of Ȳ, and are denoted by ĨO. // Details of
this step is shown below.

3: Entro-enc: Use standard entropy codes [31] to compress
the three sets of sequences {D̃l}lmax

l=1 , {ĨE
l }lmax

l=1 and ĨO.

For RL-Grouping-enc, the encoder groups deletions and
type-E insertions according to lengths of X̄-runs, as shown
in Fig. 11. Specifically, denote the maximum length of X̄-runs
by lmax, and the number of X̄-runs with length l by n(l) for
all l = 1, 2, . . . , lmax.
• Deletions – Let D̃l,i denote the number of deletions in the

i th length-l X̄-run. The sequence D̃l = D̃l,1 D̃l,2 . . . D̃l,n(l)

represents the numbers of deletions in all X̄-runs with
length l. We use {D̃l}lmax

l=1 to denote the set of sequences
{D̃1, D̃2, . . . , D̃lmax}.

• Type-E insertions – Denote the number of type-E inser-
tions in the i th length-l X̄-run by Ĩ E

l,i . The sequence

6504 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

Fig. 11. Group X̄-runs by their lengths, and then count the number of
deletions D̃l,i and the number of insertions that extend runs Ĩ E

l,i for the ith
length-l run, for all l = 1, 2, . . . , lmax and i = 1, 2, . . . , n(l).

ĨE
l = Ĩ E

l,1 Ĩ E
l,2 . . . Ĩ E

l,n(l) represents the numbers of type-E

insertions in all X̄-runs with length l. We use {ĨE
l }lmax

l=1 to
denote the set of sequences {ĨE

1 , ĨE
2 , . . . , ĨE

lmax
}. Note that

for any i th length-l X̄-run, because DP-enc outputs edit
pattern(s) with minimum number of edits, D̃l,i and Ĩ E

l,i
are not nonzero at the same time.

• Type-O insertions – Let l(Ȳ) denote the length of Ȳ,
and i ′ denote the number of type-O insertions. Type-
O insertions, denoted by ĨO, comprises two sequences,

i.e. ĨO = (Ĩ l(Ȳ)
O , C̃i ′). The insertion pattern of type-O

insertions is modeled by a length-l(Ȳ) sequence Ĩ l(Ȳ)
O ,

where each ĨO is either an insertion ῑ or a no-operation η̄.
The contents of type-O insertions is modeled by a length-
i ′ sequence C̃i ′ of symbols from the source alphabet A.

The decoder of the DP-RLC algorithm decodes({D̃l}lmax
l=1 , {ĨE

l }lmax
l=1 , ĨO

)
by corresponding decoders of the

entropy codes in Entro-enc in Algorithm 2. Then, the decoder
reconstructs Ȳ from

(
X̄, {D̃l}lmax

l=1 , {ĨE}lmax
l=1 , ĨO

)
by processing

the InDels on X̄ in the same order as in the encoding
procedure.

D. Dynamic-Programming-Run-Length
Compression (DP-RLC) Scheme – Performance

Because we use entropy codes to compress the three sets of
sequences {D̃l}lmax

l=1 , {ĨE
l }lmax

l=1 and ĨO in Step 3, the asymptotic
compression rate of DP-RLC algorithm in Section IV-C
is limn→∞ 1

n

(
H

({D̃l}lmax
l=1

)+ H
({ĨE

l }lmax
l=1

)+ H
(
ĨO

))
. This

entropy rate is characterized as an expansion in ε and δ, and
the first order terms are computed explicitly and presented in
Theorem 13 below.

Theorem 13: For the RPES-LtRRID model, the DP-RLC
algorithm requires a compression rate of at most H(δ) +
H(ε)+ ε log |A| − (δ+ ε)C|A| +O (

max (ε, δ)2−τ
)
, for some

τ ∈ (0, 1).
To prove Theorem 13, we firstly show in Lemma 14 below

that the entropy of sets of sequences {D̃l}lmax
l=1 , {ĨE

l }lmax
l=1 and

ĨO is close to the entropy of three similar sets of sequences
{D̄l}lmax

l=1 , {ĪE
l }lmax

l=1 , and ĪO obtained from the original edit pattern
Ē. We then compute the entropy rates of these three sets of
sequences in Lemma 15-17 sequentially.

Remark: From Theorems 8 and 13, we observe that the
lower bound and achievable rate match up to first order
terms. Therefore, for small ε and δ, DP-RLC is asymptotically
optimal.

Suppose we know the actual edit pattern Ē, we can group
the edits in Ē according to the lengths of X̄-runs with the
same procedure in Step 2 of the DP-RLC algorithm, resulting
in three similar groups of sequences, denoted by {D̄l}lmax

l=1 ,
{ĪE

l }lmax
l=1 , and ĪO. In Lemma 14 below, we prove that the

description length required by the DP-RLC algorithm is close
to the description length of these three groups of sequences
corresponding to the actual edit pattern.

Lemma 14: The description length required by the DP-RLC
algorithm H

({D̃l}lmax
l=1

) + H
({ĨE

l }lmax
l=1

) + H
(
ĨO

)
is close to the

description length of the groups of sequences H
({D̄l}lmax

l=1

) +
H

({ĪE
l }lmax

l=1

)+H
(
ĪO

)
corresponding to the actual edit pattern.

Specifically,

|H ({D̃l}lmax
l=1

)− H
({D̄l}lmax

l=1

)| ≤ n ·O(max (ε, δ)2),

|H ({ĨE
l }lmax

l=1

)− H
({ĪE

l }lmax
l=1

)| ≤ n ·O(max (ε, δ)2),

|H (
ĨO)− H

(
ĪO)| ≤ n ·O(max (ε, δ)2).

Proof: Note that for the same X̄ and for any l, D̄l has
the same length as D̃l , because the algorithm groups edits
according to the length of X̄-runs. We argue below that at most
O(max (ε, δ)2)n terms are different in {D̄l}lmax

l=1 and {D̃l}lmax
l=1 .

For an X̄-run, the number of deletions in its output by DP
may differ from the number of deletions in the original edit-
pattern only if one of following two cases occurs:

Case 1: there is more than one edit in the extended run of
this X̄-run;

Case 2: although there is only one edit in its extended
run, the interaction of insertions and deletions in different
runs leads to uncertainty in the edit pattern (recall Fig. 8 in
Section III-C for an example).

Case 1 corresponds to the scenario where edits are atypical.
Hence, it is straightforward that Case 1 occurs with probability
at least in second order term, i.e., O(max (ε, δ)2). Case 2 is
more intricate. It corresponds to the ambiguous local alignment
event (Definition 4). We proved in Lemma 5 that on aver-
age (over X̄ and Ē), Case 2 also occurs with probability at most
O(max (ε, δ)2). From Case 1 and Case 2, on average at most
O(max (ε, δ)2)n terms are different in {D̄l}lmax

l=1 and {D̃l}lmax
l=1 .

Hence, the entropy of the component-wise difference is at most
H

({D̃l}lmax
l=1 − {D̄l}lmax

l=1

) ≤ n ·O(max (ε, δ)2). To conclude,

|H ({D̃l}lmax
l=1

)− H
({D̄l}lmax

l=1

)|
= |H ({D̃l}lmax

l=1 |{D̄l}lmax
l=1

)− H
({D̄l}lmax

l=1 |{D̃l}lmax
l=1

)|
= |H ({D̃l}lmax

l=1 − {D̄l}lmax
l=1 |{D̄l}lmax

l=1

)

−H
({D̄l}lmax

l=1 − {D̃l}lmax
l=1 |{D̃l}lmax

l=1

)|
≤ H

({D̃l}lmax
l=1 − {D̄l}lmax

l=1 |{D̄l}lmax
l=1

)

+H
({D̄l}lmax

l=1 − {D̃l}lmax
l=1 |{D̃l}lmax

l=1

)

≤ 2 H
({D̃l}lmax

l=1 − {D̄l}lmax
l=1

)

≤ n ·O(max (ε, δ)2).

