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On Optimal Locally Repairable Codes With
Multiple Disjoint Repair Sets

Han Cai , Member, IEEE, Ying Miao , Moshe Schwartz , Senior Member, IEEE,

and Xiaohu Tang , Senior Member, IEEE

Abstract— Locally repairable codes are desirable for
distributed storage systems to improve the repair efficiency.
In this paper, a new combination of codes with locality and
codes with multiple disjoint repair sets (also called availability)
is introduced. Accordingly, a Singleton-type bound is derived for
the new code, which contains those bounds in [9], [20], [28] as
special cases. Optimal constructions are proposed with respect to
the new bound. In addition, these constructions can also generate
optimal codes with multiple disjoint repair sets with respect to
the bound in [28], which to the best of our knowledge, are the
first explicit constructions that can achieve the bound in [28].

Index Terms— Availability, distributed storage, locally
repairable code.

I. INTRODUCTION

NOWADAYS, large-scale cloud storage and distributed file
systems such as Amazon Elastic Block Store (EBS) and

Google File System (GoogleFS) have reached such a massive
scale that disk failures are the norm rather than the exception.
One of the simplest solutions to protect data from disk failures
in these systems is straightforward replication of data packets
across different disks. However, this solution suffers from
a larger storage overhead. To reduce the storage overhead,
an alternative solution based on storage codes was proposed.
An [n, k] storage code encodes k information symbols to n
symbols and stores them across n disks in a storage sys-
tem. Generally speaking, among all storage codes, maximum
distance separable (MDS) codes are preferred for practical
systems since they can lead to dramatic improvements, both
in terms of redundancy and in terms of reliability, compared
with replication [9]. Nevertheless, [n, k] MDS codes have
a drawback that whenever one wants to recover a symbol,
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one needs to contact k surviving symbols, which is costly,
especially in large-scale distributed file systems.

To overcome the above drawback, locally repairable codes
were introduced to reduce the number of symbols contacted
during the repair process. More precisely, the concept of
locality for a code C was initially studied in [11] to ensure
that a failed symbol can be recovered by only accessing other
r � k symbols which form a repair set [2].

However, the original concept of locality only works when
exactly one erasure occurs. To guarantee that the system
can locally recover from multiple erasures (say, δ − 1 > 1
erasures), there are two main extensions in the literature.
The first approach is to let the repair set contain δ − 1
redundancies. In this case, even if δ − 1 erasures occur,
the failed symbols may still be recovered locally by the
remaining symbols in the corresponding repair sets [20].
The second approach is to provide the code symbols with
δ − 1 disjoint repair sets [28]. In this scheme, if there are
at most δ − 1 erasures, then for each failed symbol at least
one complete repair set can be accessed to recover the failed
symbol locally. In particular, a code with multiple repair
sets (also called availability [22]) has the advantage of good
parallel reading ability, since each repair set can be seen as
a backup for the target symbol and thus can be accessed
independently.

Up to now, some upper bounds on the minimum Hamming
distance of locally repairable codes have been derived, such
as the Singleton-type bounds in [9], [19], [20], [29], bounds
depending on the size of the alphabet [1], [3], the bound for
locally repairable codes with multiple erasure tolerance [22],
[28], etc. Numerous constructions of optimal locally repairable
codes with respect to those bounds have been reported in
the literature, e.g., see [2], [5], [8], [9], [11], [18]–[22], [24],
[26], [28], and the references therein. All these bounds and
constructions are either under the definition of locality in [20]
or the one in [28] and [22].

In this paper, to allow the system to recover locally from
multiple erasures, we go beyond the aforementioned solutions
and establish a more general framework for locally repairable
codes with multiple disjoint repair sets. Firstly, we combine
the solutions in [20], [22], [28] by a trade-off between the
number of repair sets and the number of redundancies in
each repair set. As a result, the locally repairable codes
in [20], [22], [28] are exactly the extremal cases of our
setting. Secondly, we derive a new Singleton-type bound for
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the generalized locally repairable codes, which contains the
bounds in [9], [20], [28] as special cases. Finally, we describe
constructions of optimal locally repairable codes with respect
to the bound we derived (Corollaries 6 and 8). As a byproduct,
the constructions can generate optimal locally repairable codes
with multiple disjoint repair sets with respect to the bound
in [28] (Corollaries 5 and 7). To the best of our knowledge,
no explicit construction has achieved the bound in [28] before.
As a comparison, we list the known optimal locally repairable
codes with multiple repair sets in Table I.

