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1. Introduction

A k-ary De Bruijn sequence of order n (denoted (n, k)-DB), is a word ⟨νi⟩k
n
−1

i=0 ≜ ν0ν1 . . . νkn−1 over the alphabet [k] ≜
{0, 1, . . . , k− 1}, i.e., νi ∈ [k] for all i ∈ Zkn , such that all n-subwords νiνi+1 . . . νi+n−1 are distinct (note that i ∈ Zkn means
that indices are taken modulo kn). Of the many (n, k)-DB sequences that exist, a particular sequence stands out, featuring in
many past works. Consider first the binary case, k = 2, start the sequence with 0n, and add bit by bit, always preferring
to append a 1, unless it creates an n-word that has already been seen previously. After obtaining a sequence of length
2n, move the 0n prefix to the end of the sequence. The result is an (n, 2)-DB sequence dubbed the prefer-one sequence
or Ford sequence [10,6]. By complementing all the bits, we obtain the prefer-min (n, 2)-DB sequence. In the non-binary
case, we can replace the prefer-one rule by a prefer-max (assuming a lexicographical order of the alphabet), resulting in
the lexicographically largest (n, k)-DB sequence, and symmetrically (by complementation), a prefer-min (n, k)-DB sequence
which is the lexicographically smallest (n, k)-DB sequence.

The greedy bit-by-bit algorithm of [10] is certainly an inefficient way of generating the prefer-max sequence, running
in Θ(nkn) time (integer operations), and requiring Θ(kn) memory. Several suggestions have been made since to improve
the efficiency of the sequence construction. Fredricksen and Kessler [8], and Fredricksen and Maiorana [9] showed that the
prefer-max sequence is in fact a concatenation of certain (Lyndon) words. While seemingly an inefficient way to generate
the prefer-max sequence, a later careful analysis [11] has shown that this decomposition allows us to generate the sequence
of length kn in O(kn) time.

However, another equally important way of generating sequences is of interest, namely, by using a shift rule. It is well
known that any (n, k)-DB sequence ⟨νi⟩k

n
−1

i=0 can be generated by a feedback shift register (FSR) of order n, i.e., there exists a
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shift-rule function f : [k]n → [k] such that νi+n = f (νi, νi+1, . . . , νi+n−1) for all i ∈ Zkn . Several efficiently computable shift
rules for De Bruijn sequences are known, requiring O(n) time and memory to generate the next letter in the sequence, given
the preceding n letters (see [5], as well as [12] for a comprehensive list). We also mention the recent [3], which describes
an efficient shift rule for the k-ary ‘‘grandmama’’ sequence (which is defined by a co-lexicographic order, compared with
the lexicographic order of the prefer-max sequence). However, with a single exception, they only generate non prefer-max
sequences, and the only exception [7], addresses only the generation of binary prefer-one sequences.

The main contribution of this paper is an efficient shift-rule function for the (n, k) prefer-max De Bruijn sequence, k ⩾ 2
(the case of k = 1 is trivial). The shift rule, given in Algorithm 1, is based on the decomposition of the prefer-max sequence
found by [9], and operates in O(n) time and memory. This closes a gap in the literature, since while efficient constructions
for the entire prefer-max sequence are known, an efficient shift rule is only known in the binary case.

The paper is organized as follows. In Section 2 we provide the necessary notation used throughout the paper, and recall
some relevant results. In Section 3we provide amathematical expression for the shift rule.We proceed in Section 4 to devise
an efficient algorithm that implements the shift rule. We conclude in Section 5 with a short discussion of the results.

2. Preliminaries

Let us start by reviewing the necessary definitions and previous results, before presenting the new results. To avoid
trivialities, we assume throughout the paper that n, k ⩾ 2.With our alphabet letters [k]we associate a lexicographical order,
0 < 1 < · · · < k − 1. This order is extended in the natural way to all finite words from [k]∗ by defining x < y if either x
is a prefix of y, or there exist (possibly empty) u, v, w ∈ [k]∗ and two letters σ , σ ′ ∈ [k], σ < σ ′, such that x = uσv and
y = uσ ′w.

