
2474 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

On Encoding Semiconstrained Systems
Ohad Elishco , Student Member, IEEE, Tom Meyerovitch, and Moshe Schwartz , Senior Member, IEEE

Abstract— Semiconstrained systems (SCSs) were recently
suggested as a generalization of constrained systems, commonly
used in communication and data-storage applications that require
certain offending subsequences be avoided. In an attempt to
apply the techniques from constrained systems, we study the
sequences of constrained systems that are contained in, or con-
tain, a given SCS, while approaching its capacity. In the former
case, we describe two such sequences resulting in constant-
to-constant bit-rate block encoders and finite-state encoders.
Perhaps surprisingly, we show in the latter case, under commonly
made assumptions, that the only constrained system that contains
a given SCS is the entire space. A refinement to this result is
also provided, in which semiconstraints and zero constraints are
mixed together.

Index Terms— Constrained coding, channel capacity, encoding.

I. INTRODUCTION

MANY communication and data-storage systems employ
constrained coding. In such a scheme, information is

encoded in sequences that avoid the occurrence of certain
subsequences. Perhaps the most common example is that of
(d, k)-RLL which is comprised of binary sequences that avoid
subsequences of k +1 0’s, as well as two 1’s that are separated
by less than d 0’s. For various other examples the reader is
referred to [7] and the many references therein.

The reason for avoiding such subsequences is mainly due
to the fact that their appearance contributes to noise in the
system. However, by altogether forbidding their occurrence,
the possible rate at which information may be transmitted is
severely reduced. By relaxing the constraints and allowing
some appearances of the offending subsequences, the rate
penalty may be reduced. So rather than imposing combinator-
ial constraints on substrings, we impose statistical constraints
on them. Such an approach was studied, for example, in the
case of channels with cost constraints [8], [10].

A general approach was suggested in [5], in which a semi-
constrained system (SCS) was defined by a list of offending
subsequences, and an upper bound (called a semiconstraint)
on the frequency of each subsequence appearing. Note that

Manuscript received October 7, 2016; revised August 13, 2017; accepted
October 5, 2017. Date of publication November 8, 2017; date of current
version March 15, 2018. This work was supported in part by the People
Programme (Marie Curie Actions) of the European Union’s Seventh Frame-
work Programme (FP7/2007-2013) under Grant 333598 and in part by the
Israel Science Foundation under Grant 626/14. This paper was presented in
part at the 2016 IEEE International Symposium on Information Theory.

O. Elishco and M. Schwartz are with the Department of Electrical and
Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva
8410501, Israel (e-mail: ohadeli@post.bgu.ac.il; schwartz@ee.bgu.ac.il).

T. Meyerovitch is with the Department of Mathematics, Ben-Gurion Univer-
sity of the Negev, Beer-Sheva 8410501, Israel (e-mail: mtom@math.bgu.ac.il).

Communicated by A. Ramamoorthy, Associate Editor for Coding
Techniques.

Digital Object Identifier 10.1109/TIT.2017.2771743

constrained systems (which we call fully constrained for
emphasis) are a special case of semiconstrained systems,
in which only semiconstraints of frequency 0 are used.

A careful choice of semiconstraints also allows the study
of systems that, up to now, were studied in an ad-hoc
manner only. As examples we mention DC-free RLL
coding [12], constant-weight ICI coding for flash memo-
ries [2], [3], [9], [14], and coding to mitigate the appearance
of ghost pulses in optical communication [15], [16].

One of the most important questions, given a SCS, is how to
encode any unconstrained input sequence into a sequence that
satisfies all the given semiconstraints. The various encoding
schemes suggested in [2], [9], [12], and [14]–[16] are ad-hoc
and do not apply to general SCSs. The encoding scheme
for channels with cost constraints given in [10] (which over-
lap somewhat with SCSs) is indeed general, however it is
not capacity achieving. Later, within the scope of channels
with cost constraints, and motivated by partial-response chan-
nels, [11], [19] briefly report on capacity-achieving schemes,
however, not in the full generality we consider in this paper.

Under the assumption that the input stream consists of
i.i.d. uniformly-random bits, a general capacity-achieving
encoding scheme for SCSs was described in [5]. The scheme
involved a maxentropic Markov chain over a modified
De-Bruijn graph. Input symbols were converted via an arith-
metic decoder to a biased stream of symbols which were
used to generate a path in the graph, which in turn generated
symbols to be transmitted. A reverse operation was employed
at the receiving side. Additionally to the assumption on the
distribution of the input, to enforce a constant-to-constant
bit rate, the encoder has a probability of failure (albeit,
asymptotically vanishing). Thus, not all input streams may be
converted to semiconstrained sequences.

Compared with SCSs, for “conventional” fully constrained
systems there is a general method for constructing encoders
working arbitrarily close to capacity: the celebrated state-
splitting algorithm. However, as we explain in the following
sections, this method fails even on very simple SCSs, due to
the fact that in most cases they do not form regular languages.

In this work we consider the problem of encoding an
arbitrary input string into a sequence that satisfies all the given
semiconstraints. We do not make statistical or combinatorial
assumptions on the input, only that it is sufficiently long.
Specifically, we show the following: For every given SCS that
satisfies certain mild assumptions and every � > 0 we present
a fully constrained system that is “eventually-contained” in the
given SCS, with a capacity penalty of at most �. This allows
us to construct either block encoders or finite-state encoders,
trading encoder anticipation for number of states. In the

0018-9448 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0002-8551-1592
https://orcid.org/0000-0002-1449-0026

ELISHCO et al.: ON ENCODING SCSs 2475

other direction, we show that no fully constrained system can
contain a given SCS (under certain mild assumptions).

The paper is organized as follows. In Section II we
present the definition and notation used throughout the paper.
In Section III we study sequences of constrained systems that
are contained in a given SCS and approach its capacity from
below. In Section IV we do the reverse, and study constrained
systems containing a given SCS. In the first sections of this
paper we make some assumptions on the SCS under discus-
sion, in particular that they are fat (see Definition 7). These
assumptions in particular exclude (classical) fully constrained
systems. In Section V we study more general SCSs, that in
particular also allow fully constrained systems. We present
conclusions and further research in Section VI.

II. PRELIMINARIES

A. Semiconstrained Systems

Let � be a finite alphabet and let �∗ denote the set of all the
finite sequences over �. The elements of �∗ are called words
(or strings). The length of a word ω ∈ �∗ is denoted by |ω|.
Given two words, ω,ω� ∈ �∗, their concatenation is denoted
by ωω�. Repeated concatenation is denoted using a superscript,
i.e., for any natural m ∈ N, ωm denotes ωm = ωω . . . ω, where
m copies of ω are concatenated. By convention, ω0 = ε, where
ε the unique empty word of length 0. By extension, if S ⊆ �∗
is a set of words, then Sm denotes the set

Sm = {ω1ω2 . . . ωm : ∀i, ωi ∈ S},
with S0 = {ε}, S∗ = ⋃

i�0 Si , and S+ = ⋃
i�1 Si .

The set of length-k subwords of ω is defined by

subk(ω) =
{
β ∈ �k : ω = αβγ for some α, γ ∈ �∗}.

For ω ∈ �∗ and k � |ω|, frk
ω ∈ P(�k) is defined as the

empirical distribution of length-k subwords in ω, where we
denote by P(�k) the set of all probability measures on �k .
We can naturally identify

P(�k) =
⎧
⎨

⎩
η ∈ [0, 1]�k :

∑

φ∈�k

η(φ) = 1

⎫
⎬

⎭
.

It follows that for all β ∈ �k ,

frk
ω(β) = 1

|ω| − k + 1

∣
∣
{
(α, γ) : α, γ ∈ �∗, αβγ = ω

}∣
∣.

Example 1: Let � = {0, 1} and let ω = 0110100100 ∈ �10.
Then fr2

ω(01) = 3
9 . �

Definition 2: Let � ⊆ P(�k) be a set of probability
measures. We say � is a semiconstrained system (SCS), and
we define the set of admissible words for � by

B(�) =
{
ω ∈ �∗ : frk

ω ∈ �
}

.