The remainder of this paper is organized as follows.
Section II introduces some preliminaries about locally
repairable codes. Section III proposes a new definition for
locality that generalizes those in [20] and [22], [28]. Section IV
establishes a Singleton-type bound for locally repairable codes.
Sections V and VI present constructions of optimal locally
repairable codes with respect to the new bound. Section VII
concludes this paper with some remarks.

II. PRELIMINARIES

In this section we describe the notation used, and give a
short overview of locally repairable codes. Throughout this
paper, the following notation is used unless otherwise stated:
If n is a positive integer then [n] denotes the set {1, 2, · · · , n}.
For integers a > 0 and b, �b�a denotes the least nonnegative
residue of b modulo a.

We let Fq denote the finite field with q elements, where
q is a prime power. An [n, k]q linear code C over Fq is a
k-dimensional subspace of Fn

q with a k × n generator matrix
G = (g1, g2, · · · , gn), where gi is a column vector of dimen-
sion k for all 1 � i � n. We also call C an [n, k, d]q linear
code when the minimal Hamming distance d is available. Note
that throughout this paper we only consider the Hamming
distance. For a subset S ⊆ [n], we use |S|, Span(S), and
Rank(S) to denote the cardinality of S, the linear space
spanned by {gi : i ∈ S} over Fq , and the dimension of
Span(S), respectively.

In [11], Huang et al. first studied the locality of code
symbols via the Pyramid code. The j th (1 � j � n) code
symbol, in an [n, k]q linear code C, is said to have locality r
(1 � r � k), if it can be recovered by accessing at most r
other symbols in C. More precisely:

Definition 1 ( [9]): For any column g j , 1 � j � n, of a
generator matrix G of an [n, k]q linear code C, define Loc(g j )
as the smallest integer r such that there exists a set R =
{ j1, j2, · · · , jr } ⊆ [n]\{ j} satisfying g j ∈ Span(R), i.e., there
exist λt ∈ Fq , 1 � t � r such that

g j =
r�

t=1

λt g jt . (1)

Define Loc(S) = max j∈S Loc(g j ) for any set S ⊆ [n]. The
code C is said to have information locality r , if there exists
S ⊆ [n] with Rank(S) = k and Loc(S) = r .

Obviously, c j = �r
t=1 λt c jt for every codeword (c1, c2,

· · · , cn) ∈ C is equivalent with g j = �r
t=1 λt g jt , where λt ∈

Fq for 1 � t � r . Therefore, throughout this paper we do
not distinguish between the j th code symbol (i.e., c j for any

codeword (c1, c2, · · · , cn) ∈ C) and the j th column of g j of
a generator matrix G for C. Thus, we call both c j and g j as
the j th code symbol for 1 � j � n.

According to (1), a single erasure can be recovered by
accessing at most other r symbols. Two methods appear in
the literature to generalize this by guaranteeing local recovery
from more than one erasure. The first method is to let the
repair set contain more than one redundancy, say δ − 1 > 1
redundancies:

Definition 2 ([20]): The j th column g j , 1 � j � n, of the
generator matrix G of an [n, k]q linear code C is said to have
(r, δ)-locality, if there exists a subset Sj ⊆ [n] such that:

• j ∈ Sj and |Sj | � r + δ − 1; and
• the minimum Hamming distance of the punctured code
C|S j obtained by deleting the code symbols ct (t ∈ [n] \
Sj ) is at least δ,

where the set Sj \ { j} is also called a repair set of g j . Further,
the code C is said to have information (r, δ)-locality if there
exists S ⊆ [n] with Rank(S) = k such that for each j ∈ S, g j

has (r, δ)-locality.

In [20] the following upper bound on the minimum Ham-
ming distance of linear codes with information (r, δ)-locality
was derived.

Lemma 1 ( [20]): For an [n, k, d]q linear code with
information (r, δ)-locality,

d � n − k + 1 −
��

k

r

�
− 1

�
(δ − 1). (2)

The second method to guarantee local recovery from multi-
ple erasures is to provide code symbols with multiple pairwise
disjoint repair sets, say δ−1 sets, of size at most r [28], which
are also called (r, δ)-availability [22].

