
7676 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

Coding for the �∞-Limited Permutation Channel
Michael Langberg , Senior Member, IEEE, Moshe Schwartz , Senior Member, IEEE,

and Eitan Yaakobi , Senior Member, IEEE

Abstract— We consider the communication of information in
the presence of synchronization errors. Specifically, we con-
sider permutation channels in which a transmitted codeword
x = (x1, . . . , xn) is corrupted by a permutation π ∈ Sn to yield
the received word y = (y1, . . . , yn), where yi = xπ(i). We initiate
the study of worst case (or zero-error) communication over
permutation channels that distort the information by applying
permutations π , which are limited to displacing any symbol by
at most r locations, i.e., permutations π with weight at most r
in the �∞-metric. We present direct and recursive constructions,
as well as bounds on the rate of such channels for binary and
general alphabets. Specific attention is given to the case of r = 1.

Index Terms— Permutation channel, �∞-metric.

I. INTRODUCTION

PERMUTATION channels have received some attention in
recent years due to their relevance in different applications

of networking technologies and various read channels. Under
this setup, a vector of symbols is transmitted in some order,
but due to synchronization errors, the symbols received are
not necessarily in the order in which they were transmitted,
e.g., [12], [13], [27] (permutation channels), [14], [23] (the
bit-shift magnetic recording channel), and [19] (the trapdoor
channel).

We can think of the channel as applying a permutation to
the transmitted vector. However, not all permutations may be
equally likely, or even feasible. In this work we focus on
channels that can only displace symbols a limited amount
of positions away from their origin. Such permutations are
exactly those that have a limited weight in the �∞-metric over
permutations.

When the transmitted vectors are in themselves permuta-
tions, this channel has been studied as the limited-magnitude
rank-modulation channel. In particular, error-correcting codes

Manuscript received May 26, 2016; revised March 3, 2017; accepted
October 3, 2017. Date of publication October 13, 2017; date of current
version November 20, 2017. M. Langberg was supported by BSF under Grant
2010075. M. Schwartz was supported by the Israel Science Foundation (ISF)
under Grant 130/14. E. Yaakobi was supported by ISF under Grant 1624/14.
The work was presented in part at the 2014 IEEE International Symposium
on Information Theory [16].

M. Langberg is with the Department of Electrical Engineering, State
University of New-York at Buffalo, Buffalo, NY 14260 USA (e-mail:
mikel@buffalo.edu).

M. Schwartz is with the Department of Electrical and Computer Engineer-
ing, Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel (e-mail:
schwartz@ee.bgu.ac.il).

E. Yaakobi is with the Department of Computer Science,
Technion–Israel Institute of Technology, Haifa 32000, Israel (e-mail:
yaakobi@cs.technion.ac.il).

Communicated by C.-C. Wang, Associate Editor for Coding Techniques.
Digital Object Identifier 10.1109/TIT.2017.2762676

were studied [11], [24], [25], as well as systematic codes [30],
anticodes [22], covering codes [5], [28], and various other
related combinatorial problems [10], [17], [21].

Unlike the rank-modulation case, this work considers the
transmission of general vectors over the channel, and in
particular, allows repeated symbols and small alphabets. More
specifically, for a finite alphabet �, the transmitted codeword
x = (x1, . . . , xn) may be any element in �n . The codeword x
is corrupted by a permutation π ∈ Sn to yield y = (y1, . . . , yn)
where yi = xπ(i). We consider the worst-case (or zero-
error) communication model over permutations π for which
∀i : |i − π(i)| � r for a pre-specified magnitude r , i.e., the
weight of π is at most r in the �∞-metric. We refer to such
channels as �∞-limited permutation channels, LPC∞(r).

In this work we initiate the study of LPC∞(r) for general
alphabets � and magnitudes r under the worst-case setting.
Although similar models have been studied in the literature,
to the best of our knowledge, the study of zero error LPC∞(r)
has not been explicitly addressed. Most closely related models
include the permutation model of [14] and [23] in which
� = {0, 1} but the limitation |i − π(i)| � r on permutations
π holds only for i such that xi = 1, [13] which has a model
similar to ours but applies a random permutation instead of a
worst-case one, [12] in which random synchronization errors
of limited �∞-norm are applied to vectors of natural numbers,
and [27] in which the channel is governed by a distribution
over Sn .

We present direct and recursive code constructions, encod-
ing and decoding algorithms, bounds on code parameters,
and constructions for covering codes for LPC∞(r). Specif-
ically, our model and preliminaries are given in Section II.
In Section III we study the combinatorial properties of
LPC∞(r) including the average and precise size of balls
according to the �∞-metric. In Section IV we present codes
for LPC∞(r). Finally, in Section V we present general upper
bounds on the size of codes for LPC∞(r) via covering codes
together with the comparison of our lower and upper bounds
for some specific settings of parameters. Our main focus in
several of the sections above is on general |�| = q and r = 1,
and only at times do we address larger values of r .

II. PRELIMINARIES

Assume a finite alphabet �. The notation for a vector
x ∈ �n will usually be given by a list of its components,
separated by commas, and surrounded by parentheses, i.e., x =
(x1, x2, . . . , xn). We shall sometimes, however, call this vector
a string, and denote its components without the commas and
parentheses, i.e., x1 x2 . . . xn .

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-7470-0718
https://orcid.org/0000-0002-9851-5234
https://orcid.org/0000-0002-1449-0026

LANGBERG et al.: CODING FOR THE �∞-LIMITED PERMUTATION CHANNEL 7677

Let us denote [n] = {1, 2, . . . , n}, and let Sn denote the
set of all permutations over [n]. A permutation π ∈ Sn is
written in vector notation π = [π1, π2, . . . , πn], and may be
considered a bijection π : [n] → [n] mapping π(i) = πi .
The identity permutation is denoted by Id = [1, 2, . . . , n].

Given two permutations, π, π ′ ∈ Sn , the �∞-distance
between the two is defined as

d∞(π, π ′) = max
i∈[n]

∣
∣π(i) − π ′(i)

∣
∣ .

The �∞-distance defines a metric [4]. The weight of a permu-
tation π ∈ Sn is defined as

wt∞(π) = d∞(π, Id).

Thus, all the permutations of weight at most r form the
ball of radius r centered at the identity permutation. Balls
in the �∞-metric over permutations have been studied in the
past [10], [17], [21].

We now formally introduce the �∞-limited permutation
channel, LPC∞(r).

Definition 1: Let � be some finite alphabet. Assume a
vector x = (x1, x2, . . . , xn) ∈ �n has been transmitted.
The LPC∞(r) channel distorts it by applying to it a per-
mutation of weight at most r . Thus, the received vector
y = (y1, y2, . . . , yn) ∈ �n satisfies y = πx, i.e.,

yi = xπ(i) for all i ∈ [n],
for some permutation π ∈ Sn with wt∞(π) � r .

Definition 2: The ball of radius r centered at x ∈ �n is

Br (x) = {πx | π ∈ Sn, wt∞(π) � r} .

It follows that a vector x ∈ �n transmitted over LPC∞(r)
may be received as any vector in Br (x). This gives rise to the
following definition of an error-correcting code for LPC∞(r).

Definition 3: Let � be a finite alphabet of size q, and
C ⊆ �n. We say C is an (n, M; r)q -LPC∞ code if its size is
|C| = M, and for all c, c′ ∈ C, c �= c′, we have

Br (c) ∩ Br (c
′) = ∅.

In an analogous fashion we also define covering codes.
Definition 4: Let � be a finite alphabet and C ⊆ �n. We say

C is an (n, M)q R-LPC∞ covering code if its size is |C| = M,
and

⋃

c∈C

BR(c) = �n .