For convenience we also define the set of admissible words
of length exactly n as

Bn(�) = B(�) ∩ �n.

Example 3: We consider a family of SCSs known as
the (0, 1, p)-RLL SCS [5]. Let � = {0, 1}, and let p ∈ [0, 1].

Define

� =
{
η ∈ P(�2) : η(11) � p

}
.

The set of admissible words for � is the set of all binary words
whose empirical frequency of the pattern 11 is at most p.
Taking p = 0 we obtain the well known (1,∞)-RLL fully
constrained system. �

An important figure of merit we associate with any set of
words S ⊆ �∗ is its capacity.

Definition 4: Let � be a finite alphabet and S ⊆ �∗. The
capacity of S, denoted cap(S), is defined as

cap(S) = lim sup
n→∞

1

n
log2

∣
∣S ∩ �n

∣
∣.

Thus, in the case of a SCS �, the capacity cap(B(�))
intuitively measures the exponential growth rate of the number
of words that satisfy the constraints given by � as a function
of the word length.

A relaxation of semiconstrained systems was also suggested
in [5].

Definition 5: Let � ⊆ P(�k) be a set of probability
measures. For � > 0 we denote by �� the set

�� =
{

η ∈ P(�k) : inf
μ∈�

η − μ
∞ � �

}

where
 ·
∞ is the �∞-norm. The set of weakly-admissible
words for � is defined by

B(�) =
{
ω ∈ �∗ : frk

ω ∈ �ξ(|ω|)},

where ξ : N → R
+ is a function satisfying both ξ(n) = o(1)

and ξ(n) = �(1/n). Also Bn(�) = B(�) ∩ �n.
Note that the term ζ(|ω|) adds some tolerance. In order for

that tolerance to be negligible in terms of capacity, we require
ζ(n) = o(1). In order for it to be effective enough to solve
continuity issues, we also require ζ(n) = �(1

n). Intuitively,
the latter requirement allows us to alter a constant number of
letters in a string of any length. Any tolerance of order o(1

n)
is eventually degenerate, and equivalent to setting ζ(n) = 0.

We note that B(�) was called a weak semiconstrained
system (WSCS) in [5] and was defined in a slightly different
manner, though we shall prefer to use the term weakly-
admissible words for �. It was also shown there that though it
is possible to constrain words of different lengths, it suffices to
consider only words in �k , i.e., all the offending patterns are
of the same length k. Here, since � ⊆ P(�k), the assumption
that all the offending patterns are of length k is implied.

A particular set of probability measures of interest to us
is the set of shift-invariant probability measures. We say
η ∈ P(�k) is shift-invariant if for all φ ∈ �k−1,

∑

a∈�

η(aφ) =
∑

a∈�

η(φa).

We denote the set of shift-invariant probability measures by
Psi(�

k), which is a closed subset of P(�k) in the weak-∗
topology (since �k is a finite set with the discrete topology,
the topology on P(�k) is given by the total variation norm).
These are precisely the probability measures that arise as
marginals of shift-invariant measures on �N or �Z. For a
discussion see [1]. In particular, we have the following lemma.

2476 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

Lemma 6: Fix a finite alphabet �, and k � 2. If � ⊆
P(�k) \Psi(�

k) is closed then cap(B(�)) = −∞, i.e., B(�)
is a finite set.

Proof: For any ω ∈ �∗, |ω| � k, and any φ ∈ �k−1,
by simple counting

∣
∣
∣
∣
∣

∑

a∈�

frk
ω(aφ) −

∑

a∈�

frk
ω(φa)

∣
∣
∣
∣
∣
� 1

|ω| − k + 1
.

Thus, frk
ω gets arbitrarily close to a shift-invariant probability

measure as |ω| → ∞. Since Psi(�
k) and � are closed, there

is a positive distance between the sets. Therefore, there exists
n ∈ N such that for all ω ∈ �∗, |ω| � n, we have ω �∈ B(�),
i.e., B(�) is finite.

Lemma 6 motivates us to study probability measures that are
shift invariant. Another crucial property of a set of probability
measures is given in the following definition.

Definition 7: For a set �� ⊆ Psi(�
k) we denote by int(��)

the interior of ��, and by cl(��) the closure of ��, both
relatively to Psi(�

k). We say � ⊆ P(�k) is fat if

cl(int(� ∩ Psi(�
k))) = cl(� ∩ Psi(�

k)).

The fat condition allows us to focus on “well-behaved” sets,
namely, sets with a non-empty interior. the following result
from [5] demonstrates the importance of a fat �.

Theorem 8: Let � ⊆ P(�k) be closed and convex. If � is
fat then

cap(B(�)) = cap(B(�)) = log2 |�| − inf
η∈�∩Psi(�k)

D(η
η�),

where D(·
·) is the relative entropy function, and η�(φa) =∑
a�∈� η(φa�)/ |�|, for all φ ∈ �k−1 and a ∈ �. Additionally,

cap(B(�)) and cap(B(�)) are continuous and convex in �,
and the limits in their definitions exist.

B. Fully Constrained Systems
As noted in the introduction, “conventional” constrained

systems are a special case of semiconstrained systems. A con-
strained system can be viewed as a SCS �, where � is of the
form

� =
{
η ∈ P(�k) : ∀φ ∈ �k, η(φ) � cφ

}
,

where cφ ∈ {0, 1} for all φ ∈ �k . In other words, every
substring of length k is either completely forbidden, or
unconstrained. We will refer to those as fully constrained
systems and denote a set � of this form as �{0,1}.

Let G = (V , E) be a finite directed graph, where we
allow parallel edges. A labeling function L : E → �q

assigns a length-q label over the alphabet to each edge.
By simple extension, the label of a directed (non-empty) path
in the graph γ = e1 → e2 → · · · → en is defined as
L(γ) = L(e1)L(e2) . . .L(en). Finally, we define the language
represented by the graph G, denoted L(G), to be the labels
of all finite directed paths in G.

Constrained systems have been widely studied [7], [13].
In particular, it is well known that in case � is of the
form �{0,1}, B(�) = L(G) for some finite directed labeled
graph G in the manner described above. An immediate con-
sequence is the fact that B(�) is a regular language in the

Chomsky hierarchy of formal languages [17]. We do note,
however, that not all regular languages (which correspond to
languages of sofic subshifts) are constrained systems (which
are defined by a finite number of forbidden words, and
correspond to subshifts of finite type).

A wide variety of tools exist for manipulating con-
strained systems, including the state-splitting algorithm
(see [13, Ch. 5]). In essence, under mild assumptions, given
a constrained system B(�) = L(G), and two positive integers
p and q that satisfy p/q < cap(B(�)), we can find another
constrained system B�(�) = L(G�), an encoder, with the
following properties:

• L(G�) ⊆ L(G).
• cap(B�(�)) = p/q , also called the rate of the encoder.
• G� is a p : q encoder for L(G) with finite anticipation

a ∈ N ∪ {0}, i.e., the out-degree of each vertex is 2p ,
the edge labels in G� are from �q , and paths of length
a + 1 that start from the same vertex and generate the
same word agree on the first edge.

Unfortunately, even for very simple semiconstraints, B(�)
is not a regular language in general. As an example, for
� = {0, 1}, and � such that for all μ ∈ �, μ(1) � p,
it is easily seen that for any rational 0 < p < 1, the
semiconstrained system B(�) is a non-regular context-free
language, whereas for any irrational p the system is not even
context free [17, Sec. 4.9, Exercise 25]. Thus, the wonderful
machinery of the state-splitting algorithm cannot be applied
directly for general SCSs.

