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On Independence and Capacity of Multidimensional
Semiconstrained Systems

Ohad Elishco™, Student Member, IEEE, Tom Meyerovitch, and Moshe Schwartz

Abstract— We find a new formula for the limit of the capacity
of certain sequences of multidimensional semiconstrained systems
as the dimension tends to infinity. We do so by generalizing
the notion of independence entropy, originally studied in the
context of constrained systems, to the study of semiconstrained
systems. Using the independence entropy, we obtain new lower
bounds on the capacity of multidimensional semiconstrained
systems in general, and d-dimensional axial-product systems in
particular. In the case of the latter, we prove our bound is
asymptotically tight, giving the exact limiting capacity in terms
of the independence entropy. We show the new bound improves
upon the best-known bound in a case study of (0, k, p)-RLL.

Index Terms— Semiconstrained systems, capacity, indepen-
dence entropy, bounds.

I. INTRODUCTION

RROR-CORRECTING codes and constrained codes may

be considered as two extreme ways of coping with a noisy
channel. The former are usually data independent, and assume
errors are a statistical phenomenon, reducing data-transmission
rate to protect against such errors. Constrained codes, however,
assume certain patterns in the data stream are responsible for
the occurrence of errors. Thus, constrained codes eliminate all
undesirable patterns, at the cost of reduced data-transmission
rate.

Recently in [1] and [2], semiconstrained systems (SCSs)
were suggested as a generalization to constrained systems
(which we emphasize by calling fully constrained systems).
In SCSs we do not eliminate the undesirable patterns entirely
but rather we allow them to appear with a restriction on their
frequency. To illustrate, consider a binary channel in which
the appearance of k-consecutive 1’s is forbidden. The set of
allowed words is the well known inverted (0, k)-run-length-
limited (RLL) system. However, if k-consecutive 1’s are not
forbidden entirely, but instead are allowed to appear in at most
a fraction p of places, then the set of allowed words forms
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a SCS called the (0, k, p)-RLL system. Informally, a SCS is
defined by a set I' of probability measures over k-tuples. The
allowed words in the SCS are those in which the empirical
distribution of k-tuples belongs to I'. This may be viewed as
a generalization of fully constrained systems since taking I’
to be a subset with a 0-frequency restriction on some k-tuples
yields a fully constrained system.

SCSs not only generalize fully constrained systems, but
also subsume a range of other settings, which were mainly
dealt with in an ad-hoc fashion. Among these we can find
DC-free RLL coding [3], constant-weight ICI coding for flash
memories [4]-[7], coding to mitigate the appearance of ghost
pulses in optical communication [8], [9], and the more general,
channel with cost constraints [10], [11].

In the one-dimensional case, the capacity of a SCS is
given by a relatively explicit expression as the solution to a
certain optimization problem on a finite dimensional space,
e.g., [12]. A probabilistic encoder for SCSs was constructed
in [1], and constant-bit-rate to constant-bit-rate encoders are
possible by approximating a SCS with a fully constrained
system, as described in [2].

A natural extension, and the goal of this work, is to study
multidimensional SCSs. This is an extremely challenging
problem, considering the fact that even for fully constrained
systems in complete generality it is provably impossible to
find an exact solution. The capacity of multidimensional fully
constrained systems is known exactly only in a handful of
cases [13]-[16]. In the absence of a general method for
computing the capacity, various bounds and approxima-
tions were studied, e.g., [17]-[26]. It should be emphasized
that apart from its independent intellectual merit, study-
ing multidimensional systems is of practical importance
since most storage media are two- or three-dimensional,
including magnetic recording devices such as hard drives,
optical recording devices such as CDs and DVDs, and flash
memories.

The approach we take in this work is bounding the capacity
by studying the independence entropy of SCSs, thus extending
the works [27], [28]. The independence entropy appeared
in previous works on d-dimensional shifts of finite type.
Although this notion was first defined in [27], the idea
stemmed from tradeoff functions studied in [29]. It was
defined in a combinatorial fashion, where in this work we
redefine it in a probabilistic fashion. We show that the two
definitions are equal for the special case of fully constrained
systems.
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The motivation for the use of independence entropy is the
fact that it is more easily computable, since we only need
to consider independent probability measures which satisfy
the constraints. We also focus on the class of d-dimensional
axial-product constraints, which form a significant proportion
of multidimensional fully constrained systems studied thus far.
For this class, our approach has an additional major advantage
in that instead of calculating the independence entropy for
a d-dimensional axial product SCS, we may calculate it
directly from the one-dimensional system. This dimensionality
reduction offers further simplification of the calculations.

There are new features and difficulties that come up
when adapting the results from fully constrained systems.
We observe that fully constrained systems can be interpreted
within the framework of semiconstrained systems. We elabo-
rate on this basic yet crucial point in the following section.
From this somewhat unconventional perspective, fully con-
strained systems are viewed as certain subsets of measures.
It turns out that even in an abstract sense, the subsets of
measures that describe fully constrained systems are very
special among semiconstrained systems because they possess
the following “extremal” property: If a measure u is contained
in (the set of measures associated to) some fully constrained
system and u is a convex combination of measures, then each
of them is contained in the (set of measures associated to) the
same fully constrained system. This property does not hold
for general semiconstrained systems. This extremal property
is manifested, for instance, in the fact that any subword of
an admissible word in a fully constrained system is also
admissible, leading to sub-multiplicativity of the sequence
counting the number of admissible words of each length. The
absence of “extremality” for more general semiconstrained
systems leads to new features and difficulties. In particular,
the absence of sub-multiplicativity forces us to avoid the use of
Fekete’s Lemma to prove the existence of a limit for sequences
related to the capacity.

The main contributions of this paper are a formulation of the
independence entropy for SCSs, and its study in relation to the
capacity of SCSs. As a result, we obtain a new lower bound on
the capacity of multidimensional SCSs, generalizing the results
of [27] and [28], and in an example test case, improving upon
the best known bounds on the capacity of multidimensional
(0, 1, p)-RLL SCSs given in [1].

In this work we also establish an equality of the limiting
capacity as d — oo and independence entropy for the
d-axial-product SCSs. As the independence entropy is a lower
bound on the capacity of a given SCS in every dimension,
the capacity approaches the independence entropy as the
dimension grows.

This paper is organized as follows. In Section II we describe
the notation and give the required definitions used throughout
the paper. In Section III we define the independence entropy
and provide results characterizing the independence entropy.
In Section IV we show that the capacity is lower bounded by
the independence entropy. In Section V we show that the lim-
iting capacity of the d-axial-product SCS as d — oo is equal
to the independence entropy. We conclude in Section VI by
describing a short case study, and comparing it with previous
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results. The appendices provide proofs that the generalized
notions we define in this paper indeed contain fully constrained
systems as a special case, thus providing a generalization for
them.

II. PRELIMINARIES

Let N denote the set of natural numbers. We use e; to
denote the unit vector of direction i, 0 to denote the all-zero
vector, and 1 to denote the all-one vector, where in all cases,
the dimension of the vectors is implied by the context. For
n € N we define

[n121{0,1,...,n—1}.

We shall often use [n]e; to denote the set {0 -e;,1-e;,...,
(n —1) - e;}. For d,n € N, denote by F,f’ the d-dimensional
cube of length 1, i.e., the set F¢ = [n]¢. Obviously |F?| = n9.
Additionally, for (no, ...,nq—1) € N? we conveniently denote

[(n0, ..., na—1)] = [no] x [n1] x -+ x [na—1].

Throughout the paper, £ will be used to denote a finite
alphabet. A word (or block) w of length n is a sequence of
n letters from X, denoted w = ag ay...a,—1, with a; € X.
We let |w| denote the length of the word w. We can also
consider infinite-sized words by a mapping from positions
on the integer grid Z? to letters from X (also known as
configurations). Such a word will be denoted by x € ZZd,
and the letter in the v € Z? position will be denoted by
xy (sometimes referred to as the restriction of x to v). More
generally, given any subset of the integer grid, S C Z?, a word
x € X% is a mapping of positions indexed by elements of §
to letters from X.

We require a notation for sets of probability measures and
their marginals. For a set W we denote by P(W) the set of
all probability measures over W.

Definition 1: Let (X, B) be a measurable space. For every
u,v € P(X), the total variation distance is defined as

lu = vllpy = sup [u(W) —v(W)].
weB
O

Given a compact topological space X, the space P(X) is
itself a compact topological space with respect to the weak
#-topology. In particular, when X is a finite set with the
discrete topology, the topology on P(X) is given by the
total variation distance which also satisfies ||y —v|ry =
3 vex ) —v()l.

Given a continuous map f : X — Y between topological
spaces, and u € P(X), let f(u) € P(Y) be given by

f W) 2 u(f~Hwy, wev.
Definition 2: For d € N, § C S C 74 and x € ZS, let
xs denote the restriction of x to the coordinates in S. Let
T SS : X5 — %5 denote the restriction map given by

ﬂSS(x) £ xg.

When S is clear from the context, we shall write &g instead
of T g . O
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While having the notation zg(x) in addition to the equiv-
alent notation xg, seems superfluous, we shall require the
former to simplify our presentation. As a consequence of the
previous definition, for u € P(ZS) and § C S, we note that
ms(u) € P(ES) is the S-marginal of x.

Definition 3: For d € N, v € 74 let oy : EZd — EZd be
the shift by the vector v, given by

d
(Uv(x))u éxu+v, uec Zd, X € ZZ .

We denote by Psid(EZd) the space of shift-invariant probability
measures on L, namely,

Psi(EZd) £ { € P(Ezd) :oy(u) = u forallv e Zd},

where oy(1t) = p oa{l. For k € N we say that u € P(Zde)
is shift invariang if it is the projection of some sh[[ift—invariant
measure on L° i.e., if there e)iiists i € Ps(ZZY such that
= and[t. We denote by Ps (v ) the space of shift-invariant

probability measures on Xt 4 , namely,
d d d
P(2h) £ wpa(Pa(27)) € P(ED).

O
In the one-dimensional case, d = 1, it is rather easy to

check whether a given probability1 measure u € P(Z’ kl) is
shift invariant. Indeed, u € Psi(E %) if and only if it satisfies
the following finite system of linear equations,

z ula,ap, ..., ag—1) = z uay,...,ak-1,a),
aex aex
forall aj,...,ar_1 € Z.

When d > 2 the space of finite marginals of shift invariant
measures becomes much more complicated. It is still not
difficult to formulate an analogous system of linear equations
that are satisfied for every u € Pg(Zh 4 ). However, these
linear conditions are no longer sufficient conditions for shift
invariance. In fact, the problem of checking whether a given
nePEh ¢ ) is shift invariant, is undecidable (assuming some
computable representation of ). See for instance [30], and
references within, for a related discussion.

We are interested in defining empirical distributions of
words. To that end, we give some more general definitions
that we then specialize to our specific needs. Given x € ZZd,
the delta measure at x, denoted by d, € P(sz), is defined by
o ({x}) = 1. Additionally, given n € N, the empirical measure
associated with x and n, denoted fry , € P(sz), is given by

1
fr ., & = > o)
veFd

For S C Z¢ we can take the S-marginal, and define frf,n €
P(Z5) by

S
fry , £ ws(fry ).

Any word w € X5 i may be extended periodically to the entire
integer grid & € %° by defining

NoA
Wy = Wy mod n
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for all v € Z¢, and where the modulo is taken entry-wise.
The empirical distribution we shall be requiring may now be
defined.

