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Two-Dimensional Cluster-Correcting Codes
Moshe Schwartz, Member, IEEE, and Tuvi Etzion, Fellow, IEEE

Abstract—We consider two-dimensional error-correcting codes
capable of correcting a single arbitrary cluster of errors of size .
We provide optimal 2-cluster-correcting codes in several connec-
tivity models, as well as optimal, or nearly optimal, 2-cluster-cor-
recting codes in all dimensions. We also construct 3-cluster-cor-
recting codes and -straight-cluster-correcting codes. We conclude
by improving the Reiger bound for two-dimensional cluster-cor-
recting codes.

Index Terms—Burst-correcting codes, cluster-correcting codes,
two-dimensional codes.

I. INTRODUCTION

CURRENT memory devices require that information
is stored on two-dimensional surfaces. Up until now,

one-dimensional codes have been used for such applications
by folding the one-dimensional data into the two-dimensional
surface. The main disadvantage of this approach is that the
devices are not capable of handling “real” two-dimensional
error patterns. More recent developments in technology require
that two-dimensional error patterns are recovered. These appli-
cations include optical recordings such as page-oriented optical
memories [19], and volume holographic storage [13], [14].

The difference between one-dimensional and two-dimen-
sional error-correcting codes comes to light when we consider
burst errors, also called cluster errors. In one dimension, we
say that a burst error of length occurred if all the errors are
confined to consecutive positions. In two dimensions, several
models of cluster errors may be found in the literature. Most
two-dimensional codes are designed to correct a single cluster
error of a given rectangular shape, say a rectangular
array [1], [4], [8], [11], [15], [16]. Other works consider the
rank of the error array [12], [21], or criss-cross patterns [21],
[5], [22].

In some recent papers [3], [6], [10], [24], [18], [17], it is
assumed that a cluster error can have an arbitrary shape. The
approach in these papers is to use interleaving schemes. The
method is very efficient as it uses one-dimensional error-cor-
recting codes with two-dimensional interleaving, but the redun-
dancy of the constructed codes can be considerably improved.
This is because the interleaving schemes proposed can correct
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other types of errors in addition to clusters. In fact, they can
correct any dispersed pattern of errors as long as not too many
errors occur within one of its subcodes.

In this paper, we construct error-correcting codes capable of
correcting a single cluster error with arbitrary shape by using
a direct algebraic approach. We define connectivity models for
the two-dimensional surface. A cluster error of size is a set
of points on the surface such that between any two points of
the cluster, there is path consisting of points from the cluster.
A code is called a -cluster-correcting code if it is capable of
correcting any number of errors which occur in a single cluster
of size . The reader should note the difference in naming con-
ventions from random-error-correcting codes. While an -error-
correcting code is capable of correcting up to different er-
rors, a -cluster-correcting code is capable of correcting just one
cluster, whose size is at most . We design codes which are ca-
pable of correcting small cluster errors. We also prove lower
bounds on the redundancy of cluster-correcting codes.

The rest of this paper is organized as follows. In Section II,
we introduce basic definitions of linear two-dimensional codes
and three connectivity models for two-dimensional surfaces. In
Section III, we construct optimal two-dimensional -cluster-
correcting codes in the three connectivity models and generalize
one of the constructions to higher dimensions. In Section IV,
we construct -cluster-correcting codes, and in Section V, we
restrict our discussion to two-dimensional clusters on straight
lines. In Section VI, we improve the well-known Reiger bound
for one-dimensional burst-correcting codes to two-dimensional
cluster-correcting codes. Conclusions and problems for further
research are given in Section VII.

II. BASIC DEFINITIONS

A two-dimensional linear code is a linear subspace of
the binary matrices. If the subspace is of dimension

, we say that the code is an
code. The code is also defined by its parity-check matrix. Let

be an three-dimensional binary matrix,
consisting of linearly independent matrices, and let

denote a binary matrix. The linear subspace
defined by the following set of equations

for all , is an code. We say
that is the redundancy of the code.

The first connectivity model is called the model. In this
model, a point has the following four neighbors:
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Fig. 1. The � model translation.

When is an edge point, the neighbor set is reduced to points
within the array. Unless specified otherwise, this is the default
model we use throughout the paper.