Definition 5: Let � be some finite alphabet, |�| = q, and
C ⊆ �n a code (be it error-correcting or covering). The rate
of the code C is defined, as usual, as

R(C) = 1

n
logq |C| .

The sizes of the largest code, and the smallest cov-
ering code, are now defined. We use a notation similar
to [2] and [18].

Definition 6: Let � = Zq be the alphabet. Given n and r ,
we denote by Aq(n; r) the largest M such that there exists
an (n, M; r)q -LPC∞ code over �. Similarly, given n and R,

we denote by Kq(n; R) the smallest M such that there exists
an (n, M)q R-LPC∞ covering code over �.

Let � be some finite alphabet. We recall some useful
notation commonly used in the theory of formal languages.
An n-string x = x1x2 . . . xn ∈ �n is a finite sequence of
alphabet symbols, xi ∈ �. We say n is the length of x and
denote it by |x | = n. For two strings, x ∈ �n and y ∈ �m ,
their concatenation is denoted by xy ∈ �n+m . The set of all
finite strings over the alphabet � is denoted by �∗. For s ∈ �∗
and a non-negative integer k, we use sk to denote the sequence
obtained by concatenating k copies of s.

III. PROPERTIES OF THE LPC∞(r) SPACE

In this section we study several properties of the LPC∞(r)
space, including the size of balls, and the distance between
vectors.

Definition 7: The LPC∞-distance between x , y ∈ �n,
denoted d(x, y), is defined as the minimum non-negative
integer w such that there exists a permutation π ∈ Sn,
wt∞(π) = w, and y = πx. If no such integer exists we say
the distance is ∞.

For any symbol a ∈ �, we denote by na(x) the number of
occurrences of a in x , i.e.,

na(x) = |{i ∈ [n] | xi = a}| .
Additionally, the index of the j th occurrence of a in x is
denoted as La(j ; x). More precisely, La(j ; x) = i if xi = a
and a appears exactly j − 1 times in the string x1 x2 . . . xi−1.
We say two strings, x, y ∈ �n , have the same composition if
na(x) = na(y) for all a ∈ �.

One can easily observe that the LPC∞-distance between
two strings is ∞ if and only if their composition differs.

Lemma 8: Let X ⊆ �n be a set of strings of equal com-
position. Then the LPC∞-distance function defines a metric
over X.

Proof: Let x, y ∈ �n . It is easy to verify that d(x, y) = 0
if and only if x = y.

The �∞-metric over Sn is right invariant (see [4]), i.e., for
all π, σ, τ ∈ Sn ,

d∞(π, σ) = d∞(πτ, στ),

where πτ is the permutation composition of π and τ , and
similarly στ . Thus,

wt∞(π) = d∞(π, Id) = d∞(ππ−1, π−1) = wt∞(π−1).

It then follows that the LPC∞ distance is symmetric.
Finally, the triangle inequality holds, d(x, y) � d(x, z) +

d(z, y), for all x , y, and z. To see this, assume the minimal-
weight permutations that determine the distances are π1 x = z,
π2z = y, and πx = y. Then,

d(x, z) + d(z, y) = wt∞(π1) + wt∞(π2)

= wt∞(π1) + wt∞(π−1
2)

� wt∞(π1π2) � wt∞(π) = d(x, y),

where the first inequality is due to the triangle inequality in
the �∞-metric over permutations, and the second is due to the

7678 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

fact that π1π2 x = y, but π1π2 is not necessarily the minimal-
weight permutation changing x into y. Thus, when restricting
ourselves to sets of vectors with the same composition, the
distance function d defines a metric.

The next theorem states how to find d(x, y) and the corre-
sponding permutation connecting x and y. Before proving it
we require the following auxiliary lemma.

Lemma 9: Let x1, x2, y1, y2 ∈ R be real numbers such that
x1 � x2 and y1 � y2. Then

max (|x1 − y1| , |x2 − y2|) � max (|x1 − y2| , |x2 − y1|) .

Proof: A proof may be obtained by a tedious examination
of the six possible configurations of x1, x2, y1, y2 when sorted
in ascending order.

Theorem 10: Let � be a finite alphabet, and x, y ∈ �n such
that d(x, y) < ∞. Then

d(x, y) = max
a∈�

j∈[na(x)]
|La(j ; x) − La(j ; y)| .

In addition, finding π such that y = πx and wt∞(π) =
d(x, y) can be done in O(n |�|) time.

Proof: Let us define the permutation π ∈ Sn mapping
La(j ; y) �→ La(j ; x) for all a ∈ � and j ∈ [na(x)]. It is
easily seen that

y = πx,

and that

wt∞(π) = max
a∈�

j∈[na(x)]
|La(j ; x) − La(j ; y)| .

We further contend that π has minimum weight of all permu-
tations mapping x to y, and that will complete the proof for
the claim.

Let π ′ ∈ Sn be a permutation such that y = πx , and
π ′ �= π . Let a ∈ � and j ∈ [na(x)] be such that
π ′(La(j ; y)) �= π(La(j ; y)), and assume j is the minimal
integer with this property. By our construction of π we must
have

t1 = π ′(La(j ; y)) > π(La(j ; y)). (1)

Furthermore, we must therefore have some index j ′ > j such
that

t2 = π ′(La(j ′; y)) = π(La(j ; y)). (2)

Thus, rearranging π ′ by setting

π ′(La(j ; y)) = t2
π ′(La(j ′; y)) = t1,

where t1 and t2 are defined in (1) and (2) respectively, and
by using Lemma 9 we are not increasing the weight of π ′.
Repeating the process we get that π has minimal weight
as claimed. We note that the proof above allows finding π
in O(n |�|) time.

On several occasions in the following sections, we will focus
specifically on (n; 1)q -LPC∞ codes. We therefore study in
more detail balls of radius 1. Assume the alphabet is � = Zq ,
and let x = (x1, x2, . . . , xn) ∈ Z

n
q be some vector. The number

of permutations π ∈ Sn such that wt∞(π) � 1 is known to be
the n-th Fibonacci number Fn (see [17], [21]), where

Fi =
{

Fi = Fi−1 + Fi−2 i � 2

Fi = 1 i = 0, 1

Thus, we immediately get that

|B1(x)| � Fn .

However, it is also clear that applying distinct permutations to
x does not always result in distinct vectors.

Definition 11: Let x ∈ Z
n
q be some string. Given two

permutations π, π ′ ∈ Sn, with wt∞(π) = wt∞(π ′) � 1,
we say they are x-equivalent, denoted π

x∼ π ′, if πx = π ′x.
It is obvious that

x∼ is an equivalence relation, and that
|B1(x)| is the number of equivalence classes of

x∼.
We also note that every permutation π ∈ Sn with

wt∞(π) � 1 can be written uniquely as a product of non-
overlapping adjacent transpositions, and more precisely,

π =
∏

i∈[k]
(ji , ji + 1), (3)

with ji + 1 < ji+1 for all i ∈ [k − 1]. Here, (a, b), a �= b,
is the cycle notation for the permutation exchanging a and b
while fixing all other elements. Additionally,

∏
, as it appears

in (3), when applied to permutations, denotes permutation
composition.

We also introduce a new operator on permutations.
Definition 12: Let x ∈ Z

n
q be some string, and π ∈ Sn,

wt∞(π) � 1, some permutation. Assume the notation of (3).
The x-reduced form of π is defined by

rdcx(π) =
∏

i∈[k]
x ji �=x ji+1

(ji , ji + 1).