Given a word v ≜ σ0σ1 . . . σn−1, with σi ∈ [k], we define the rotation operator, R: [k]n → [k]n as R(v) ≜ σ1σ2 . . . σn−1σ0.
We say that two words v, u ∈ [k]n are cyclically equivalent if there exists i ∈ Z such that v = Ri(u). The equivalence classes
under R are called necklaces. The number of necklaces, denoted by Zk(n), is known to be Zk(n) ≜ 1

n

∑
d|n φ(d)k

n/d, where φ
is Euler’s totient function (also the number of cycles in the pure cycling FSR, see [13]). Let v ∈ [k]n be a word. The cyclic
order of v, denoted o(v), is the smallest positive integer o(v) ∈ N such that Ro(v)(v) = v or, alternatively, it is the number
of elements in the necklace containing v. If o(v) = |v|we say that v is primitive. For any v ∈ [k]n there is a unique primitive
word w ∈ [k]o(v) such that v = wn/o(v).

A primitive word that is lexicographically least in its necklace is called a Lyndon word. If L ∈ [k]+ is a Lyndon word, we
shall also find it useful to define Lm as an expanded Lyndonword1, for allm ∈ N. Additionally, we can arrange all the expanded
Lyndon words of length n in increasing lexicographical order

Lr00 < Lr11 < · · · < L
rZk(n)−1
Zk(n)−1

,

where ri ≜ n/|Li|. The main result of [8,9] (rephrased to simplify the presentation) is that the prefer-min (n, k)-DB sequence
is in fact the concatenation L0L1 · · · LZk(n)−1. We shall use this fact later on, and call it the FKM factorization.We also comment
that by complementing all the letters via ψ: [k] → [k], ψ(i) ≜ k − 1 − i, for all i ∈ [k], the prefer-min (n, k)-DB
sequence becomes the prefer-max (n, k)-DB sequence, and vice versa. We extend ψ to operate on words in the natural
way, i.e., applying it to all letters of the word.

Example 1. Fix n = 2 and k = 3. We then have the following lexicographical order of expanded Lyndon words,

00 < 01 < 02 < 11 < 12 < 22

hence

L0 = 0 L1 = 01 L2 = 02 L3 = 1 L4 = 12 L5 = 2,

and indeed the prefer-min (2, 3)-DB sequence is L0L1L2L3L4L5 = 001021122. After complementing each letter we obtain
ψ(L0L1L2L3L4L5) = 221201100, which is the prefer-max (2, 3)-DB sequence.

3. Shift-rule construction

In this section we state and prove our shift-rule construction. For ease of presentation, we work with the prefer-min
sequence, while remembering that by simply complementing letters with ψ , this is equivalent to working with the prefer-
max sequence.

We first require a definition that distinguishes another necklace member that is not necessarily the expanded Lyndon
word Lrii defined above.

Definition 2. Aword v ∈ [k]n is a necklace head, tested by the predicate head(v), if we can write v as v = (k−1)twσ , where
w ∈ [k]n−t−1, σ ∈ [k− 1] (i.e., σ ̸= k− 1), and Rt (v) = wσ (k− 1)t is an expanded Lyndon word.

1 In some places, by abuse of notation, a lexicographically least representative of a necklace (which coincides with our definition of an expanded Lyndon
word) is also called a necklace.We shall not do the same since we shall later require a different representative of a necklace, whichmight cause a confusion.
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We briefly note that the necklace containing the single word (k−1)n does not formally have a necklace head, whereas all
other necklaces have a unique necklace head. Additionally, by the above definition, if (k − 1)twσ is a necklace head, either
w = ε is empty, or it does not start with the letter k− 1.

We now define our shift rule. Traditionally, a shift rule is a function that takes n consecutive letters in the sequence
(i.e., the current state of an FSR generating the sequence) and its output is the next letter. However, we will find it more
convenient to define a shift rule as providing the next state of the FSR. Specifically, let ⟨νi⟩k

n
−1

i=0 be the prefer-min (n, k)-DB
sequence. A shift rule for the sequence is a function f : [k]n → [k]n such that f (νiνi+1 . . . νi+n−1) = νi+1νi+2 . . . νi+n, for all
i ∈ Zkn .

Definition 3. Let next: [k]n → [k]n be defined by

next(σw) ≜

⎧⎨⎩
w(σ + 1) if σ ̸= k− 1 and head(wσ ),
w(min S) if σ = k− 1 and S ≜

{
σ ′ ∈ [k− 1]: head(wσ ′)

}
̸= ∅,

wσ otherwise,

where σ ∈ [k] and w ∈ [k]n−1.

The main result of this section is the following theorem.

Theorem 4. next is a shift rule for the prefer-min (n, k)-DB sequence.

Before proceeding, we provide an example.