Definition 4: Let d,n € N, w € EFff, and S C 74. The
empirical distribution of w with respect to S, denoted fri,
is defined by

5}

S 4
fr,, = fry .

>

v

O

Combinatorially speaking, the empirical distribution fri is

obtained by cyclically scanning w with an S-shaped window

and recording the frequency of the S-tuples in w. Thus, for

instance, given a word w = wq ... w,—1 € X", w; € X, and
a € ¥ we have

lw|—1

1
fl‘gf](a) — m Z 1, (w;i ... witg—1)
i=0

where all coordinate indices are taken modulo |w|, and 1, :
¥k — {0, 1} is the indicator function of the singleton {a}.

Example 5: Let ¥ = {0, 1} and let w = 0010111001 €
¥ Flo. We have that |F110| = 10 and

9
1 1
fr31(110) = 10 Z(; Iy10(w; wit1wig2) = 0
=
| < 3
frl21(10) = 0 Z(; Lo (wjwiy1) = 1o
=

Example 6: Let ¥ = {0, 1} and consider

€ ZFf, a:[(l) (1{| eZFZZ.

——_ O O
SO O =
—_ O = -
S = = =

F3} . . .
Then fr,? (a) = 1—26 since, of the sixteen 2 x 2 windows, exactly
two contain a, shown in bold in the following:

0 1 1 1 0 1 1 1
0 0 I 1 0 0 1 1
1 00 1) 1 0 0 1
1 010 1 01 0

Lemma 7: Suppose d,n € N, w € ZF;:’, and S € S € 7.
Then

2SSy =S .

Proof: Let us denote u £ fry , € P(EZd). By definition,
for the right-hand side of the claim, for every W C xS,

i (W) =2 (W) = (@FH ™' W)).
Similarly, for the left-hand side,

7S W) = 7§ (72 () (W)
72w (@H™' W)
1 (@ (@H' ).
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But clearly for all A € 5,

@E W) = @EY T (@H 7).

Lemma 7 implies that the empirical frequency of S-tuples in
w can be calculated by first calculating the empirical frequency
of S-tuples, and then taking the S-marginal.

Example 8: Let ¥ = {0, 1} and consider

01 1 1
10 0 1 1 72
W=y 0 0 1|€F"
1010

Take S = [11* = {(0,0)} and S = [(2, D] = {(0,0), (1,0)}
Then

; 2 g 5
frS (00) = 6 frS (01) = 6

6’ 6’
3 5 3 4
frd (10) = —, frd(11)=—.
B30 =, fri (1) =

Moreover, we have that

7 9
3 (0) = —, frd(l)=—.
O NAOEES

We can verify now that
7650 = frf, ()~ 0)

= fr3 ({00, 01})
7

16

= fr’ (0).

O
We are now ready to define multidimensional semicon-
strained systems.

Definition 9: For d € N, a 74 -semiconstrained system
(SCS) is a set T C P(Z5) for some finite set S C Z¢. For
n € N, the admissible n-blocks of T" are

B,(I') = {w exhl . S e F}.
O

Since all SCSs we study in this paper are Z¢-SCSs, we shall
abbreviate and call them just SCSs, where the dimension, d,
will be clear from the context.

Note that SCSs generalize a subclass of d-dimensional fully
constrained systems that correspond to subshifts of finite type
in symbolic dynamics. Recall that those fully constrained
systems are defined by a set of “forbidden patterns”, A C > 5 i s
such that a word w € X% is admissible if and only if none of
the elements of A appear as an F, kd -tuple of w. In our notation,
we therefore have the following.

Definition 10: For d,k € N, we say that T C P(Zde) is
fully constrained if there exists some L C > 5 i such that

I ={uePEf) : ur)=1).
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Example 11: Let £ = {0, 1}, take
P2 0 0|0 1|1 O
L_Ez\[[l 1}’[1 (1)
I 1|1 o] (1 1
1 1|1t opftr o|})
and consider the fully constrained system, T', defined by

r= {ﬂ eP(y . u) = 1}.

Note that B, (') is the set of all n x n two-dimensional binary
arrays such that none of the six patterns above appears within
a 2 x 2 window in them. It is simple to verify that in fact,
no two horizontally adjacent 1’s may appear, and no two
vertically adjacent 1’s may appear, in any admissible word.
Thus, the n x n arrays in BB, (") are the admissible words of
the (cyclical) (1, 00)-RLL fully constrained system. O

An important figure of merit we associate with any set of
words, and in particular, with SCSs, is the capacity, which we
now define.

Definition 12: Letd € N, and let S C 74 be a finite subset.
For any SCS, T C P(ES), and for € > 0, let

B () & [u e P(2%) ¢ influ—vilry < e].
ve
The capacity of T is defined as,
1
cap(I') £ lim limsup — log, (1B, (B (T))]).
>0t n—soco N

O

First, we mention that lim._ g+ in the definition of the
capacity exists due to monotonicity, since |B,(B¢(I7))] is
non-increasing in €.

To avoid certain pathological scenarios, [1], [2] defined sets
of weakly-admissible words and their capacity. We contend
that the capacity definition provided here is the proper mul-
tidimensional generalization of these definitions. Intuitively,
the capacity measures the exponential growth rate of the
number of words that “almost” satisfy the semiconstraints
given by I'. Additionally, it has the nice property that the
capacity of a set I' is equal to the capacity of the closure
of T'.

At first glance this definition of capacity may seem odd.
A naive definition, which we call the internal capacity, might
be as follows.

Definition 13: Let d € N, § C 74 finite, and T C P(Z5)
be a SCS. The internal capacity of ' is defined as

— 1
Gap(I) 2 lim sup —; log, (1B, (D))).
n—oo N

O
By definition we have
cap(I) = lim Cap(Be (')
e—0t
which means that
cap(I) < cap(I). (1)
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We also observe that for some “nice” SCSs T, cap(l') =
cap(I'). For instance, we have the following result for
one-dimensional SCSs.

Theorem 14: [2, Section 2] Let k € N, and ' C P(Ek)
be convex and equal to the closure of its relative interior in
Pei(Z5). Then
inf

cap(I') =cap(I')
nel NPy (Tk)

=log, |Z| — H(nlu),

where H(n|u) is the relative entropy function' and u is
defined by u(¢a) = ﬁ > ves n(pa’) for all € ¥~ and
aez.

Remark 15: Consider the (compact) space M = P(X5)
and let C(M) be the set of all closed (hence, compact) subsets
of M. Thus, C(M) is a compact topological space (under
the Hausdorff metric). Since cap(T') is monotone, the set of
I's for which cap(I') # cap(I') is meager. In other words,
if we consider cap(B.(Bs(I'))) as a function of €, f(€) =
cap(B.(I)), then cap(Bs(T)) = cap(Bs(T)) whenever f
is continuous in o. Since [ is a monotone function, it is
discontinuous on a countable number of places. In practice,
it means that if for a specific T, cap(I') # cap(l') an
arbitrary small change in T" will give an equality. [

Remark 16: For a fully constrained system, I' C P(ZFk)
non-emptyness of B, (') for all n > 0 is equivalent to the fact
that the subshift of finite type

{w esZ . we VAR (av(w))de € L},
is not empty. Berger’s Theorem [31] implies that it is unde-
cidable whether a subshift of finite type is empty given L,
for d > 1. Because (under reasonable assumptions on the
representation) it is undecidable if a given multidimensional
SCS is non-empty, it is difficult to understand what a SCS
really looks like. U

At this point we pause to ponder the following: Note that
the definition of empirical frequency is cyclic (in the sense
that coordinates are taken modulo n) while in traditional fully
constrained systems it is not. This seems at odds with our
claim of SCSs generalizing fully constrained systems. The
necessity of the modulo in the definition of SCSs stems
from working with the space of shift-invariant measures and
their associated admissible words. Shift-invariant measures
are defined over Z<, hence, it is necessary to complete a
word w € =i to a word from =Z’. We choose to do this
completion periodically using the modulo notion, extending
w to w. This choice simplifies the analysis which follows.
We contend that with respect to this issue, the capacity is
more natural than the internal capacity, since it is equal to the
non-cyclic capacity of fully constrained systems. To avoid a
lengthy detour, the full details are provided in Appendix A.

Finally, we raise the question: what multidimensional SCSs
are of interest? If we examine the extensive literature for
fully constrained systems, a significant proportion of mul-
tidimensional fully constrained systems are defined as an
axial product of one-dimensional fully constrained systems.

I'The relative entropy function is also referred to as the KL-divergence
function, which is defined as D(7||x) = f log ( )dn
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Intuitively speaking, if we have a set of “forbidden patterns”
defining a one-dimensional fully constrained system, we can
define its d-dimensional axial product by forbidding these pat-
terns along each dimension. We now formally define this for
the case of d-dimensional SCSs with slightly more generality.
This definition generalizes the d-dimensional axial product
defined in [27].

Definition 17: Consider So, ..., Sq—1 C N, with 0esS; for
alli € [d], and SCSs T'; C P(ES) Denote S £ Uze[d S;e; C
74 . The d-axial- product SCS, denoted ®;c(q1l';, is defined by

Rica)Ti = {# € P(Z5) : Vi e[d], nse (1) € Fi}-

O
It follows from the above definition, that for every n € N
we have

B, (®ie[d]r,‘): {w IS F,‘f : Vi e [d], frijei c 1",-},

with coordinates taken modulo n. Intuitively, the arrays of
a d-axial-product SCS satisfy that along the ith direction,
the empirical distribution of S;-tuples is in I';. Note that
®ielq)]; induces a set of measures over PR 4 where k =
max; {k; : k; € S;}. Hence, we sometimes consider a d-axial-
product SCS ®;¢[qi as a subset of P(EFI?!).

Example 18: Let ¥ = {0, 1} Consider two real constants
0 < po, p1 < 1, and the one-dimensional SCSs, Ty and T'y,
given by

To = {#67’(22) : /x(ll)épo},
r = {# eP(z? : /x(ll)ém}.

Here we are taking So = S1 = {0, 1} The admissible words
in the 2-axial-product SCS, T'o ® I'1, are all two-dimensional
words in which the empirical frequency of two horizontally
adjacent 1s is at most po, and the empirical frequency of two
vertically adjacent 1s is at most py, i.e., all the words w € X Fi
such that

£l 0000011y < p
frl®0-O:Diq 1) < py.
We may also consider T'o @ I'1 as a subset of P(ZFzz)
2
lo®I = {,u e P(E") 1 w00 < p

7{(0,0),(1,0))(2) (11) < py }

Note that
7((0,0).(1,0) () (11) = p ( (1) ﬂ)Jrﬂ ([(1) ﬂ)
+H(i (1))+,u(} }),
(0,0, (0,n) () (11) = u ( } 8})+ 1 (B (I)D
(1 1]
ﬂt(l 0)“‘(1 1)
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In this paper we are interested in the capacity and the
internal capacity of multidimensional SCSs. Although the
capacity is easier to work with, as we will see later on, the task
of computing it is still daunting. Thus, there is a necessity for
more easily computable bounds on the capacity. To this end,
we define the independence entropy of a d-dimensional SCS,
which is the basis of the main results of this paper.