Definition 3 ( [28], [22]): The j th column g j , 1 � j � n,
of a generator matrix of an [n, k, d]q linear code C is said to
have (r, δ)c-locality, or (r, δ)-availability, if there exist δ − 1
pairwise disjoint sets R j

1 , R j
2 , . . . , R j

δ−1 ⊆ [n] \ { j}, satisfying

•
���R j

t

��� � r ; and

• g j ∈ Span
	

R j
t



for all 1 � t � δ − 1, where each R j

t is called a repair set
of g j . Furthermore, the code C is said to have information
(r, δ)c-locality if there is a subset S ⊆ [n] with Rank(S) = k
such that g j has (r, δ)c-locality for each j ∈ S.

In this scheme, if there are at most δ − 1 erasures, then
for each erased symbol at least one complete repair set can be
accessed to recover it locally. Each repair set R j

t can be viewed
as a backup for the target code symbol g j and hence these
pairwise disjoint repair sets can be accessed independently,
which means that g j has parallel reading ability. The minimum
Hamming distance d of a linear code C with information
(r, δ)c-locality is upper bounded as follows.

Lemma 2 ( [28]): For an [n, k, d]q linear code with
information (r, δ)c-locality,

d � n − k + 2 −
�

(k − 1)(δ − 1) + 1

(r − 1)(δ − 1) + 1

�
.
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TABLE I

KNOWN OPTIMAL LOCALLY REPAIRABLE CODES WITH MULTIPLE REPAIR SETS

We conclude this section with three remarks concerning the
two definitions for locality and their connection to previous
literature.

Remark 1: When δ = 2, both definitions of (r, δ)-locality
and (r, δ)c-locality coincide with Definition 1 from [11]. Both
codes with information (r, δ)-locality and codes with infor-
mation (r, δ)c-locality with δ > 2 can recover an information
symbol with the help of at most r surviving symbols when
there are at most δ − 1 erasures [20], [28].

Remark 2: In [28], Wang and Zhang proved that the
bound in Lemma 2 can be achieved when the code rate is
low and the underlying finite field is sufficiently large. Later,
in [27], Tamo et al. derived a new bound for codes with (r, δ)c-
locality, which improves the bound in Lemma 2 for the high
code-rate case.

Remark 3: Optimal constructions for locally repairable
codes with respect to the bound in Lemma 1 may be found,
for example, in [9], [21], [24], [26]. Compared with the
(r, δ)-locality, codes with information (r, δ)c-locality have the
advantage of good parallel reading ability [22]. However,
to the best of our knowledge, no explicit construction achieves
the bound in Lemma 2. One severely limited solution for
locally repairable codes with (r, δ)c-locality assumes that each
repair set contains exactly one check symbol. For a bound and
corresponding optimal constructions for this limited setting the
reader is referred to [4], [10], [18], [22], [25].

III. A GENERAL DEFINITION FOR LOCALLY

REPAIRABLE CODES

We give a definition for locality which generalizes previous
definitions, and prove that it indeed guarantees local recovery
from multiple erasures. By Definitions 2 and 3, the (r, δ)- or
(r, δ)c-locality properties both guarantee local recovery from at
most δ−1 erasures. However, they provide different availabil-
ity for code symbols and the trade-off between the parameters
are also different by Lemmas 1 and 2. The motivation for
this study is to find the trade-off between availability and the
repair ability for each repair set when the code symbols can
be locally recovered from δ − 1 erasures. To this end, we first
generalize the definition for symbol locality that can guarantee
local recovery from δ − 1 erasures.

Definition 4: The j th column g j , 1 � j � n, of a
generator matrix of an [n, k, d]q linear code C, is said to

have (r, N j , δ)-locality, if there exist N j � 1 pairwise disjoint
repair sets, i.e., N j � 1 pairwise disjoint subsets of {gi :
1 � i � n} \ {g j }, denoted R j

1 , R j
2 , · · · , R j

N j
, that satisfy the

following conditions:
• For any 1 � l � N j ,

���R j
l

��� � r + d j
l − 2;

• For any 1 � l � N j , the code C|
R j

l ∪{g j } is a linear code

with minimum Hamming distance d j
l � 2;

•
�

1�l�N j

	
d j

l − 1



� δ − 1.