Similar arguments hold for type-E insertions. Hence, we also
have |H ({ĨE

l }lmax
l=1

)− H
({ĪE

l }lmax
l=1

)| ≤ n ·O(max (ε, δ)2).
For type-O insertions, recall that ĨO = (Ĩ l(Y)

O , C̃i ′) and

ĪO = (Ī l(Y)
O , Ci ′′), it is obvious that Ĩ l(Ȳ)

O and Ī l(Ȳ)
O have

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6505

the same length. For similar reasons, they differ in at most
O(max (ε, δ)2)n locations. Thus although the content of type-
O insertions C̃i ′ and Ci ′′ may have different length, they differ
by at most O(max (ε, δ)2)n entries. Therefore, we also have
|H (

ĨO
)− H

(
ĪO

)| ≤ n ·O(max (ε, δ)2). �
From Lemma 14, we can characterize (first order terms

of) the achievable rate of DP-RLC by the entropy rates of
sequences {D̄l}lmax

l=1 , {ĪE
l }lmax

l=1 , and ĪO obtained from the original
edit pattern, which we compute explicitly in the following.

Lemma 15: The asymptotic entropy rate of
{D̄l}lmax

l=1 is limn→∞ 1
n H

({D̄l}lmax
l=1

) = H(δ) −
δ
∑∞

l=1

(
1− 1

|A|
)2 (

1
|A|

)l−1
l log l + O(max(ε, δ)2−τ),

for some τ ∈ (0, 1).
Proof: The number of deletions in a length-l X̄-run is

Binomial(l, δ
1−ε) distributed. Denote its probabilistic distri-

bution by PrD̄l
, i.e. PrD̄l

(d) = Pr (D̄l = d). We have

PrD̄l
(d) = (l

d

)
δd (1− ε − δ)l−d/(1− ε)l . Hence,

H (PrD̄l
)

=
l∑

d=0

−
(

l

d

)
δd (1− ε − δ)l−d

(1− ε)l

[
log

(
l

d

)
+ d log δ

+(l − d) log (1− ε − δ)− l log (1− ε)
]

= − l

1− ε
δ log δ − l

1− ε
(1− ε − δ) log (1− ε − δ)+

l log (1− ε)+
l∑

d=0

−
(

l

d

)
δd (1− ε − δ)l−d

(1− ε)l
log

(
l

d

)

= l

1− ε

(
H(δ)+O

(
max(ε, δ)2

))
− δ (1− ε − δ)l−1

(1− ε)l
l log l

+
l−1∑

d=2

−
(

l

d

)
δd (1− ε − δ)l−d

(1− ε)l
log

(
l

d

)

≤ lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)

+
l−1∑

d=2

−
(

l

d

)
δd (1− ε − δ)l−d

(1− ε)l
log

(
l

d

)

lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)

−
l−1∑

d=2

(
l

d

)
δd (1− ε − δ)l−d

(1− ε)l
log l

= lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)

−
l−3∑

d=0

(
l

d + 2

)
δd+2(1− ε − δ)l−d−2

(1− ε)l
log l

= lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)

−δ2 log l
(1− ε − δ)l (l − 1)(l − 2)

(1− ε)3 ·
l−3∑

d=0

(
l − 3

d

)

1

(d + 1)(d + 2)(l − d − 2)

(
δ

1− ε

)d (
1− δ

1− ε

)l−d−3

≤ lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)

−δ2 log l
(1− ε − δ)l (l − 1)(l − 2)

(1− ε)3

·
l−3∑

d=0

(
l − 3

d

)
1

(l − 2)(l − 1)l

(
δ

1− ε

)d (
1− δ

1− ε

)l−d−3

= lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)
− δ2 log l

(1− ε − δ)

(1− ε)3

= lH(δ)− δl log l +O
(

max(ε, δ)2−τ
)

,

for some τ ∈ (0, 1). Recall that n(l) denotes the number of X̄-

runs with length l, we have E[n(l)] = n
(

1− 1
|A|

)2 (
1
|A|

)l−1
,

H
({D̄l}lmax

l=1

)

= E
[∑lmax

l=1 n(l)H (PrD̄l
)
]

=
∞∑

l=1

E[n(l)]H (PrD̄l
)

=
∞∑

l=1

n

(
1− 1

|A|
)2 (

1

|A|
)l−1 (

lH(δ)− δl log l

+O
(

max(ε, δ)2−τ
))

= nH(δ)− δn
∞∑

l=1

(
1− 1

|A|
)2 (

1

|A|
)l−1

l log l

+n ·O
(

max(ε, δ)2−τ
)

.

Hence, limn→∞ 1
n H

({D̄l}lmax
l=1

) = H(δ) − δ
∑∞

l=1(
1− 1

|A|
)2 (

1
|A|

)l−1
l log l +O (

max(ε, δ)2−τ
)
. �

Lemma 16: The asymptotic entropy rate of {ĪE
l }lmax

l=1 is

limn→∞ 1
n H

({ĪE
l }lmax

l=1

) =
(

2
|A| − 1

|A|2
)

(H(ε) + ε log |A|) −
ε
∑∞

l=1

(
1− 1

|A|
)2 (

1
|A|

)l−1
l log l + O(ε2−τ), for some

τ ∈ (0, 1).
Proof: The number of insertions in a length-l X̄-run is

negative binomial NB(l + 1, ε) distributed. Each insertion
extends the run with probability 1

|A| . Denote the probabilistic
distribution of number of insertions that extend runs in a
length-l X̄-run by PrĪE

l
, we have

PrĪE
l
(i) =

∞∑

k=i

(
k+l

l

)
(1− ε)l+1εk

(
k

i

) (
1− 1

|A|
)k−i (1

|A|
)i

.

With similar calculations as in Lemma 15, we have H (PrĪE
l
) ≤

(l+1)
|A| H(ε)+(l+1) ε

|A| log |A|− ε
|A| (l+1) log (l + 1)+O(ε2−τ)

for some τ ∈ (0, 1). Hence,

H
({ĪE

l }lmax
l=1

)

= E
[∑lmax

l=1 n(l)H (PrĪE
l
)
]

=
∞∑

l=1

E[n(l)]H (PrĪE
l
)

=
∞∑

l=1

n

(
1− 1

|A|
)2 (

1

|A|
)l−1 ((l + 1)

|A| H(ε)

+ (l + 1)ε

|A| log |A| − ε

|A| (l + 1) log (l + 1)+O(ε2−τ)
)

6506 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

= nH(ε)

∞∑

l=1

(
1− 1

|A|
)2 (

1

|A|
)l

(l + 1)

+nε log |A|
∞∑

l=1

(
1− 1

|A|
)2 (

1

|A|
)l

(l + 1)

−εn
∞∑

l=1

(
1− 1

|A|
)2 (

1

|A|
)l

(l+1) log(l+1)+O(ε2−τ)n

=
(

2

|A| −
1

|A|2
)

(nH(ε)+ nε log |A|)

−εn
∞∑

l=1

(
1− 1

|A|
)2 (

1

|A|
)l−1

l log l +O(ε2−τ)n,

hence, for type-E insertions, we have
limn→∞ 1

n H
({ĪE

l }lmax
l=1

) =
(

2
|A| − 1

|A|2
)

(H(ε) + ε log |A|) −
ε
∑∞

l=1

(
1− 1

|A|
)2 (

1
|A|

)l−1
l log l +O(ε2−τ). �

The intuition of the coefficient 2
|A| − 1

|A|2 in Lemma 16 is

as follows. From the perspective of the whole sequence X̄,
insertions within X-runs extend runs with probability 1

|A| , and

insertions between two X̄-runs extend runs with probability
2
|A| (they may extend either the run on the left side or the

run on the right side). On average, there are n(1 − 1
|A|)

X̄-runs. Hence, out of n possible positions for insertions,
on average n(1 − 1

|A|) of them are between two X̄-runs.8

Hence, on average, there are n(1− 1
|A|) ·ε · 2

|A| +n 1
|A| ·ε · 1

|A| =
nε

(
2
|A| − 1

|A|2
)

type-E insertions.
Based on the above observations, on average there are

nε
(

1− 2
|A| + 1

|A|2
)

type-O insertions, which provides an
intuition for Lemma 17 below. The proof is similar as
Lemma 15 and Lemma 16 hence omitted here.