Example 5. Continuing our running example from Example 1, consider again the prefer-min (2, 3)-DB sequence 001021122.
Take as an example the subword σw = 21, i.e., σ = 2 and w = 1. In this case next(21) is computed using the second case
of Definition 3, and S = {1} since head(11) is true but head(10) is false. Thus, next(21) = 11, which is consistent with the
sequence.

In order to prove Theorem 4 we state a sequence of lemmas, building up to the main result.

Lemma 6. A word v ∈ [k]+ is an expanded Lyndon word if and only if v ⩽ Ri(v) for all i ∈ Z (i.e., it is lexicographically least in
its necklace).

Proof. Consider the (unique) decomposition v = wt , where w is primitive. Note that Ri(v) = (Ri(w))t . Thus, v ⩽ Ri(v) if
and only if w ⩽ Ri(w), which holds for all i ∈ Z if and only if w is a Lyndon word. □

The first step we take is showing that increasing the rightmost letter that is not k − 1 in an expanded Lyndon word
maintains the expanded Lyndon property.

Lemma 7. Ifwσ (k− 1)t ∈ [k]n is an expanded Lyndon word and σ ∈ [k− 1] thenw(σ + 1)(k− 1)t is also an expanded Lyndon
word.

Proof. Ifw(σ+1)(k−1)t startswith k−1 then it is equal to (k−1)n and the claim follows. Otherwise, writew(σ+1)(k−1)t =
xy and we shall prove that xy ⩽ yx. If |y| ⩽ t the claim trivially holds. Otherwise, for some word v, y = v(σ + 1)(k− 1)t and
w = xv. By assumption, xvσ (k− 1)t ⩽ vσ (k− 1)tx. Since |v| ⩽ |xv|, xv(σ + 1)(k− 1)t ⩽ v(σ + 1)(k− 1)tx as well. □

Wenow turn, in the following lemmas, to consider connections between successive expanded Lyndonwords, Lrii and Lri+1i+1 .

Lemma 8. Let Lrii = wσ (k− 1)t ∈ [k]n be the ith expanded Lyndon word in increasing lexicographical order where σ ̸= k− 1.
Then, the (i + 1)th expanded Lyndon word, Lri+1i+1 , is w(σ + 1)x where x ∈ [k]t is the lexicographically smallest word for which
w(σ + 1)x is an expanded Lyndon word.

Proof. By Lemma 7,w(σ + 1)(k− 1)t is an expanded Lyndon word, i.e.,w(σ + 1)(k− 1)t = L
rj
j for some j > i. It then follows

that Lri+1i+1 must be of the form w(σ + 1)x as claimed. □

The following lemma combines the shift-rule function, next, and the lexicographical order of expanded Lyndon words.
We use the notation nextj(·), j ∈ N, to denote the composition of next with itself j times.

Lemma 9. next|Li|(Lrii ) = Lri+1i+1 , for all i ∈ [Zk(n)− 2].

Proof. Since i ∈ [Zk(n)− 2], Lrii is not the lexicographically last expanded Lyndon word and not the one before it, i.e.,

Lrii ̸= (k− 1)n, Lrii ̸= (k− 2)(k− 1)n−1. (1)
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We can therefore write Li = wσ (k− 1)t , σ ∈ [k− 1], so Lrii = wσ (k− 1)tLri−1i . Using these notations

next|Li|(Lrii ) = next|w|+1+t (wσ (k− 1)tLri−1i ).

Our proof proceeds by establishing the following three facts:

(a) next|w|(wσ (k− 1)tLri−1i ) = σ (k− 1)tLri−1i w

(b) next(σ (k− 1)tLri−1i w) = (k− 1)tLri−1i w(σ + 1)
(c) nextt ((k − 1)tLri−1i w(σ + 1)) = Lri−1i w(σ + 1)x, such that x ∈ [k]t is the lexicographically smallest word for which

Lri−1i w(σ + 1)x is an expanded Lyndon word.

Combining the three facts together, we get that next|Li|(Lrii ) = Lri−1i w(σ + 1)x, and by Lemma 8, we get the desired.
We first prove step (a).We contend that this step’s claim holds since in the first |w| applications of next only the third case

of the definition of next (cf. Definition 3) takes place. To prove this, we need to show that for any decompositionw = w1τw2,
τ ∈ [k], w1, w2 ∈ [k]∗, we have

next(τw2σ (k− 1)tLri−1i w1) = w2σ (k− 1)tLri−1i w1τ .