Furthermore, the code C is said to have information (r, N, δ)-
locality, if there is a subset S = {s1, s2, . . . , sk} ⊆ [n]
with 1 � s1 < s2 < · · · < sk � n and Rank(S) = k
such that g j has (r, N j , δ)-locality for each j ∈ S, where
N = (Ns1 , Ns2 , . . . , Nsk ).

Remark 4: The first two conditions for the (r, N j , δ)-
locality are used to make sure that each R j

i for 1 � i � N j is
capable of recovering g j by only accessing r symbols. The
first two conditions also mean that g j has availability N j ,
i.e., allowing N j + 1 parallel reads for the code symbol g j ,
since each repair set can be read in parallel to recover g j . The
last restriction guarantees the recovery from δ − 1 erasures.
The symbol g j can be recovered after δ − 1 erasures since
regardless of the way those erasures are distributed over N j

pairwise disjoint repair sets, at least one repair set say the l-th,
is not hit by more than d j

l erasures. Thus, we can recover g j

locally. Refer to Lemma 3 and its proof for more details.

Based on the above definition, we fix the following notation
for an [n, k, d]q code with (r, N, δ)-locality throughout this
paper:

• I j denotes the j th information symbol for 1 � j �
k. Without loss of generality, we assume that they are
exactly the first k code symbols, that is, I j = g j for
1 � j � k;

• R j
1 , R j

2 , · · · , R j
N j

denote the N j pairwise disjoint repair
sets for I j , 1 � j � k;

• U j denotes the union of {I j } and all pairwise disjoint
repair sets for I j , i.e.,

U j = {I j } ∪
⎛
⎝ 


1�l�N j

R j
l

⎞
⎠ for 1 � j � k. (3)

Accordingly, we say the code C has information (r, N, δ)-
locality, if I j has (r, N j , δ)-locality for each 1 � j � k, where
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N = (N1, N2, . . . , Nk). When N = (a, a, . . . , a), we denote
it as information (r, a, δ)-locality.

Lemma 3: Let C be a linear code with informa-
tion (r, N, δ)-locality, and let E be an erasure pattern.
If |E | � δ − 1, then the information symbols in E can be
recovered locally, i.e., recovered by accessing at most r
surviving symbols.

Proof: We assume to the contrary that there exists an
erased information symbol, say I j ∈ E , which cannot be
recovered locally. Then for 1 � l � N j , |E∩(R j

l ∪{I j })| � d j
l ,

otherwise the symbols in R j
l \ E can be accessed to recover I j

locally since the code C|
R j

l ∪{I j } is a linear code with minimum

Hamming distance d j
l in Definition 4. Now the fact I j 	∈ R j

l

means |(E \ {I j }) ∩ R j
l | � d j

l − 1 for 1 � l � N j . Thus,

|E | = 1 + |E \ {I j }| � 1 +
������



1�l�N j

	
E ∩ R j

l



\ {I j }

������
� 1 +

�
1�l�N j

	
d j

l − 1



� δ,

where the last inequality holds by Definition 4,
a contradiction.

In particular, it is easily seen from Definition 4 that:
• The (r, 1, 2)-locality in Definition 4 corresponds to the

r -locality in Definition 1.
• The (r, 1, δ)-locality in Definition 4 corresponds to the

(r, δ)-locality in Definition 2.
• The (r, δ − 1, δ)-locality for the case d j

l = 2, 1 � j �
δ − 1, 1 � l � k in Definition 4 corresponds to the
(r, δ)c-locality in Definition 3.

In summary, the definitions in [9], [20] and [28] correspond
to two extremal cases of Definition 4. For any given r and
δ, a code C with information (r, N, δ)-locality can locally
repair a failed information symbol by accessing at most r
other symbols when at most δ −1 erasures occur. Specifically,
different N j means different numbers of repair sets for I j ,
1 � j � k, i.e., different parallel reading abilities. Thus,
Definition 4 not only contains the two previous definitions
for locality as special cases, but also suggests the existence
of new scenarios in which local recovery is possible. As a
comparison, in Figure 1, we draw an illustration of different
types of localities with the property that g j can be recovered
by 4 symbols when there are at most 5 erasures.