II1. INDEPENDENCE ENTROPY

In this section we define the independence entropy of
multidimensional SCSs and present some of its properties.
It will be used to bound the capacity. The independence
entropy is not a new notion, and has appeared previously
in [27] in relation to the capacity of fully constrained systems.
However, the formulation of the independence entropy was
combinatorial and therefore less suitable for our purposes.
Thus, we modify the definition of independence entropy and
formulate it as a statistical notion.

The admissible words of SCSs (see Definition 9) have their
empirical S-tuple distribution from I'. Finding such words
inexorably involves intricate dependencies between coordi-
nates. This affects not only the task of generating such words,
but also the very basic problem of calculating or bounding the
capacity of the SCS — the problem that is the focus of this
paper.

In an attempt to simplify this problem, we study the
independence-entropy approach. We eliminate all dependen-
cies by considering only product measures, i.e., where the
symbol in each coordinate of the word is chosen independently
of other coordinates. Accordingly, we only require the average
of S-marginals to be in I'. We then ask what is the entropy
of such a system. Intuitively, we are seeking the maximum
rate of transmission in a system where word coordinates
are transmitted independently and in parallel, designed such
that the average S-marginals are in I'. The following model
provides a rough interpretation of the independence entropy:
Suppose each bit of the output is transmitted by a different
agent, and the number of agents is very large. The agents are
allowed to coordinate a protocol in advance, but are unable to
communicate once they receive the messages to be transmitted.
In addition, the statistics of the output should roughly satisfy
the constraints given by I', with high probability (as a function
of the number of agents). In this case under suitable assump-
tions, the maximal transmission rate would coincide with the
independence entropy. We proceed with formal definitions,
starting with a product measure.

Definition 19: Let d € N, and let S € 7% be a finite
set. We say that u € P(X®) is an independent probability
measure or a product measure if p(w) = [[,cgmiv)(p)(w).
For S C Z¢ that is possibly infinite, u € P(Z%) is a product
measure whenever g /(1) is a product measure for every finite
S CS. O

In other words, we say that u is independent if there exists
{pv € P(£) : v e S}such that 4 = [],cg pv. We naturally
identify the set of product measures in P(Z%) with (P(Z))5.

Next, we define the average of a marginal.

Definition 20: Given d,n € N, u € P(EFrfl), and § C F,f,
let Ts(u) € P(X5) be the average of the S-marginals over
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translates of u:

_ 1
TS & o > wsiv(w),
n Frlli

where the coordinates S + v are taken modulo n. O
Let S C F,fl and let I' C 7?(25) be a SCS. For n > k we
define

Pu(n) £ {we PN ws@ e,

Thus, P, (") consists of product measures on X i such that
the average of the S-marginals is in I'. We can now define the
independence entropy of a SCS.

Definition 21: Let d,k € N, S € F?, and let T C P(X5)
be a d-dimensional SCS. The internal independence entropy
of T is defined by

—_— . 1
Tina(T) £ limsup  sup  — H (x),
=00 eP,(I)

where H (i) & — Zweng u(w)log, u(w) is the entropy of
u. The independence entropy of I is defined by

hina(T) £ 1im Ting (Be (I)).
€—

O
Again, it is clear by definition that
Tina(T) < hina (D). )

The notion of independence entropy which appears here is a
generalization of the combinatorial notion for fully constrained
systems that appears in [27].

Theorem 22: Let d,k € N, and let ' C P(Zde) be a fully
constrained system. Then

hina(I') = higy (')

where hi>l" is the combinatorial independence entropy
from [27].

To avoid a significant diversion from the main discussion,
the proof of Theorem 22, together with the required definitions
from [27], are given in Appenﬂx\ B.

We now show properties of hipng and hing which make them
easier to analyze by reducing the multidimensional case to the
one-dimensional case. We start with an inequality given in the
following lemma. The proof follows the same argument that
was used in [27] to show the inequality for fully constrained
systems. However, the equality for fully constrained systems
holds in an easier and stronger sense.

Lemma 23: Let k € N, and let T' C P(Ek) be a one-
dimensional SCS. Then for all d € N,

Tina (D) < Tina(U®7).

Proof: Take fi € P,(I'). Since /i is a product measure,
it can be written as it = H?;OI miiy(t). We now construct a
measure 4 € P,(I'®?) using /i. For every v € F? set

Ty () = ey (),

where £(v) 2 (39} v;

)mod n is the modulo n of the sum
of the coordinates of v.
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Observe that u is such that in every row in every direction,
i.e., a set of coordinates of the form v+ [n]e;, we obtain some
cyclic rotation of a4 by ¢ positions, denoted o, (z1). However,
i € Pn(') implies o,(2t) € P,(I). Thus, we obtain that
u € Pp(I®) and

1 . 1

—H(#) = —dH(u)-
Since > we are ta.klng the supremum over all measures i, we
have hing(I') < hlnd(r®d) u

Theorem 24: Let k € N, and let T C P(2X) be a one-
dimensional SCS. Then for all d € N,

Rind(T®?) = hina(T).

Proof: We first show that hing (D®4) <
and take 1 € P, (Bs(I'®?)). Recall that

P (BT < P(FH).

hinga(I'). Fix 6 > 0

Let (V);¢[nd-1) be an enumeration of {0} x Fi=1 e,
(V0s . s Vyaoi_q} = {0} x FI=1,

Fori € [n?~!], define wi € P(T") by u; £ Tnleg+v; (1t). Now
let o € P(E”d) be the product measure that is the product of

all the u;’s. This means that for a word a = ag...a,d_; €
=
a(a) & uolao...an—1) - pi(an...am—1)- -

. lundfl(an(ndflfl) .. .andil),

Since eacgl of the w;’s is already a product measure,
& € P(X™) is also a product measure. We have

T (1)
1 nd—1
=7 > (i)
j=0
1 nd=1-1 (i+1)n—1
=37 > > mima)
i=0  j=in
1 nd=1-1 ,(i+D)n—k
(= (X mw
i=0 j=in
(i+1)n—1
+ D> 7fj+[k](ﬁ)))
Jj=(i+1)n—k+1

nd=1—1 (i+1)n—k

Z Z TT(j—in)+[ k](/ul)

j=in
nd=1-1  (i+Dn-1

DI

i=0  j=(i+1)n—k+1
nd=1-1 (i+n—1

= nid( Z zﬂ(jfin)Jr[k](ﬂi)

i=0 j=in
nd=1-1  (i+Dn-1

Z Z 7 (j—in)+1k1 (i)

i=0 j=(+1)n—k+1
nd=1-1

(i+1)n—1
+ D > 7fj+[k](ﬁ))

i=0  j=(i+1)n—k+1

“u(

4 1k] (/3))
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nd=1_1
1
= = 2 Fww)
n 4
i=0
nd=1—1  (+)n—1

HOIED

i=0 j=(>+)n—k+1

fk]eo(ﬂ)
nd=1-1  (i+)n—1

IS

i=0 j=@{+Dn—k+1

(7 (—imyring (i) — 7 jxr (1))

(z(—imytk) (i) — g (),

where (a) follows from the definition of £ and since the
coordinates are taken modulo n when calculating 7k (u;).
Each (m(j—in)+i(1i) — i+ (/1)) is a signed measure of
total variation norm at most 1. Therefore,

bl

Hﬂ: k](/u) -7 k]eO(lu)HTV ;

(I'). We obtained that for

every € > 6 > 0, and every u € P,(B;(I'®?)), we can find
no € N such that for every n > ng, it € P,a (B¢(I')). Since p
and [t are both product measures we have

H(u) = > H(zp(n)

veFd

> H(xp (i)
ie[nd]

= H (i)

This implies that for every € > J > 0,

1
n—dH(,U)

This means that (i) € B,

lim sup sup
n—00 M Efn (B(F(r@d))

1
< lim sup sup —H(w).

"0 UEP,q (Be ()

We therefore obtain fing (I®?) < hmd(Bé (")) for every € >
0. Taking the limit as ¢ — 0T, by the definition of Ainq(T)

we have
hind(r®d) < hind(r)~

We now show the other direction. By Lemma 23, For every
0 > 0 we have

hina (Bs(I))
By monotonicity of mit thus follows that for every ¢ > 0,
hina(T) < hina(Bs (1)),

Now observe that for every € > 0 there exists 0 > 0 so that

< Trina(B5(1)®).

By(I)® B (1%7).
It follows that for every € > 0

hina (1) < ina (Be (1))

Thus, by taking the limit ¢ — 0T,

hind (r) hind (r®d)~
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We conclude this section by noting that Lemma 23 and
Theorem 24 show that for I' € P(ZX),

Tind (D) < hing(T®) < hing(T®) = hia(T).  (3)

IV. INDEPENDENCE ENTROPY LOWER
BOUNDS THE CAPACITY

This section and the next explore the relationship between
the independence entropy and the capacity. In this section we
show that the capacity of any d-dimensional SCS (not neces-
sarily an axial product) is lower bounded by the independence
entropy.

Before proceeding we require a simple lemma.

Lemma 25: Let d,n € N, and § C Ff, then s and 7 g
are contractions with rehy)ect to the total-variation distance,
ie., for all u,v e P(Xfn),

lw =vliry,
lw =viizy .

lzs(u) —zsW)liry
ITs(w) —Ts)llry

NN

Proof: For every W C >S5 we have

75 W) = 25| = |utas W) vz (W)

< sup |u(W) —v(W)|
A'CES
= llu—vlry-

Hence the function 7wgiy is a contraction for every v € F,fl .
Then 7g, being an average of contractions, is itself a
contraction. [ ]
We are now ready to state and prove the main result of this
section — a lower bound on the capacity. The corresponding
result for fully constrained systems was obtained in [27].
Theorem 26: Let d € N, S € 74 be a finite set, and let
I € P(25) be a SCS. Then hing(I') < cap(I').
Proof: For ease of reading, throughout the proof, we omit
the superscript F,f’ unless the shape is different or essential.

Hence, instead of frFf;i we write fr, instead of fArF’;i we write
fr, and instead of 7rFr§1 we write 7. Fix 6 > 0, n € N such
that § C F,fl, and let u € P,(Bs(I')). For m € N, we have
a natural identification isomorphism X% A= (zh ff)F W that
identifies v € Ffm with the unique pair r € F,fl and q € Frﬁ
such that v = nq + r. Consider the product measure u” €

P(SF)Fn € P(SFim) satisfying
f"(x) = [ w@pe @)
veFd

Note that since u is a product measure, u” is also a product
measure. .
For a word w € Xfm, denote by fr, the empirical
distribution of non-overlapping F,fl -tuples, i.e.,
A 1
L& .
fr, = IF,% Z 577.'1:;’1(0'7111(10)).

ueFrd

Additionally, observe that

1 A
W Z frgv(w) = frw .
n Fg
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Also, because pig is an affine map, it follows that

1 .
—|Fd| E TS (frav(w)) =7y (fry).
n
v

Fd

n

By Lemma 7, 7g5(fr,) = frg).
Note that by the construction of x4 we have Tg(u) =
7s(u™), and we obtain,

Jze =56l

1
= |iFz1 =

1
75 Ona(w)) = T > wsiv()
ueFrd, " verd TV

1
= m Z Z 5 Ogusv(w)

veFdueFd

1
- W Z Tsv(u)
n F’d

TV

@ 1 >SS
= _— 5
|Fnd||F;r1l| 7TS+V( anu(w))

veFdueFd

1
— = > wsv(w)
R &,
! TV
® 1 1
< 1 2 | 2 w5 Gom) ~ w5 ()
" veF] " uerd .
© 1
é -|Fd| Z TSty —IFdI Z 5%“(10) —ﬂs+v(ﬂ)
" ver! " ueFd v
1 R
= = > sl — msaw)|
|Fil —, v
veFy
) 1 .
< — fr,, — H
|Fd| Zd w T AL,
veFy
where:

o (a) follows since 75(dgy(w)) = Ts+v(dw)-
o (b) follows by the triangle inequality.

o (c) follows since 7 is an affine map.

o (d) follows by Lemma 25.