Another important property of languages associated with
fully constrained systems is that these languages are factorial.
This means that a subword of an admissible word is also an
admissible word. Factoriality implies for instance that if � is of
the form �{0,1}, the sequence 1

n log
∣
∣B(�{0,1})

∣
∣ is subadditive,

so the lim sup in the definition of the capacity is actually a limit
by Fekete’s Lemma. The factoriality property is not shared by
SCSs in general.

III. APPROACHING CAPACITY FROM BELOW

In this section we study the problem of finding a sequence
of fully constrained systems that are contained in a given
semiconstrained (or weakly semiconstrained) system, with
the additional requirement that the capacity of the former
approaches that of latter in the limit. We present two such
sequences which induce (perhaps after state splitting) two
possible encoders for the SCS or WSCS.

Before continuing on, we pause to consider what properties
we require of an encoder. An encoder is nothing more than
a function φ : �N → X for translating an unconstrained
sequence of input symbols �N, into another sequence obeying
a given set of constraints, X ⊆ �N. A general encoder for
SCSs was already described in [5]. However, that encoder
had a probability of failure, i.e., it would not work on some
input sequences. We are therefore interested in finding an
encoder that always succeeds.

Thus, in what follows, we focus on studying fully con-
strained systems contained in a given SCS. One of our goals
is to determine the following function.

ELISHCO et al.: ON ENCODING SCSs 2477

Definition 9: Let � ⊆ P(�k) be a SCS. We define

cap⊆(�) = sup
L(G)⊆B(�)

cap(L(G)).

We remark that this definition is superficially reminiscent
of inner measures from measure theory. The definition is also
provisional, since as we shall later show, it coincides with the
usual notion of capacity.

It will be easier for us to describe fully constrained
systems that are only eventually contained in the desired
SCS. Formally, given two infinite subsets, S1, S2 ∈ �∗,
we say S1 is eventually contained in S2, denoted S1 ⊆e S2,
if |S1 \ S2| < ∞. A fully constrained system that is
eventually contained in a given SCS may easily be transformed
into another fully constrained system that is contained (in the
usual sense) in the given SCS by removing the words that are
inadmissible in the SCS.

A. Block Encoders for SCSs

The first sequence of fully constrained systems we construct
are each represented by a graph with a single state. Such
graphs are called block encoders.

Let � be a fat SCS. The fat condition on � guarantees that
it can be slightly shrunk while remaining not empty. More
formally, for any � > 0 we define the set �� by

�� =
{

η ∈ P(�k) : inf
μ∈P(�k)\�

η − μ
∞ > �

}

(1)

where
 ·
∞ is the �∞-norm.
First note that for every � > 0, �� ⊆ �. If � is fat then

there exists � > 0 such that �� �= ∅ and �� is also fat. We say
such an � is �-feasible.

Note also that in the definition of �� we consider
μ ∈ P(�k) as a vector of numbers and use the �∞-norm
instead of the usual total-variation norm. The particular choice
of norm is a side issue and does not significantly change the
essential results.

Construction A: Let � be a SCS. For every m ∈ N we
construct Rm(�) ⊆ �∗ by defining

Rm(�) = Bm(�)∗.

�
By definition, Rm(�) from Construction A is a regular

language. It may be represented as the language of the
following graph G: the graph contains a single vertex, all the
edges are self loops and are labeled by the words of Bm(�),
i.e., the length-m words in B(�).

The next theorem ties Rm(��) with B(�). In order the prove
this theorem however, we need a simple lemma first which
shows that if � is convex then for any � > 0, �� is convex as
well.

Lemma 10: Let � ⊆ P(�k) be a convex set, then for any
� > 0, �� is also convex.

Proof: Consider � as a subset of V = [0, 1]|�|k . For
x ∈ V , denote by {x}� the � neighborhood of x , i.e., {x}� =
{z ∈ V :
z − x
∞ � �}. The lemma follows from the obser-
vation that if x, y ∈ � such that {x}�, {y}� ⊆ �, then for
every t ∈ [0, 1], {tx + (1 − t)y}� ⊆ �. Indeed, let x, y ∈ �

such that {x}�, {y}� ⊆ �. Let t ∈ [0, 1] and denote by z the
point z = tx + (1 − t)y. Let u ∈ {z}� , and write u = z + v
where
v
∞ � �. We have that x + v, y + v ∈ � and
t (x + v) + (1 − t)(y + v) = z + v ∈ � since � is convex. The
lemma follows by noticing that if x ∈ � is such that {x}� ⊆ �
then x ∈ �� .

Theorem 11: Let � be a convex fat SCS. Then for any
�-feasible � > 0, there exists M� ∈ R such that for all
m > M�

Rm(��) ⊆ B(�).

Proof: By Lemma 10, if � is convex then so is �� .
Consider ω ∈ Rm(��) and write ω = ω1ω2 . . . ω� with
ωi ∈ Bm(��). For any φ ∈ �k , we bound the number of
occurrences of φ in ω.

For every 1 � i � �, we denote

μi = frk
ωi

∈ ��.

Every φ ∈ �k appears in ωi exactly μi (φ)(m − k + 1)
times. Additionally, in each concatenation point between ωi

and ωi+1, the word φ can appear at most another k − 1 times.
Since �� is convex, we have

μ = 1

�

�∑

i=1

μi ∈ ��.

It now follows that

frk
ω(φ) �

∑�
i=1 μi (φ)(m − k + 1) + (� − 1)(k − 1)

m� − k + 1

= μ(φ)�(m − k + 1) + (� − 1)(k − 1)

m� − k + 1

= μ(φ) + (� − 1)(k − 1)(1 − μ(φ))

m� − k + 1

� μ(φ) + (� − 1)(k − 1)

m� − k + 1
. (2)

Additionally,

frk
ω(φ) �

∑�
i=1 μi (φ)(m − k + 1)

m� − k + 1

= μ(φ)�(m − k + 1)

m� − k + 1

= μ(φ) − (� − 1)(k − 1)

m� − k + 1
. (3)

Following the right-hand side of (2) and of (3) we can
continue the analysis assuming all ωi share the same measure
μ ∈ �� . Now define

L(m, �) = (� − 1)(k − 1)

m� − k + 1
,

and thus,
∣
∣
∣frk

ω(φ) − μ(φ)
∣
∣
∣ � L(m, �).

We note that for every m > k −1, � � 2, the function L(m, �)
is monotone increasing in �. It follows that

L(m, �) < lim
�→∞ L(m, �) = k − 1

m
.

2478 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

Hence, we can take

M� = k − 1

�
, (4)

and obtain that for every m > M� ,

L(m, �) < �.

The calculation holds for every φ ∈ �k . Thus, we showed that
for every m > M� , every φ ∈ �k , and every ω ∈ Rm(��),
we have frk

ω ∈ �, and therefore Rm(��) ⊆ B(�).
We observe that M� = �(1

�). The following theorem shows
that the sequence of systems Rm(��) has a capacity that
approaches cap(B(��)) as m grows.

Theorem 12: Let � be a closed convex fat SCS. Then for
every �-feasible � > 0 the following limit exists and

lim
m→∞ cap(Rm(��)) = cap(B(��)).

Proof: We observe that

∣
∣Rm(��) ∩ �n

∣
∣ =

{
|Bm(��)| n

m if m|n,

0 otherwise.

It follows that

cap(Rm(��)) = lim sup
n→∞

1

n
log2

∣
∣Rm(��) ∩ �n

∣
∣

= 1

m
log2 |Bm(��)|.

Hence,

lim sup
m→∞

cap(Rm(��)) = lim sup
m→∞

1

m
log2 |Bm(��)|

= cap(B(��)),

by the definition of capacity. However, since � is �-feasible,
we have a fat �� . By Theorem 8, the limit in the definition of
the capacity for the SCS exists, which completes the proof.

We note that if �1 � �2 and �2 is �-feasible, then �1 is also
�-feasible.

Corollary 13: For any SCS with a closed convex fat � there
exist block encoders with rate arbitrarily close to cap(B(�)).