Intuitively, the x-reduced form of π keeps only those
transpositions that switch the positions of distinct symbols
in x . By definition we have the following simple observation:
for every x ∈ Z

n
q and every π ∈ Sn , wt∞(π) � 1, we have

πx = rdcx(π)x . (4)

In addition, the operator rdcx(·) characterizes the equiva-
lence relation

x∼.
Lemma 13: For x ∈ Z

n
q , π, π ′ ∈ Sn, wt∞(π), wt∞(π ′) � 1,

we have π
x∼ π ′ if and only if rdcx (π) = rdcx(π

′).
Proof: In the first direction, let π

x∼ π ′, and thus
by (4), rdcx (π)x = rdcx (π

′)x , but assume to the con-
trary that rdcx (π) �= rdcx(π

′). Let J = { j1, j2, . . . , jk},
respectively J ′ = {

j ′
1, j ′

2, . . . , j ′
k′
}

, be the relevant inte-
gers in a decomposition of rdcx(π), respectively rdcx (π

′),
as in (3). Let i = min(J�J ′), where � denotes the symmetric
difference operator on sets. By definition we must have
xi �= xi+1, and therefore, xi appears as the i th element of
either rdcx (π)x or rdcx(π

′)x , whereas xi+1 appears as the
i th element of the other. It follows that rdcx(π)x �= rdcx(π

′)x ,
a contradiction.

In the other direction we have rdcx(π) = rdcx(π
′), and

assume to the contrary that π � x∼ π ′. But that means that

LANGBERG et al.: CODING FOR THE �∞-LIMITED PERMUTATION CHANNEL 7679

πx �= π ′x , which implies by (4) that rdcx(π)x �= rdcx (π
′)x ,

which is a contradiction.
It now follows that |B1(x)| is exactly the number of

x-reduced permutations. As already observed, x-reduced
permutations are uniquely defined by a product of non-
overlapping adjacent transpositions, exchanging positions in
x with distinct symbols.

Definition 14: Given a vector x = (x1, x2, . . . , xn) ∈ Z
n
q ,

an antirun of length � + 1 is a subsequence
(x j , x j+1, . . . , x j+�) such that x j+i �= x j+i−1 for all
i ∈ [�]. A maximum antirun is an antirun that cannot be
extended in either direction.

Any sequence of x ∈ Z
n
q can be partitioned uniquely into

a sequence of maximal antiruns. We call the sequence of the
lengths of the maximal antiruns in such a partition, the antirun
profile of x , and denote it as P(x).

Example 15: Let � = Z3, and take

x = (1, 1, 2, 0, 1, 0, 2, 2, 2, 2, 0, 0, 1, 2, 0).

We note that (x3, x4, x5) = (2, 0, 1) is an antirun, however
it is not a maximal antirun since it may be extended. The
partition of x into maximal antiruns produces

(1), (1, 2, 0, 1, 0, 2), (2), (2), (2, 0), (0, 1, 2, 0).

Thus, the antirun profile of x is

P(x) = (1, 6, 1, 1, 2, 4).

�
Theorem 16: Let x ∈ Z

n
q be a vector with an antirun profile

P(x) = (�1, �2, . . . , �k). Then |B1(x)| = ∏

i∈[k] F�i .
Proof: By the previous discussion, |B1(x)| is given by

the number of x-reduced permutations. These permutations
decompose uniquely into a product of non-overlapping adja-
cent transpositions, where each such adjacent transposition is
allowed in coordinates containing two distinct symbols from
the alphabet. Thus, within a maximal antirun of length �i ,
the choice of such a product reduces to a choice of permutation
of weight at most 1 in S�i , and there are F�i ways of doing so.
Since choosing this permutation is independent of the choice
of permutations for the other maximal antiruns, the claim
follows immediately.

We are interested in finding the extreme cases of the size
of radius-1 balls. Since for every x ∈ Z

n
q , the sum of the

entries in P(x) is also n, to find the maximum size of |B1(x)|,
we are interested in finding an integer partition of n, say
(�1, �2, . . . , �k), �i � 1,

∑

i∈[k] �k = n, such that
∏

i∈[k] F�i

is maximized. The following identity on Fibonacci numbers
is well known,

Fa+b = Fa Fb+1 + Fa−1 Fb.

A simple rearrangement of this equation, also using the basic
recursion, gives

Fa+b = 2Fa Fb + Fa Fb−1 − Fa−2 Fb > Fa Fb,

for all a, b � 1. The next corollary follows.

Corollary 17: The maximum size of a radius-1 ball is
obtained when x ∈ Z

n
q is made of a single maximal antirun,

and then

max
x∈Zn

q

|B1(x)| = Fn .

There are exactly q(q − 1)n−1 such vectors x ∈ Z
n
q .

Conversely, the minimum size of a ball is obtained when
x ∈ Z

n
q is comprised of a single repeating symbol from Zq , so

min
x∈Zn

q

|B1(x)| = 1,

and there are q such vectors x ∈ Z
n
q .

The average size of balls is also of interest in code design
and bounds. We define the average ball size as

Br,q,n = 1

qn

∑

x∈Zn
q

|Br (x)| .

The case of radius 1 is analyzed in the following theorem.
Theorem 18: For any q, n � 2,

B1,q,n = B1,q,n−1 + q − 1

q
B1,q,n−2,

with base cases B1,q,0 = B1,q,1 = 1. Explicitly,

B1,q,n =
(

� + √
�

2�

)(

1 + √
�

2

)n

+
(

� − √
�

2�

)(

1 − √
�

2

)n

,

where � = 1 + 4(q−1)
q = 5 − 4

q .
Proof: We recursively construct the collection of

(unordered) pairs (x, y), with x, y ∈ �n , such that x �= y
and y = πx for a permutation π with wt∞(π) � 1. Denote
this set by Pn .

First consider pairs (x, y) ∈ Pn starting with the same
symbol. Such pairs are obtained by concatenating any starting
symbol x1 = y1 with a pair (x [n−1], y[n−1]) ∈ Pn−1. The num-
ber of such (un-ordered) pairs is exactly q |Pn−1|.

Now consider pairs (x, y) ∈ Pn starting with different
symbols, x1 �= y1. As (x, y) ∈ Pn , the second symbols of
x and y must satisfy x2 = y1 and y2 = x1. The remaining sym-
bols of (x, y) are obtained by (x [n−2], y[n−2]) ∈ Pn−2 or by
x [n−2] = y[n−2]. The number of (un-ordered) pairs (x, y) ∈ Pn

for which (x [n−2], y[n−2]) ∈ Pn−2 is q(q−1) |Pn−2|: q options
for x1, q − 1 options for y1 �= x1 and for each x1, y1 there
are |Pn−2| possible values for (x [n−2], y[n−2]). The number of
(un-ordered) pairs (x, y) ∈ Pn for which x [n−2] = y[n−2] ∈
Pn−2 is q(q − 1)qn−2/2: q options for x1, q − 1 options for
y1 �= x1 and for each x1, y1 there are qn−2 possible values
for x [n−2] = y[n−2], however, as we are counting un-ordered
pairs so need to divide by 2.

All in all,

|Pn | = q |Pn−1| + q(q − 1)

(

|Pn−2| + qn−2

2

)

.

By definition we have:

B1,q,n = 1

qn

∑

x∈�n

|Br (x)| = 2|Pn|
qn

+ 1.

7680 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

Implying that

|Pn | = qn

2
(B1,q,n − 1).

We can thus manipulate the recursive expression for Pn to
obtain our assertion.