The second model is called the ✳ model, in which each point
has eight neighbors

The last model is called the model. Instead of the rectan-
gular grid we have used up to now, we define the following
graph. We start by tiling the plane with regular hexagons.
The vertices of the graph are the center points of the hexagons.
We connect two vertices if and only if their respective hexagons
are adjacent. This way, each vertex has exactly six neighboring
vertices.

We will use an isomorphic representation of the model. This
representation includes as the set of vertices. Each point

has the following neighboring vertices:

It may be shown that the two models are isomorphic by using
the mapping , which is defined by

The effect of the mapping on the neighbor set is shown in Fig. 1.
From now on, by abuse of notation, we will also call the last
model—the model.

Traditionally, the rows and columns of arrays are indexed in
ascending order, top to bottom and left to right. As far as rows
are concerned, this is a mirror image to the numbering scheme
of . In the case of the model, we arbitrarily choose to take
the neighbors of point to be

All the neighbor sets of the different models are summa-
rized in Fig. 2. A square with a dot is point . These three
models were also considered in [26], in the discussion on two-
dimensional constrained codes, where they are called diamond,
square, and hexagonal, instead of , ✳, and , respectively.

III. -CLUSTER-CORRECTING CODES

In this section, we present constructions for optimal
-cluster-correcting codes. We consider two-dimensional

codes in all three connectivity models and multidimensional

Fig. 2. Neighbors of position (i; j) in (a) the + model, (b) the ✳ model,
(c) the � model. The row index i and column index j increase in the direction
of the arrows.

codes in the generalization of the model. All codes are
presented by their parity-check matrix. We prove that the codes
are indeed -cluster-correcting codes by showing that all the
relevant syndromes are distinct. Decoding procedures can be
easily derived from the structure of these syndromes.

A. Two-Dimensional Codes

1) The Model:
Construction A: Let be a primitive element of GF ,

. We construct the following
parity-check matrix :

for all

Theorem 1: is a parity-check matrix of a -cluster-
correcting code in the model.

Proof: There are three types of errors that the code should
correct: an error in a single position, errors in two horizontally
adjacent positions, and errors in two vertically adjacent posi-
tions. These errors result in the following three types of syn-
dromes, respectively:

Therefore, given a syndrome it is clear which type of error
occurred. Moreover, it can be readily verified that any two syn-
dromes of the same type are distinct.

We note that behind Construction A there is a simple intu-
ition. After calculating the syndrome of the received word and
finding it to be nonzero, the top bit determines whether we have
one or two positions in error. The next bit gives us the direction
(horizontal or vertical) of the error when there are two positions



SCHWARTZ AND ETZION: TWO-DIMENSIONAL CLUSTER-CORRECTING CODES 2123

in error. Finally, the two lower layers of bits each determine
the exact position of the error. This flavor of construction will
be used throughout the paper: some of the syndrome bits de-
termine the pattern of the error, while others locate it. This is
further demonstrated in the following example.

Example 1: Let us take as a parity-check matrix of
the -cluster-correcting code of size . Suppose we get the
following syndrome:

where is a primitive element of GF . Since the syndrome is
nonzero, we start the decoding process by identifying the burst
pattern. The top bit is “ ,” which means that a cluster error of
size occurred. The next bit is “ ,” hence, the error occurred
along a column. We now have to locate the cluster error by
solving the set of equations

which reduces to a set of two equations modulo . The solution
is and .

The code defined by has redundancy .
The total number of possible different -cluster errors in a

array is . Hence,
a lower bound on the redundancy of a two-dimensional code of
size is

for .

Corollary 1: is a parity-check matrix of an optimal
-cluster-correcting code in the model, for all .

2) The ✳ Model: The following lemma from [2] is useful in
some of the constructions which follow.

Lemma 1: There exists a primitive element in GF ,
even, , such that .

Construction B: Let be a primitive element of GF ,
even, , and a primitive element

of GF . We construct the following
parity-check matrix ✳ :

for all

Theorem 2: ✳ is a parity-check matrix of a -cluster-
correcting code in the ✳ model.

Proof: Again, we show that all possible syndromes are
distinct. There are five different types of -cluster errors as de-
picted in Fig. 3. Let denote the syndrome of type ,

, with its reference point positioned at . The ref-
erence points are the squares with a dot. Each square represents

Fig. 3. 2-burst error types in the ✳ model.

a position in error. We therefore have the following five possible
syndromes:

Two distinct cluster errors of the same type have different
syndromes. This is shown by examining the exponents of . For
example, assume . This gives us

After rearranging we obtain

Since is odd, division by is well defined and we have

but , and hence, and .
Finally, we consider pairs of syndromes of different types. Six

pairs of types are easily seen to be distinct. For the other four
pairs, let . We write equations on the exponents
of and . Since the orders of and are divisible by , we
can reduce the equations modulo .