Thus, for ¢ > 6, if |fry — ullry <
| fr5 —7s(u™)|ITv < € — 6. Therefore,

€ — 0 then

{w e =Fim Hfrg) —fs(ﬂ)HTV >e€— (5}

foests s, )
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Using the fact that 75(u) € Bs(I'), it follows that log, =7 i \ B (int(B (1))
+<- v + Ha($)
{w e xfim ¢ 5 ¢ int (Be(r))} , (nm)
R < logy | Bum (int(Be (I))) |
a R I
4 log, | X |
where int(-) denotes the interior of a set, i.e., int(B¢(I')) = | (nm)
{vePE9) infuer v —pllry < 3 < Gomy? o8 | By (int(Be ()|
If w € LFm was randomly drawn according to u™, the nm)
non-overlapping F¢-tuples are distributed i.i.d. according to N P p—— - log, IEI("’”) + H(&).
. Apply Cramer’s Theorem (as in [32, Th. 2.2.3, Remark c]) (nm)
to deduce that for € > ¢ and for every m, where (a) follows from standard maximization of entropy
sFh | 5 arguments, and where Hy(&) £ —¢log, & — (1—¢) log, (1 —¢)
K ({w € H Tw = # H Z€- }) is the binary entropy function. This implies
. 1 1
< 26XP(_m J inf H(V|ﬂ))- —H(,u) = hm sup - H (1)
veP(2fn): v—pllry 2e—o
Note that the function v x ¢ — H(v|u) is continuous and < lim sup ——— log, By (int(Be (1))
strictly positive off the diagonal. Thus, for every € > J we m—oo ( 1)
have < lim sup —— log, | By (B ()|
() 2 inf Hulw) > 0 noo ()
C,u €) = m viu) > L. —
vePEH): v-ullry e—s < cap B (D)),
Hence This is true for every u € P,(Bs(I')) and hence
e 2fin: i —ul,, > e -] o < @
w (fo Y PR sup — H () <Gap (Be ().
< 2exp (—mey(€)). (5) 1P ([Bs(I)
Recall that Since this holds for every n we have that for every € > J > 0,
Bun(intBe(D) = {w e T+ 1} € ini(B(1) . Tina(B5(I) < CaP(Be ().
By (4), we have Taking the limit as 6 — 0, this implies that for every € > 0,
" (25 \ Bun (mt(&(r)») hina(T) < CAP(E(T).
=u" ({ wexh i : er ¢ int(Be (1)) }) Finally, taking the limit as € — 0, it follows that
d
< (fweshin o |fru—u| >e-0)). © hina(T') < cap(I').
Combining (5) and (6) we have, u
& m(sFl, . ) < B We summarize our results thus far by noting that for a SCS
s (E \ Bun (int(Be (1)) < 2 exp (—=me (€)). I € P(2%), since hing () < hina(I®?), Theorem 26 together
It now follows that, with (3) show that
. H(m hina(T) < Tina(T®!) < hina(T®) < cap(r®), )
" hing (1) < hina(F®) < hina (M%) = hing (1) < cap(I). (8)
_ m
= (nm)d H(u™)
1 V. UPPER BOUND ON LIMITING CAPACITY
= -7 D> W"(w)log u" (w)
(nm) o In this section we prove that if I' € P(ZX) is a convex
1 z one-dimensional SCS and I'®¢ its d-axial product, then
=—— w"(w) logy 1™ (w)
d .
(nm) wE By (int(Be () 11511 sup cap(I'®?) < hina (7).
1 —00
" (am)d Z #" (w) logy 4™ (w) The main idea is to show that for any € > 0 we are able to
w§EBum (int(Be (1)) find d large enough for which the independence entropy is
(Q (1-¢)- log, [Bym (int(B, (I)))| e-close to cap(I'®). This is the main result of [28] and the

(nm)d proof here is an adaptation of it.
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Before going into details we introduce a different form of
d-axial product which we call the weak d-axial product. For
a one dimensional SCS, I" C P(Ek), define

d
2 dy epEfiy Z Tikge; (1) € T 1,
lE[d]
and thus
B, (ng): weFf : Zfrk]e' el

ze[d

For the weak d-axial product we define,

_ 1
P 2 fue (PENT © ~ > T () €T

ield]

This last definition is a relaxed version of T'®¢, since P, (I'®¢)
is the set of all independent measures for which the average
of the k-marginals in each direction (separately) belongs to T,
whereas P, (ng) is the set of all independent measures for
which the average of k-marginals (over all directions) belongs
to I'.

Correspondingly, we have,

1
sp — H(u),
n—o00 'uefn (]BE(F)IZd) n

hmd(r )£ lim limsup

e—07t

where H(u) =
of u.

As will become clearer later on, it will be somewhat
easier to use hind(l"lzld) than Aing(I®?) in this section. First,
the following lemma shows that the relaxation leading to
hind(l“&d) does not affect the independence entropy.

Lemma 27: Let k € N, and let ' C P(Zk) be a convex
one-dimensional SCS, then

N zweZFd 1(w)log, u(w) is the entropy

hind (D) = hing(T®?) = hina (M%),

Proof: By Theorem 24 we already know that Ajnq (I®?) =
hing(T"). Thus, we are left with proving the last equality. Since
I' is convex, for every ¢ > 0,

P (Bs(I®)) € P, (Bs(N)®) < P, (Bs(1)™Y).
Hence,
Bind(D®) < hina(T59).

The other direction follows essentially by using the same
method as in the proof of Theorem 24, as we now descrlbe
Let (v] )ie[nd—17 be an enumeration of FI7' x {0}x F

J

Fix 6 > 0 and u € P, (Bs(N)™). Fori € [n¢~'] and j € [d],
define p] € P(Z") by u] = T e, +v,(,u) Now let 4 €

(Ed" ) be the product measure satisfying

ia(a}) = H H ,u{(ainﬂ»nd..

Jeldlie[nd—1]

V,{d—l,]} EI7V < {0yx FA77.

'a(i+1)n+jnd71)
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d . A .
for every word a = ag . ..ay,_; € 9. It is clear that i is
indeed a product measure, because every ,u{

measure. Now,

is also a product

T ()
1 .
=l Z itk (1)

ie[dnd]

d Z Z Z n-k]+zn+€+jnd(/u)

Jjeld]ie[nd-1]l€[n]

=;sz

D Tgint e jnd (B)

J€ldlig[nd—11 \fe€ln—k]
n—1
+ > ”[k]+in+€+jnd(ﬂ))
t=n—k
1 .
— 2 (X med)
J€ldlie[nd—11 \fe€ln—k]
n—1
+ D ”[k]+m+€+jnd(ﬁ))
t=n—k
1 .
J
DD I DT
J€ldlie[nd—11 \£teln]
n—1 ) n—1
D A+ D) ”[k]+m+€+jnd(ﬁ))
{=n—k {=n—k

IS

&.I'—‘

2.7

eld]

1
a2
eld]

Recall that from the definition of P, (B(;(F)de), we have

e_; (/.l)

n—1
Z Z (ﬂ[k]-i-f(:ul!)_n[k]+in+(+jnd (,&))

lie[nd—11t=n—k

1
7 > Tike; (1) € B(ID).

J€ld]

Since (ﬂ[kH_g (,u{) = W[k pinC+jnd (,&)) is a signed measure
of total variation norm at most 2, it follows that T (&) €
B%M(F), SO fl € Py (an_k+§(r)). Hence, for every ¢ >
0> 0, and every u € P, (B(;_(F)de), we can find nog € N such
that for every n > ng, ft € Py,a (Be(I')), and therefore,

1
lim sup sup — H(u)
00 P, (By(1)Bd)

LH(/l)-

< lim sup sup T
n

neo H Eﬁdnd (Be(T))

Thus, we obtain hmd(l”gd) hmd(IB%E (T')) for every € > 0,
and by definition it follows that

hind (T%) < hing(T).
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Given a probability space (X,F,P), denote by L?
(X, F,P,C") the Hilbert space of F-measurable functions
[+ X — C" satisfying

1fI2, & / (f. )P < oo,

where (-, -) is the standard inner product on C".

The following lemma is based on Dirichlet’s “pigeon hole
principle” and different versions of it are used in many de-
Finetti type proofs (see, for example, [33] [34, Lemma 4.1]).

Lemma 28: Let (X, F,P) be a probability space and let
FoC F1C--- C Fy CF be a sequence of sub-o-algebras.
Let f € L>(X,F,P,C"), and denote fi e E[f|F;] the
conditional expectation of f with respect to the sub-c-algebra
Fj. Then, there exists t € [m] such that

1
2 2
I fiv1 = fill]2 < . A1z

Proof: For every ¢, let V; £ L>(X, F;,P,C") denote
the corresponding sub-space of the Hilbert space V =
L*(X,F,P,C"). Then f; is an orthogonal projection of f
onto V. Thus, (f — fr, g)r2 = 0 for every g € V. Therefore,

L2 = D7 W fer = fell7a + 1L foll7-

te[m]

Additionally, 0 < || full3, < [If[Z,. The result follows by
noticing that if m non-negative real numbers sum to at most
I f ||i2 then the value of at least one element is at most
Ly 712, m

Before stating the lemmas, we need the following notation.
Recall that for k € N, we defined [k] £ {0,...,k —1)}.
We now define [—k] £ {—1, ..., —k}.

Lemma 29: For every € > 0, and any m € N, there exists
do € N such that for every d > do, and every n,j € N,
n > j+ 2, there exists a sequence of m + 1 random subsets
Xo, X1,...,Xm C F,f, and random variables I, y € [d], for
all t € [m], v e Fnd, all defined on an appropriate probability
space (X,2% P, such that all the following hold:

1) P(X; € Xiy1) =1 foralli e [m].

2) P(|Xm| <€lF) >1—e.

3) Forallv e Ff and t € [m], I, y is distributed uniformly

on [d] and is independent of X;. Furthermore, for every
value of X,

P(X;U (=G +Dles, +v) S X1 | Xi) > 1 —e.

Proof: Choose 0 < p < 1 small enough so that 1 — (1 —
p)™ T < §, and conveniently denote p; = 1 — (1 — p)i*l.
For all i € [m + 1], consider random subsets A; C F,fl whose
coordinates are chosen i.i.d. Bernoulli(p), i.e., P(ve A;) = p
for all v € F¢, independently of F¢ \ {v}. Define X_; = ¢,

and for all i € [m + 1], define
X £ Xi_i UA;.

Thus, P(v € X;) = p; for all v € Ff, independently of
Ff \ {v}. We contend that for large enough d, the claims hold.