IV. THE BOUND FOR LINEAR CODES WITH INFORMATION

(r, N, δ)-LOCALITY

The goal of this section is to establish an upper bound on the
minimum Hamming distance of linear codes with information
(r, N, δ)-locality. This bound appears in Theorem 1. In order
to prove the bound, a careful analysis of subsets of codeword
coordinates is performed in Lemma 4 and Lemma 5, tying
together the size of subsets of coordinates and their rank.
Following the main result of this section, several corollaries
are given, studying various specific sets of parameters implied
by the result of Theorem 1.

We start with folklore and known results:

Fact 1: Let W and S be two sets of vectors over Fq with
S ⊆ W . Then, |W | − |S| � Rank(W ) − Rank(S).

Lemma 4 ( [15]): An [n, k]q linear code C has a minimum
Hamming distance d if and only if d is the largest integer such
that

|S| � n − d

for every S ⊆ {g j : j ∈ [n]} with Rank(S) � k − 1.

In addition, the following results will be used frequently in
proving our bound.

Lemma 5: Let C be an [n, k]q linear code with infor-
mation (r, N, δ)-locality, and let U j be defined by (3) for
1 � j � k.

1) If S ⊆ U j (1 � j � k), then

Rank(S)

� 1 +
�

|S∩R j
l |�r

(r − 1) +
�

|S∩R j
l |<r

���S ∩ R j
l

��� ; (4)

2) If S ⊆ {g j : j ∈ [n]} and���R j
l ∩ S

��� �
���R j

l

��� − d j
l + 1 (5)

for 1 � l � � � N j , then������
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

������ − |S|

� Rank

⎛
⎝
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

⎞
⎠

− Rank (S) +
�

1�l��

	
d j

l − 1



. (6)

Particularly, if � = N j then��U j ∪ S
��−|S| � Rank

�
U j ∪ S

�−Rank (S)+δ−1. (7)

Proof: First, we state the following property:
P1. Any set R j

l ∪ {I j } can be spanned by any of their r
symbols, in particular, I j and any other r − 1 symbols
from R j

l .

Property P1 holds since C|
R j

l ∪{I j } is a linear code with mini-

mum Hamming distance d j
l and |R j

l ∪ {I j }| � r + d j
l − 1 for

any 1 � l � N j .
Thus, for the first part, according to (3) and P1,

Rank(S) � Rank({I j }) +
�

|S∩R j
l |�r

	
Rank

	
R j

l



− 1




+
�

|S∩R j
l |<r

Rank
	

S ∩ R j
l




� 1 +
�

|S∩R j
l |�r

(r − 1) +
�

|S∩R j
l |<r

���S ∩ R j
l

��� .

Authorized licensed use limited to: Moshe Schwartz. Downloaded on March 18,2020 at 13:04:12 UTC from IEEE Xplore.  Restrictions apply. 



2406 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 4, APRIL 2020

Fig. 1. A comparison between different types of localities for the j th code symbol g j , where the curves and lines drawn with dashed lines correspond to
repair sets of g j which satisfy that any 4 points suffice to recover the curve.

For the second part, (5) and P1 then mean that we can find
D j

l ⊆ (R j
l \ S) with |D j

l | = d j
l − 1 such that

Rank
		

R j
l ∪ {I j }



\ D j

l



= Rank

	
R j

l ∪ {I j }



, 1 � l � N j . (8)

Note from Definition 4 that R j
l1

∩ R j
l2

= ∅ for 1 � l1 < l2 �
N j , thus D j

l1
∩ D j

l2
= ∅ for 1 � l1 < l2 � N j , i.e.,������



1�l��

D j
l

������ =
�

1�l��

���D j
l

��� =
�

1�l��

	
d j

l − 1



. (9)

Set

W =
⎛
⎝
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

⎞
⎠ \

⎛
⎝ 


1�l�N j

D j
l

⎞
⎠ .

It follows from (8) and (9) that

|W | =
������
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

������ −
�

1�l��

	
d j

l − 1



and

Rank(W ) = Rank

⎛
⎝
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

⎞
⎠ .

Thus, applying Fact 1 to S ⊂ W , we have������
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

������ − |S| = |W | − |S| +
�

1�l��

	
d j

l − 1



� Rank

⎛
⎝
⎛
⎝ 


1�l��

R j
l

⎞
⎠ ∪ S

⎞
⎠

− Rank (S) +
�

1�l��

	
d j

l − 1


,

which turns out to be (7) when � = N j because of (3) and�
1�l�N j

	
d j

l − 1



� δ − 1.
Now, we are ready to present our bound.