Proof: By Theorem 8 the limit in the capacity definition
exists and the capacity, which is given by the relative entropy
function, is continuous with respect to the restrictions. Thus,

lim
�→0

cap(B(��)) = cap(B(�)),

where � is �-feasible. It follows that Theorem 11 and Theo-
rem 12 show that it is possible to build a block encoder to a
given SCS with rate arbitrarily close to cap(B(�)).

While the block encoders we constructed are quite simple,
and have rate p/q arbitrarily close to cap(B(�)), we do how-
ever point a major drawback. The edges are labeled by words
from �m . Thus, the encoder is not p : q but mp : mq. For a
fair comparison with the next construction, if we transform this
to an encoder with labels from � (e.g., via a standard Moore
co-form and tree argument), the number of states becomes
exponential in m, and the anticipation becomes �(m), which
is undesirable.

B. Finite-State Encoders

Unlike Construction A, in which a sequence was a concate-
nation of independent blocks, the construction we now present
has a sliding-window restriction.

Construction B: Let � be a SCS. For every m ∈ N we
construct Nm (�) ⊆ �∗ by defining

Nm(�) = {
ω ∈ �∗ : subm(ω) ⊆ B(�)

}
.

�
We observe that Nm (�) from Construction B is a fully

constrained system. Indeed, it is defined by a finite set of
forbidden words, �m \ Bm(�).

For the purpose of building an encoder, we construct a
labeled graph G that represents Nm (�). The vertex set is
defined as V = ⋃m−1

i=0 �i . The edges, with labels from �,
are given by

a0a1 . . . ai
ai+1−−→ a0a1 . . . ai ai+1,

for all 0 � i � m − 2 and a j ∈ � for all j , as well as

a0 a1 . . . am−2
am−1−−−→ a1 . . . am−2am−1,

for all a0a1 . . . am−2am−1 ∈ B(�) and a j ∈ � for all j .
It is easily observed that every path of length m −1 labeled

by ω ∈ �m−1 ends in the vertex labeled by ω. From then on,
by simple induction, assuming ω�ω is a label of a path with
ω ∈ �m−1, then the path ends in the vertex ω and a letter
a ∈ � may be generated following that path if and only if
ωa ∈ B(�).

Theorem 14: Let � be a convex fat SCS. Then for any
�-feasible � > 0, and for all m � k,

Nm (��) ⊆e B(�).

Proof: Consider ω ∈ Nm (��), ω = a1 a2 . . . an , ai ∈ �,
and assume |ω| = n � 3m − 2. We define the i th length-m
window sliding over ω as

ωi = ai ai+1 . . . ai+m−1,

for all 1 � i � n − m + 1. We conveniently denote

μi = frk
ωi

∈ ��.

We also define

μ = 1

n − m + 1

n−m+1∑

i=1

μi .

Since � is convex, so is �� , and therefore μ ∈ �� .
For any φ ∈ �k , the number of occurrences of φ in ωi is

exactly (m − k + 1)μi (φ). By taking the sum (m − k + 1)∑n−m+1
i=1 μi (φ) we are overcounting the number of times φ

occurs in ω. However, we note that any occurrence of φ that
is fully contained within amam+1 . . . an−m+1 (i.e., within the
windows ωm , ωm+1, . . . , ωn−2m+2), is overcounted by a factor
of m−k+1 since it appears within exactly m−k+1 consecutive

ELISHCO et al.: ON ENCODING SCSs 2479

length-m windows ωi . It follows that

frk
ω(φ) � 1

n − k + 1

n−2m+2∑

i=m

μi (φ)

+ m − k + 1

n − k + 1

(
m−1∑

i=1

μi (φ) +
n−m+1∑

n−2m+3

μi (φ)

)

= n − m + 1

n − k + 1
μ(φ)

+ m − k

n − k + 1

(
m−1∑

i=1

μi (φ) +
n−m+1∑

n−2m+3

μi (φ)

)

� μ(φ) + (m − k)(2m − 2)

n − k + 1
.

On the other hand, a lower bound may be obtained by
assuming a maximal overcounting factor of m − k + 1 for all
occurrences of φ, regardless of position within ω. This time,

frk
ω(φ) � 1

n − k + 1

n−m+1∑

i=1

μi (φ)

= n − m + 1

n − k + 1
μ(φ)

� μ(φ) − m − k

n − k + 1
.

We observe that

0 � m − k

n − k + 1
� (2m − 2)(m − k)

n − k + 1
.

Thus, if we define

S(k, m, n) = (2m − 2)(m − k)

n − k + 1
, (5)

then
∣
∣
∣frk

ω(φ) − μ(φ)
∣
∣
∣ � S(k, m, n).

Let us now define

N� = (2m − 2)(m − k)

�
+ k − 1.

Then for all n > max {N� , 3m − 2} and all ω ∈ Nm (��),
|ω| = n, we also have frk

ω ∈ �, i.e., ω ∈ B(�). Hence,
Nm (��) ⊆e B(�) as claimed.

Note that unlike Construction A, here we obtain that
Nm (��) ⊆e B(�) for every m � k. We also note N� = �(1

�).
A stronger statement than that of Theorem 14 may be made

in the case of WSCSs, in which � is removed. This is due to
the fact that the quantity S(k, m, n) defined by equation (5) in
the proof of Theorem 14 is in fact o(1) for constant k and m.

Corollary 15: Let � be a convex fat SCS, fix m � k,
and define the tolerance function ξ(n) = S(k, m, n), where
S(k, m, n) is defined in (5). Then

Nm (�) ⊆e B(�).

Proof: The proof follows from the proof of Theorem 14,
by noting that S(k, m, n) is both o(1) and �(1

n).
Theorem 16: Let � be a closed convex fat SCS. Then

lim sup
m→∞

cap(Nm (�)) = cap(B(�)).

Proof: By Corollary 15 and Theorem 8

cap(Nm (�))) � cap(B(�)) = cap(B(�)).

Note that this statement does not require taking m to infinity,
and it applies to all m � k.

For the other direction, we contend that for every �-feasible
� > 0 there exists M� such that for all m > M�

cap
(
Nm2 (�)

)
� cap(Rm(��)).

To prove this claim, let ω = ω1ω2 . . . ω� ∈ Rm(��) with
� � m and ωi ∈ Bm(��) for all i . Denote μi = frk

ωi
∈ �� .

Let ω� be any length-m2 subword of ω, and let us check the
frequency any k-tuple φ ∈ �k appears in it.

Such a sequence ω� is surely fully contained in some m +1
consecutive subwords, say ω j ω j+1 . . . ω j+m . Let us denote

μ = 1

m + 1

m∑

i=0

μ j+i .

Again, μ ∈ �� due to the convexity of �� .
In a similar fashion to previous proofs, the frequency of φ

in ω� is easily seen to be upper bounded by

frk
ω� (φ) � (m − k + 1)

∑m
i=0 μ j+i (φ) + (k − 1)m

m2 − k + 1

� μ(φ) + m

m2 − k + 1
,

by accounting for the occurrences of φ in each subword ω j+i ,
and upper bounding the effect of the m concatenation points
between those subwords.

Conversely, the m−1 subwords ω j+1ω j+2 . . . ω j+m−1 must
be fully contained within ω�. Thus, we obtain the lower bound

frk
ω� (φ) � (m − k + 1)

∑m−1
i=1 μi (φ)

m2 − k + 1

� μ(φ) − mk + 2(m − k + 1)

m2 − k + 1
.

It therefore follows that
∣
∣
∣frk

ω�(φ) − μ(φ)
∣
∣
∣ � mk + 2(m − k + 1)

m2 − k + 1
. (6)

Since the right-hand side of (6) is o(1) as m → ∞, there
exists M� � k such that for all m > M� , frk

ω� ∈ �, and thus

Rm(��) ⊆ Nm2 (�) .

as claimed. It follows that for m > M� ,

cap
(
Nm2 (�)

)
� cap(Rm(��)).