Lemma 17: The asymptotic entropy rate of ĪO

is limn→∞ 1
n H

(
ĪO

) =
(

1− 2
|A| + 1

|A|2
)
H(ε) +

(
1− 2

|A| + 1
|A|2

)
ε log |A| + O(max(ε, δ)2−τ), for some

τ ∈ (0, 1).
Combining Lemma 14-17, we have that the asymptotic com-
pression rate of DP-RLC algorithm is bounded by

lim
n→∞

1

n

(
H

({D̃l}lmax
l=1

)+ H
({ĨE

l }lmax
l=1

)+ H
(
ĨO))

≤ lim
n→∞

1

n
H

({D̄l}lmax
l=1

)+ lim
n→∞

1

n
H

({ĪE
l }lmax

l=1

)

+ lim
n→∞

1

n
H

(
ĪO)+O(max(ε, δ)2)

≤ H(δ)+H(ε)+ ε log |A| −
(δ + ε)

∞∑

l=1

(
1− 1

|A|
)2(1

|A|
)l−1

l log l+O(max(ε, δ)2−τ),

for some τ ∈ (0, 1), hence proved Theorem 13.

8In fact, there are n + 1 possible positions for insertion, and on average
n(1 − 1

|A|) − 1 positions are between two X-runs. However, asymptotically
as n grows, these boundary effects are negligible.

V. CONCLUSION AND DISCUSSION

We investigate one-way file updates problem, specifically
the communication complexity to enable file updates with
small fractions of insertions and deletions (InDels). We study
two models, one worstcase model with arbitrary source
sequence and arbitrary InDels, the other stochastic model
with random source sequence and random InDels. For the
arbitrary model, we derive an information-theoretic lower
bound on the communication complexity in Theorem 9.
We show in Theorem 12 that a simple scheme combining
dynamic programming and entropy coding (DP-EC) achieves
a compression rate that is close to the lower bound up to
first order terms. For the stochastic model, we show that the
minimum communication complexity to enable file updates is
the description length of the edit pattern, less a term called
nature’s secret, and characterize the optimal rate up to first
order terms in Theorem 8. We show that the DP-EC algorithm
achieves a compression rate which matches the description
length of the edit sequence in Theorem 11. Hence the DP-
EC algorithm performs well regardless of the latent model.
We also provide a run-length compression (DP-RLC) scheme
specifically for the stochastic model. We show in Theorem 13
that the DP-RLC scheme achieves a compression rate which
matches the lower bound (Theorem 8) in all first order terms.
Hence, DP-RLC scheme outperforms DP-EC scheme for the
stochastic model.

There are potentially many ways to model stochastic InDels.
Our results should in general translate over to those models
in the regime with small fractions of insertions and deletions.
In Section V-A below, we discuss some other stochastic InDel
models in the literature and some potential models for further
investigation.

A. Different Stochastic InDel Processes

A general left-to-right Markov InDel process as shown
in Fig. 12 might be of interest for future study. In this work,
we set α1 = α4 = δ, α2 = α5 = ε and α3 = α6 = 1− ε − δ,
resulting in i.i.d. insertions and deletions. The model was
also studied in [7] as a channel with synchronization errors.
The difference is that the authors of [7] imposed a maximum
insertion length, and set the insertion and deletion probabil-
ities to be equal, to keep the expected length the sequence
unchanged after processing the edits. We don’t impose these
two requirements in our model. The authors in [7] proposed
a block code which is a concatenation of a “watermark” code
and a LDPC code for this synchronization error channel, and
presented the empirical performance of their code.

Another stochastic model, possibly more realistic for human
editing behavior, is to allow and embed the randomness of the
“cursor” jumping back and forth. This InDel process can also
be modeled as a three-state Markov chain. Fig. 13 shows a
special case where with uniform cursor jump: at each iteration,
the cursor jumps to a position which is uniformly distributed
in the current sequence, deletes the symbol in front with
probability pD, or inserts a symbol uniformly drawn from the
alphabet A with probability pI = 1 − pD. We believe our
approach will derive similar results for this model, because

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6507

Fig. 12. A general left-to-right markov InDel process.

Fig. 13. A stochastic InDel model with random cursor jumps.

the probability of the insertion-deletion interaction is of order
O(εδ), which contributes to second order terms. Such a model
typically ends up generating “sparse isolated edits”. A more
sophisticated stochastic model, better presenting realistic edit
scenarios, would have a distribution on the cursor jump, and
also a distribution on the run-length of insertions and deletions
– this is the subject of ongoing investigation.

Since an insertion process can be regarded as the inverse
of a deletion process, a random InDel process as in Fig. 14
was studied in [9]. The authors in [9] also considered the edit
operation substitution. Here we hide the part corresponding to
the substitution process to represent just the InDel process.
In Fig. 14, an auxiliary sequence Z̄ ∈ An is a length-n
sequence of symbols drawn i.i.d. uniformly at random from
the source alphabet A. Sequences X̄ and Ȳ are generated
from Z̄ through two i.i.d. deletion processes with deletion
probability pI and pD respectively. Hence, X̄ is a variable
length (Binomial(n, 1− pI)) sequence of i.i.d. symbols from
A. The authors in [9] proposed and algorithm which is asymp-
totically optimal for small insertion and deletion probability.
More specifically, their algorithm is O(max(pI , pD)2−τ) far
from optimal limn→∞ 1

n H (Ȳ|X̄).9 However, they didn’t derive
the explicit expression for the term limn→∞ 1

n H (Ȳ|X̄) for the
InDel process. For the case with only deletions, the authors
of [9] do have an information-theoretic lower bound in their
earlier work [13]. One of our main effort is indeed to charac-
terize the explicit expression of the optimal rate.

There are also many different stochastic insertion/deletion
model in the literature regarding insertion/deletion channels.
A random InDel model where each source bit/symbol is
deleted with probability pD , or with an extra bit/symbol
inserted after it with probability pI , or transmitted/kept (no

9As opposite to [9], in our paper we use X̄ for the side-information and Ȳ
for the sequence to be synchronized.

Fig. 14. The stochastic InDel model studied in [9].

deletion or insertion after) with probability 1 − pD − pI

was studied in both [12] and [35]. In [35], capacity lower
bounds for channels modeled as this InDel process are pro-
posed. In [12], an algorithm for two-way file synchronization
under non-binary non-uniform source alphabet was proposed.
The Gallager model [36], also studied in [37], is an InDel
channel where each transmitted bit independently gets deleted
with probability pD or replaced with two random bits with
probability pI .