It is interesting to note that for |�| = q , using Turán’s
Theorem [26], there exists a subset C of �n of size
qn/(B1,q,n + 1) such that for each c, c′ ∈ C , c �= c′, it holds
that c′ �∈ Br (c). In general, the size of C does not act as an
upper bound on the maximum (n, M; 1)q -LPC∞ code, as C
is not necessarily a covering code. Nevertheless, in [6] it was
observed that for many natural distance measures, the size of
a corresponding C indeed happens to be larger than the size
of any potential code for that distance measure. The question
whether there is a natural distance measure for which |C| does
not act as an upper bound for code construction was left open.

If we take as an example LPC∞(1) over � = Z2,
the asymptotic rate of C is

lim
n→∞

log2

∣
∣C

∣
∣

n
= 1 − log2

1 + √
3

2
≈ 0.55,

by Theorem 18. This is much smaller than the asymptotic rate
of Example 24 (appearing in the upcoming section). Thus, it is
interesting to note that LPC∞(1) over � = Z2 is a natural
example for which the size of C clearly does not act as an
upper bound on the size of error-correcting codes

IV. CODE CONSTRUCTIONS

In this section we present two constructions of different fla-
vor. The first is a direct construction, inspired by constrained-
coding theory. In contrast, the second construction is recursive
and requires seed codes.

A. Direct Construction

The direct construction we present focuses on the binary
case. As we shall later see, the rate of any binary
(n, M; 1)-LPC∞ is asymptotically upper bounded by 2/3.
Thus, we are interested in finding codes with rate as close
as possible to this upper bound. Our approach to constructing
such codes is motivated by a similar problem which was stud-
ied by Shamai and Zehavi [23] and later by Krachkovsky [14].
The problem studied in these works is an asymmetric version
of the binary channel studied here. While in the binary model
of the LPC∞(r) channel, every bit can change its location
by at most r positions, in the model studied in [14] and [23]
this constraint is applied only to the bits having value 1. For
example, for the word x = 000111, the ball of radius 1
under the LPC∞(1) channel is {000111, 001011}, whereas
in the asymmetric version of this channel, it is the set
{000111, 001011, 001101, 001110}.

Let us fix for now � = Z2 = {0, 1}. The construction
in [14] and [23] consists of the following idea. Given a set of
blocks B ⊆ �∗ (these blocks can be of any length), the code
Cn(B) is defined to be

Cn(B) =
{

b1 . . . bm

∣
∣
∣
∣
∣

b1, . . . , bm ∈ B,

m
∑

i=1

|bi | = n

}

. (5)

Under this construction it is possible to derive that the asymp-
totic rate log2 λ of this code family, i.e.,

lim sup
n→∞

log2 |Cn(B)|
n

= log2 λ,

where λ is the largest (real) solution to the equation
∑

b∈B
x−|b| = 1.

The main goal of the works [14], [23] was to study the
asymmetric version of the LPC∞(r) channel for codes that
additionally satisfy the run-length limited (RLL) constraint [8].
However, as a special case, one can eliminate the RLL con-
straint, whereupon the construction of [14] and [23] provides
a set of blocks B = {

03i 1 | i � 0
}

that generates a code
family with asymptotic rate ≈ 0.551. This family is optimal
for the asymmetric version of the LPC∞(r) channel without
RLL constraints, and is also related to constrained-coding
schemes studied in [20] and [29]. Since the error balls in the
(symmetric) LPC∞(r) channel are subsets of the error balls in
the asymmetric LPC∞(r) channel, we could also take the same
set B as a solution for the (symmetric) LPC∞(r) channel, and
thus achieve at least the same rate. Next, we will show how
to improve upon this construction and get an asymptotic rate
of ≈ 0.5875.

Construction A: Define the block set B = B1 ∪B2 ∪B3 ∪B4,
where

B1 =
{

02+3i 1
∣
∣
∣ i � 0

}

, B2 =
{

03+3i 14
∣
∣
∣ i � 0

}

,

B3 =
{

12+3i 0
∣
∣
∣ i � 0

}

, B4 =
{

13+3i04
∣
∣
∣ i � 0

}

.

The constructed code is Cn(B) as defined in (5). �
Theorem 19: For all n � 3, the code Cn(B) from Construc-

tion A is an (n, M; 1)2-LPC∞ code, and allows decoding in
time �(n).

Proof: In order to show that Cn(B) is an (n, M; 1)2-LPC∞
code, we will explain how to uniquely decode it. Let x ∈
Cn(B) be a transmitted word, and y ∈ B1(x) be the distorted
received word.

We will scan the word y from left to right and show
how to decode the first block. Once we know the identity
of the first block, we also know whether the last symbol
of the block exchanged places with the first symbol of the
following block, and may correct it. We then proceed to
remove the first block, and repeat the process.

First note that in every block from B the first bit y1 cannot
be in error. Thus we can already distinguish whether the first
block belongs to either B1 ∪ B2 or B3 ∪ B4. Assume without
loss of generality that y1 = 0, and let us denote by � the
run length of 0’s starting from y1, so � � 1. We consider the
following cases:

1) � ≡ 1 (mod 3): This block can belong only to the set
B1, so it is decoded as 0�+11.

2) � ≡ 2 (mod 3): This block can either belong to
B1 or B2. If it belongs to the set B2 then the block
is of the form 0�+114 and an error has occurred in this
block so we receive 0�1011 as the first � + 4 bits.1 If it

1Note that we do not examine the last bit of this block since it may be
erroneous due to an interaction with the following block.

LANGBERG et al.: CODING FOR THE �∞-LIMITED PERMUTATION CHANNEL 7681

TABLE I

ASYMPTOTIC RATE FOR DIFFERENT VALUES OF r

belongs to B1, it is of the form 0�1 and there is no error
in this block.
If the next block starts with a 1, or strictly more than
two 0’s, we will receive that the following three bits are
neither 011 nor 010, and we will be able to distinguish
between B1 and B2.
Thus, the only remaining case we need to consider
is the case in which the next block is 001. Then,
the first � + 4 bits can be one of the three options:
0�1001, 0�1010, 0�1000, and in each case this sequence
is different than 0�1011, as required.

3) � ≡ 3 (mod 3): This block can belong to either
B1 or B2. If it belongs to B1 then it is of the form 0�−11
and there was an error in this block so its following
block starts with a 0, and thus the first � + 3 bits can
be 0�100, 0�101, or 0�110. If it belongs to B2 then the
block is 0�1111 and it has no error (in its first � bits).
Thus, the first � + 3 bits are 0�111, which are different
than all other options in case the block belongs to B1.

Lastly, this proof provides a decoder with comple-
xity �(n).

The proof of the next corollary follows standard techniques
(see [20]).

Corollary 20: The asymptotic rate of the code family Cn(B)
from Construction A is log2 λ ≈ 0.5875, where λ is the largest
solution of the equation x7 − 3x4 − 2 = 0.

Construction A can be generalized for arbitrary (n, M; r)2-
LPC∞ codes. This generalization uses the following block set
Br = Br

1 ∪ Br
2 ∪ Br

3 ∪ Br
4, where

Br
1 =

{

0r+1+(2r+1)i 1r
∣
∣
∣ i � 0

}

,

Br
2 =

{

02r+1+(2r+1)i 13r+1
∣
∣
∣ i � 0

}

,

Br
3 =

{

1r+1+(2r+1)i0r
∣
∣
∣ i � 0

}

,

Br
4 =

{

12r+1+(2r+1)i03r+1
∣
∣
∣ i � 0

}

.

The proof that the code Cn(Br) is an (n, M; r)2-LPC∞ code
appears in Appendix VI. Similarly to Corollary 20, we also
conclude that the asymptotic rate of the code family Cn(Br) is
log2 λr , where λr is the largest solution of the equation x5r+2−
3x3r+1−2 = 0. The numerical values of these asymptotic rates
are listed in Table I.