Taking lim supm→∞ on both sides we obtain

lim sup
m→∞

cap (Nm (�)) � lim sup
m→∞

cap
(
Nm2 (�)

)

� lim sup
m→∞

cap(Rm(��))

= cap(B(��)),

where the last equality is due to Theorem 12. Now, since this
holds for all �-feasible � > 0, taking the limit as � → 0,
by the continuity guaranteed in Theorem 8 we get

lim sup
m→∞

cap (Nm (�)) � cap(B(�)),

which completes the proof.

2480 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

The graph G that represents Nm (�), is deterministic, and
therefore has anticipation 0. The graph is not necessarily an
encoder (due to an unequal out-degree), but by using the state-
splitting algorithm on G we may generate a p : q encoder,
at the cost of possibly increasing the anticipation.

Apart from describing two constructions for encoders,
we have thus far also proved the following corollary.

Corollary 17: Let � be a closed convex fat SCS. Then

cap⊆(�) = cap(B(�)).

Proof: This is immediate either from Corollary 13 or from
Theorem 16.

C. A Short Case Study

As a short case study we provide the following example.
Consider the SCS over � = {0, 1}, which is defined by the
set

� =
{
μ ∈ P(�2) : μ(11) � 0.205

}
.

This SCS was called the (0, 1, 0.205)-RLL SCS in [5], and
its capacity is cap(B(�)) ≈ 0.98. We investigate the encoders
presented thus far, with an intention of building an encoder
with rate 3

4 .
We first focus on the block encoder associated with Rm(�).

Choosing � = 0.005, a quick use of (4) shows that
any m > 200 guarantees that we satisfy the semiconstraints.
A finer analysis, accounting for divisibility conditions, reveals
all m > 156 suffice. The latter is indeed tight, since for
m = 156 we have ω = 13201231 ∈ B156(�0.005), but

lim
i→∞ fr2

ωi (11) = 32

156
> 0.205,

so for large enough i , ωi does not satisfy the semiconstraints.
However, there exist smaller values of m which are accept-
able. The smallest one is m = 5. However, in this case,
|B5(�0.005)| = 13, not achieving the required rate of 3

4 . The
next possible acceptable value is m = 10, in which case
|B10(�0.005)| = 379, exceeding the required rate, but at the
cost of having an unwieldy number of edges in the encoder.

On the other hand, the encoder associated with Nm (�)
is simpler. We can choose m = 6. We first construct the
De-Bruijn graph of order m − 1 = 5 in which we eliminate
vertices that correspond to a word with more than a single
appearance of the pattern 11. Since we would like to build an
encoder with rate 3

4 , we take the graph to its 4th power, and
keep the appropriate irreducible subgraph. After combining
vertices with the same follower sets and applying the state-
splitting algorithm, we obtain an encoder with 14 vertices and
112 edges. Three rounds of state splitting were used, thus the
anticipation as at most 3.

IV. APPROACHING CAPACITY FROM ABOVE

In this section we consider the dual question to the one
asked in Section III: which fully constrained systems, repre-
sented as the language of a directed labeled graph, contain
a given semiconstrained system. Additionally, we would like
to know whether the capacity of a sequence of those fully

constrained system can approach the capacity of the semi-
constrained system in the limit. In an analogous fashion to
Definition 9, we define the following.

Definition 18: Let � ⊆ P(�k) be a SCS. We define

cap⊇(�) = inf
L(G)⊇B(�)

cap(L(G)). (7)

As we shall soon see, the result is quite pessimistic. We first
give an auxiliary lemma, and then proceed to prove the main
theorem. For this lemma we require the following definition.

Definition 19: Let η ∈ P(�k) be a rational measure,
i.e., for every a ∈ �k , η(a) ∈ Q. We define the following
graphs nGη, for each n ∈ N. Let M ∈ N be the smallest nat-
ural number such that Mη is an integer vector. The initial ver-
tex set of nGη is V = �k−1. For each a0, a1, . . . , ak−1 ∈ �,
we place nMη(a0 a1 . . . ak−1) parallel edges from vertex
a0 a1 . . . ak−2 to vertex a1 a2 . . . ak−1. Finally, we remove
vertices with zero in-degree and out-degree, i.e., isolated
vertices.

Lemma 20: Let η ∈ Psi(�
k) be a positive (entry-wise)

rational and shift-invariant measure. Then for any α ∈ �∗
there exists β ∈ �∗ such that frk

αβ = η.
Proof: Since η is rational and shift invariant, for all

a0, a1, . . . , ak−1 ∈ � we have that η(a0 a1 . . . ak−1) ∈ Q,
and

∑

b∈�

η(a0 a1 . . . ak−2b) =
∑

b∈�

η(ba0 a1 . . . ak−2).

Assume we are given a sequence α ∈ �m with m � k
(if m < k we arbitrarily extend α so its length is at least k).

We now consider the graph (m + 1)Gη. We note that since
η is positive, the graph (m + 1)Gη is strongly connected,
i.e., there is a directed path between any source vertex and
destination vertex. Additionally, the shift-invariance property
of η implies that the in-degree of every vertex equals its
out-degree.

With a directed path of n edges in the graph we associate
a sequence of length n + k − 1 over � via a sliding-
window reading of the sequence. Formally, a sequence
α = a0 a1 . . . an+k−2 ∈ �n+k−1, ai ∈ �, is associated
with the directed path whose i th edge is ai ai+1 . . . ai+k−2 →
ai+1ai+2 . . . ai+k−1, for all 0 � i � n − 1. Since this mapping
is a bijection (up to parallel edges), by abuse of notation we
shall refer to α as both the sequence and the path.

The given sequence α describes a path in (m +1)Gη, where
the graph parameter (m + 1) ensures the path can consist of
distinct (though perhaps parallel) edges. Let us remove the
edges of this path from the graph to obtain a graph G�.

First we note that G� is still strongly connected since any
two vertices originally connected by an edge (perhaps several
parallel edges) are still connected by at least one edge. This is
because a total of m −k +1 < m +1 edges were removed, and
two vertices connected by an edge in (m + 1)Gη are actually
connected by at least m + 1 edges.

Next we distinguish between two cases. If the removed
path α was a cycle, then G� still has the property that every
vertex has an equal in-degree and out-degree. Thus, it contains
an Eulerian cycle (going over every edge exactly once) which

ELISHCO et al.: ON ENCODING SCSs 2481

we denote as β. Since the ending vertex of α still has a positive
out-degree, we may, without loss of generality, choose β to
begin in the same vertex. It follows that αβ is an Eulerian
cycle in the original graph (m + 1)Gη.

In the second case, the removed path α is not a cycle. In that
case, except for the starting vertex and ending vertex of α,
all other vertices have equal in-degree and out-degree. The
starting vertex of α has an in-degree larger by 1 compared
with its out-degree, and the ending vertex of α has the reversed
situation. Thus, G� contains an Eulerian path β that starts in
the ending vertex of α, and ends in the starting vertex of α.
Again, αβ is therefore an Eulerian cycle in the original graph
(m + 1)Gη.

We note that the sequence associated with the sliding-
window reading induced by the path αβ in (m + 1)Gη has
each window φ ∈ �k appear exactly as an η(φ) fraction of
the windows of size k, i.e., frk

αβ(φ) = η(φ).
Corollary 21: Let � be a fat SCS. Then for all α ∈ �∗

there exists β ∈ �∗ such that αβ ∈ B(�), i.e., any finite prefix
may be completed to a word in the semiconstrained system.

Proof: Since � is fat, there exists a probability measure
ν ∈ int(� ∩ Psi(�

k)), i.e., ν is shift invariant and in the
interior of �. We can take a sequence of rational shift-invariant
probability measures that converge to ν, and since there exists
an � > 0 environment of ν contained within �∩Psi(�

k), then
we deduce the existence of a strictly positive and rational shift-
invariant probability measure η ∈ �. From Lemma 20 we can
find β ∈ �∗ such that αβ ∈ B(�).

We note that the property that every prefix may be extended
to a word in B(�), is called right density in formal-language
theory (see [18]).