Theorem 1: For any [n, k, d]q linear code with informa-
tion (r, N, δ)-locality,

d �

⎧⎪⎪⎨
⎪⎪⎩

n − k + 1 − μ(δ − 1),

if (1 + N(r − 1))|(k − 1),

n − k + 1 − μ(δ − 1) −
�

�(δ−1)
N

�
, otherwise,

(10)

where N = max({N j : 1 � j � k}), μ = � k−1
1+N(r−1) 
, and

� = ��k−1�1+N(r−1)−1
r−1 
.

Proof: According to Lemma 4, to prove this theorem it
suffices to find a set S with rank k − 1 and

|S| �

⎧⎪⎪⎨
⎪⎪⎩

k − 1 + μ(δ − 1),

if (1 + N(r − 1))|(k − 1),

k − 1 + μ(δ − 1) +
�

�(δ−1)
N

�
, otherwise.

(11)

If μ = � k−1
1+N(r−1) 
 = 0, set S0 = ∅. Otherwise, we can

select μ information symbols, say I j1, I j2 , · · · , I jμ , such that
I ji 	∈ Span(Si−1), where S0 = ∅ and Si = �

1�l�i U jl for
1 � i � μ. This is to say, Si+1 = Si ∪ U ji+1 for 0 � i < μ.
Then, for 0 � i < μ, Rank(Si+1) � Rank(Si ) + 1 and

Rank(Sμ) �
μ�

l=1

Rank(U jl )

� μ(1 + N(r − 1)) � k − 1, (12)

where we use the inequality Rank(U j ) � 1 + N j (r − 1) �
1 + N(r − 1) by (4).

Recall from (12) that Rank(Sμ) = k − 1 only if (1 + N
(r −1)) | (k −1). Thus, if (1+ N(r −1)) � (k −1), there is one
more information symbol I jμ+1 such that I jμ+1 	∈ Span(Sμ).

When � � 1 and N jμ+1 � �, among
�N jμ+1

�

�
distinct

�-sets, each R
jμ+1
l (1 � l � N jμ+1 ) appears

�N jμ+1 −1
�−1

�
times.
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According to the pigeonhole principle, there must exist �

repair sets, say R
jμ+1
l for 1 � l � �, such that

�
1�l��

	
d

jμ+1
l − 1



�

⎡
⎢⎢⎢
�N jμ+1 −1

�−1

�
(δ − 1)�N jμ+1

�

�
⎤
⎥⎥⎥

=
�

�(δ − 1)

N jμ+1

�
. (13)

In this case, i.e., (1 + N(r − 1)) � (k − 1) and � � 1, set

Sμ+1 = Sμ ∪ {I jμ+1} ∪
⎛
⎜⎝ 


1�l�min{�,N jμ+1 }
R

jμ+1
l

⎞
⎟⎠ .

Then, we have

Rank(Sμ+1)

� Rank(Sμ)

+ Rank

⎛
⎜⎝I jμ+1 ∪

⎛
⎜⎝ 


1�l�min{�,N jμ+1 }
R

jμ+1
l

⎞
⎟⎠
⎞
⎟⎠

� μ(1 + N(r − 1)) + 1 + �(r − 1)

� k − 1,

where we use (4) and (12) in the second inequality and the
fact � = ��k−1�1+N(r−1)−1

r−1 
 in the third inequality, respectively.
Note that I ji 	∈ Span(Si−1), which implies that (5) holds for

all Si−1 and R ji
l , 1 � i � μ + 1 and 1 � l � N ji . Otherwise,

the fact that C|
R

ji
l ∪{I ji }

has minimum Hamming distance d ji
l

leads to I ji ∈ Span(Si−1), a contradiction. Therefore, apply-
ing (7) in place of S = S0, · · · , Sμ sequentially, we have

|Sμ| =
μ−1�
i=0

(|Si+1| − |Si |)

�
μ−1�
i=0

(Rank(Si+1) − Rank(Si )) + μ(δ − 1)