First, it is clear that P(X; € X;41) = 1 fori € [m + 1] by
construction. Second, we have

P (1Xnl <e|Fd|)= P (1Xnl < 2pu |

)2 1 — e 2Pm ”d,
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where the last inequality follows from Hoeffding’s inequality.
Since the right-hand side approaches 1 when n > 2 and d —
00, claim 2 holds for large enough d.

We now address claim 3. Fix ¢ € [m] and consider A;4.
For a coordinate v € F,fl , denote by D(t, v) the set

D, v)2{ield] : v+[—(G+1Dle; € Arpr}.

If D(t,v) # ¢ then draw I,y uniformly from D(z, V).
Otherwise, draw I;y uniformly from [d]. Note that [;y is
distributed uniformly on [d] since the distribution of A;4 is
invariant under coordinate permutation. Since the coordinates
in A,y; are chosen independently of A;, A;_1,..., Ag we
obtain that /; v is independent of X;. Finally, we have

P(X;U ([—(j+ Dles, +Vv) € X141 | Xi)
> P(D(1,v) # 9)
=1-(1-p/thHe.

Since the right-hand side approaches 1 as d — oo, claim 3
holds for large enough d. [ ]

If X is a random variable over some probability space,
we use Px to denote its distribution. Let Xo, ..., Xx—1 be
random variables over the same probability space (X, 2%, P).
We denote by (Xo, ..., Xr—1) the vector distributed according
to their joint probability, Px, . x, ,, and denote by (X x
--- X Xk—1) the vector distributed according to their product
probability, i.e., Pxx...xx,_y = [Liep) Px;-

Lemma 30: Let X be a finite set, and Xo, ..., Xr—1 be
k random variables defined over the same probability space
(X, 2%, P). Then

HPXO ..... Xp—1 — ]P)X()XmXXk,l ||TV
k—2
<D Exoxi [Pxiiixo.xi = Pxii [ v ]
i=0

Proof: We prove this by induction on k. The case of k = 1
is trivially true. In the base case of kK = 2 we have,

”]PXO,XI — Pxoxx; “TV

1
= 5 2 [Pxo.x, (o, x1) = Py (xo)P, (x1)|

X0,X1

1
5 2 [Pxo@0)Px; x, (x11x0) — Py (x0)Px, (x1)] - (9)

X0,X1

where the sum of x¢ and x; is over the support of Xy and X1,
respectively. Since Px,(xo) > 0 we have

1
5 D Pxy(x0)Px, x, (x11x0) — P, (x0)Px, (x1))]

x0,X1€X

1
= 2 Px(0) | 5 22 [Pxixo(ilvo) = Py, ()] ). (10)

xX0EX x1eX

Combining (9) and (10) and using the total variation distance
definition we obtain

IPxo.x1 = Pxoxxy |7y = Exo [[|Pxixe — Bxi [ v]-
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Now assume the statement is correct for £k — 1 random
variables and we show it is correct for k random variables.
We write

IPxo,....x6c1 = Pxox-xxict | 7y
= ||]PX0 ..... Xr—1 _P(X(),...,Xk—Z)Xxk—l
+]P’(x0,...,xk_2)xxk_| — P x X HTV :

By applying the triangle inequality we obtain

HPXO ..... Xp—1 — ]P)X()XmXXk,l ||TV
< HIPXO ----- Xk—1 _P(Xo ----- Xi—2) % Xg—1 HTV
+ HP(XO ..... Xk—Z)XXk—l - IP)X()><~~~><Xk_| ||TV . (11)

Considering ¥ = (Xo,..., Xx—2) as a tuple-valued radom
variable, and applying the case k = 2 on the pair of random
variables (Y, Xx—1) we have:

TV] (2)

HP(XO ----- Xp—2)xXg—1 — Pxox-x x4 HTV
= HPX(),...,Xk_z - IPX()XmXXk_z HTV (13)
By the induction hypothesis we have
HPX(),...,Xk_z - IPX()XmXXk_z HTV
k=3
< Z Exq,...x; [HPXH—I\XOwai - IP>X;+| HTV] :
i=0
Combining this with (11), (12) and (13) completes the proof.
|

d
For A C Ff Jlet Fa C 2" denote the o -algebra generated
by the coordinates in A, namely,

Fu 2 {{x IS EFﬁl:irA(x)e W} W C EA}.

Definition 31: Let d,k,n € N, A C F,f, and let y € s
For a one-dimensional SCS, I' C P(Zk), and its d-axial-
product SCS, T®? we define the following:

w™? s the uniform measure over B,(I'®?),

fya 2 ™G Fa) o),
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In other words, 4 is the uniform distribution on 3, (F®d )
given whose positions in A agree with y4. Moreover, 77, 4 is
the independent version of uy 4. The following statement is
a particular application of Lemma 30 above.

Lemma 32: For every d,n € N, i € [d], and A C F,fl,
we have

Z E [Hﬂ[k]ei+v(77y,A) - 7T[k]e,-+v(/1y,A)HTV]

d
Ve

< O D E[|rmny.a) — mm (y.aui—jie) | ] -

veFd jElk]

Proof: First note that if k = 1 the result is immediate
since all the summands on the left-hand side are 0. We now
examine the case of k > 2. For the time being, let us fix
ve Flady e =F . We define the random variables

Xj, j € [k], where Xo,...,Xx—1 is distributed according
o Py x., = Tke+v(ty a). In particular, each X; is

distributed according to Pﬁj 2 Tieiv(ity,a) = Tje+v(ny,A)-
Additionally, P§(0X~~~XX/<_1 Tikle;+v(1y,4). We use the
superscript y to emphasize that these distributions depend
y. Also for z € XF i such that ZA = YA , the conditional
probability IP%;HI Xosn X evaluated at z is equal to the measure
T(j+1)ei+v(Hz, AU j+1]e+v)). By Lemma 30, we have

Y y
HPXO""’Xk—' ~ PXoxnxiy HTV
k-2
Y ¥
< Z E [HPXHHXO ..... X; — PX;‘H TV] . (14)

j=0
The expectations in the right-hand side are with respect to
the conditioning on the random variables Xo, ..., X ;. We can
rewrite the above equation as (15), as shown at the bottom of
this page. Integrating the inequality (15) over y with respect
to u™? we have (16), as shown at the bottom of this page.
By definition of uy 4 as the conditional measure, for every
f: 2 R we have

] r@dia@an o) = [ s,
Writing the integeral with repect to ¢ as E [-], we thus have

E [||mme; vy, 4) — Tiige; vy, a) | v ]

k—2
ny.a 2 [T 7 (1y.a). < DL E[|mGanetv(ty, auj+11e+v)
veFd j=0
O - ”(j+1)ei+v(’7y’A)HTv] :
k—2
| tkrer+v(ty.a) — Tiiges+v 1y, a) | 7y < Z/ |7 (-4 ey ez, AU +1169) = TGty +v (z,) | 7y iy, a(2) (15)
j=0

/ ”7l'[k]e,'+v(ﬂy,A) - n[k]e[+v(’7y=A)HTV d,un’d(y)

k—2
S Z// 17 G ey (tz, AU 106 49) — TG+ Dety (12.4) || 7y dpty,a@)dp™(y).
i—0

(16)
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Summing over all v € F¢ we obtain

Z E [||7T[k]e,-+v(/1y,A) - ”[k]ei+v(77y,A)HTV]

verd
k—2
< Z ZE [Hﬂ(j+l)ei+v(ﬂy,AU([j+1]ei+v))
veFd j=0
- ”(j+1)ei+v(’7y,A)HTv] ‘ (17
Recall that [—j] = {—1,..., —j}, hence
[j+1lei = (G + Dei +[—( + Dle;.
Thus, (17) can be written as
> E[|mwe vy, a) = wige ey Oy, )| 1]
verd
k—2
< Z Z E [||m(j+1ye+v(ty, AU +1)ei v+ =+ Dle)
veFd j=0
- n(j+1)ei+V('7Y:A)HTV] : (18)

Since we are summing over all v € Ff , and since coordinates
are taken modulo n, we may write (18) as follows,

Z E [||7T[k]e,-+v(/1y,A) - ”[k]ei+v(77y,A)HTV]

d
Ve

k—2
< D D Ellmmuyavwsi-Gyen) = 7w a4y ] -
veFd j=0
(19)

Since the total variation distance is non-negative, (19) implies
the lemma. [ ]

The following proposition, which is used to prove the
main result of this section, considers the following scenario.
Assume y € F s randomly drawn using the measure
u'" A je. it is drawn uniformly at random from the set of
admissible words B, (I'®?). We then study the random variable
Ny,A (a measure in itself), and ask what is the probability

that it resides within the set of measures P, ((IB%E(F))gd).

For convex SCSs, we prove this probability is e-close to 1,
assuming d is sufficiently large.

Proposition 33: Letk € N, and let T € P(2%) be a convex
SCS. For any € > 0, there exists dy € N, such that for all
deN d>dyneN n>k+2 there exists A C F,f,

d .
|A| < en?, such that for y € 2% drawn randomly using the
measure ,u"’d,

1 (5, € Py (BAr)S)) =1 - ¢

Proof: Recall that by Definition 31, 5, 4 is a product
measure, while zy 4 is not necessarily so. Additionally, we
contend that T [ke; (y,4) € T for all y € B,(I'®%), A € F¢
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and i € [d]. Indeed,
_ 1
T [k]e; (#y,A) = Trd Z ﬂ[k]ei+v(ﬂy,A)
|Fd| &
veFy
) I rox D 3 @)
= [kle;+v 0%
|Fd| Ty
n dl (yA)I _.(M)
1
= o0 > | d| 2 Tikler+v(%%)
A YA xen;l(y ) VEFd
1 1
~ o 2 e 2
A A xeer_l(yA) " veF!
1
_ [kle;
o 2 T
A xer ' (va)
where we recall that
7y (ya) = {x € B,(I®) : x4 = yA}~

Since frx “ €T forevery x € nlzl (y4) and since T is convex
the contention is proved. Additionally, by the convexity of T,

T kle; (ﬂy,A) el implies

1 _
3 > Tiwge (uy.a) €T.

ield]

d .
Draw y € %7 randomly using the measure x”¢. For any
A C FZ, let us denote

Dy,y = ZEk]e,(fh A)__zﬂ'k]e,(ﬂy 4)

lE[d] i€ld] TV

We will use Ey[-] to denote expectation with respect to
the random variable y which is randomly drawn using the
measure ™. Denote

Dy = Ey[Dayl.