Types 1 and 2: Assume . Hence,

Types 1 and 3: Assume . Hence,
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Types 1 and 5: Assume . Hence,

Types 3 and 5: Assume . Then,

In all four cases, the two equations imply that
which is a contradiction. Hence, each pair has

two distinct syndromes.

The code defined by ✳ has redundancy .
The total number of possible different -cluster errors in a

array is .
Hence, a lower bound on the redundancy of a two-dimensional
code of size is

for all .

Corollary 2: ✳ is a parity-check matrix of an optimal
-cluster-correcting code in the ✳ model, for all even .
For odd , we can design a

parity-check matrix for a -cluster-correcting code.
The definition of the columns of the parity-check matrix is given
by

for all

Since by the previous calculation we need redundancy of at least
for , this code is nearly optimal, having one

redundancy bit above the sphere-packing bound.
3) The Model: We now give a similar construction for the
model.
Construction C: Let be a primitive element of GF ,
even, , and a primitive element

of GF . We construct the following
parity-check matrix :

for all

Theorem 3: is a parity-check matrix of a -cluster-
correcting code in the model.

Proof: Again, we show that all possible syndromes are
distinct. There are four different types of -cluster errors as de-
picted in Fig. 4. Let denote the syndrome of type ,

, with its reference point positioned at . The

Fig. 4. 2-cluster errors types in the � model.

reference points are the squares with a dot. Each square repre-
sents a position in error. We therefore have the following four
possible syndromes:

The rest of the proof is similar to the proof of Theorem 2 and
hence it is omitted.

The code defined by has redundancy . The
total number of possible different -cluster errors in the array
is . Hence, a lower bound on the redundancy of a
two-dimensional code of size is

for .

Corollary 3: is a parity-check matrix of an optimal
-cluster-correcting code in the model, for all even .

For odd we can design a
parity-check matrix for a -cluster-correcting code. The defini-
tion of the columns of the parity-check matrix is given by

for all

Again, this code is nearly optimal for , having one
redundancy bit above the sphere-packing bound.

B. Multidimensional Codes

The construction of Section III-A1 for the model can be
generalized to higher dimensions. We also have to generalize
the model, and we do so in the obvious way: for the -di-
mensional case, each point has neighbors which are the two
adjacent points along each of the dimensions.

Construction D: Let be an integer, ,
and let be a primitive element of GF , . Denote



SCHWARTZ AND ETZION: TWO-DIMENSIONAL CLUSTER-CORRECTING CODES 2125

, where for all
. Let be a matrix containing distinct binary

-tuples as columns, and let be the matrix
defined by

if
otherwise.

By abuse of notation, if is a column vector,
we denote . We construct the following

parity-check matrix :

for all , where by
we mean the product of terms of .

Theorem 4: is a parity-check matrix of a -dimen-
sional -cluster-correcting code.

Proof: We show that different -cluster errors produce dif-
ferent syndromes. Obviously, the first bit of the syndrome allows
us to distinguish between one and two errors.

We start by considering syndromes which result from a single
error. Let

be a syndrome resulting from a single error. The set of equations
has a unique solution (up to modulo

)

for

We note that division by is well defined since is odd.
Therefore, two syndromes which result from exactly one error,
in two different positions, are distinct.

Assume we have two adjacent errors along the th dimension.
Hence, the first error is in position , and
the second error is in position , where is a vector of
weight one with a in the th entry. Since

which is simply the th column of , it follows that two adja-
cent errors along different dimensions have distinct syndromes.
Hence, we only have to consider pairs of two adjacent errors
along the same dimension.

Let and be two
distinct positions. Assume that the syndromes of the two pairs
of adjacent errors in positions and have
the same syndromes. Hence,

Therefore,

where is componentwise multiplication, and is the all-ones
vector. Since there is no zero entry in , it follows that there

is no zero entry in and hence we have

But, we already showed that for a given vector , the set of equa-
tions has a unique solution (up to
modulo ). Therefore, , contradicting our assump-
tion. Thus, any pair of two adjacent errors along the same di-
mension has a distinct syndrome.