We also mention that in the other extreme case in which
q = |�| is large (w.r.t. r) we have codes with rate approach-
ing 1. Such codes are reminiscent of network protocols that

add meta-data to packets in order to correct packets that arrive
out of order.

Construction B: Let � = q/(2r + 1) be an integer. Fix the
alphabet � = Z� × Z2r+1. The code we construct is

Cn = {

x ∈ �n | ∀i : xi = (wi , i mod (2r + 1)),wi ∈ Z�

}

.

�
Intuitively, each symbol contains an “information” part,

wi , and a “meta-data” part, i mod (2r + 1). We show that this
meta-data part allows us to correct permutations of weight at
most r acting on the codeword.

Theorem 21: For (2r + 1)|q, there exist (n, M; r)q-LPC∞
codes with M =

(
q

2r+1

)n
(and thus rate 1 − logq (2r + 1)).

Proof: We use the codes of Construction B. Assume
x ∈ Cn was transmitted, but we received y = πx , with
wt∞(π) � r . Denote the elements of y as yi = (ai , bi) =
(wπ(i), π(i) mod (2r + 1)). Decoding x̂ from y is done using
the location information bi . Specifically, to find x̂ j the decoder
identifies the value of i closest to j for which bi = (j
mod (2r + 1)), and sets x̂ j = yi .

For correctness, we contend x̂ = x . We show for i as defined
above, that j = π−1(i). The fact that bi = (j mod (2r + 1))
implies that π−1(i) ≡ j (mod 2r + 1). Assume in contradic-
tion that j is not π−1(i) but rather π−1(i ′). This implies that
| j − π−1(i)| > 2r , and in turn that | j − i | > r . On the other
hand, as j = π−1(i ′) we have that | j −i ′| � r . The discussion
above contradicts the fact that i was chosen to be the closest
to j for which bi = (j mod (2r + 1)).

B. Recursive Construction

We present two recursive constructions that may be com-
bined with seed codes either from a direct construction or from
a computer search. The first construction is for a general
alphabet � = Zq and radius r = 1, whereas the second
construction is for the binary alphabet � = Z2 and a general
radius r � 1.

Before presenting the first construction we give the follow-
ing definition. The q-weight function, wtq : Z

n
q → Zq maps

any vector v = (v1, v2, . . . , vn) to wtq(v) = ∑n
i=1 vi , where

the summation is done in Zq .
Construction C: Assume that for each a ∈ Zq we have a

code Ca ∈ Z
n
q which is an (n, Ma; 1)q-LPC∞ code, with

the additional restriction that for each c ∈ Ca we have
wtq(c) = a. We call the Ca’s the inner codes.

Additionally, let C ′ ⊆ Z
�
q be a set of vectors with distinct

q-weight. We call C ′ the outer code.
The constructed code is

C =
⋃

(a1,...,a�)∈C ′
Ca1 × · · · × Ca� .

�
Theorem 22: Let C0, . . . , Cq−1, and C ′, be as in Con-

struction C. Then the code C from Construction C is an
(n�, M; 1)q-LPC∞ code, with

M =
∑

(a1,...,a�)∈C ′

�
∏

i=1

∣
∣Cai

∣
∣ .

7682 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

Proof: The length and size of the code C are obvious.
It remains to show its error-correction capabilities. Assume we
receive a vector y = (y1, y2, . . . , yn�) ∈ Z

n�
q , where y ∈ B1(c)

for some c ∈ C . We will show a unique way of decoding y
to prove the claim.

We first compute wtq(y), which equals wtq(c), since the
channel does not change it. Since the words in the outer code
have distinct q-weight, we obtain the unique words in C ′ with
that q-weight, which we denote (a1, . . . , a�) ∈ C ′.

The next step in the decoding process comprises � − 1
iterations. Before we start we set y0 = y. For the first iteration,
we compute the q-weight of the first n-block of y0, i.e.,

a′
1 =

n
∑

i=1

y0
i .

If a′
1 �= a1 then it must follow that the channel exchanged cn

with cn+1, i.e., y0
n = cn+1 and y0

n+1 = cn . Thus, if a′
1 �= a1 we

exchange y0
n and y0

n+1 to create a new vector we denote y1.
More precisely, if a′

1 �= a1 we set,

y1
i =

⎧

⎪⎨

⎪⎩

y0
i i < n or i > n + 1,

y0
n+1 i = n,

y0
n i = n + 1,

and if a′
1 = a1 we set y1 = y0.

Generally, in the j th iteration, j ∈ [� − 1], we compute the
q-weight of the j th block,

a′
j =

n
∑

i=1

y(j−1)n+i .

If a′
j �= a j then we exchange the symbols y jn with y jn+1,

i.e., we set

y j
i =

⎧

⎪⎨

⎪⎩

y j−1
i i < jn or i > jn + 1,

y j−1
j n+1 i = jn,

y j−1
j n i = jn + 1,

and if a′
j = a j we set y j = y j−1.

To complete the decoding process, it remains to determine
the order of elements within each block. Since Ca j is an
(n; 1)q-LPC∞ code as well, by recursion there is a unique
way of decoding each of the � blocks of y�−1 to obtain the
desired c.

Example 23: Consider the binary (3, 4; 1)2-LPC∞ code
{000, 100, 110, 111}. We can partition it by q-weights to
obtain C0 = {000, 110} and C1 = {100, 111}. Using Con-
struction C we can create a family of LPC∞ codes with
parameters (3m, 2 · 2m; 1)2 for all m � 2. This code family
has an asymptotic rate of 1

3 . �
Example 24: We can construct codes using a greedy com-

puter search in the following manner. Fix an alphabet, in this
case, � = Z2. Set a length n, and write a lexicographic list
of all the length-n vectors over �. Start with an empty set C0.
At the i th iteration, i = 1, 2, . . . , find the lexicographically-
least vector c ∈ �n \ Ci−1 such that Ci−1 ∪ {c, c} is
still an (n; 1)2-LPC∞ code, where c denotes the bit-wise
complement of c.

Using such a procedure, for length n = 24 a com-
puter search resulted in an LPC∞-code C with parameters
(24, 50220; 1)2. This code has rate ≈ 0.650667. The code C
has 25122 codewords of even weight, and 25098 codewords
of odd weight. Using Construction C we can create a family
of LPC∞-codes with parameters (24m, 50220 ·25122m−1; 1)2
for all m � 2. This code family has an asymptotic rate
of ≈ 0.609028 (which is the highest asymptotic rate of a family
of binary codes presented in this work). �

We now turn to describe the second construction,
which addresses the binary case � = Z2 and arbitrary
radius r � 1.

Construction D: Fix � = Z2 and some r � 1. Let C ′ be
an (n, M; r)2-LPC∞ code with n � r . We also require the
extra property that there exists a ∈ Zr+1 such that for every
c′ ∈ C ′, wt(c′) ≡ a (mod r + 1). Here wt(c′) denotes the
regular weight function, that counts the number of non-zero
entries in the vector c′.

The constructed code is

C = C ′ × C ′ × · · · × C ′
︸ ︷︷ ︸

� times

.

�
Theorem 25: Let C ′ be as in Construction D. Then the

code C from Construction D is an (n�, M�; r)q-LPC∞.
Proof: The length and size of the code are obvious

from the construction. It remains to show that it can correct
distortions by permutations of weight at most r . This is done
in a similar fashion to the proof of Theorem 22, though with
slightly different arguments.

Denote the received word as y = (y1, y2, . . . , yn�) ∈ Z
n�
2 .