To prove the theorem, it suffices to show that for any 6 > 0,
if d is large enough there exists A C Fnd, |A] < en?, and
with probability at least 1 — € (with respect to u™ d) we have
D,y < €. By a standard application of the Markov inequality,
it is sufficient to show that (under the above conditions)
D4 < €%

By definition, for any A € F¢ and any y € £ we have

d| Z Z(ﬂ'[kew(i’]y A) (k) A—V(ﬂy A))

ield]ly

D,y

TV
Applying the triangle inequality we obtain
D,y

d|Fd| D 2 Imtme v (ry.a) =

i€ld]veFd

k]e,+v(,u) A) HTV

Taking the expectation, Ey, on both sides and using its
linearity we get

Da
i d| Z z Ey [|wieqss (ny.a) = Timgery (y,a) | 7] -

i€ld]veFd
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2

(v,a)eFIxx

Ey[|Ex [f®) ) | Fa] ) =
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Ex [fM)va) | Fava-G+ie+n] 0] -1

CS
s > E[E[fWea [ FaA]0) = Ec[f®)ea) | Favi-Goien] 0)]])? >,
(v,a)eFdx X rarerix
= Z (Ey [‘Ex [/ ) v.a) ‘ Fal ) = Ex [f () v,a) \ FAU(-G+Dlei4v) | (y)‘])z . ’Fnd‘ E @
(v,a)eFiIxx
DA< —=="> > > S UE|ENf®wa | Fal 0) = E: [f®w.a) | Fava-G+iesn] O]])2 22)
2d ‘ ’ Jelklield] veFdan
Dy < Z z z Z E [f(x)(v a) ‘ -7'—A] (y) — Ex [f()C)(V a) ’ -FAU([ (+D] e,+v)] (y)) ]) (23)
2d |Fd| JjElklield] | veFd acX

By Lemma32 and the linearity of the expectation we obtain
Dy < Z Z > Ey[|mmny.a)
jelk] Ey i€ld]veFd
= ) (iy. au- G4 Dle) v ]

Consider another random variable x € =% " , also randomly
. d
drawn using the measure x™¢. Now define f : i —
{0, 1}f > by

1 xy=a,
0 otherwise,

f(x)(v,a) £ [

for all v € F,f and a € X. Thus, by definition we have that

[f(x)(v,a) | fA] (-

Since X is finite we can write the total variation distance as
a sum, and then apply the triangle inequality, which results in

Dp< 5 Z d|ZZZE [Ex [f ) v.a) [ Fa] )

jelkl] i€ld] vepdaez
E:[f() ) | Faua—Gaiem] O]

For any j € [k], viewing the expression

D D EE[f @ | Fa]l )

veFdaek

Ty, 4) (@) = wiyy(uy,a)(a) = E;

(20)

— Ex [f(®)a) | Fava-G+ne+v] 0]

. . d
as an inner product of a vector in Rf»** whose (v,a)’th
coordinate is equal to

Ey[|Ex [f (M) vay | Fa] )
— Ex[f®wa) | Fava-G+nien] 0]

and 1, we may apply Cauchy-Schwarz (C.S) inequality and
obtain (21), as shown at the top of this page. Thus, combining
(20) and (21) we have (22), as shown at the top of this
page. Using the fact that (E[|X|])> < E[X?] (again, by C.S),
we have (23), as shown at the top of this page.

€2

Choose m large enough such that ﬁ < Tl and denote

€ = k 2| Now let P, I; v, X0, X1, ..., X, be as given by
Lemma 29 with n > k + 2 and with ¢y and obtain dy. From
here on, assume d > dy. Let E denote the expectation with
respect to P.

First, from (23) we may bound Dy,, for any t € [m + 1],
by

DX, S

NIRSE
P

2./|Fd| jelx

( 2 2 EEf®vw | Fu]o)

veF,f aex

]d i€ld]

3
— Ec[f 0w | Frua-i+1em] (y))z]) :
(24)

By the properties of X; and X,y; given in Lemma 29, for
every v € Fnd there is a random variable /; y independent of
X, and distributed uniformly on [d] so that P(X, U ([—(j +
Dler, +Vv) € Xi41 | X;) > 1 — €. Denote
XivEX U (-G + Dles, +v).

Since ;v is independent of X; we have (25), as shown at the
top of the next page.

From (24) and (25) we obtain (26), as shown at the top of
the next page.

Since we may view Ex [ f (x)(v ) | F Xt] as the orthogonal
projection of f(x)(v,q) on L? ( s Fx,, U 4 R), if Xiv C
X;4+1 we have

Ey [(Ec[f 0 | Fx] ) = Ec[f O | Fra] 0)?]
< Ey [(Ex [f(x)(v,a) | -7:X1] ()
— Ex [f(x)(v,a) } «7:X,+|] ()’))2] .
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E| DD E (B [f® ey | Fx]0) = Ex [f ) wa) | Fxiu] )] | Xi
veFd aex
== Z D 2 EE®eo | Fx]0) = Ex[f®ra | Frug+nien] 0))?] (25)
ze[d] vepdaei

DX, X

{ZZE

veFdacX

2F J€lk]

f(x)(v a) | ‘FXI] ) —

E, [f(x)(v,a) | -7'—X1,v] (J’))z]

X,:| . (26)

E |: Z Z Ey [(Ex [f(x)(v,a) ‘ fxt] (y) — Ex [f(x)(v,a) ‘ «7:Xz,v] (y))2]
veFdackX

.

2. 2 Bl

veFdack

< —Eo)]E|:

@ | Fx ] O) -

Ex[f() v | Fxin] 0)?]

X,:| + €04/ IZ] | F4|

[zzu

veFdaek

|

2 | 4| et

N>
+ YEL S o izl
2\/\Frf’ jelk]

2!!

[f Oy | Fx, ] ) = Ex [F ) va) | Frin] )] Xr:|+60\/|2|\F,f’]. 27)
DU E(E[f 0y | Fx ] 0) = Ex [f® vy | Fxipn] )2 X,}
veFdack
kX
{ DO E(E[f 0wy | Fx ] 0) = Ex [f® vy | Fxon] 0))2] xt}+ '2'60. (28)
veFdaek

Otherwise, if X,y ¢ X;41, then

E, [(Ex [f(x)(v,a) | -7:X1] (y) — Ex [f(x)(v,a) | fX1,v] (Y))Z:I
< 1.

By the properties of X; given in Lemma?29, we have that

P(X:y € Xeg1 | Xo) 2 1 — €.
Thus, we have (27), as shown at the top of this page.

From (26) and (27) we obtain (28), as shown at the top of
this page.

Observe that viewing f as a random variable with respect

to 1% we have I fll, = /‘Frﬂ. Note also that

[ELA | Fx] = ELf | Frall,
= ( > ZEy[(Ex [f M wa) | Fx] 0
veFdack

1

2
~Ef®wa | Frn]0) ]) : (29)

From (28) and (29) we obtain that for every ¢ € [m],

kﬁ

2|7

Dy, < E[|ELf | Fx,]- ELf | ‘7:Xt+l]H2 | X:]

k1X]eo

. (30)

Note that the probability that a random variable is greater
than or equal to its expectation is always strictly positive.
Because X; takes only finitely many values, this means that
for every t € [m], for every realization of X,, denoted as y;,
there exists a realization of X, 1, denoted as y;+1 = yr+1(x:)
such that P (X,4+1 = y/41 | X;)> 0 and

E[ELf [ Fx]=E[f | Fxally | %]
<|ELf | Ful=ELf | Fuall,-
Together with (30) we obtain
o < SB[y | 5 - £l | F ]+ R
2/ |
(31)

Since (31) holds for every 7, we obtain that there exists
a sequence (y;)re[m+1] of realizations of (X;);epm+17 With
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positive probabilities, such that for every ¢ € [m],

k121 k|1Z]e
X ”E[f|‘7:Xt]_E[f|]:X1+I]”2+ 2 0'
|F|
(32)
From Lemma 28, there exists ¢ € [m] such that
1
IEL | Fal = ELF | Faally < o 175 33)

Combining (33) with (32) we obtain that there exists ¢ € [m]
such that

kV1Z] 1 kX ey
Dy, < —=fla+ >
2,/ Eg| V™
_K/IE], kIZle
2 /m 2
Taking A = y;, and recalling our choice of ¢y = % and
1 2 .
N < e Ve obtain that
VIZ z
py< WL KIEQ o
2/m 2
which completes the proof. [ |

We have reached the main result of this section. We show
that capacity of a convex d-axial product is arbitrarily close
to the independence entropy, as the dimension grows.

Theorem 34: Let k € N, and let T C P(Ek) be a convex
one-dimensional SCS. Then

lim sup cap(I'®?) = hina(T).
d—00
Proof: First note that lim sup,_, ., cap(I'®%) > hinq(T)

by applying Theorem 26 to I'®¢ for every d and taking d —
oo on both sides. For the other direction, fix ¢y > 0 and choose

€0

0<e<min{—,
2log, 2|

1], 0<o<S.
2

Replace I' by Bs(I") in Definition 31 and denote the resulting
measures by ,ug’d, ,ui 4> and ’7£ A
Recall that for a measure x and a o-algebra F,

H(u | F)EEH@u( | F)] Z/H(# ¢ F)G)du(x).
(34)

In other words, H(x | F) is the expected entropy of the

conditional measure u (- | F). Also recall that for A C F,f ,

A (,ug’d) denotes the A-marginal of ,ug’d, and that F4 denotes
the o -algebra generated by the coordinates in A. We have that

H () = HeaGuy) + H (a5 | Fa).

By Proposition33, for any n € N, n > k + 2, there exists

. d

do € N, such that for every d > dp, there exists A C shr,
|A| < en?, such that,

wy® (1.4 € Po (BBANH)) > 1-€ > 0.
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In particular, there exists a word y € X5 # such that Ny,A €
P (B (B5(1))™). Since clearly

>

H @y ™) < log, |24

by combining the above we have

H(uy ) < H (uy | Fa)+enlogy |21 G39)

Because the joint entropy of a finite set of random variables
is bounded from above by the sum of their entropies (and the
same statement holds for conditional entropy), we have:

H (,ug’d ‘ fA) <> H (ﬂ{v}(ﬂg’d) ’ ]:A)~
veFd

By definition of the random measure ;7;5, 4 and from (34),
we have

.d d
H (@) | Fa)= 30 H (zei.0) 3 o).
yextn
Thus,
d d
H(#g’ ’ﬂ)< > > H(n{v}(ni,m)ﬂ;’ ().
veFd yezF;{
Now, since 7y, 4 is a product measure, we have
HOB) = > H (2 00.0).
veFd

It follows that,

(| Fa)< > B (na) " »). 66
yeEFrlti
Let us conveniently use p to denote the value
P2y (04 € Po (BBN™)),
and recall that p > 1 — ¢ > 0. Then
> H@ Duy )
yeEFr‘f
d
<p- sup H(n)+(1—p)'10gz‘ZF” :
n€Py ((Be (B5(I))™4)
(37

Using the fact that p > 1 — € > 0 combined with (36) and
(37), it follows that

# (5 | 72)
<p-  sup H(n)+ (1 - p)n -logy |X]
n€P ((Be (Bs(I)))X9)
< sup H(n) + en? log, |X]. (38)

n€Pn (([Be (B5(I)))24)
Combining (38) with (35) we obtain

1 nd 1
it ()< s

nE€Py ((Be (Bs(I)))H4)

H(n) + 2¢log, |X].
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By our choice of ¢, we have ¢ + 0 < ¢€p, hence
(Be B5(I))®? € (B¢, (I))®?, as well as
1 nd 1
SH(Wp )<= s H e (39)
n nd =
n€Pn ((Bfo(r))gd)
Since ,ug’d is the uniform measure on B, (Bs(I')®),
H (uy ) = logy | By(Bs(1)®)|.
Thus,
1 NI
g B, (BoM)®) < = sp HOp+e.
" M pePo ((Bey (1)24)
Taking lim sup,,_, ., we obtain
—_— 1
cap ((IB%g(l"))‘gd) < limsup — sup H(n) + €o.
n=>00 T P, ((Bey ()B4
Since
Bs (T®7) < Bs(r)®,
we have
ap (B ((1)®7)) < cap ((B()*)
< limsup — sup H () + eo.

n=>00 M5 3eD (Be, (1)2)

Taking lims_, o+, we get

1
cap (F®d) < lim sup — sup
n=>00 e, (B, (1)24)

H(n) + €. (40)

At this point we take a slight detour. For & > 0, B¢, (I') €
B¢ (Be,(T')) and hence we have

1
lim sup — sup H(n) + €

n=>00 T e, (Bey (1)B)

1
< limsup lim sup — sup H(n) + €

g0t noe N B (B, (1))
(2 Rind ((Beo (r)) ®d> +¢o

D hing ((Beo (M) + €0,

where (a) follows by definition, and (b) follows by Lemma 27.
Substituting this in (40) and taking d — oo we obtain

limsupcap (T%) < hina (Bey D) + €0 (D)
d—00
Note that since I' is convex we have that for ¢; > O,

B, (BEO (F)) = B¢, +¢,(I'). Therefore, by the definition of limit
we have

lim sup lim sup lim sup — sup H(n)

=0 a0t =00 TP (B (Be, (1))

1
= lim sup lim sup — sup H(n).