Hence, we need to show thatw2σ (k− 1)tLri−1i w1τ is not a necklace head, and that if τ = k− 1 then there is no σ ′ ∈ [k− 1]
such that w2σ (k− 1)tLri−1i w1σ

′ is a necklace head.
For the first condition, assume to the contrary that the predicate head(w2σ (k− 1)tLri−1i w1τ ) is true. By definition, there

should exist an integer 0 ⩽ m ⩽ |w2| such that w2 = (k− 1)mw3 and

Rm(w2σ (k− 1)tLri−1i w1τ ) = w3σ (k− 1)tLri−1i w1τ (k− 1)m

is an expanded Lyndon word. However, we note that

w3σ (k− 1)tLri−1i w1τ (k− 1)m = R|w1|+1+m(Lrii ).

Since 0 < |w1| + 1+m < |Li|, this contradicts the cyclic order of Lrii .
As for the second condition, where τ = k − 1, assume to the contrary that for some σ ′ ∈ [k − 1], the word

w2σ (k− 1)tLri−1i w1σ
′ is a necklace head. Again, there should exist an integer 0 ⩽ m ⩽ |w2|, such thatw2 = (k− 1)mw3, and

Rm(w2σ (k− 1)tLri−1i w1σ
′) = w3σ (k− 1)tLri−1i w1σ

′(k− 1)m (2)

is an expanded Lyndon word. Thus, on the right-hand side of (2), the rightmost letter that is not k − 1, is σ ′. By repeated
applications of Lemma 7, we get that we can replace σ ′ by k− 1 and still have an expanded Lyndon word, i.e.,

w3σ (k− 1)tLri−1i w1(k− 1)m+1 = R|w1|+1+m(Lrii )

is an expanded Lyndon word. As in the previous case, this contradicts the cyclic order of Li.
The proof of step (b) is simpler.We need to show thatwe fall under the first case in the definition of next (cf. Definition 3),

i.e., that (k− 1)tLri−1i wσ is a necklace head. That is indeed true since

Rt ((k− 1)tLri−1i wσ ) = Lri−1i wσ (k− 1)t = Lrii
is an expanded Lyndon word.

Finally, we address step (c), where we need to prove that nextt ((k − 1)tLri−1i w(σ + 1)) = Lri−1i w(σ + 1)x, such that
x ∈ [k]t is the lexicographically smallest word for which Lri−1i w(σ + 1)x is an expanded Lyndon word. Note that by (1),
(k − 1)tLri−1i w(σ + 1) ̸= (k − 1)n, so by Lemma 8 such an x exists. Additionally, for any 0 ⩽ i < t we have that
nexti((k− 1)tLri−1i w(σ + 1)) = (k− 1)w′, thus we never fall within the first case of next.

Next, we show that for any 0 ⩽ i < t , j = t − i− 1, x = x1τx2, x1 ∈ [k]i, τ ∈ [k], we have that

next((k− 1)j+1Lri−1i w(σ + 1)x1) = (k− 1)jLri−1i w(σ + 1)x1τ .

We distinguish between two cases depending on τ . For the first case, let τ = k − 1. We contend that we do not fall within
the second case of next. Assume to the contrary that there is some σ ′ ∈ [k − 1] such that (k − 1)jLri−1i w(σ + 1)x1σ ′ is a
necklace head. Thus, Lri−1i w(σ + 1)x1σ ′(k− 1)j is an expanded Lyndon word. Looking at its suffix of length t , we get

x1σ ′(k− 1)j < x1(k− 1)x2 = x1τx2 = x,

which is a contradiction to the minimality of x.
Now, for the case where τ ∈ [k − 1]. By the definition of x we know that Lri−1i w(σ + 1)x = Lri−1i w(σ + 1)x1τx2 is an

expanded Lyndon word. Using Lemma 7, we get that Lri−1i w(σ + 1)x1τ (k− 1)j is also an expanded Lyndon word. Therefore,
(k− 1)jLri−1i w(σ + 1)x1τ is a necklace head. Left to be shown is that

τ = τmin ≜ min
{
τ ′ ∈ [k]: head((k− 1)jLri−1i w(σ + 1)x1τ ′)

}
.
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Assuming to the contrary that τmin < τ , then (k − 1)jLri−1i w(σ + 1)x1τmin is a necklace head, implying that Lri−1i w(σ +
1)x1τmin(k− 1)j is an expanded Lyndon word. As in the previous case, since

x1τmin(k− 1)j < x1τx2 = x,

we get a contradiction to the minimality of x. □

Lemma 9 does not apply to the penultimate expanded Lyndon word, for which, by simple inspection of the definition of
next we state

next(L
rZk(n)−2
Zk(n)−2

) = next((k− 2)(k− 1)n−1) = (k− 1)n. (3)

We are now in a position to prove the main result.