APPENDIX A
PROOF OF LEMMA 4

Recall that Ē = (Ōn+Kι , C̄ Kι), where Ōn+Kι is an i.i.d.
sequence with P(Ō1 = ῑ) = ε, P(Ō1 = �̄) = δ and P(Ō1 =
η̄) = 1− ε − δ. Hence,

H
(
Ō1

) = −δ log δ − ε log ε − (1− ε − δ) log (1− ε − δ)

= H(δ)+H(ε)+ (1− δ) log (1− δ)+
(1− ε) log (1− ε)− (1− ε − δ) log (1− ε − δ)

(a)= H(δ)+H(ε)+ (1− δ)(log e)

(
−δ − δ2

2
−O(δ3)

)

+(1− ε)(log e)

(
−ε − ε2

2
−O(ε3)

)
− (1− δ − ε)

·(log e)

[
−(δ + ε)− (δ + ε)2

2
−O((δ + ε)3)

]

= H(δ)+H(ε)− εδ log e +O(max(ε, δ)3), (8)

where step (a) is by Taylor series expansion. Hence,

lim
n→∞

1

n
H (Ē)

= lim
n→∞

1

n

[
H

(
Ōn+Kι

)
+ H

(
C̄ Kι |Ōn+Kι

)]

(a)= lim
n→∞

1

n

[
(n + E[Kι]) H

(
Ō1

)+ H
(

C̄ Kι |Ōn+Kι

)]

(b)= lim
n→∞

1

n

[
(n + E[Kι]) H

(
Ō1

)+ H
(

C̄ Kι |Kι

)]

= lim
n→∞

1

n

[

(n+E[Kι])H
(
Ō1

)+
∞∑

k=0

H
(
C̄ Kι |Kι=k

)
Pr(Kι=k)

]

= lim
n→∞

1

n

[

(n + E[Kι])H
(
Ō1

)+
∞∑

k=0

H
(

C̄k
)

Pr(Kι = k)

]

= lim
n→∞

1

n

[

(n + E[Kι])H
(
Ō1

)+
∞∑

k=0

k H (C̄1) Pr(Kι = k)

]

= lim
n→∞

1

n

[

(n + E[Kι])H
(
Ō1

)+ H (C̄1)

∞∑

k=0

k Pr(Kι = k)

]

6508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

(c)= lim
n→∞

1

n

[
(n + E[Kι])H

(
Ō1

)+ E[Kι]H (C̄1)
]

(d)= lim
n→∞

1

n

[
n + ε

1− ε
H

(
Ō1

)+ (n + 1)
ε

1− ε
log |A|

]

= 1

1− ε

(
H

(
Ō1

)+ ε log |A|)

(e)= 1

1−ε

(
H(δ)+H(ε)+ ε log |A|−εδ log e+O(max(ε, δ)3)

)

(f)= H(δ)+H(ε)+ ε log |A| − εδ log δ − ε2 log ε

+(log e + log |A|)ε2 +O
(

max(ε, δ)3
)

≥ H(δ)+H(ε)+ε log |A|+2 min(ε, δ)2−τ+O(max(ε, δ)2),

for some τ ∈ (0, 1). Equality (a) is because n+Kι is a deter-
mined stopping time for the i.i.d. edit sequence Ō1, Ō2, . . . ,
hence by Theorem 1, H

(
Ōn+Kι

) = (n + E[Kι])H
(
Ō1

)
.

Equality (b) is because given the edit operation sequence
Ōn+Kι , the insertion content sequence C̄ Kι depends only on
the number of insertions Kι. From equality (b) to equality (c)
is by expanding Kι and noting that C̄ Kι is a sequence of
i.i.d. variables. Equality (d) is by E[Kι] = (n + 1) ε

1−ε and
noting that the contents of insertions are uniformly drawn
from the alphabet. Equality (e) is by equation (8). Equal-
ity (f) is by taking the Taylor series expansion of 1

1−ε , H(δ)
and H(ε).

APPENDIX B
PROOF OF LEMMA 5

The intuition that the uncertainty H (ÂX̄,Ŷ) of the global
alignment is small is as follows. When an ambiguous local
alignment event occurs, of either type-1 or type-2, denoted
by
 =
1 ∪
2 (recall Definition 4), one possible edit
pattern has an insertion and the other has a deletion. Hence,
“locally” the positions of the output Ŷ by applying these two
ambiguous edit patterns to X̄ differ by a shift of two symbols.
Conversely, the sections of X̄ which leads to the same section
of Ŷ through the two ambiguous edit patterns differ by two
symbols. If the align module described in Fig. 15 is able
to keep aligning X̄ w.r.t. Ŷ via both edit patterns, the local
ambiguity is not resolved. That means we can find at least
two distinct typicalized edit patterns that convert two “similar”
sections of X̄ which differ by two symbols to the same section
of Ŷ. This means that some symbols (it turns out at least
one out of every two neighbouring symbols) in one section
of X̄ determine the values of other symbols in X̄ within a
short block. This is because of the property of typicalized
edits that not too many insertions or deletions (hence no
contiguous insertions or deletions) can happen in a short
block. Hence, averaging over X̄, the probability that extra
information is needed to resolve ambiguous local alignments
is small.

Given a specific PreESS x̄, denote the number of x̄-runs by
ρx̄. For i = 1, 2, . . . , ρx̄, we define the following quantity gap
and a related event from the align module (Fig. 15):

• Gap G x̄,ē
i : If after typicalizing ē to ê and processing

ê on x̄, the i th x̄-run encounter an ambiguous local
alignment, the gap – denoted by G x̄,ē

i – is the length

of the subsequence starting from the first symbol after
the i th x̄-run and ending at the symbol before where the
next edit in ê applies to.

• Event of ambiguity unresolved within gap Gx̄,ē
i – after

typicalizing ē to ê and processing ê on x̄, the i th x̄-run
encounter an ambiguous local alignment, and within the
gap, the ambiguous edit pattern at the i th x̄-run can obtain
the same ŷ through some typical edits.

Conditioning on the event that an ambiguous local align-
ment event occurs to the i th x̄-run, denoted by
i , and the gap
G x̄,ē

i = g, the probability Pr(Gx̄,ē
i |
i , G x̄,ē

i = g) depends only
on x̄ and g. We denote the probability Pr(Gx̄,ē

i |
i , G x̄,ē
i = g)

averaged over X̄ by Prg = ∑
x̄ Pr(x̄) Pr(
i , G x̄,ē

i = g) and
bound Prg from above through case analysis. From the defini-
tion, Prg is the probability that averaging over x̄, conditioning
on the occurrence of an ambiguous local alignment, the prob-
ability that ambiguity is still not resolved by continuing the
align module after reaching the gap g. Note that Prg is an
upper bound on the probability that a path on the alignment
tree ÂX̄,Ŷ splits into two branches at a node, averaging over

all possible X̄ and Ŷ.
We break into four cases based on the type of the ambiguous

local alignment and the edit pattern that actually happens.
For example,
1(ῑ) denotes an ambiguous local alignement
of type-1 (lX̄ = lŶ − 1), where the actual edit pattern has an
insertion ῑ (recall Definition 4). We provide detailed analysis
on case
1(ῑ). The other three cases are similar.