We focus on the first two blocks of length n, i.e., y1 =
(y1, . . . , yn) and y2 = (yn+1, . . . , y2n). We similarly denote
the transmitted word by c = (c1, c2, . . . , cn�) and its first two
blocks by c1 = (c1, . . . , cn) and c2 = (cn+1, . . . , c2n).

All the bits of y1 originate from those of c1 except perhaps
bits appearing in the last r positions of y1, which originate
from the first r positions in c2. Let us denote w = wt(y1) mod
(r + 1). If w �= a, where a is the weight (modulo r + 1) of all
the codewords in C ′, then there is a unique number t ∈ [r], and
a bit b ∈ Z2, such that we can exchange the last t occurrences
of b from the last r positions of y1 with the first t occurrences
of b from the first r positions of y2, and the resulting first
block, called z1, now has wt(z1) ≡ a (mod r + 1). Here b
denotes the binary complement of b.

It is easy to verify the new first block z1, has the exact
same weight as c1. Furthermore, while the bits returned from
the second block, y2, may not be in their correct position,
they are certainly now no more than r positions away from
their original position in c1. Thus, the first block, z1, may be
corrected using the inner code C ′. The process now continues
with the next block iteratively.

It follows that Construction D allows us to extend a seed
code to an infinite family of codes with the same error-
correction capability and the exact same rate.

Example 26: Using a computer search, a lexicographic
search procedure was performed. Starting with a list
of the entire space of vectors, at each iteration the

LANGBERG et al.: CODING FOR THE �∞-LIMITED PERMUTATION CHANNEL 7683

lexicographically-least word in the list was added to the code,
and the ball of radius r around it was removed from the list.

Thus, for length n = 18, radius r = 2, and parameter
a = 1, a computer search found a code C ′ with 172
codewords, all of whose weights leave a residue of a = 1
modulo r + 1 = 3. By Construction D, for all m � 1 there
exists an (18m, 172m; 2)2-LPC∞ code, giving a family with
rate ≈ 0.41257.

The same procedure, for length n = 17, radius r = 3,
and parameter a = 3, found a code C ′ with 43 codewords,
all of whose weights leave a residue of a = 3 modulo
r + 1 = 4. By Construction D, for all m � 1 there exists
a (17m, 43m; 3)2-LPC∞ code, giving a family with rate ≈
0.31919. Note that these rates are higher than the ones
achieved by the direct construction in Section IV-A and are
summarized in Table I. �

V. BOUNDS ON CODE PARAMETERS

We now present a number of upper bounds on code size.
This first theorem shows a connection between Aq(n; r)
and Kq (n; r). While this connection is well-known in other
settings, the usual techniques of proving it do not work here
since the size of balls depends on their center. Nevertheless,
the proof is elementary.

Theorem 27: For all n and r ,

Aq(n; r) � Kq (n; r).

Proof: Assume to the contrary there exist n and r such
that Aq(n; r) > Kq(n; r). Let C1 be such an (n, Aq(n; r); r)q -
LPC∞ code, and let C2 be such an (n, Kq (n; r))qr -LPC∞
covering code, both over � = Zq . We know that the Kq (n; r)
balls of radius r centered around the codewords of C2, cover
the entire space �n . Since Aq(n; r) > Kq (n; r), the average
number of codewords of C1 per ball around a codeword of
C2 is strictly greater than 1. Thus, there exist two codewords
c1, c′

1 ∈ C1 and a codeword c2 ∈ C2 such that c1, c′
1 ∈ Br (c2).

But that means c2 ∈ Br (c1) ∩ Br (c′
1), contradicting the fact

that C1 is an (n; r)q -LPC∞ code.
This simple argument implies the following general bound.
Theorem 28: Let � = Zq be the alphabet, q � 2. Then for

all n � r � 1,

Aq(n; r) � Kq(n; r) �
(

r + q

q − 1

)�n/(r+1)�
.

Proof: Construct the following code C ⊆ Z
n
q : a word

c = (c1, c2, . . . , cn) ∈ Z
n
q is in C if and only if, for every

0 � j < �n/(r + 1)� we have

c(r+1) j+1 � c(r+1) j+2 � · · · � c(r+1) j+r+1.

To avoid problems due to divisibility, we assume that for all
i > n, ci = ∞.

A simple counting argument shows that

|C| �
(

r + q

q − 1

)�n/(r+1)�
,

with equality if (r + 1) | n.

Finally, we contend C is an (n, |C|)qr -LPC∞ covering
code. Indeed, for any vector v ∈ Z

n
q we can sort, in non-

descending order, positions (r + 1) j + 1 through (r + 1) j +
r + 1 for all 0 � j < �n/(r + 1)�, to obtain a codeword
in C . We note that the permutation induced by this sorting
operation does not move an element more than r positions
from its original position, and so, the permutation has weight at
most r .

For r = 1 we may obtain improved upper-bounds (which
are tight for n = 3).

Theorem 29: Let � = Zq be the alphabet, q � 2, and
r = 1. Then for all 3|n,

Aq(n; r) � Kq(n; r) �
[

q + 2

(
q

2

)

+ 2

(
q

3

)]n/3

.

Here, for q = 2 we have
(q

3

) = 0.
Proof: To prove our assertion, we present a (3, M)q

1-LPC∞ covering code C of size M = q + 2
(q

2

) + 2
(q

3

)

for
block length n = 3. The theorem follows from considering the
covering code Cn/3. The code C is the union of the following
three sets of codewords, C1 ∪ C2 ∪ C3. The set C1 includes,
for any character c ∈ �, the codeword (c, c, c). The set C2
includes for any pair c1 �= c2 in �, the codeword (c1, c2, c1).
The set C3 includes for any three distinct elements of �,
c1 � c2 � c3, the codewords (c1, c2, c3) and (c3, c2, c1).

The size of C is exactly M = q +2
(q

2

)+2
(q

3

)

. We show that
C is indeed a covering code. Consider any (c1, c2, c3) ∈ �3.
If c1 = c2 = c3 then (c1, c2, c3) ∈ C1. If there are two distinct
elements in the set {c1, c2, c3} then it is not hard to verify that
(c1, c2, c3) is covered by an element of C2. If there are three
distinct elements in the set {c1, c2, c3} then it is not hard to
verify that (c1, c2, c3) is covered by an element of C3. We note
that the set C is also a (3, M; 1)q-LPC∞ code.

In particular, for the binary case the last theorem provides
an asymptotic upper bound of 2/3 on the rate of (n; 1)-LPC∞
codes.

Thus far, we focused in this section and the previous one
on codes with a constant error-correction capability. This is
motivated by the next corollary that shows that all other cases
have asymptotic rate 0.

Corollary 30: Let � = Zq be the alphabet, q � 2 a
constant. Let {Ci }i�1 be a sequence of codes, Ci being an
(ni , Mi ; ri)q-LPC∞ code, and ni+1 > ni for all i ∈ N.
If ri = ω(1), i.e., lim supi→∞ ri = ∞, then the asymptotic
rate of the family is

lim sup
i→∞

logq Mi

ni
= 0.

Proof: By Theorem 28,

1

ni
logq Mi � 1

ni
logq

(
ri + q

q − 1

)�ni /(ri+1)�

� ni + ri

niri
logq (ri + q)q−1

� 2(q − 1)

ri
logq(ri + q)

= O

(
log ri

ri

)

,

which completes the proof.