Note that Construction A is obtained from Construction D
when . The generalization is quite simple: we still have
one bit determining whether one or two errors occurred, we ex-
tend the one bit of Construction A used for burst-direction de-
tection to bits because of the added dimensions, and we extend
the error-locating bits of Construction A to bits.

For any given dimension we obtain a -cluster-cor-
recting code with codewords of size and redun-
dancy . The total number of cluster errors
in the array is given by .
Hence, a lower bound on the redundancy of a multidimensional
code of size is

If is a power of and is large enough then

and therefore we have the following corollary.

Corollary 4: is a parity-check matrix of a -dimen-
sional -cluster-correcting code in the model which, for
large enough, is optimal when is a power of , and otherwise,
with one redundancy bit above the lower bound.

IV. -CLUSTER-CORRECTING CODES

In this section, we present a construction, similar to the con-
structions of Section III, which corrects -cluster errors in the

model.
Construction E: Let be a primitive element of GF ,
even, , and a primitive element

of GF . We construct the following
parity-check matrix :

for all
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Fig. 5. 3-cluster errors types.

Theorem 5: is a parity-check matrix of a -cluster-
correcting code.

Proof: We proceed to show that the syndromes of distinct
burst errors are distinct. For convenience, let denote the
syndrome of type , , with its reference point posi-
tioned at . The 13 different types of syndromes of -cluster
errors are depicted in Fig. 5. The reference points are the squares
with a dot. Each square represents a position in error. We there-
fore have the following thirteen possible syndromes:

The rest of the proof is very similar to the proof of Theorem 2.
As in Theorem 2, only four pairs of types of syndromes have to
be compared: types 2 and 13, types 3 and 12, types 6 and 7, and
types 8 and 9. We leave the completion of the proof to the reader.

The code defined by has redundancy .
The total number of possible different -cluster errors in a

array is . Hence,
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a lower bound on the redundancy of a two-dimensional code of
size is for all .

V. -STRAIGHT-CLUSTER-CORRECTING CODES

A very natural type of a cluster error is one in which the er-
rors are confined to consecutive positions on the same line.
In the model there are two directions of lines: along a row
and along a column. In the model there are three directions
of lines, and in the ✳ model there are four directions. A cluster
of errors confined to positions on a line will be called straight.
In the following three subsections, we describe constructions of
codes capable of correcting -straight-cluster errors in the three
models. In the sequel let , , be the vector of
length , weight one, with one in the th entry. By abuse of
notation we define to be the all-zero vector.

A. The Model

Construction F: Let be an
parity-check matrix for a one-dimensional cyclic -burst-cor-
recting code (see [2]), where . We denote the columns
of by . Let be a primitive element of
GF . We construct the following

parity-check matrix :

for all

where the index of is taken modulo .

Theorem 6: is a parity-check matrix of a -straight-
cluster-correcting code.

Proof: We prove that all syndromes associated with
-straight-cluster errors are distinct. Let ,

where the lengths of , , , are , , and ,
respectively, be a syndrome. We use to determine whether
the errors occurred in a row or in a column. If the weight of

is one, either an odd number of errors occurred on a single
row or two errors occurred in a single column. To distinguish
between the two, we can find the linear combination of columns
from that form . If the weight of is zero then all errors
occurred on a single row. If the weight of is then or

errors occurred in a single column.
We note, that once it is known in which row (column) the

errors occurred, the positions of the errors in the row (column)
are uniquely determined by , since the appropriate entries of

form a cyclic shift of a parity-check matrix of a cyclic
-burst-correcting code.

To complete the proof, we show that if two cluster errors
along two different rows (columns) have syndromes

and

then . Assume that the cluster error occurred in a row.
Denote the error pattern positions along the row, up to a cyclic
shift, by . Now, assume that the
first cluster error occurs along row at positions

, and the second, along row at positions

. Since the first positions
in the two syndromes are the same, it follows that

We also have that

and

Note that since , we have . If
we assume that then

which implies that , a contradiction. Thus, .
A similar argument works when the cluster error occurs in a
column.

The code defined by has redundancy .
The total number of possible different -straight-cluster errors
is . Hence, a lower bound on
the redundancy of a two-dimensional code of size

is , for large enough. Therefore, Construction
F produces codes with redundancy bits above the lower
bound.