Proof of Theorem 4. As a first technical step it is easy to verify that next is a shift rule generating some sequence, since
indeed for every σw, σ ∈ [k], w ∈ [k]n−1, we have next(σw) = wσ ′ for some σ ′ ∈ [k].

In the next step, let us examine an unknown sequence ⟨νi⟩k
n
−1

i=0 , that is initialized with ν0 . . . νn−1 = 0n, and whose
following letters are generated using next. We define the numbers si ≜

∑i−1
j=0 |Li|, for all 0 ⩽ i ⩽ Zk(n) − 1. We prove

by induction that for all i ∈ [Zk(n) − 1], νsiνsi+1 . . . νsi+n−1 = Lrii . The proof is immediate since the induction base is our
initialization of ν0 . . . νn−1 = 0n

= Lr00 , and the induction step is provided by Lemma 9, since

νsi+1 . . . νsi+1+n−1 = next|Li|(νsi . . . νsi+n−1) = next|Li|(Lrii ) = Lri+1i+1 .

By this induction, we already have the prefix of the generated sequence to be L0L1 . . . LZk(n)−2, but we are missing the last
Lyndon word, LZk(n)−1 = k− 1. This is easily taken care of, since by (3),

νsZk(n)−2+1
. . . νsZk(n)−2+n

= next(νsZk(n)−2 . . . νsZk(n)−2+n−1)

= next(L
rZk(n)−2
Zk(n)−2

) = next((k− 2)(k− 1)n−1)

= (k− 1)n,

namely, the last letter is the last Lyndon word,

νsZk(n)−2+n
= νsZk(n)−1

= νkn−1 = k− 1 = LZk(n)−1.

We also observe that the shift rule wraps around the end of the sequence. Indeed, by a simple inspection of Definition 3, for
every 1 ⩽ i ⩽ n,

next(νkn−i . . . νkn−1ν0 . . . νn−1−i) = next((k− 1)i0n−i)

= (k− 1)i−10n−i+1

= νkn−i+1 . . . νkn−1ν0 . . . νn−i.

As the final step in the proof, by FKM [8,9] this sequence is exactly the prefer-min (n, k)-DB sequence. □

We conclude this section by reminding the reader that in order to generate the prefer-max (n, k)-DB sequence (instead
of the prefer-min one), all that is required is to start the FSR with (k− 1)n, and to use the shift ruleψ−1 ◦ next ◦ψ , whereψ
is the complement function defined in Section 2, and ◦ denotes function composition.

4. An efficient shift-rule algorithm

Algorithms for implementing shift-rules for the prefer-min (or prefer-max) (n, k)-DB sequences are known [10,6]. These
greedy algorithms requireΘ(kn)memory, andΘ(nkn) time in theworst case (since they in fact need to generate the sequence
until the position of the desired next letter). The main result of this section is an efficient algorithm, requiring O(n) time and
memory, that implements the shift rule we presented in the previous section. By quick inspection, the claim hinges on an
efficient implementation of the head predicate, as well as finding min S in the second case of next.

Our algorithmuses two key components. The first is the renowned factorization due to Chen, Fox, and Lyndon [2], namely,
that everywordw ∈ [k]+ has a uniquedecompositionw = w0w1 . . . wm−1, such thatwi is a Lyndonword for all 0 ⩽ i ⩽ m−1,
andw0 ⩾ w1 ⩾ · · · ⩾ wm−1. We shall call this the CFL factorization ofw. The second key component is due to Duval [4], who
showed that this unique decomposition may be computed for all w ∈ [k]+ in O(|w|) time and memory.

First, we address the efficiency of computing the predicate head.

Lemma 10. For any w ∈ [k]n it is possible to compute head(w) in O(n) time and memory.