7684 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

TABLE II

LOWER AND UPPER BOUNDS ON A2(n; 1)

We conclude this section by explaining how to apply the
methodology from [15] in order to get an upper bound on
A2(n; 1). Kulkarni and Kiyavash proposed [15] a method to
apply a modified version of the ball-packing bound for the
deletion channel. Since their method can be applied not only
for the deletion channel but also for other irregular channels,
several follow-up works have studied other channels such as
grain errors [7], [9] and multipermutations with Kendall’s
τ -metric [1]. More general results were derived also in [3]
and in [6] with more specific cases of irregular channels such
as asymmetric errors and projective spaces.

The main idea in deriving such a bound is to construct
a hypergraph whose set of vertices consists of all possible
received words. Its hyperedges are given by the error balls of
all possible transmitted words. Then, an error-correcting code
in such a channel corresponds to a set of disjoint hyperedges,
i.e., a matching. Thus, an upper bound on the code size can be
given by an upper bound on the size of the largest matching
in the hypergraph. A transversal in a hypergraph is a set of
vertices which intersects every hyperedge in the hypergraph,
and a fractional transversal is an assignment of weights to the
vertices such that the sum of weights of the vertices in every
hyperedge is at least 1. The main idea in [15] was to use
fractional transversals as an upper bound on the size of the
largest matching in the hypergraph, and thus, on the size of a
code.

We use this method in order to derive such an upper bound.
The composition of a vector is the ordered list of the number of
times each symbol from the alphabet appears. Since vectors of
different composition have corresponding hyperedges that do
not intersect, we may study different compositions separately.

In particular, we focus on radius r = 1 and the binary
case in which the composition is specified by a single integer,
i.e., the weight of the vector. For each weight we solve a linear
program that calculates the optimal fractional transversal with
minimum sum weights in order to get an upper bound on each
code. Table II summarizes the upper bound we calculated on
A2(n; 1) for 3 � n � 16, together with the lower bound
implied by the best codes we could find by computer search.

VI. CONCLUSION

In this work we initiated the study of �∞-limited permu-
tation channels LPC∞(r) for worst-case errors and general

alphabets �. We presented code constructions and upper
bounds on code size. The majority of our results are for the
case of r = 1. Despite significant efforts, our upper and lower
bounds on code size are not tight and should be viewed as
initial steps in a full understanding of LPC∞(r). For the case
of binary codes with r = 1 we conjecture that the optimal
asymptotic rate is 2/3. This agrees with our upper bounds
and our simulations up to block length n = 24. The optimal
rate of codes for LPC∞(r) it left open and subject to future
research.

APPENDIX

In this appendix we prove that the code Cn(Br) is an
(n, M; r)2-LPC∞ code, where Br is the union of the four
sets:

Br
1 =

{

0r+1+(2r+1)i 1r
∣
∣
∣ i � 0

}

,

Br
2 =

{

02r+1+(2r+1)i 13r+1
∣
∣
∣ i � 0

}

,

Br
3 =

{

1r+1+(2r+1)i0r
∣
∣
∣ i � 0

}

,

Br
4 =

{

12r+1+(2r+1)i03r+1
∣
∣
∣ i � 0

}

.

Theorem 31: For all n � 2r + 1, the code Cn(Br) is an
(n, M; r)2-LPC∞ code, and allows decoding in time �(n).

Proof: We follow the proof of Theorem 19. Assume that
x ∈ Cn(Br) was transmitted, and the word y ∈ Br (x) was
received. We only show how to decode the first block in y as
the consecutive blocks are decoded in the same way.

The first bit of the first block cannot change its value and
thus we can easily determine whether the block belongs to
Br

1 ∪Br
2 or Br

3 ∪Br
4. Assume without loss of generality that it

belongs to Br
1 ∪Br

2 so y1 = 0. Let �x , �y � 1 be the length of
the first run of zeroes in x, y, respectively.

Note that if x ∈ Br
2 then �x (mod 2r + 1) = 2r + 1 and

r + 1 � �y (mod 2r + 1) � 2r + 1, since the first sequence of
zeros is followed by 3r +1 ones.2 On the other hand, if x ∈ Br

1
then �x (mod 2r + 1) = r + 1, and 1 � �y (mod 2r + 1) �
2r + 1.

We consider the following cases:

1) �y (mod 2r + 1) ∈ {1, 2, . . . , r} : The first decoded
block belongs to the set Br

1, so it is decoded as
0r+1+(2r+1)i 1r , where i = � �y

2r+1�.
2) �y (mod 2r + 1) = r + 1 : Assume that for some i � 0,

�y = r+1+(2r+1)i . If the first block in x belongs to Br
2

then it is the sequence 02r+1+(2r+1)i 13r+1 and the last
r zeros among the first �x zeros change their position
with some of the following one bits, so we get after
this transposition the sequence 0r+1+(2r+1)i 1b0u, where
1 � b � r , and u is a sequence including the remainder
of the bits of this block. We can also claim that among
the first 2r+1+(2r+1)i+2r+1 = (2r+1)i+4r+2 bits
of y there are exactly (2r +1)i +2r +1 zeros. Note that
we did not consider the last r bits of the this block as
they can change their value due to an interaction with
the following block.

2Here, we take the residues modulo 2r + 1 to be the set {1, . . . , 2r + 1}.

LANGBERG et al.: CODING FOR THE �∞-LIMITED PERMUTATION CHANNEL 7685

If the first block in x belongs to Br
1, then it is the

sequence 0r+1+(2r+1)i 1r and the first �x zeros do not
change their position. If the next block starts with one,
it has to be at least r+1 ones, and then after the sequence
of r + 1 + (2r + 1)i zeros there are at least r + 1
consecutive ones in y. As the previously defined b is
at most r , we will be able to distinguish between this
case and the case in which x belongs to Br

2.
If the next block starts with zero, then it has to be at
least r + 1 zeros and then among the first r + 1 +
(2r + 1)i + r + r + 1 + r = (2r + 1)i + 4r + 2 bits
of y there are at least (2r + 1)i + 2r + 2 zeros, so again
we can distinguish between this case and the case in
which x belongs to Br

2.
3) �y (mod 2r + 1) = r + 1 + a for 1 � a � r : Assume

that for some i � 0, �y = r + 1 + a + (2r + 1)i . If the
first block in x belongs to Br

2 then it is the sequence
02r+1+(2r+1)i 13r+1, where the last r − a zeros among
the first �x zeros change their position with the following
one bits. We can again claim that among the first 2r +
1 + (2r + 1)i + 2r + 1 = (2r + 1)i + 4r + 2 bits of y
there are exactly (2r + 1)i + 2r + 1 zeros.
If the first block in x belongs to Br

1, then it is the
sequence 0r+1+(2r+1)i 1r . In order to start with r + 1 +
a + (2r + 1)i zeros, the next block has to start with a
zero and thus it starts with at least r +1 zeros. However,
then among the first r + 1 + (2r + 1)i + r + r + 1 +
r = (2r + 1)i + 4r + 2 bits of y there are at least
(2r + 1)i + 2r + 2 zeros, so we can again distinguish
between the two cases.

We conclude that in all cases it is possible to distinguish
which set the first block belongs to and thus it can be
decoded successfully. Furthermore, this decoder will have
complexity �(n), when r is fixed.

REFERENCES

[1] S. Buzaglo, E. Yaakobi, T. Etzion, and J. Bruck, “Error-correcting codes
for multipermutations,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Istanbul, Turkey, Jul. 2013, pp. 724–728.

[2] G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes.
Amsterdam, The Netherlands: North Holland, 1997.

[3] D. Cullina and N. Kiyavash, “Generalized sphere-packing and sphere-
covering bounds on the size of codes for combinatorial channels,” in
Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, HI, USA, Jun. 2014,
pp. 1266–1270.

[4] M. Deza and T. Huang, “Metrics on permutations, a survey,”
J. Combinat., Inf. Syst. Sci., vol. 23, pp. 173–185, 1998.