Note, that for , Construction F coincides with Construc-
tion A. This time, the generalization is not so simple. Instead of
the two bits of Construction A which determine the cluster pat-
tern, we have the top layer of bits, and the middle layer of

bits. The cluster-locating process is done using the
bottom layer of bits, and the middle layer of bits.

For some parameters, a slight improvement may be obtained
by using the following construction. This construction combines
-burst-correcting codes and codes which can correct rank errors

[21]. A - binary array code is a -dimensional
linear space of the matrices such that every nonzero matrix
in has rank of at least . Such a code is capable of correcting
rank errors. The following construction was given by
Roth [23].

Construction G: Let be an binary parity-check ma-
trix of a one-dimensional -burst-correcting code and let
be a - binary array code capable of correcting
rank errors. Construct the following code:

Theorem 7: The code has redundancy at most and
can correct any rectangular cluster error of rank .

Proof: First note that is a linear code whose redun-
dancy is at most . Let be a nonzero binary array, whose
nonzero entries are confined to a rectangular cluster of rank

. It is easy to see that is an array with rank . Hence, if
was transmitted and was received, then since

can correct rank errors, it follows that we can recover .
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Now, is a nonzero array whose nonzero entries
are confined to consecutive columns. Hence, each of the rows
of contains a burst of length at most , and since is a
-burst-correcting code, it follows that we can recover from

. Using again, we can recover from .

Corollary 5: is a -straight-cluster-correcting code.

Corollary 6: Let be a perfect -burst-correcting code of
length and redundancy , (see [9]) and let
be a - binary array code
(see [21]). Using Construction G with and we obtain an
optimal -cluster-correcting code.

Corollary 7: Let be a -burst-correcting code of length
, and redundancy (see [2]) and let be a

- binary
array code. Using Construction G with and we obtain
a -straight-cluster-correcting code with
redundancy at most .

B. The Model

Construction H: Let be an
parity-check matrix for a one-dimensional cyclic -burst-cor-
recting code (see [2]), where if is even, and
if is odd. We denote the columns of by .
Let be a primitive element of GF . We construct the fol-
lowing parity-check
matrix :

for all

where the index of is taken modulo .

Theorem 8: is a parity-check matrix of a
-straight-cluster-correcting code in the model.

Proof: Again, we prove that all nonzero syndromes
associated with -straight-cluster errors are distinct. Let

, where the lengths of , , , , and
, are , , , , and , respectively, be a

syndrome. Let denote the weight of . Table I presents
the weights of and , given the direction and the parity
of the number of errors (we do not take a single error into
this account as it can be viewed as an error in any direction).
Clearly, , , and , determine whether the errors occurred
in a row, a column, or a diagonal.

If the errors occurred either in a single row or in a single
column, we continue along the same lines of the proof of
Theorem 6 to show that all syndromes related to distinct posi-
tions are distinct. Hence, we consider the case where the errors
occurred in a single diagonal. We first note that in the diagonals
of we have a cyclic ordering from

TABLE I
ERROR-DIRECTION INDICATORS FOR THE � MODEL

But is also cyclic -burst-correcting code (see the construc-
tion in [2]).

We note, that once it is known in which diagonal the errors
occurred, the positions of the errors in the diagonal are uniquely
determined by , since the appropriate entries of
form a cyclic shift of a parity-check matrix of a cyclic -burst-
correcting code.

To complete the proof, we show that if two cluster errors
along two different diagonals have syndromes

and

then . Now, assume that the first cluster error occurs
along a diagonal at positions

where . Assume also that the
second cluster error occurs along a diagonal at positions

Since the first positions in the two syndromes are
the same, it follows that . We
also have that

and

Since either when is even, or is a
primitive element when is odd, it follows that

. Hence, if we assume that , then

which implies that , a contradiction. Thus, .

The code defined by has redundancy .
By the sphere-packing bound, a lower bound on the redundancy
of a two-dimensional code of size is

for and large enough.

C. The ✳ Model

Construction I: Let , be both odd integers, and let
be an parity-check matrix for a one-

dimensional cyclic -burst-correcting code (see [2]). We denote
the columns of as . Let be a primitive
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TABLE II
ERROR-DIRECTION INDICATORS FOR THE ✳ MODEL

element of GF . We construct the following
parity-check matrix ✳ :

for all

where the index of is taken modulo .

Theorem 9: ✳ is a parity-check matrix of a
-straight-cluster-correcting code in the ✳ model.