� Rank(Sμ) + μ(δ − 1), (14)

where we use the fact that |S0| = Rank(S0) = 0 due to S0 = ∅.
Moreover, when (1 + N(r − 1)) � (k − 1), by applying (6) we
can get

|Sμ+1| − |Sμ| � Rank(Sμ+1) − Rank(Sμ)

+
�

1�l�min{�,N jμ+1 }

	
d

jμ+1
l − 1




� Rank(Sμ+1) − Rank(Sμ)

+
⎧⎨
⎩

�
�(δ−1)
N jμ+1

�
, if N jμ+1 � �

δ − 1, if Nμ+1 < �

� Rank(Sμ+1) − Rank(Sμ) +
�

�(δ − 1)

N

�
,

where, for � � 1, we use (13) for the case N jμ+1 � � and�
1�l�N jμ+1

(d
jμ+1

l −1) � δ−1 for the case N jμ+1 < �. Then,

together with (14) gives

|Sμ+1| � Rank(Sμ+1) + μ(δ − 1) +
�

�(δ − 1)

N

�
.

Finally, form a set S with Rank(S) = k − 1 by appending
some elements into Sμ if (1 + N(r − 1)) | (k − 1) or � = 0,
and Sμ+1 otherwise. Then, the desired result (11) follows from
Fact 1.

When N = 1, Theorem 1 is exactly the bound in Lemma 1,
first derived in [20] ( [9] for δ = 2).

Corollary 1: For any [n, k, d]q linear code with informa-
tion (r, N = 1, δ)-locality,

d � n−k + 1 −
��

k

r

�
− 1

�
(δ − 1). (15)

Proof: For the case N = 1, it is easy to see that μ =
� k−1

r 
 = � k
r � − 1 regardless of whether r | (k − 1) or not.

In addition, if N = 1 and r � (k − 1), then � = 0. Therefore,
the bound directly follows from (10).

Similarly, when N = δ−1, Theorem 1 is exactly the bound
in Lemma 2, first derived in [28].

Corollary 2: For any [n, k, d]q linear code with informa-
tion (r, N = δ − 1, δ)-locality,

d � n − k + 2 −
�

(k − 1)(δ − 1) + 1

(r − 1)(δ − 1) + 1

�
. (16)

Proof: When N = δ − 1, if (1 + (δ − 1)(r − 1))|(k − 1),
we have

μ(δ − 1) = (k − 1)(δ − 1)

1 + (δ − 1)(r − 1)
=
�

(k − 1)(δ − 1) + 1

(δ − 1)(r − 1) + 1

�
− 1,

which means

d � n − (k − 1) − μ(δ − 1)

= n − k + 2 −
�

(k − 1)(δ − 1) + 1

(r − 1)(δ − 1) + 1

�

according to (10).
When (1 + (δ − 1)(r − 1)) � (k − 1), it follows from

� = ��k−1�1+N(r−1)−1
r−1 
 = � �k−1�1+(δ−1)(r−1)−1

r−1 
 that

� � k − 1

r − 1
−
�

k − 1

1 + (δ − 1)(r − 1)

�
1 + (δ − 1)(r − 1)

r − 1
− 1

� k − 1

r − 1
−
�

k − 1

1 + (δ − 1)(r − 1)

�
1

r − 1

−
�

k − 1

1 + (δ − 1)(r − 1)

�
(δ − 1) − 1

which is equivalent to

� �
�

k − 1

r − 1
−
�

k − 1

1 + (δ − 1)(r − 1)

�
1

r − 1

�
− 1

−
�

k − 1

1 + (δ − 1)(r − 1)

�
(δ − 1)

�
�

(k − 1)(δ − 1)

1 + (δ − 1)(r − 1)

�
− 1

−
�

k − 1

1 + (δ − 1)(r − 1)

�
(δ − 1). (17)
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Therefore, by (10) we have

d � n − (k − 1) −
�

k − 1

1 + N(r − 1)

�
(δ − 1) − �

� n − (k − 1) −
�

k − 1

1 + (δ − 1)(r − 1)

�
(δ − 1)

−
��

(k − 1)(δ − 1)

1 + (δ − 1)(r − 1)

�
− 1

−
�

k − 1

1 + (δ − 1)(r − 1)

�
(δ − 1)

�

= n − k + 2 −
�

(k − 1)(δ − 1) + 1

1 + (δ − 1)(r − 1)

�
,

where the last equality follows from the fact
�

(k−1)(δ−1)
1+(δ−1)(r−1)

�
=�

(k−1)(δ−1)+1
1+(δ−1)(r−1)

�
for (1+(δ−1)(r −1)) � (k−1). This completes

the proof.
Generally, we have the following alternative form of Theo-

rem 1.