Proof. Let i ∈ Z be the largest integer such that (k− 1)i is a prefix of w. We apply Duval’s algorithm [4] to Ri(w) to obtain
its CFL factorization Ri(w) = w0w1 . . . wm−1. Then head(w) is true if and only if w0 = wm−1. □
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Next we recall some useful results already known in the literature. A wordw ∈ Σ∗ is called a pre-necklace if there exists
w′ ∈ Σ∗ such that ww′ is an expanded Lyndon word. By [1, Lemma 2.3], a pre-necklace must necessarily be a fractional
power of a Lyndon word, i.e., w = umv, with u being a Lyndon word, m ⩾ 1, and v a proper prefix of u. Since the um part
is a prefix of a CFL decomposition for w, this decomposition is unique and it is efficiently computable in O(|w|) time and
memory. Finally, we recall [1, Theorem 2.1], whose authors dubbed the ‘‘fundamental theorem of necklaces’’.

Theorem 11 (Theorem 2.1 of [1]). Let w = τ0τ1 . . . τn−1, with τi ∈ [k], be a pre-necklace with fractional-power decomposition
w = umv. Then, wσ , σ ∈ [k], is a pre-necklace if and only if σ ⩾ τ|v|. Furthermore, wσ is a Lyndon word if and only if σ > τ|v|.

We are now in a position to describe the algorithm for next(σw) and prove its correctness.

Algorithm 1: next(σw).

1: if ((σ < k− 1) ∧ head(wσ )) then
2: return w(σ + 1)
3: else if σw = (k− 1)n then
4: return (k− 1)n−10
5: else if ((σ = k− 1) ∧ head(w(k− 2))) then
6: let w′ = τ0 . . . τn−t−1, such that τi ∈ [k], τ0 ̸= k− 1, w = (k− 1)tw′
7: let umv = w′ be the fractional-power decomposition of w′
8: σ ′← τ|v|
9: if head(wσ ′) then

10: return wσ ′
11: else
12: return w(σ ′ + 1)
13: end if
14: else
15: return wσ
16: end if

Theorem 12. Algorithm 1 correctly computes the shift rule next from Definition 3 in O(n) time and memory.

Proof. We argue that Algorithm 1 computes the function next. We consider the three cases of Definition 3 separately. First,
if σ ∈ [k− 1] and head(wσ ), the algorithm returns w(σ + 1) in line 2 as required by the first case of Definition 3.

Now, assume the input σw falls within the third case of Definition 3. If σ < k − 1 the claim is obvious as the condition
in line 1 does not hold. If σ = k − 1, then we have S ≜

{
σ ′′ ∈ [k− 1]: head(wσ ′′)

}
. By Lemma 7, S ̸= ∅ if and only if

head(w(k− 2)) holds. Thus, line 5 correctly checks whether the second case of Definition 3 applies. We therefore reach line
15 exactly when the third case of Definition 3 applies, and correctly return wσ .

We are left with the second case of Definition 3, where σ = k− 1 and S ̸= ∅. First, the special case of σw = (k− 1)n, is
handled correctly in line 4. Otherwise, w contains some letter other than k− 1, and w′ is well defined.

We now contend that min S ∈
{
σ ′, σ ′ + 1

}
. Since head(w(k − 2)) holds, then w′(k − 2)(k − 1)t is an expanded Lyndon

word, hencew′ is a pre-necklace. Also, note that if σ ′′ ∈ S thenw′σ ′′ is a pre-necklace. By Theorem 11, if σ ′′ < σ ′ thenw′σ ′′

is not a pre-necklace. Hence, min S ⩾ σ ′. However, also by Theorem 11, w(σ ′ + 1) is a Lyndon word, thus σ ′ + 1 ∈ S and
min S ⩽ σ ′ + 1. This leaves only two possible values for min S, and consequently, the algorithm terminates in line 10 or in
line 12, and returns the desired word.

Finally, as already noted, CFL factorization, head, as well as the fractional-power decomposition of line 7, may be
computed in linear time and memory (all relying on the CFL factorization algorithm). Thus, the entire algorithm takes linear
time and memory. □

5. Discussion

In this paper we studied the well known prefer-min and prefer-max (n, k)-DB sequences. We completed a gap in the
literature by presenting a shift-rule for the sequences, as well as an efficient algorithm computing this shift rule. The
algorithm receives as input a sub-sequence of n letters, and determines the next letter in O(n) time and memory.

The shift rule we presentedmay be seen as an extension to the binary shift rule presented in [7]. Indeed, if we set k = 2 in
our algorithm, the second case of Definition 3 becomes degenerate, we are left with the algorithm of [7]. This also explains
the main difficulty in our solution, which is finding min S efficiently. The crux of solving this difficulty is the proof that we
only need to choose between two carefully chosen values.
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