A. Ambiguous Local Alignment Type-1
1 (lX̄ = lŶ − 1)

W.l.o.g., assume the symbol in the run is 0 and the sub-
sequence of X̄ starting from the run is 0x1x2x3 The
corresponding Ŷ-run to be aligned is 00. There are two
possibilities: 1) Case
1(ῑ) – this case corresponds to an edit
pattern like 0↓0x1 · · · → 00x1 . . . , with an insertion of 0.
2) Case
1(�̄) – this case corresponds to the edit pattern that
x1 is deleted and 0 combines with x2, which must be 0, result-
ing in 00. That is, 0��x10x3 · · · → 00x3 If x2 is not 0, this
edit pattern is impossible and the ambiguity is resolved. Aver-
aging over p(x̄), the event x2 = 0 happens with probability

1
|A| . Moreover, this edit pattern results in either 0��x10x3 · · · →
00x3 . . . (if x3 is not deleted), or 0��x10��x3x4 · · · → 00x4 . . . (if
x3 is also deleted). Hence, the local ambiguous event happens
only if either x3 or x4 is the same as x1, which happens with
probability

1−
(|A| − 1

|A|
)2

= 2|A| − 1

|A|2 . (9)

Otherwise, by checking the next symbol in ŷ after 00, one can
figure out which case actually happened.

The above initial analysis shows the intuition that only
some x̄ with certain structure will cause ambiguity unresolved.
In the following, we further analyse the necessary condition
for ambiguity unresolved after reaching the gap g.

1) Case
1(ῑ): The actual edit in ê is a single insertion ῑ,
and until the gap g there is no other edit:

0↓0x10x3x4x5 . . . xg → 00x10x3x4x5 . . . xg

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6509

Fig. 15. The flowchart of the align module to align X̄ and Ŷ : The module takes in X̄ and Ŷ as inputs, and outputs all the possible alignments ÂX̄,Ŷ as

a binary tree of depth ρŶ. Any path of the output tree of length ρŶ is a global alignment of (X̄, Ŷ) as defined in Definition 5; any partial path starting

from the root of the tree with length lPÂ
≤ ρŶ is a partial alignment upto depth lPÂ

as defined in Definition 6. In the process of aligning (X̄, Ŷ), when an
ambiguous local alignment occurs, the process keeps both edit patterns and continues aligning further runs with both alignments – this leads to new loops of
the algorithm and possible new branches/splits on the tree ÂX̄,Ŷ if the ambiguity is not resolved by aligning further runs.

In this case, the smallest g is 1. Let g = 2t − 1 or 2t
depending on whether g is odd or even, where t = 1, 2,
The ambiguous edit has deletion of x1 and should also result
in the same ŷ through some typical edits, that is:

0��x10x3 x4 x5 . . . xg · · · → 00x3 x4 x5 . . . xg . . .

some typical edits−−−−−−−−−−−−−→ 00x10 x3 x4 x5 . . . xg

The symbol x1 can equal any symbol from the alphabet
but 0, w.l.o.g. assume x1 = 1. If ambiguity is not resolved,
there should be some typical edits, which after applied to
the sequence x3 x4 x5 . . . xg . . . , the first g symbols of the
resulting sequence should be 10 x3 x4 x5 . . . xg – shifting two
positions rightwards. In the following, we show that averaging
over Pr(x̄), the probability that one can find some typical edits
that shift a sequence rightwards by two positions and match

up to length g decays with g. Recall that these x̄’s are the
ones that may have splits in the tree Âx̄,ŷ along the paths with
the ê we are considering now.

We first argue that shifting rightwards of two positions
cannot be accomplished before reaching the gap g. Firstly,
typical edits only shift the sequence by one position at a
time, because in typicalized edit pattern no contiguous edits
can happen. Before the sequence is shifted rightwards by
two positions, it must have been shifted rightwards by one
position by an insertion. After this insertion, all the symbols
after the insertion up to xg must be the same and no other
edits can happen (the symbols form a run). For example
x↓0

3 x4 x5 . . . xg · · · → 10x3 x4 x5 . . . xg , the insertion of
0 shifts the sequence rightwards by one position. Because
x3 cannot be deleted, x3 has to equal 1. Hence we have
1↓0x4 x5 . . . xg · · · → 101 x4 x5 . . . xg . Also, x4 has to equal 1.

6510 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

Because for typicalized edit patterns, x4 can neither be deleted
nor can an insertion happen in front of x4. By continuing the
deduction, the symbols {x4, x5, . . . xg} should all equal x3 = 1
and there can be no other edits among them because they form
a run. Hence, for the ambiguous edit pattern, the sequence
which leads to 10x3 x4 . . . xg after some typicalized edits, must
include some more symbols after x3 x4 . . . xg .

We prove an upper bound on Prg by induction. Firstly, recall
from equation (9) that to have ambiguity unresolved up to
matching PosESS 00x1, either x3 or x4 has to be equal to
x1 = 1. Hence for we have the initial condition that when

g = 1, Prg=1 = 1 −
(|A|−1
|A|

)2 = 2|A|−1
|A|2 . Next, we establish

an inductive step by bounding Prg+2 based on Prg . Assume
for odd number g = 2t − 1 where t = 1, 2, . . . , the sequence
x3 x4 x5 . . . xg . . . can be converted to 10 x3 x4 x5 . . . xg – a
shift rightwards by two positions up to the gap g. We look
for the condition to make the shifted sequence to be able
to match up to the gap g + 2 = 2t + 1. As argued above,
the position(index) of the sequence cannot shift rightwards
by two before the gap, the segment of sequence that results
10 x3 x4 x5 . . . xg via some typical edits ends at index at least
g+ 1. If the index is g+ 1, that is, x3 x4 x5 . . . xg+1 converts
to 10 x3 x4 x5 . . . xg . From the above, to match two more
symbols, i.e., to allow two typicalized edit patterns resulting in
the same segment of PosESS up to gap g+2, the scenario must
be xg+3 = xg+2 = xg+1 with probability 1

|A|2 . If the index is
greater than g + 1, for example g + 2, i.e., x3 x4 x5 . . . xg+2
converts to 10 x3 x4 x5 . . . xg , then among xg+3xg+4, at least
one of them should be the same symbol as xg+1 or xg+2. For
other cases, xg+1xg+2 always determine some symbol on the
right-hand side. By conditioning on whether xg+1 and xg+2
are equal, the probability is
Pr(ambiguity unresolved tillg+2|ambiguity unresolved till g)

≤ Pr(one of xg+3xg+4 is the same as one of xg+1xg+2)

= Pr(xg+1= xg+2)
(

1−Pr(xg+3 �= xg+1) Pr(xg+4 �= xg+1)
)

+ Pr(xg+1 �= xg+2)
(

1− Pr(xg+3 �= xg+1, xg+3 �= xg+2) ·
Pr(xg+4 �= xg+1, xg+4 �= xg+2)

)

= 1

|A| ·
(

1−
(|A|−1

|A|
)2

)

+ |A|−1

|A| ·
(

1−
(|A|−2

|A|
)2

)

= 4|A|2 − 6|A| + 3

|A|3 < 1 (10)

Hence, from the initial condition and the inductive step,

we have Pr2t+1 ≤ 4|A|2−6|A|+3
|A|3 · Pr2t−1. For even numbers

g = 2t where t = 1, 2, . . . , we can bound the probability
Prg = Pr2t from above by Pr2t−1. Hence, we have Prg ≤
2|A|−1
|A|2 ·

(
4|A|2−6|A|+3

|A|3
)t−1

for g = 2t − 1 or 2t , where
t = 1, 2,

2) Case
1(�̄): The actual edit in ê is a deletion �̄ of x1,
and until the gap g there is no other edit:

0��x10x3x4x5 . . . xg → 00x3x4x5 . . . xg

In this case, x3 can be deleted hence the smallest g is 2.
We denote g = 2t or 2t + 1, where t = 1, 2, The

ambiguous edit has a single insertion of 0 in the run of 0’s and
should also result in the same ŷ through some typical edits:

0↓0x10 x3 x4 x5 . . . xg · · · → 00x10 x3 x4 x5 . . . xg . . .

some typical edits−−−−−−−−−−−−−→ 00 x3 x4 x5 . . . xg

W.l.o.g., assume x1 = 1. From the above, there should be
some typical edits such that, after applying these edits to the
sequence 10 x3 x4 x5 . . . xg . . . , the first g− 2 symbols of the
resulting sequence should be x3 x4 x5 . . . xg , that is, a shift
leftwards of two positions.