@0t =00 B (B, ()

Therefore, taking the limit as ¢g — 0 in (41) we obtain

lim sup cap (T®d) < hina(I).

d—o0
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cap(T) hina (T')

hind(r)

d
Fig. 1. The Hasse diagram for a general d-dimensional SCS I C P(ZFk ),
where (a) follows from (1), (b) follows from Theorem 26, and (c) follows
from (2).

VI. DISCUSSION

Our initial motivation behind this work is to approximate
the capacity of multidimensional SCSs using “meaningful”
expressions. The main challenges were defining exactly what
is the capacity of multidimensional SCSs, and obtaining
the connections between the capacity and the independence
entropy. The type of semiconstrained systems and constrained
systems considered in this paper correspond to a class of sub-
shifts called “subshifts of finite type”. More general systems,
such as sofic shifts also appear in the context of constrained
coding. We point out that the main results of [27]-[29] apply
to more general subshifts. Thus, Theorem 34 only generalizes
the main result of [28] for subshifts of finite type.

At the core of our results, for I' C P(Zk) and its axial
product I'®¢, by Theorem 24 and Theorem 26 it follows that

hina(T) < cap(I'®%).

Thus, the problem of bounding the capacity of a d-dimensional
axial-product SCS is simplified by having to consider only
product measures, which are much easier to handle. Moreover,
any number of dimensions d, may be reduced via this bound to
the one-dimensional case. This bound is asymptotically tight,
as together with Theorem 34, for convex T,

lim sup cap(I'®?) = hjpg(I).

d—00
It also appears that the capacity cap, and independence
entropy hind, are robust generalizations of their one-
dimensional combinatorial counterparts.

The paper contains many connections between the various
capacities and entropies. Figure 1 shows the Hasse diagram?
for the bounds pertaining to general d-dimensional I' C
P(Zde). In the case of a convex one-dimensional I" € P(ZX)
and its d-axial-product SCS ['® a more elaborate Hasse
diagram emerges, which is shown in Figure 2.

We note here that following the same arguments used in
the proof of Theorem 24 would show that cap(I'®¢) >
cap(I'®?+1) which means that in lim sup,_, ., cap(I'®?) the
limit actually exists and equals to inf; cap(I'®9).

2In a Hasse diagram expressions are represented by nodes. An edge between
two nodes represents an inequality where the higher node has a higher value.
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cap(T) cap(T®%)
Gp(T) (a) (b) cGap(r7)
Hind (T) = hing (T97) = hing (T%)
(e)
Hina (1)
®
Fing (T)
Fig. 2. The Hasse diagram for a convex one-dimensional I' € P(Z)

and its d-axial-product SCS I'® where (a) and (d) follow from (1),
(b) and (c) follow from Theorem 26, (e) follows from (2), and (f) follows
from Lemma 23.

We would also like to compare our results, as they apply
to a specific case study described in [1]. Let I' € P(ZX) be a
convex one-dimensional SCS, and recall that the axial product
I'® is defined as

red & {ﬂ e P(=FY Vi e[d], mpe (1) € r},
and thus
B, (r®)={we F : viela, i er}.

The SCSs studied in [1] were an averaged version of the axial
product, namely,

d 1
st ephy . yi E Tikle, (W) € T ¢,
i€ld]

and thus

1
Xd d . § kle;
Bn (F ): w e Fn : E P fI'EU]e el

By convexity, it easily follows that

B, (F®d) cB, (ng),
and thus

cap(I®!) < cap(I™).

We now focus on the simple example known as the
(0, k, p)-RLL SCS over the binary alphabet £ = {0, 1}, which
was the case study of [1]. The one-dimensional (0, k, p)-RLL
SCS, 0 < p < 1, is defined by

Fip 2 {wePE - uah <pl, @
where 14¥*1 denotes the all-ones string of length k + 1.
This example is a generalization of the well known inverted
(0, k)-RLL fully constrained system, since if we take p = 0
we obtain the inverted (0, k)-RLL. In [1], the authors found
lower and upper bounds on the internal capacity of F,'{leg.
We recall the relevant lower bound here.
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Theorem 35: [1, Th. 20] Let T’y ), denote the one-
dimensional (0, k, p)-RLL SCS given in (42). Then, for all
0<p < 5

cap(I}) > 1 +d (cap(I') — 1),

whereas for all 2,(% <p<l, @(FEE) =L

We first note that this theorem implies a lower bound on
cap (%),

cap(') >cap(If) > 1 +d (cap() — 1).

The lower bound of [1] eventually becomes negative, as the
dimension d grows, and therefore, degenerate. However, using
the results of this paper,

cap(Ip ) = Ting (T, ),

and this bound does not depend on the dimension, and there-
fore, does not degenerate. We provide an explicit numerical
example:

Example 36: Let us take k = 2, and p = 0.05, meaning
that we restrict the frequency of the pattern 111 to be at
most 0.05. Fix d = 3. The lower bound on cap(l",%f)
from [1] uses @(Fk, p). The latter can be calculated by
solving an optimization problem using a computer. We obtain
that@(l“kjp) ~ 0.976 which means that

cap(I; ) > 1+3-(0.976 — 1) ~ 0.928.

Using the results of this paper, we use m(l"k, p) as a lower
bound to cap(l",?l‘j). Finding the supremum involved in the

definition ofm(rk, p) is also not easy, and we lower bound
it by guessing a specific measure. We take each coordinate to
be i.i.d. Bernoulli ~/0.05, and we get

cap(Iy) > hina(Tk.p) > Ha(v/0.05) ~ 0.949,

which is a better lower bound than that of [1]. Note that
the upper bound gives cap(I'’) < 0.983. We further mention
that the lower bound of [1] gets increasingly worse as the
dimension grows. For example, when d = 10 we obtain by
Theorem 35 that Cap(FEIZ) > 0.76 whereas using the inde-

pendence entropy, the bound stays the same, i.e., Cap(l"lzld) >
0.949. Finally, for all d > 42, the lower bound of [1] becomes
degenerate. 0
We present another example for (0,1, p) with a more
elaborate lower bound.
Example 37: Take k =
results of this paper,

1 and consider Ty p. From the

lim sup cap(F%)

d—o0

> lim sup cap(I'{9)
d—o0 ’
= hina(T'1,p)
2 hina(T'y, p).
We lower bound ﬁ(rl,p) by devising a product measure

U € (P(X)?, for all n € N. The measures use two
parameters 0 < x,y < 1, using a Bernoulli(x) distribution
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maxy,y %H(‘uzn)

p

0.10 0.15 020 0.25

(a)

0.00 0.05
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Fig. 3. A lower bound on lim sup,_, o, cap(I’ lcgg) is shown in (a), where (b) shows a contour plot of %(Hg(x) + H>(y)) as well as the curves xy = p for

p = 0.01,0.05,0.1,0.2.

for positions with odd indices, and a Bernoulli(y) for positions
with even indices. Thus,

— 1
hind(T1,p) = max — H (u2p)
x,y 2n

1
=maX[§(Hz(x)+Hz(y)) 1 0<x,y< 1, xyép]-

Due to monotonicity, the maximization problem always has
a solution on the curve xy = p, which in the high range
is unique x =y = ,/p, and in the lower range has two
symmetric solutions. For example, for p = 0.2 the optimal
solution is x = y = +/0.2. However, for p = 0.01, the first
optimal solution is x ~ 0.454, y =~ 0.022, and the symmetric
solution is x ~ 0.022, y ~ 0.454. This is depicted in Fig-
ure 3. The transition between the one-solution regime and
two-solution regime occurs exactly when

N
1=ypr
which is approximately p ~ 0.04744.

We note that this bound agrees with the solution for the
fully constrained case, lim sup,_, . Cap(l"%lg) = % which was
solved in [28]. We conjecture that Figure 3(a) indeed shows
the exact limiting capacity. U

1+(1—p)n =0, pe(0,0.25)

APPENDIX A
CycLIC AND NON-CycLIC CAPACITIES

The goal of this appendix is to show that the capacity,
as we defined it cyclically, equals the (traditionally non-
cyclic) capacity in the case of fully constrained systems. The
results of this appendix together with Appendix VI imply that
Theorem 34 recovers the main result of [28] about equality
of limiting entropy and independence entropy, for the class of
subshifts of finite type.

Definition 38: Let d,k € N. An element of a subclass of
(traditional) fully constrained systems, called shifts of finite
type, is defined by a set ® < 7 4 of d-dimensional words,
called forbidden patterns. The set of all admissible words in
F s defined as

Brczom(q)) A {x c ZF'ii : Vv e F,(li,k, xv+F,§i ¢ (D}'

The (combinatorial) capacity of @ is defined by
1

cap®™(®) £ lim su
p ) m»mplFfl

log, |B,*™(®)] .
O
Intuitively, a traditional fully constrained system is a set of
words that do not contain any forbidden pattern non-cyclically.
Given a (traditional) fully constrained system ® C > 5 i , We
can construct a set of measures ' defined as follows,

rd)é{ﬂEP(ZFlf) : lu(ZFg\(D)zl}. (43)

Thus, I'gp is a SCS which is fully constrained in the sense
of Definition 10. Since Definition 10 is more restrictive,
by requiring forbidden patterns to not appear in admissible
words cyclically, we immediately have

B,(T'p) C B°™(D),
implying also
cap(T's) < cap™™(®).
However, we now prove that the capacity of I'g does equal
the (combinatorial) capacity of ©. .
Proposition 39: Letd,k € N. Let ® € L% be afullydcon—
strained system as in Definition 38, and let T € P(Z7%) be

its corresponding fully constrained system as in Definition 10.
If B;°™(®) # @ for all large enough n € N, then

cap(I'p) = cap“™(®).
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Proof: We first show that cap®™(®) < cap(I'p). Fix
€ > 0, and for n € N, n > k, consider the k-boundary of
F,f’ which is defined as F,f \ Fd . Note that |Fd \ Fd K=

—(m—k)? Letw e Bf,‘)m((l)) While w does not contaln
any forbidden pattern when considering the coordinates non-
cyclically, it may contain some when considering the coor-
dinates cyclically. The number of occurrences of forbidden
patterns (cyclically) in w is at most |F,‘f \F,fl,k| =n?—(n—k)“.
For all large enough n we have "d_sl+k)d < €, hence

B™(®@) € By (Be(T'p)).
Thus, for every € > 0,
ap™(®) < cap(Be(I'o)).
Taking the limit as ¢ — 0 we obtain
cap*™ (@) < cap(l'o).