We now state the main result of this section.
Theorem 22: Let � be a fat SCS. Let �� be a fully con-

strained system such that B(�) ⊆ B(��). Then B(��) = �∗,
and thus

cap⊇(�) = log2 |�|.
Proof: Consider any α ∈ �∗. By Corollary 21, there exists

β ∈ �∗ such that αβ ∈ B(�), and hence, αβ ∈ B(��) as well.
Since �� is factorial, α ∈ B(��). Hence, B(��) = �∗.

We note the peculiar asymmetry between fully constrained
systems contained within a fat SCS, and fully constrained
systems containing a fat SCS. While in the former we have a
sequence of such fully constrained systems that approach the
capacity of the given fat SCS, in the latter there is exactly one
fully constrained system containing the SCS, and that is the
entire space �∗.

V. COMBINING SCSS WITH

COMBINATORIAL CONSTRAINTS

In our discussion thus far, we required any SCS � to be
fat. Unfortunately, if for some φ ∈ �k we have μ(φ) = 0
for all μ ∈ �, then � is not fat. Intuitively, in that case �
does not occupy all the dimensions of �k . It follows that
none of the results obtained in the previous sections apply
to fully constrained systems, since the latter employ such zero
constraints, and are therefore not fat SCSs. In the following

we discuss how this situation can be resolved by defining
relatively-fat SCSs.

We start by defining the set of forbidden words, that is, those
words which are never subwords of the admissible words of
the given SCS.

Definition 23: Let � ⊆ P(�k) be a set of probability
measures. We denote by F(�) ⊆ �k the following set of
�-forbidden k-tuples,

F(�) =
{
φ ∈ �k : ∀μ ∈ �,μ(φ) = 0

}
.

We now define a relatively fat set �. Informally, we call a
set � relatively fat (RF) if apart from F(�) it is fat. A formal
definition follows.

Definition 24: For any � ⊆ P(�k), let us denote D =
�k \ F(�). We say that � is relatively fat (RF) if

clD(intD(� ∩ Psi(D))) = clD(� ∩ Psi(D)),

where clD and intD are the closure and interior with respect
to D, respectively, and Psi(D) denotes the set of shift-invariant
measures on D.

We mention briefly that other definitions of RF sets are
possible, somewhat generalizing the definition we use. For
example, one may generalize the definition to one that requires
� to be contained within an affine space of dimension possibly
lower than P(�k), and further that � is fat with respect to that
affine space. However, such generality is not required by us.

We now go through the results obtained thus far for
fat SCSs, and describe the necessary changes required to make
them work for RF SCSs as well. We first note that the general
form of Theorem 8, which holds for every set � and is given
in [4, Ch. 3] is as follows (with modified notations).

Theorem 25: Let � ⊆ P(�k) be closed and convex. Then

log2 |�| − inf
η∈int(�∩Psi(�k))

D(η
η�) � cap(B(�))

� log2 |�| − inf
η∈cl(�∩Psi(�k))

D(η
η�),

where int and cl are the interior and closure of a set.
In the case of RF SCSs, the interior of � may be empty and

therefore Theorem 25 states that the capacity of a RF SCS is
bounded from below by −∞. We are therefore left with the
upper bound of

cap(B(�)) � log2 |�| − inf
η∈cl(�∩Psi(�k))

D(η
η�).

Construction A does not work for RF SCSs. The cause
of failure is the obvious concatenation point between blocks,
which may contain a forbidden word. For example, assume
a binary alphabet, k = 2, and F = {11}, i.e., the SCS
is in fact the (1,∞)-RLL fully constrained system. In this
case, taking two words of length m, the first, α1, ending with
a 1, and the second α2, starting with a 1, and concatenating
them together, will create the forbidden pattern 11 in α1α2.
A way of solving this problem is by placing a carefully
crafted string, β, between the two blocks, i.e., α1βα2. As long
|β| = o(m), Construction A works. A similar method, devel-
oped for fully constrained multidimensional RLL systems was
described in [6].

2482 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

In comparison, Construction B indeed does work for
RF SCSs. The only change needed in the proofs is to alter
the definition of �� from (1) to

�� =
{

η ∈ � : ∀φ ∈ �k \ F(�),

inf
μ∈P(�k)\�

|η(φ) − μ(φ)| > �

}

.

Having considered the generalization of Section III to
RF SCSs, we now turn to discuss the generalization of
Section IV. In what follows, we do not even require the
relative-fatness property. We are therefore interested in fully
constrained systems containing a given SCS. Unlike contained
fully constrained system, in the containing case the discussion
is somewhat more involved.

We recall some useful notions from graph theory. Two
vertices, v1 and v2, in a directed graph G, are said to
be bi-connected if there is a directed path from v1 to v2,
and a directed path from v2 to v1. Bi-connectedness is an
equivalence relation, and its equivalence classes are called
strongly connected components.

In Corollary 21 we used the fact that for a fat �, there
exists a rational η ∈ � such that Gη is a single strongly
connected component. Unfortunately, this is no longer the case
for general SCSs, even if we restrict ourselves to RF SCSs as
shown in the following example.

Example 26: Fix � = {0, 1}, and k = 4. Define μ1,
μ2 ∈ Psi(�

k) as follows:

μ1 = δ1111, and μ2 = 1

2
(δ1010 + δ0101),

where δφ denotes probability measure of value 1 at φ, and 0
elsewhere. Let � be the convex hull of μ1 and μ2. Then �
is non-empty, convex, relatively fat, and contains only shift-
invariant measures. However, except for μ1 and μ2, there is
no other η ∈ � such that Gη has a single strongly connected
component. �

The following definition is intended to capture and isolate
this kind of pathological behaviour.

Definition 27: Let � ⊆ Psi(�
k) be a SCS. The essential

part of � is defined as

ess(�) = {η ∈ � : B({η}) �= ∅}.
Thus, ess(�) keeps only those measures of � that have

at least one admissible word. Note that by definition, ess(�)
contains only rational measures. We also note that even if
� is convex, the set ess(�) may not necessarily be convex
(even if we consider only convex rational combinations of
measures from ess(�)). This can be seen in Example 26, in
which ess(�) = {μ1, μ2}.

Lemma 28: Let η ∈ Psi(�
k) be a rational shift-invariant

measure. Then B({η}) �= ∅ if and only if Gη is strongly
connected after removing isolated vertices.

Proof: In the first direction assume B({η}) �= ∅. Then
let ω ∈ B({η}). Following the same steps as in the proof of
Lemma 20, we obtain that ω corresponds to an Eulerian cycle
in nGη for some n ∈ N (after removing isolated vertices).

Thus, nGη is strongly connected, and since n does not affect
this property, Gη is also strongly connected.

In the other direction, assume Gη is strongly connected.
Since η is shift invariant, the in-degree and out-degree of each
vertex are equal, and there exists an Eulerian cycle in Gη.
Again, by the proof of Lemma 20, this cycle corresponds to
a word ω ∈ �∗ with frk

ω = η. Thus, ω ∈ B({η}).
The next step we take is to define the essential graph of

a SCS.
Definition 29: Let � ⊆ Psi(�

k). Denote by Gess(�) the
following directed labeled graph: Vertices are represented by
elements of �k−1 . For each φ = a0 a1 . . . ak−1 ∈ �k , such that
there exists some η ∈ ess(�) with η(φ) > 0, we place an edge
a0a1 . . . ak−2 → a1 a2 . . . ak−1, labeled by a0. Any isolated
vertices (i.e., vertices with both in-degree and out-degree of
zero) are then removed.
Note that the edge a0a1 . . . ak−2 → a1 a2 . . . ak−1 is labeled
by a0 and not by ak−1. This simplifies the notation later.