With similar arguments as in Case
1(ῑ), the position(index)
of the sequence cannot shift leftwards by two positions to
match the index of ŷ before reaching the gap. For the initial
condition, Pr2 = 1 and Pr3 = 1

|A| . By induction, for even
numbers g = 2t where t = 1, 2, . . . , Prg+2 = Pr2t+2 ≤
4|A|2−6|A|+3

|A|3 · Pr2t . For odd numbers g = 2t + 1 where t =
1, 2, . . . , we can bound the probability Prg = Pr2t+1 from

above by Pr2t . Hence we have Prg ≤
(

4|A|2−6|A|+3
|A|3

)t−1
for

g = 2t or 2t + 1 where t = 1, 2,

B. Ambiguous Local Alignment
2 (lX̄ = lŶ + 1)

W.l.o.g., assume the symbol in the run is 0 and the sub-
sequence of x̄ starting from the run is 00x1x2x3 The
corresponding ŷ-run to be aligned is 0. There are two pos-
sibilities: 1) Case
2(�̄) – this corresponds to edit patterns
like 0�0x1 · · · → 0x1 . . . , with a deletion of 0 in the run.
2) Case
2(ῑ) – this corresponds to edit patterns with an
insertion of a symbol other than 0 in front of the last 0 in the
run, breaking the x̄-run into two runs of 0’s, with length (lx̄−1)
and length 1 respectively. In this case, 0↓ῑ0x1 · · · → 0ῑ0 x1

1) Case
2(�̄): The actual edit pattern ê has a single
deletion �̄, and until gap g there is no other edit:

0�0x1x2x3 . . . xg → 0x1x2x3 . . . xg

In this case, the smallest g is 1. Denote g = 2t−1 or 2t , where
t = 1, 2, The ambiguous edit pattern has an insertion of
x1 in front of the last 0 and should also results in the same
section in ŷ through some typical edits:

0↓x10x1 x2 x3 . . . xg · · · → 0x10x1 x2 x3 . . . xg . . .

some typical edits−−−−−−−−−−−−−→ 0x1 x2 x3 . . . xg

W.l.o.g., assume x1 = 1. From the above, there should be
some typical edits, after applying which to the sequence
01 x2 x3 x4 . . . xg . . . , the first g− 1 symbols of the resulting
sequence are x2 x3 x4 . . . xg – a shift leftwards of two
positions.

This is similar as Case
1(�̄), i.e., a shift leftwards of two
positions. The only difference here is that the length of the
sequence needed to match after the shift is g − 1 instead of

g − 2. In this case, we have Prg ≤
(

4|A|2−6|A|+3
|A|3

)t−1
for

g = 2t − 1 or 2t where t = 1, 2,

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6511

2) Case
2(ῑ): The actual edit pattern ê has an insertion of
a symbol other than 0 in front of the last 0 in the run, and
until gap g there is no other edit:

0↓ῑ0x1x2x3 . . . xg → 0ῑ0x1x2x3 . . . xg

In this case, the smallest g is 1. Denote g = 2t − 1 or 2t ,
where t = 1, 2, The ambiguous edit pattern has a single
deletion of 0 in the run and should also results in the same
section of ŷ through some typical edits:

0�0x1 x2 x3 . . . xg · · · → 0 x1 x2 x3 . . . xg . . .

some typical edits−−−−−−−−−−−−−→ 0ῑ0 x1 x2 x3 . . . xg

The ambiguity exists only if the inserted symbol ῑ equals x1.
W.l.o.g., assume ῑ = x1 = 1. From the above, there should
be some typical edits, after applying which to the sequence
x2 x3 . . . xg . . . , the first g + 1 symbols of the resulting
sequence should be 01 x2 x3 . . . xg – a shift rightwards of
two positions.

This is similar as Case
1(ῑ) – a shift rightwards of two
positions. The only difference here is the length of sequence
needed to match after the shift is g+1 instead of g. In this case,

we have Prg ≤ 4|A|−4
|A|2 ·

(
4|A|2−6|A|+3

|A|3
)t−1

for g = 2t−1 or 2t
where t = 1, 2,

From the above case analysis, for all four cases, we have

Prg ≤
(

4|A|2−6|A|+3
|A|3

)t−1
for g = 2t − 1 or g = 2t where t =

1, 2, In the following, we bound H (ÂX̄,Ŷ) from above.

H (ÂX̄,Ŷ)

(a)=
∑

x̄
Pr(x̄)

∑

ŷ
Pr(ŷ|x̄)H (Âx̄,ŷ)

(b)=
∑

x̄
Pr(x̄)

∑

ŷ

(∑

{ē:(x̄,ē)→ê→ŷ} Pr(ē)
)

H (Âx̄,ŷ)

(c)≤
∑

x̄
Pr(x̄)

∑

ŷ

(∑

{ē:(x̄,ē)→ê→ŷ} Pr(ē)
)

·
∑

PÂ

∑
{ê:PÂ}

∑
{ē:(x̄,ē)→ê} Pr(ē)

∑
{ē:(x̄,ē)→ê→ŷ} Pr(ē)

· Ns (PÂ)

(d)=
∑

x̄
Pr(x̄)

∑

ŷ

∑

PÂ

(∑

{ê:PÂ}
∑

{ē:(x̄,ē)→ê} Pr(ē)
)

·Ns (PÂ)

(e)=
∑

x̄
Pr(x̄)

∑

ŷ

∑

PÂ

∑

{ê:PÂ}
∑

{ē:(x̄,ē)→ê}
(

Pr(ē)

·Ns
(
PÂ(x̄, ē)

))

(f)=
∑

x̄
Pr(x̄)

∑

ē
Pr(ē) · Ns(PÂ(x̄, ē))

(g)≤
∑

x̄
Pr(x̄)

∑

ē
Pr(ē)

ρx̄∑

i=1

�Gx̄,ē
i

=
∑

x̄
Pr(x̄)

∑

ē
Pr(ē)

ρx̄∑

i=1

Pr(Gx̄,ē
i)

=
∑

x̄
Pr(x̄)

∑

ē
Pr(ē)

ρx̄∑

i=1

∞∑

g=1

Pr(Gx̄,ē
i |
i , G x̄,ē

i = g)

· Pr(
i , G x̄,ē
i = g)

=
∑

x̄
Pr(x̄)

ρx̄∑

i=1

∞∑

g=1

Pr(Gx̄,ē
i |
i , G x̄,ē

i = g)

·
(∑

ē
Pr(ē) Pr(
i , G x̄,ē

i = g)
)

(h)≤
∑

x̄
Pr(x̄)

ρx̄∑

i=1

∞∑

g=1

Pr(Gx̄,ē
i |
i , G x̄,ē

i =g)(li + 1) max(ε, δ)2

= max(ε, δ)2
ρx̄∑

i=1

(li+1)

∞∑

g=1

∑

x̄
Pr(x̄) Pr(Gx̄,ē

i |
i , G x̄,ē
i =g)

≤ max(ε, δ)2 · 2n
∞∑

g=1

∑

x̄
Pr(x̄) Pr(Gx̄,ē

i |
i , G x̄,ē
i = g)

= max(ε, δ)2 · 2n
∞∑

g=1

Prg . (11)