Proof: Like before, we prove that all nonzero syndromes
associated with a -straight-cluster errors are distinct. Let

, where the lengths of , , , , ,
and , are , , , , , and , respectively,
be a syndrome. We use , , , and , to determine whether
the errors occurred in a row, a column, diagonal, or diagonal
exactly as in the proof of Theorem 8 (see Table II).

We note, that once it is known in which direction (row,
column, or one of the two diagonal directions) the errors oc-
curred, the proof continues exactly as in the proof of Theorem 8.

The requirement that is odd is due to the fact that in one
of the diagonal directions, the ordering of the columns of
is . This ordering forms another cyclic -burst-
correcting code if and only if does not divide , i.e.,

is odd. The definition implies that should be
odd. If is even then along diagonals, we see only half of the
set and Table II is no longer correct. This can be
fixed by taking to be -bits-long vectors, so an
extra bit enables us to use the construction also for even .

The code defined by ✳ has redundancy .
By the sphere-packing bound, a lower bound on the redundancy
of a two-dimensional code of size is

for large enough.

VI. LOWER BOUNDS ON THE REDUNDANCY

In this section, we prove some lower bounds on the redun-
dancy of linear -cluster-correcting codes. These bounds gener-
alize the Reiger bound [20] on the redundancy of -burst-cor-
recting codes. We handle only the case of the model. For
the rest of this section, is an -cluster-
correcting code with codewords of size , dimension

, and redundancy . We call such a code, an
code.

By applying the general Singleton-type bound proposed in
[7], we obtain the following result.

Theorem 10: If is an code, then
.

This is exactly the bound given by Reiger [20] for the one-di-
mensional case. Since the proof of the previous theorem does
not use the two-dimensional nature of the code, it may obvi-
ously be improved. We start with a simple improvement. The
proof of this improvement has the same flavor as the proof of
Theorem 12, which is a more significant improvement.

Theorem 11: If is an code with
, , and , then .

Proof: Assume the contrary, i.e., that . Let be an
parity-check matrix for . We examine the following

set of positions:

and

Since and , the following equation
has a nontrivial solution:

where , and is the column vector of at posi-
tion . We define to be the binary word for which
position is if , and zero otherwise. Clearly,

is a codeword of .
If then there exists a nontrivial linear combination

of columns of which is equal to zero. Furthermore, this
combination is the sum of two clusters of size

and

But, this is a contradiction to the fact that is a -cluster-cor-
recting code. Therefore, .

Similarly, if for some then we
have a nontrivial linear combination of columns of which
is equal to zero. It can be easily verified that we can partition
the corresponding positions into two clusters of size . This
is demonstrated in Fig. 6. But, this is a contradiction to the fact
that is a -cluster-correcting code. Therefore, for all

.
Similarly, we define the set

and

Again, there is a nontrivial solution to

for which for all , and .
Hence, defined similarly to , is also a codeword of .

Since is linear, is also a codeword. However,
has weight at most , for which the corresponding

positions can be partitioned into two clusters of size less or equal
to (see Fig. 7). This contradicts the fact that is a -cluster-
correcting code. Thus, .

The result of Theorem 11 can be improved by using similar
arguments.
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Fig. 6. A partition of 2b positions into two clusters of size b.

Fig. 7. Sum of two clusters of size 2b+1 each, gives a cluster pattern of size
b + 2.

Theorem 12: If is an code with
, , , and ,

where , then .
Proof: Let , and assume to the contrary, that

. Let be an parity-check matrix
of the code . We examine the following set of positions:

and

Let , , be two sets of positions which satisfy

• , , is a cluster of size ;
• ;
• and .
Note, that it is possible to choose two such sets given the

values of and . Denote and .
Since and , the following equation has
a nontrivial solution:

where , and is the column vector of at posi-
tion . Hence, is a codeword.

If has more than zeros in rows 0 and 2 in the positions of
, then has weight at most and it can be shown that

the corresponding positions can be partitioned into two clusters
of size less or equal to . Thus, the number of zeros in , in
the positions of in rows 0 and 2, is at most . Similarly, there
is a codeword . The number of zeros in in rows 0 and 2
in the position of is at most .

We contend that . Otherwise, all the nonzero po-
sitions in both codewords must be confined to the positions of

. But and it can obviously be partitioned into two
clusters of size , which is a contradiction.