[5] F. F. Hassanzadeh, M. Schwartz, and J. Bruck, “Bounds for permutation
rate-distortion,” IEEE Trans. Inf. Theory, vol. 62, no. 2, pp. 703–712,
Feb. 2016.

[6] A. Fazeli, A. Vardy, and E. Yaakobi, “Generalized sphere packing
bound,” IEEE Trans. Inf. Theory, vol. 61, no. 5, pp. 2313–2334,
May 2015.

[7] R. Gabrys, E. Yaakobi, and L. Dolecek, “Correcting grain-errors
in magnetic media,” IEEE Trans. Inf. Theory, vol. 61, no. 5,
pp. 2256–2272, May 2015.

[8] K. A. S. Immink, Coding Techniques for Digital Recorders.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1991.

[9] N. Kashyap and G. Zémor, “Upper bounds on the size of grain-correcting
codes,” IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4699–4709,
Aug. 2014.

[10] T. Kløve, “Lower bounds on the size of spheres of permutations under
the Chebychev distance,” Des., Codes Cryptogr., vol. 59, nos. 1–3,
pp. 183–191, 2011.

[11] T. Kløve, T.-T. Lin, S.-C. Tsai, and W.-G. Tzeng, “Permutation arrays
under the Chebyshev distance,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2611–2617, Jun. 2010.

[12] M. Kovačević and P. Popovski, “Zero-error capacity of a class of timing
channels,” IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6796–6800,
Nov. 2014.

[13] M. Kovačević and D. Vukobratović. (Jan. 2013). “Multiset code for per-
mutation channels.” [Online]. Available: https://arxiv.org/abs/1301.7564

[14] V. Y. Krachkovsky, “Bounds on the zero-error capacity of the input-
constrained bit-shift channel,” IEEE Trans. Inf. Theory, vol. 40, no. 4,
pp. 1240–1244, Jul. 1994.

[15] A. A. Kulkarni and N. Kiyavash, “Nonasymptotic upper bounds for
deletion correcting codes,” IEEE Trans. Inf. Theory, vol. 59, no. 8,
pp. 5115–5130, Aug. 2013.

[16] M. Langberg, M. Schwartz, and E. Yaakobi, “Coding for the �∞-limited
permutation channel,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Hong Kong, Jun. 2015, pp. 1936–1940.

[17] D. H. Lehmer, “Permutations with strongly restricted displacements,”
in Combinatorial Theory and its Applications II, P. Erdös, A. Rényi,
and V. T. Sós, Eds. Amsterdam, The Netherlands: North Holland, 1970,
pp. 273–291.

[18] F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1978.

[19] H. H. Permuter, P. Cuff, B. Van Roy, and T. Weissman, “Capacity of
the trapdoor channel with feedback,” IEEE Trans. Inf. Theory, vol. 54,
no. 7, pp. 3150–3165, Jul. 2008.

[20] M. Schwartz and J. Bruck, “On the capacity of the precision-resolution
system,” IEEE Trans. Inf. Theory, vol. 56, no. 3, pp. 1028–1037,
Mar. 2010.

[21] M. Schwartz, “Efficiently computing the permanent and Hafnian of
some banded Toeplitz matrices,” Linear Algebra Appl., vol. 430, no. 4,
pp. 1364–1374, Feb. 2009.

[22] M. Schwartz and I. Tamo, “Optimal permutation anticodes with the
infinity norm via permanents of (0, 1)-matrices,” J. Combinat. Theory A,
vol. 118, no. 6, pp. 1761–1774, Aug. 2011.

[23] S. Shamai (Shitz) and E. Zehavi, “Bounds on the capacity of the bit-shift
magnetic recording channel,” IEEE Trans. Inf. Theory, vol. 37, no. 3,
pp. 863–872, May 1991.

[24] I. Tamo and M. Schwartz, “Correcting limited-magnitude errors in the
rank-modulation scheme,” IEEE Trans. Inf. Theory, vol. 56, no. 6,
pp. 2551–2560, Jun. 2010.

[25] I. Tamo and M. Schwartz, “On the labeling problem of permutation
group codes under the infinity metric,” IEEE Trans. Inf. Theory, vol. 58,
no. 10, pp. 6595–6604, Oct. 2012.

[26] P. Turán, “On the theory of graphs,” Colloq. Math, vol. 3, no. 1,
pp. 19–30, 1954.

[27] J. M. Walsh and S. Weber, “Capacity region of the permutation chan-
nel,” in Proc. 46th Annu. Allerton Conf. Commun., Control, Comput.,
Monticello, IL, USA, Sep. 2008, pp. 646–652.

[28] D. Wang, A. Mazumdar, and G. W. Wornell, “Compression in the
space of permutations,” IEEE Trans. Inf. Theory, vol. 61, no. 12,
pp. 6417–6431, Dec. 2015.

[29] R. W. Yeung, N. Cai, S. W. Ho, and A. B. Wagner, “Reliable commu-
nication in the absence of a common clock,” IEEE Trans. Inf. Theory,
vol. 55, no. 2, pp. 700–712, Feb. 2009.

[30] H. Zhou, M. Schwartz, A. A. Jiang, and J. Bruck, “Systematic error-
correcting codes for rank modulation,” IEEE Trans. Inf. Theory, vol. 61,
no. 1, pp. 17–32, Jan. 2015.

Michael Langberg (M’07–SM’15) received his B.Sc. in mathematics and
computer science from Tel-Aviv University in 1996, and his M.Sc. and Ph.D.
in computer science from the Weizmann Institute of Science in 1998 and
2003 respectively. Between 2003 and 2006, he was a postdoctoral scholar in
the Electrical Engineering and Computer Science departments at the California
Institute of Technology, and between 2007 and 2012 he was in the Department
of Mathematics and Computer Science at The Open University of Israel.
Prof. Langberg is currently an associate professor in the Department of
Electrical Engineering at the State University of New York at Buffalo.

Prof. Langberg’s research addresses the algorithmic and combinatorial
aspects of information in communication, management, and storage; focusing
on the study of information theory, coding theory, network communication
and network coding, big data in the form of succinct data representation,
and probabilistic methods in combinatorics. Prof. Langberg was an Associate
Editor for the IEEE TRANSACTIONS ON INFORMATION THEORY during the
years 2012-2015 and is currently the Editor of the IEEE INFORMATION
THEORY SOCIETY NEWSLETTER.

7686 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 12, DECEMBER 2017

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and
Ph.D. degrees from the Technion – Israel Institute of Technology, Haifa,
Israel, in 1997, 1998, and 2004 respectively, all from the Computer Science
Department. He was a Fulbright post-doctoral researcher in the Department
of Electrical and Computer Engineering, University of California San Diego,
and a post-doctoral researcher in the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012–2014, he was a
visiting scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage.

Eitan Yaakobi (S’07–M’12–SM’17) is an Assistant Professor at the Com-
puter Science Department at the Technion — Israel Institute of Technology.
He received the B.A. degrees in computer science and mathematics, and the
M.Sc. degree in computer science from the Technion — Israel Institute of
Technology, Haifa, Israel, in 2005 and 2007, respectively, and the Ph.D. degree
in electrical engineering from the University of California, San Diego, in 2011.
Between 2011-2013, he was a postdoctoral researcher in the department of
Electrical Engineering at the California Institute of Technology. His research
interests include information and coding theory with applications to non-
volatile memories, associative memories, data storage and retrieval, and voting
theory. He received the Marconi Society Young Scholar in 2009 and the Intel
Ph.D. Fellowship in 2010-2011.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