Firstly in steps (a)-(f), we convert the entropy H (ÂX̄,Ŷ)

averaging over PreESS X̄ and typicalized PosESS Ŷ, to the
number of splits on the alignment tree (i.e. ambiguous local
alignments unresolved, recall Definition 7) averaging over
PreESS X̄ and the original edit pattern Ē. In equality (b),
the set {ē : (x̄, ē) → ê → ŷ} denotes the set of edit
pattern ē such that by typicalizing ē to ê according to x̄ and
processing ê on x̄, we obtain ŷ. Inequality (c) follows by
bounding the entropy of the alignment tree Âx̄,ŷ from above
by the expectation of the number of splits Ns (PÂ) on the
paths. Recall that a path of the alignment tree corresponds
to a certain global alignment of (x̄, ŷ), hence corresponds to
a set of typicalized edit pattern denoted by {ê : PÂ}. The
probability of ê is the sum of the probabilities of all ē’s in
the set {ē : (x̄, ē) → ê}, that is, the set of ē resulting in ê
after typicalization. Equality (e) and (f) follows because recall
in Definition 7, by fixing x̄ and ē, the path on the alignment
tree is fixed. Moreover, for all the ē’s which correspond to
the same path, the number of splits Ns (PÂ(x̄, ē))’s are equal.
Only if when Gx̄,ē

i occurs, the alignment tree may have a split
associated with the i th x̄-run on the path of the alignment
associate with ē, in which case one bit is needed to distinguish
the two ambiguous edit patterns. Hence, the total number of
bits needed to distinguish the path (hence also alignment)
associated with ē from other paths is bounded from above by∑ρx̄

i=1 �Gx̄,ē
i

, as shown in inequality (g). Inequality (h) follows
because for fixed x̄, if the gap is reached before the end of x̄,
then

∑
ē Pr(ē) Pr(
i , G x̄,ē

i = g) ≤ (li + 1) · max(ε, δ) · (1 −
ε − δ)g · max(ε, δ) ≤ (li + 1) max(ε, δ)2. Otherwise, there
is no further edits in ê until the end of x̄. We argue earlier
in the analysis of Case
1(ῑ) that the ambiguous edit pattern
needs more symbols after the gap to produce the same PosESS
through some typical edits. If the gap reaches the end of x̄,
there is no more symbol after the gap, hence no ambiguity
at all.

We have shown above via case analysis that Prg ≤(
4|A|2−6|A|+3

|A|3
)t−1

for g = 2t − 1 or g = 2t where

t = 1, 2, Hence from equation (11), we have H (ÂX̄,Ŷ) ≤
max(ε, δ)2 · 2n ·∑∞g=1 Prg = O(max(ε, δ)2)n.

6512 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 10, OCTOBER 2017

APPENDIX C
PROOF OF LEMMA 10

Given that the sequence Õn+ε̃n has ε̃n insertions and δ̃n
deletions, the distribution of insertion ι, deletion � and no-
operation η in Õn+ε̃n is

pι = ε̃

1+ ε̃
, p� = δ̃

1+ ε̃
, pη = 1− δ̃

1+ ε̃
. (12)

Hence, the entropy of Õn+ε̃n is

H (Õn+ε̃n)

= (1+ ε̃)n ·
(
− 1− δ̃

1+ ε̃
log

1− δ̃

1+ ε̃
− ε̃

1+ ε̃
log

ε̃

1+ ε̃

− δ̃

1+ ε̃
log

δ̃

1+ ε̃

)

= n ·
[
H(δ̃)+H(ε̃)+(1− ε̃) log(1− ε̃)+(1+ ε̃) log(1+ ε̃)

]

(a)= n
[H(δ̃)+H(ε̃)+(1− ε̃)(log e)

(− ε̃ − ε̃2

2
− ε̃3

3
+O(ε̃4)

)

+(1+ ε̃)(log e)
(
ε̃ − ε̃2

2
+ ε̃3

3
+O(ε̃4)

)]

= n ·
[
H(δ̃)+H(ε̃)+ (log e)ε̃2 +O(ε̃4)

]
,

where step (a) is by Taylor series expansion.
Hence, limn→∞ 1

n H (Õn+ε̃n) = H(δ̃)+H(ε̃)+ (log e)ε̃2 +
O(ε̃4).

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
and the editor for their helpful comments and suggestions.

REFERENCES

[1] J. C. Mogul, F. Douglis, A. Feldmann, and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for HTTP,” in Proc.
ACM SIGCOMM, 1997, vol. 27. no. 4, pp. 181–194.

[2] R. C. Burns and D. D. Long, “Efficient distributed backup with delta
compression,” in Proc. 5th Workshop I/O Parallel Distrib. Syst., 1997,
pp. 27–36.

[3] T. Suel and N. Memon, “Algorithms for delta compression and remote
file synchronization,” in Handbook of Lossless Compression. New York,
NY, USA: Academic, Aug. 2002.

[4] L. Su and O. Milenkovic, “Synchronizing rankings via interactive
communication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2014,
pp. 1056–1060.

[5] G. Cormode, M. Paterson, S. C. S. ahinalp, and U. Vishkin, “Communi-
cation complexity of document exchange,” in Proc. ACM-SIAM Symp.
Discrete Algorithms, Jan. 2000, pp. 197–206.

[6] A. Orlitsky and K. Viswanathan, “Practical protocols for interactive
communication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2001,
p. 115.

[7] M. C. Davey and D. J. C. MacKay, “Reliable communication over
channels with insertions, deletions, and substitutions,” IEEE Trans. Inf.
Theory, vol. 47, no. 2, pp. 687–698, Feb. 2001.

[8] R. Venkataramanan, V. N. Swamy, and K. Ramchandran. (Oct. 2013).
“Low-complexity interactive algorithms for synchronization from
deletions, insertions, and substitutions.” [Online]. Available:
https://arxiv.org/abs/1310.2026

[9] N. Ma, K. Ramchandran, and D. Tse, “A compression algorithm
using mis-aligned side-information,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2012, pp. 16–20.

[10] R. Venkataramanan, H. Zhang, and K. Ramchandran, “Interactive low-
complexity codes for synchronization from deletions and insertions,” in
Proc. 48th Annu. Allerton Conf. Commun., Control, Comput., Oct. 2010,
pp. 1412–1419.

[11] S. M. S. T. Yazdi and L. Dolecek, “Synchronization from deletions
through interactive communication,” in Proc. IEEE 7th Int. Symp. Turbo
Codes Iterative Inf. Process. (ISTC), Aug. 2012, pp. 66–70.

[12] N. Bitouzé and L. Dolecek, “Synchronization from insertions and
deletions under a non-binary, non-uniform source,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Jul. 2013, pp. 2930–2934.

[13] N. Ma, K. Ramchandran, and D. Tse, “Efficient file synchronization:
A distributed source coding approach,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jul. 2011, pp. 583–587.

[14] S. El Rouayheb, S. Goparaju, H. M. Kiah, and O. Milenkovic.
(Sep. 2014). “Synchronizing edits in distributed storage networks.”
[Online]. Available: https://arxiv.org/abs/1409.1551

[15] Y. Kanoria and A. Montanari, “On the deletion channel with small
deletion probability,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Jun. 2010, pp. 1002–1006.

[16] A. D. Wyner, “Recent results in the Shannon theory,” IEEE Trans. Inf.
Theory, vol. 20, no. 1, pp. 2–10, Jan. 1974.

[17] S. S. Pradhan, J. Chou, and K. Ramchandran, “Duality between source
coding and channel coding and its extension to the side information
case,” IEEE Trans. Inf. Theory, vol. 49, no. 5, pp. 1181–1203, May 2003.

[18] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” J. Combinat. Theory A, vol. 93, no. 2,
pp. 310–332, 2001.