In the other direction, we now show that cap(I'ep)
cap®°™(®). Let dp > 0 and take ng € N large enough such
that

— log, |BX"(@)] <
0

cap™(®) + 50

Denote the number of forbidden patterns by ¢ £ |®|. Take
0 > 0 small enough such that both

t(l+5)H2( P

ng 149

1 1
)g 550’ and t510g2 |Z| < 5509

where H>(-) is the binary entropy function. Finally, for every
n > ng, denote m £ [n/no], and choose any 0 < € < (S/ng.

Consider a word w € B,(B¢(I'p)). We say w is made up
a concatenation of md F d _plocks, namely, a block is a set
of positions ngv + F, no’ where vV € F,ﬁ, as well a boundary,
namely, the set of positions Fd \ F, mno By our choice of
parameters, the number of occurrences (perhaps cyclically) of
any forbidden pattern from @ is at most

€IFY| <€ (m+1)"nf <9 (m+1)7.
This serves also as an upper bound on the number of blocks
fully containing (non-cyclically) this forbidden pattern. Since
there are ¢ forbidden patterns, the number of blocks that
are devoid (non-cyclically) of any forbidden pattern, is at
least m¢ — t5(m + 1)?. Such blocks are in fact words from
Bcom (D).

F1x1ng a specific forbidden pattern of length no, and consid-
ering each occurrence of it as a ball, we have at most d(m+1)¢
balls, which we throw into m?+1 bins (m? blocks, and another
“virtual” bin for patterns that are not fully contained within
a single block). The total number of vays to throw these

balls into bins is at most (" ;t’:i(f)'jl) ). Raising this to the
power of ¢ gives an upper bound on the number of ways the

t forbidden patterns are dispersed among the blocks. In total
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we have,

IBn(Be(Fd))N
< mé + 1+ d(m + 1)¢ !
h 5(m + 1)4
d ds
. |B::lgm(q))|m —t(m+1)%6 |Z|t(5(m+1)dng |2|nd7(mn0)d

m? + 14 5(m + 1)¢ ! md
< Ccom (D
(" e ")t

X |Z|t(5(m+l)dn0 |2|n 7(mn0)‘1

where the binomial coefficient follows from upper bound-
ing the way forbidden patterns are dispersed among blocks,
the following term counts the number of ways to fill blocks
that do not contain (non-cyclically) any forbidden word, and
the last term counts the ways to arbitrarily fill in the rest of
the positions.

We now recall the well known bounds on the binomial
coefficient (e.g., see [35, Lemma 7, p. 309]),

1 2nH2(A) < (l’l) < 1 nHy (1)
A1 =7) n 2n2(1 =7) ’
foralln e N, 0 < 4 < 1, and An an integer. Thus,
cap(Be(I'p))
1
= lim sup — log, |5, (Be(I'0))|

n—oo

<t(14dr5)H( P )
ng 1406

< do + cap®m(@).

— log, [Bro™(@)] + 1d10g, | 2|

Taking the limit as € — 0, we get

cap(Tep) < do + cap™™(@).

Finally, since this holds for any dy > 0, we get the desired
result,

cap(I'p) < cap®™(®).

APPENDIX B
INDEPENDENCE ENTROPY FOR FULLY
CONSTRAINED SYSTEMS

Here we Prove Theorem 22. We begin by recalling relevant
definitions from [27]. A Z¢ shift space X, is a subset X € EZ
that is closed under shifts, i.e., for all v € Z4, and all x € X,
oy(x) € X.

Deﬁmtton 40: Let d, k € N. Given a set of forbidden words
O C ZFk the 7 shift space over ¥ defined by ® is

Xo 2 fves™ : wezd x, g0l

O
Given a finite alphabet X, let S denote the set of all
non-empty subset of X, i.e.,

SE[ACT : A#0).
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Definition 41: Let d € N, S C 7% and let ¥ be a
configuration on S over %, ie, ¥ € 5. Denote by ¢(X)
the set of fillings of X,

@ (X) 2 {x c 3 cVves, X{v} € f{v}}'

O
Definition 42: Let d € N, and let X be a 74 shift space
over X. We denote by X the multi-choice shift space corre-
sponding to X,
x2lees™ :p®cxl.
We also denote by B,,(X) the set of all eligible configurations
on F, din X, ie.,

B,,(X)é{xﬁ, : xeX}

O

Definition 43: Let d € N, and let X be a 7¢ shift space.

We define the combinatorial independence entropy of X,

denoted as hi>"(X), by
com

1
com(X) £ lim sup — v max {log2 lp ()]

. b e B, (f()}.
n—o0
O
Note that in [27] the definition of combinatorial indepen-
dence entropy is slightly more general and defined over all
shapes and not only on the shapes Ff. d_ Finally, given a
fully constrained system ® C ¢ (see Definition 38), its
representation as a SCS is given by I'¢ in (43). We are now
ready to prove Theorem 22.
Proof: [Proof of Theorem 22] Let d,k € N, and let ® C
> bea fully constrained system, with its SCS representation
I'p from (43). The claim we want to prove is that

fr?én(Xd)) - hmd(rd))

First, we show that hlcom(X o) < hing(I'e). For every

n € N choose @, € B,(X¢) which maximizes lp (10,,)]. Now
consider the independent measures x, such that zgy)(u,) is
the uniform distribution over (i)} Note that in Bn(f(),
the forbidden patterns are considered without modulo while
in B,(I'p) the calculation of the marginals’ average uses
modulo n. Therefore, if a filling in ¢(w,) belongs to Xg,
in u, there is perhaps a positive probability to see a forbidden
pattern only in the boundaries. In Fnd , the k-boundary is the set
Ff\Ff_k of size n? — (n—k)?. Since (n? —(n—k)?)/n¢ — 0
as n — 0o, we obtain that for every € > 0, for every n € N
such that (n¢ — (n —k)?)/n? < €, we have that 1, € Be(I'g).
Thus,

— 1

hinaBe(Tp)) = limsup ~ sup  — H(u)
"0 Py (Be(To))

1
> lim sup — v H(un)

n— o0

1
= lim sup — v log, | ()]

n— o0

= hind' (Xa).
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Taking ¢ — 0 we obtain
hina(To) = A" (X o).

hio' (X ). Fix ¢ > 0 and
15 Take ng € N

We now show that hing(I'p) <
take 1 > 0 small enough such that §; <
large enough such that for all n > no,

1

_d Inax~
n" e n(XCD)

{log lp (@)1} < HEP o) + 30 (44

We now take € > 0 small enough such that all the following
hold,

d d 1
151 Y ndet log, ndet < 20, (45)
d 3 !
2%4logy || < 551, (46)
1
Fing (Be(To)) — hina(To) | < 701
By the definition of hmd (B¢ (I'p)) we may find n > nq large
enough such that all the following hold,
1
2(1=(1=22)og T < Zo1, @)
n

1 1
sup —H(u) — hina(T'o)| < gél,

Py (B (To)) "
and there exists u € P,(B¢(I'p)) for which

1
— H (1) = hina(To)| < 5
n

Since u € P, (Be(Tp)), we have

1
7 2. T (@) <€

veFd

Denote m £ [n/ng). We now partition F; 4 into m¢ blocks
of shape Fy 4 in the natural way, {nov + Ffoive F;Z}» as well

as a boundary F; d\ F mno Note that

n= ® Tnov+Fy, (1) ® Tpa\pa (1)

mn
veF,;‘.;

Since u is independent we obtain

H(wpa (1)) —

(mno)d mn

1
H(”F;,gno () — n—dH(ﬂ)}

hind(To)

1
S } (mng)?
1
n—dH(ﬂ) — hind(To)

1
d
< (mny) (W

n’ — (mno)*
nd

— (mng)? 1
1 10g2|2|+151

1
(1 - (1 - @)d)logz IZ] + -0y
n 4

o1, (48)

+

1
- — |1 z
nd)0g2| |

1
+ 10g2|2|+151
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where the last inequality holds due to (47). Let Z : Frﬁ - R
be a function defined by

1
IN
Z(V) = n_d E 7[de+n0v+u(,u)((l))
0 ueFd

(with coordinates taken modulo n). Note that since u €
PnBe('gp)), we have

1
= D TR (W)@ <e
"R

If we now take v to be random uniformly distributed in F,Z,
then

1 1
ElZW)] = — > 7 D Tt ingvia (@)

0
veFd ueFd

1
< (1 + —)de.
m
By Markov’s inequality we have

Pr (Z(V) > 6%)< e P E[Z(V)] < (1 + l)dg ,
m

R[]

(49)

Recall that each v € F¢ may be identified with the F,f’o
block of F¢ in coordinates ngv + F,flo. Define,

LA {Ve F,‘,’ll D Z(v) > e%}
Since v was distributed uniformly in F;Z’ by (49) we have,
L] < (m+ 1)ed. (50)

It now follows that

1
o) Z H(”n0v+F,;10 (1))
0 veFI\L

1
= Tyt a0~ Gyt 2 H v, ()

@ 1 1
2 hina(Tw) = 301 = (mng)? > H (v pg (1))

0 vel

3
® 1 (m+ Deind
= hind(rd)) - 551 - (mT)dO log2 |2|
1 3

= hind(To) — 551 —2%¢i log, | T|

(c)

Y hina(To) — 61
1

> hind(To) — 55,

where (a) follows from (48), (b) follows from (50), and (c)
follows from (46). Since there are at most m“ summands on
the left-hand side, there exists vo € FZ \ £ such that

1 1
n_dH(nn0V0+Fr‘z10 (1)) = hind(Te) — §5- (5D

0

We denote by v the independent measure v £ 7 Fé +novo (p).
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Note that if we consider v in a non-cyclic manner, we obtain
that
1 nd 1
0 -
—_— T, pdW)(P) < ————€7,
(no —k + 1)d 2 wirg ()(®) < (no —k + 1)4
uEF)fofk#»l

we have

. . . d
and in particular, for every coordinate u € Fno—k e

that L W)(D) < nge%. Let us define

Hence, since v is an independent measure, if a € ® then
there must be a coordinate t € F,f for which wy4+¢(v)
(a) < p. .

We now construct a configuration v € £F0. For every
coordinate u € Fn”l0 we take

wu={ae X : nuW)a) > p}.

By our previous observation, w € Bno(f(cp) since any fill-
ing of w cannot contain a forbidden word from ® as it
requires at least one position u such that zg(v) < p.
Moreover,

log, |y]
> = D" muv)(@) logy (Tuy(v)(a))
= H@w) + D 7m®)(@)log(Tmv)(a))

a€X\y

H(mwy(v)) + |Z] plog, p

1
H () = 30

WV

Vv

where the last inequality follows from (45). Hence, using (51),

Z log, |yl

ueF;fO

1 1
= 2. HEwm) -39

0 ueF;fO

1 5 1
3 log, lp()| = 7
g g

2
2 hing(To) — 55«

Finally, using (44), this implies that,

5 1
max_ {log, lp(d)[}— 55 2 hind(Tp) — 0.

1
ind (Xo) > —
n() TZ)EBH()(XCD)

Since this holds for every 6 > 0 we have hjpg(I'p) <

hflfén (Xo), as claimed. ]
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