Intuitively, Gess(�) is the union of all Gη, η ∈ ess(�), where
parallel edges are merged, and isolated vertices are removed.
Here, we define the union of two directed labeled graphs,
G1 = (V1, E1), and G2 = (V2, E2), with Ei ⊆ Vi × Vi × �,
as G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2). We note that the sets of
vertices of the two original graphs are not necessarily disjoint,
and the same goes for the sets of edges. We collect some more
insight into words having a shift-invariant measure.

Lemma 30: Let η ∈ Psi(�
k) be a shift-invariant measure,

and let ω = a0a1 . . . an−1 ∈ �n be a word for which frk
ω = η.

Then a0 . . . ak−2 = an−k+1 . . . an−1, i.e., the (k −1)-prefix and
(k − 1)-suffix of ω are equal.

Proof: Let ω be a word with k-tuple distribution given
by η. Since η is shift invariant, for every φ ∈ �k−1 we have

∑

a∈�

η(aφ) =
∑

a∈�

η(φa). (8)

In particular, let us examine φ = a0 a1 . . . ak−2, the (k − 1)-
prefix of ω. The left-hand side of (8) is given by

|{(α, γ) : α, γ ∈ �∗, αφγ = ω}| − 1

n − k + 2
, (9)

where the subtraction of 1 in the numerator is due to the fact
we require a letter to appear before φ, and therefore cannot
count its appearance as a prefix of ω.

Assume to the contrary that φ is not the (k −1)-suffix of ω.
In that case, every occurrence of φ in ω is followed by a letter,
and then the right-hand side of (8) is

|{(α, γ) : α, γ ∈ �∗, αφγ = ω}|
n − k + 2

,

but that differs from (9), a contradiction.
We shall call a word ω ∈ �∗ k-shift-invariant if

frk
ω ∈ Psi(�

k). By the previous lemma, the (k −1)-suffix of ω
equals its (k − 1)-prefix. We shall therefore find it convenient
to chop off the (k−1)-suffix of ω using the following operator.
If ω = a0 a1 . . . an−1, n � k − 1, then we define

SuffChopk−1(ω) = a0 a1 . . . an−k .

The following corollary is therefore immediate.

ELISHCO et al.: ON ENCODING SCSs 2483

Lemma 31: Let � ⊆ Psi(�
k) be a SCS. Then for every

ω ∈ B(�) there exists a cycle in Gess(�) generating
SuffChopk−1(ω). Hence,

B(�) ⊆ L(Gess(�)).

Proof: Let ω ∈ B(�), and denote |ω| = n. We can assume
n � k − 1. Additionally, we must have η = frk

ω ∈ ess(�),
by definition. If we read ω by a sliding window of size
k − 1, then by Lemma 30 we get a sequence of vertices
of Gess(�) forming a cycle. The labels along this cycle
generate SuffChopk−1(ω). We can then take again the first
k − 1 edges of the cycle to complete a reading of ω. Thus,
ω ∈ L(Gess(�)).

We argue that every word obtained by reading the labels of
edges along a walk on Gess(�) can be completed to a word
in B(�).

Theorem 32: Let � ⊆ Psi(�
k) be a convex SCS. Then,

for every α ∈ L(Gess(�)) there exists β ∈ �∗ such that
αβ ∈ B(�).

Proof: Let α ∈ L(Gess(�)), |α| = n, be a word that is
obtained by reading the labels of edges e1 → e2 → · · · → en

along a path in Gess(�).
Each edge ei corresponds to some φi ∈ �k . By the

definition of Gess(�), the edge ei exists since there exists
ηi ∈ �, such that ηi (φi) > 0 and B(ηi) �= ∅. Thus, ηi is
rational and shift invariant. By Lemma 28, Gηi is strongly
connected (after removing isolated vertices).1

We now take a convex combination

η =
∑

ciηi ,

where ci > 0, ci ∈ Q, for all 1 � i � n, and
∑n

i=1 ci = 1.
Since � is convex, we have η ∈ �. By our previous observa-
tions, Gη contains the path e1 → · · · → en , and is the union
of the graphs

{
Gηi

}n
i=1, each of which is strongly connected.

Thus, Gη is also strongly connected.
We first note that by Lemma 28, B({η}) �= ∅,

i.e., η ∈ ess(�). Following the same reasoning as in the proof
of Lemma 20, there exists m ∈ N such that there exists an
Eulerian cycle in mGη starting with the path e1 → · · · → en .
This Eulerian cycle therefore corresponds to a reading of a
word αβ, by sliding windows of size k, for which frk

αβ =
η ∈ �. Hence, αβ ∈ B(�).

As a corollary we obtain the main result of this section.
Corollary 33: Let � ⊆ Psi(�

k) be a convex SCS. Then
L(Gess(�)) is the unique smallest fully constrained system
containing B(�). In particular,

cap⊇(�) = cap(L(Gess(�))).

Proof: Let G be a directed graph, with edge labels
from �, such that B(�) ⊆ L(G). Consider a word
α ∈ L(Gess(�)). By Theorem 32 there exists β ∈ �∗ such
that αβ ∈ B(�). Thus, αβ ∈ L(G). In particular, a prefix of a
path generating αβ in G, generates α. Hence, α ∈ L(G), and
L(Gess(�)) ⊆ L(G). The claims now follow.

We devote the remainder of the section for some curious
observations. Our first observation is that while one might ini-

1Throughout the proof we remove isolated vertices from graphs.

tially assume cap⊇(�) is monotone increasing in the capacity,
this is not generally the case, as the following example shows.

Example 34: Let �1, �2 be SCSs over � = {0, 1} with
k = 3 defined by

�1 =
{
μ ∈ Psi(�

k) : μ(000), μ(111), μ(101) � 0.01
}
.

�2 =
{
μ ∈ Psi(�

k) : μ(000) = 0
}
.

We note that both �1 and �2 are shift invariant, convex,
and relatively fat. The capacity of �1 may be obtained using
Theorem 8, and that of �2 is also easily obtained since it is
also a fully constrained system. We reach

cap(B(�1)) ≈ 0.462, cap(B(�2)) ≈ 0.879.

One can easily see that Gess(�1) is the De-Bruijn graph of
order 2. Thus,

cap⊇(�1) = 1.

Since �2 is fully constrained to begin with,

cap⊇(�2) = cap(B(�2)) ≈ 0.879.

Hence,

cap(B(�1)) < cap(B(�2)),

but

cap⊇(�1) > cap⊇(�2).

�
While a gap may exist between cap(B(�)) and cap⊇(�),

as is demonstrated in Example 34, this is never the case with
zero capacity.

Lemma 35: Let � ⊆ Psi(�
k) be a convex SCS. Then we

have cap(B(�)) = 0 if and only if cap⊇(�) = 0.
Proof: For the first direction, assume we have

cap⊇(�) = 0. By definition,

cap(B(�)) � cap⊇(�) = 0,

and therefore cap(B(�)) is either 0 or −∞. We note that
B(�) �= ∅, since otherwise we would have L(Gess(�)) = ∅
implying cap⊇(�) = −∞, a contradiction. It follows that we
must have some ω ∈ B(�), |ω| � k. Denote ω = αβ, where
α = SuffChopk−1(ω). But then

frk
αnβ = frk

αβ ∈ �,

for all n ∈ N, and B(�) is an infinite set, giving us the desired
cap(B(�)) = 0.

In the other direction, assume cap(B(�)) = 0.
By Lemma 31, B(�) ⊆ L(Gess(�)). Let ω ∈ B(�),
with frk

ω = η. Then Gη (after removing isolated vertices) is
Eulerian, since η is shift invariant. We note that this Eulerian
cycle must be simple, otherwise nGη contains an exponential
(in n) number of Eulerian cycles, implying cap(B(�)) > 0,
a contradiction.

Now, assume ω1, ω2 ∈ B(�) be two distinct words, with
frk

ωi
= ηi . As in the proof of Theorem 32, the convexity of

� implies that the simple Eulerian cycles of Gη1 and Gη2 are
either identical or disjoint. Otherwise, an appropriate rational
convex combination of η1 and η2 results in some η ∈ � whose

2484 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 64, NO. 4, APRIL 2018

Gη is Eulerian and non-simple, implying a positive capacity
for B(�), a contradiction.