[19] V. I. Levenshtein, “Bounds for deletion/insertion correcting codes,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2002, p. 370.

[20] A. Orlitsky, “Worst-case interactive communication. I. Two messages are
almost optimal,” IEEE Trans. Inf. Theory, vol. 36, no. 5, pp. 1111–1126,
Sep. 1990.

[21] A. Orlitsky, “Worst-case interactive communication. II. Two messages
are not optimal,” IEEE Trans. Inf. Theory, vol. 37, no. 4, pp. 995–1005,
Jul. 1991.

[22] A. Orlitsky, “Interactive communication: Balanced distributions, corre-
lated files, and average-case complexity,” in Proc. 32nd Annu. Symp.
Found. Comput. Sci., Oct. 1991, pp. 228–238.

[23] A. Orlitsky, “Average-case interactive communication,” IEEE Trans. Inf.
Theory, vol. 38, no. 5, pp. 1534–1547, Sep. 1992.

[24] A. Orlitsky, “Interactive communication of balanced distributions and
of correlated files,” SIAM J. Discrete Math., vol. 6, no. 4, pp. 548–564,
1993.

[25] A. Tridgell, “Efficient algorithms for sorting and synchronization,” Ph.D.
dissertation, Austral. Nat. Univ., Canberra, Australia, Apr. 2000.

[26] R. R. Varshamov and G. M. Tenengolts, “Codes which correct single
asymmetric errors,” (in Russian), Automatika Telemekhanika, vol. 26,
no. 2, p. 288292, 1965.

[27] Y. Kanoria and A. Montanari, “Optimal coding for the binary deletion
channel with small deletion probability,” IEEE Trans. Inf. Theory,
vol. 59, no. 10, pp. 6192–6219, Oct. 2013.

[28] S. Ross, A First Course in Probability, 8th ed. Upper Saddle River, NJ,
USA: Pearson, 2009.

[29] T. M. Cover, “The entropy of a randomly stopped sequence,” IEEE
Trans. Inf. Theory, vol. 37, no. 6, pp. 1641–1644, Nov. 1991.

[30] F. S. Makri and Z. M. Psillakis, “On success runs of a fixed length
in Bernoulli sequences: Exact and asymptotic results,” Comput. Math.
Appl., vol. 61, no. 4, pp. 761–772, 2011.

[31] T. M. Cover and J. A. Thomas, Elements of Information Theory.
Hoboken, NJ, USA: Wiley, 2012.

[32] R. A. Wagner and M. J. Fischer, “The string-to-string correction prob-
lem,” J. ACM, vol. 21, no. 1, pp. 168–173, 1974.

[33] E. Ukkonen, “On approximate string matching,” in Foundations of
Computation Theory. Berlin, Germany: Springer, 1983, pp. 487–495.

[34] D. G. Brown. How I wasted too Long Finding a Concentration Inequality
for Sums of Geometric Variables, accessed on May 8, 2015. [Online].
Available: https://cs.uwaterloo.ca/~browndg/negbin.pdf

[35] E. Drinea and M. Mitzenmacher, “Improved lower bounds for the
capacity of i.i.d. deletion and duplication channels,” IEEE Trans. Inf.
Theory, vol. 53, no. 8, pp. 2693–2714, Aug. 2007.

[36] R. G. Gallager, “Sequential decoding for binary channels with noise and
synchronization errors,” MIT Lincoln Lab Group Rep. 2502, 1961.

[37] M. Rahmati and T. M. Duman, “Bounds on the capacity of random
insertion and deletion-additive noise channels,” IEEE Trans. Inf. Theory,
vol. 59, no. 9, pp. 5534–5546, Sep. 2013.

WANG et al.: FILE UPDATES UNDER RANDOM/ARBITRARY INSERTIONS AND DELETIONS 6513

Qiwen Wang received her B.Sc. degree in Mathematics and B.Eng. degree
in Information Engineering in 2010, and Ph.D. degree in Information Engi-
neering in 2015, all from the Chinese University of Hong Kong, Hong Kong.
She is currently a postdoctoral researcher in the Department of Information
Science and Engineering, KTH Royal Institute of Technology, Stockholm,
Sweden.

Sidharth Jaggi B.Tech. (00), EE, IIT Bombay, MS/Ph.D. (05) EE, CalTech,
Postdoctoral Associate (06) LIDS, MIT, currently Associate Professor, Dept.
of Information Engineering, The Chinese University of Hong Kong.

Muriel Médard (S’90–M’95–SM’02–F’08) is the Cecil H. Green Professor of
Electrical Engineering and Computer Science at the Department of Electrical
Engineering and Computer Science, Massachusetts Institute of Technology
(MIT), Cambridge, MA, USA. Her research interests are in the areas of
network coding and reliable communications, particularly for optical and
wireless networks. She has served as an Editor of many IEEE publications,
and she is currently the Editor-in-Chief of the IEEE JOURNAL ON SELECTED
AREAS IN COMMUNICATIONS. She serves on the Board of Governors of
the IEEE Information Theory Society, for which she was President in 2012.
She has served as a TPC Co-Chair for ISIT, WiOpt, CONEXT, and Netcod
and a Co-Chair for ISIT and Netcod. She was the recipient of the 2013 MIT
Graduate Student Council EECS Mentor Award, the 2009 Communication
Society and Information Theory Society Joint Paper Award, the 2009 William
R. Bennett Prize in the Field of Communications Networking, the 2002 IEEE
Leon K. Kirchmayer Prize Paper Award, and several conference paper awards.
She was also a co-recipient of the MIT 2004 Harold E. Edgerton Faculty
Achievement Award. In 2007, she was named a Gilbreth Lecturer by the
National Academy of Engineering.

Viveck R. Cadambe (S’06–M’11) is an Assistant Professor in the Department
of Electrical Engineering at Pennsylvania State University. Dr. Cadambe
received his Ph.D from the University of California, Irvine in 2011. Between
2011 and 2014, he was a postdoctoral researcher jointly with the Research
Laboratory of Electronics (RLE), MIT, Cambridge MA, USA and the ECE
department at Boston University, Boston, MA, USA. His research interests
include information theory, coding theory, and theory of distributed com-
puting, with a focus on applications to wireless communication networks
and distributed data storage and computing systems. Dr. Cadambe has
served as an Associate Editor for the IEEE TRANSACTIONS ON WIRELESS
COMMUNICATIONS since December 2014. Dr. Cadambe is a finalist for the
2016 Bell Labs Prize and a recipient of the 2016 NSF CAREER Award, the
2014 IEEE International Symposium on Network Computing and Applications
(NCA) Best Paper Award, the 2009 IEEE Information Theory Society Paper
Award and the UCI Electrical Engineering and Computer Science Department
Best Paper Award for 2008-09. His dissertation received the 2011 CPCC Best
Dissertation Award in the UCI Electrical Engineering and Computer Science
Department. He was an intern at the Communications, Collaboration and
Systems Group at Microsoft Research, Redmond WA during June-September
of 2010.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences. Prof. Schwartz received the B.A. (summa
cum laude), M.Sc., and Ph.D. degrees from the Technion - Israel Institute of
Technology, Haifa, Israel, in 1997, 1998, and 2004 respectively, all from the
Computer Science Department. He was a Fulbright post-doctoral researcher
in the Department of Electrical and Computer Engineering, University of
California San Diego, and a postdoctoral researcher in the Department of
Electrical Engineering, California Institute of Technology. While on sabbatical
2012-2014, he was a visiting scientist at the Massachusetts Institute of
Technology (MIT). Prof. Schwartz received the 2009 IEEE Communications
Society Best Paper Award in Signal Processing and Coding for Data Storage.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