Since is linear, it follows that is also a
codeword. The weight of , in the positions of in rows 0 and
2, is at most . Hence, the weight of is at most .
Clearly , and it is easy to verify that
the corresponding positions can be partitioned into two clusters
of size less or equal to . This contradicts the fact that is a
-cluster-correcting code. Thus, .

We note that the bound of Theorem 12 also holds when
as long as we can shift to the right so that and

have enough space.
Theorem 11 can be modified to handle clusters of size and

arrays with width .

Theorem 13: If is an code with
, , and , then .

Proof: The proof is similar to that of Theorem 11, where

and

and for

and

it is shown that , , , and .

Similarly to Theorem 12, we have the following result.

Theorem 14: If is a code with ,
and , where , then .

Proof: Let , and assume to the contrary, that
. Let be a parity-check matrix of

the code . We examine the following set of positions:

and

We also define

Denote and . Since
and , the following equation has a nontrivial solution:

where , and is the column vector of at posi-
tion . Hence, is a codeword.

If has more than zeros in row 0 in the positions of ,
then has weight at most and it can be shown that
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the corresponding positions can be partitioned into two clusters
of size less or equal to . Thus, the number of zeros in , in
the positions of in row 0, is at most . Similarly, there is a
codeword . The number of zeros in in row 0 in the
positions of is at most .

Just like in the proof of Theorem 12, . Since is
linear, it follows that is also a codeword.
The weight of , in the positions of in row 0, is at most .
Hence, the weight of is at most . Clearly,

, and it is easy to verify that the corresponding positions
can be partitioned into two clusters of size less of equal to .
This contradicts the fact that is a -cluster-correcting code.
Thus, .

The bounds in this section can be shown to be optimal for
small values of . However, we believe that in the general case
there should be a much stronger bound.

VII. CONCLUSION AND OPEN PROBLEMS

We considered codes which correct cluster errors of arbitrary
shape in two dimensions. Some of the codes we constructed
were proved to be optimal and some are very close to the sphere-
packing bound. We considered small cluster errors, and also er-
rors which occur only in one line of the array. When the error
size is two, we also considered a generalization to multidimen-
sional arrays. Codes were designed for three different connec-
tivity models: two grid models, with four and eight neighbors,
and the model. Finally, we improved the well-known Reiger
lower bound on the redundancy of linear codes which correct
cluster errors of size .

Since all the constructions presented are linear, they admit
a simple method of encoding by way of a generating matrix.
More importantly, all the codes allow for a relatively simple
decoding procedure. Since the codes are built using a cluster-
identification layer and a cluster-locating layer in the resulting
syndrome, the following decoding procedure is possible.

1) The syndrome of a received word is calculated.
2) The cluster-identification layer of the syndrome is exam-

ined and compared against a table of possible results.
3) A set of equations using the cluster-locating layer should

be solved to complete the procedure.

There are two things to note, however. First, for -straight-
cluster-correcting codes, the second stage of identifying the
cluster pattern requires a decoder for the one-dimensional
cyclic -burst-correcting code. The second is that for the small
sizes of clusters considered in this paper, the table required
in the second stage is small in size. However, the number of
distinct cluster patterns grows exponentially in the cluster size
and may require a different solution for large clusters. It should
be noted that the exact number of distinct cluster patterns in
the different connectivity models is unknown [25] and is an
interesting combinatorial question in itself.

Though all the constructions described produce codes of
size , a simple shortening, by removing
contiguous rows and/or columns from the parity-check matrix,
gives us codes of any size. Furthermore, for the optimal (nearly
optimal) constructions, as long as the resulting code

after shortening fulfills , , we are
assured that the redundancy of the code is no more than two
redundancy bits over being optimal (nearly optimal).

The constructions in this paper appear to be the first cluster-
correcting codes built using a direct algebraic approach. Though
the constructions for arbitrary-shaped clusters handle only small
clusters in an ad hoc fashion, we hope that the methods em-
ployed may be further generalized to larger clusters.

For future research we would like to see constructions for
cluster-correcting codes for cluster errors whose size is greater
than three. We would like to know whether our constructions
for -cluster-correcting codes and -straight-cluster-correcting
codes are optimal either by improving the sphere-packing lower
bound, or by improving our constructions. Finally, we would
like to see further improvement of the lower bound on the re-
dundancy compared to the cluster size in linear -cluster-cor-
recting codes.
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