It follows that Gess(�) is a union of disjoint simple Eulerian
cycles. Thus, cap⊇(�) = cap(L(Gess(�))) = 0.

By the proof of Lemma 35 we also observe that for a convex
� ⊆ Psi(�

k) with cap(B(�)) = 0, we have that B(�) is a
regular language, though not necessarily a fully constrained
system. This is no longer true if we omit the requirement that
� ⊆ Psi(�

k), as the following example shows.
Example 36: Let � = {0, 1}, k = 2, and define

� =
{

μ ∈ �2 : μ(00) <
1

2
, μ(11) <

1

2
, μ(01) = 0

}

.

We note that � is relatively fat, convex, but contains some
measures which are not shift invariant. Interestingly,

B(�) = {
1n0n : n ∈ N

}
,

which is not a regular language. �

VI. CONCLUSIONS AND DISCUSSION

This work was devoted to fully constrained systems either
contained or containing a given SCS. This is in order to
find connections between SCSs and fully constrained systems,
further motivated by the extensive literature on encoders
for fully constrained systems. Apart from two encoder con-
structions, an interesting asymmetry between contained and
containing fully constrained systems emerged. Whereas the
former approach the capacity of the given SCS, the latter are
generally bounded away from it.

We suspect cleaner results may be obtained when consider-
ing infinite sequences. This is apparent from the extra care and
combinatorial arguments employed to handle finite words and
non-shift-invariant measures. We leave this study of infinite
sequences to a later work.

Another set of open questions raised by this work is
the study of various complexity properties associated with
encoders for SCSs. In the two encoders presented here,
we briefly mentioned number of states and edges, as well as
anticipation, as important parameters. These are crucial for
practical applications. A more in-depth study of these and
other parameters, as well as associated bounds and trade-offs
between them, will by the subject of future work.

ACKNOWLEDGMENTS

The authors would like to thank the associate editor and
the anonymous reviewers, whose comments helped improve
the presentation of the paper.

REFERENCES

[1] J.-R. Chazottes, J.-M. Gambaudo, M. Hochman, and E. Ugalde, “On the
finite-dimensional marginals of shift-invariant measures,” Ergodic The-
ory Dyn. Syst., vol. 32, no. 5, pp. 1485–1500, 2012.

[2] Y. M. Chee, C. Johan, H. M. Kiah, S. Ling, T. T. Nguyen, and
V. K. Vu, “Efficient encoding/decoding of capacity-achieving constant-
composition ICI-free codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Barcelona, Spain, Jul. 2016, pp. 205–209.

[3] Y. M. Chee, C. Johan, H. M. Kiah, S. Ling, T. T. Nguyen, and
V. K. Vu, “Rates of constant-composition codes that mitigate intercell
interference,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Barcelona,
Spain, Jul. 2016, pp. 200–204.

[4] A. Dembo and O. Zeitouni, Large Deviations Techniques and Applica-
tions. New York, NY, USA: Springer, 1998.

[5] O. Elishco, T. Meyerovitch, and M. Schwartz, “Semiconstrained sys-
tems,” IEEE Trans. Inf. Theory, vol. 62, no. 4, pp. 811–824, Apr. 2016.

[6] T. Etzion, “Cascading methods for runlength-limited arrays,” IEEE
Trans. Inf. Theory, vol. 43, no. 1, pp. 319–324, Jan. 1997.

[7] K. A. S. Immink, Codes for Mass Data Storage Systems. Eindhoven,
The Netherlands: Shannon Foundation Publishers, 2004.

[8] R. Karabed, D. L. Neuhoff, and A. Khayrallah, “The capacity of costly
noiseless channels,” Almaden Res. Center, San Jose, CA, USA, Tech.
Rep. RJ 6040 (59639), Jan. 1988.

[9] S. Kayser and P. H. Siegel, “Constructions for constant-weight ICI-free
codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Honolulu, HI, USA,
Jul. 2014, pp. 1431–1435.

[10] A. S. Khayrallah and D. L. Neuhoff, “Coding for channels with cost
constraints,” IEEE Trans. Inf. Theory, vol. 42, no. 3, pp. 854–867,
May 1996.

[11] V. Y. Krachkovsky, R. Karabed, S. Yang, and B. A. Wilson, “On
modulation coding for channels with cost constraints,” in Proc. IEEE Int.
Symp. Inf. Theory (ISIT), Honolulu, HI, USA, Jun. 2014, pp. 421–425.

[12] O. F. Kurmaev, “Constant-weight and constant-charge binary run-length
limited codes,” IEEE Trans. Inf. Theory, vol. 57, no. 7, pp. 4497–4515,
Jul. 2011.

[13] D. Lind and B. H. Marcus, An Introduction to Symbolic Dynamics and
Coding. Cambridge, U.K.: Cambridge Univ. Press, 1985.

[14] M. Qin, E. Yaakobi, and P. H. Siegel, “Constrained codes that mitigate
inter-cell interference in read/write cycles for flash memories,” IEEE
J. Sel. Areas Commun., vol. 32, no. 5, pp. 836–846, May 2014.

[15] A. Shafarenko, A. Skidin, and S. K. Turitsyn, “Weakly-constrained codes
for suppression of patterning effects in digital communications,” IEEE
Trans. Commun., vol. 58, no. 10, pp. 2845–2854, Oct. 2010.

[16] A. Shafarenko, K. S. Turitsyn, and S. K. Turitsyn, “Information-theory
analysis of skewed coding for suppression of pattern-dependent errors
in digital communications,” IEEE Trans. Commun., vol. 55, no. 2,
pp. 237–241, Feb. 2007.

[17] J. Shallit, A Second Course in Formal Languages and Automata Theory.
Cambridge, U.K.: Cambridge Univ. Press, 2008.

[18] H. J. Shyr, “Characterizations of right dense languages,” Semigroup
Forum, vol. 33, no. 1, pp. 23–30, 1986.

[19] J. B. Soriaga and P. H. Siegel, “On the design of finite-state shaping
encoders for partial-response channels,” in Proc. Inf. Theory Appl.
Workshop (ITA), San Diego, CA, USA, Feb. 2006, pp. 1–5.

Ohad Elishco (S’12) received the B.Sc. in mathematics and his B.Sc. in
electrical engineering in 2012 from Ben-Gurion University of the Negev,
Israel; the M.Sc. degree in electrical engineering in 2013 from Ben-Gurion
University of the Negev. In 2013 he started his Ph.D in electrical engineering
also in Ben-Gurion University. His research interests are constrained coding
and dynamical systems.

Tom Meyerovitch received the B.Sc. in mathematics and computer science
from from Tel-Aviv University, Israel, in 1999; the M.Sc. and Ph.D. degrees in
mathematics in 2004 and 2010, respectively, also from Tel-Aviv University.
In 2010-2012 he held a post doctoral position at the University of British
Columbia, and the Pacific Institute for Mathematical studies in Vancouver
Canada. Since 2012, he has been on the faculty of the Department of
Mathematics at Ben-Gurion University, Beer-Sheva, Israel. He studies various
mathematical aspects of dynamical systems, in particular symbolic dynamics.

Moshe Schwartz (M’03–SM’10) is an associate professor at the Depart-
ment of Electrical and Computer Engineering, Ben-Gurion University of the
Negev, Israel. His research interests include algebraic coding, combinatorial
structures, and digital sequences.

Prof. Schwartz received the B.A. (summa cum laude), M.Sc., and
Ph.D. degrees from the Technion – Israel Institute of Technology, Haifa,
Israel, in 1997, 1998, and 2004 respectively, all from the Computer Science
Department. He was a Fulbright post-doctoral researcher in the Department
of Electrical and Computer Engineering, University of California San Diego,
and a post-doctoral researcher in the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012–2014, he was a
visiting scientist at the Massachusetts Institute of Technology (MIT).

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