Corollary 3: For any [n, k, d]q linear code with informa-
tion (r, N, δ)-locality,

d �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − k + 1 −
�

k−1
1+N(r−1)

 
(δ − 1),

if (1 + N(r − 1)) | (k − 1),

n − k + 1 −
�(⌈

(k−1)N
1+N(r−1)

⌉
−1

)
(δ−1)

N

�
, otherwise,

where N = max({N j : 1 � j � k}).
Proof: This corollary is an immediate result of Theorem 1

by using μ =
�

k−1
1+N(r−1)

 
and

� �
�

(k − 1)N

1 + N(r − 1)

�
− 1 −

�
k − 1

1 + N(r − 1)

�
N

which can be deduced similarly to (17) for (1 + N(r − 1)) �
(k − 1).

Corollaries 1–3 tell us that Theorem 1 not only contains the
bounds for the cases N = 1 [9], [20] and N = δ − 1 [28], but
also provides bounds for other cases. In the following sections,
we will prove that these bounds are sometimes tight.

Remark 5: Compared with an [n, k, d]q MDS code,

the value μ(δ−1)+
�

�(δ−1)
N

�
for the case �k−1�1+N(r−1) 	= 0

(μ(δ−1) for the case �k−1�1+N(r−1) = 0, respectively) stands
for the least redundancy allowing the code to have information
(r, N, δ)-locality according to the Singleton bound, where
μ = � k−1

1+N(r−1)
 and � = ��k−1�1+N(r−1)−1
r−1 
. Thus, for given

r and δ, it is easy to check that the smaller N is the larger
required redundancy is, when k − 1 � 1 + N(r − 1).

V. LOCALLY REPAIRABLE CODES VIA GABIDULIN CODES

After having proved a bound on the code parameters in
the previous section, we turn to providing a construction
– Construction A – the first of two. The construction is
based on Gabidulin codes with carefully chosen parameters.
In particular, the evaluation points for Gabidulin codes need
to be chosen, which we first study in Lemma 6. We then give

Construction A followed by two main theorems: Theorem 2
finds the locality of the constructed codes, whereas Theorem 3
determines a lower bound on their minimum distance. Several
technical lemmas assist in proving the two theorems. Finally,
a sequence of corollaries is provided in which specific code
parameters are used. In particular, Corollaries 5 and 6 show
two families of optimal codes emanating from Construction A.

Definition 5 ( [14]): A polynomial of the form

f (x) =
k−1�
i=0

ai x
qi

(18)

with coefficients in an extension field Fqm of Fq is called a
q-polynomial over Fqm . Let F(q, m, k) denote the set of all
possible q-polynomials over Fqm with degree less than qk .

Lemma 6 ( [7]): Let V = {vi : 1 � i � n} ⊆ Fqm and

C = {( f (v1), f (v2), · · · , f (vn)) : f (x) ∈ F(q, m, k)}. (19)

Then,

• C is an [n, k]qm linear code if the rank of V over Fq is
greater than or equal to k;

• The codeword C = ( f (v1), f (v2), · · · , f (vn)) can be
recovered by the set of values { f (v) : v ∈ S} if the rank
of S over Fq is greater than or equal to k for any S ⊆ V .

In [7], V is required to be linearly independent over Fq to
ensure that C is an MDS code, which is called a Gabidulin
code. In what follows, we intend to propose a construction
of codes with information (r, N, δ)-locality by modifying
Gabidulin codes. The key difference is to construct a set of
vectors V , where some elements can be linearly represented by
a small number of other elements. Note that a Gabidulin code
is based on f (x) in (18), which is a linearized polynomial.
In our construction, the linearized property given in (18), and
the linear relationship between elements of V , will guarantee
the desired locality of the code C. More precisely, we have the
following construction.

Construction A: For any given N = (N1, N2, · · · , Nk )

and D = {d j
l � 2 : 1 � j � k, 1 � l � N j }, let

n =
�

1� j�k

(1 +
�

1�i�N j

(r + d j
i − 2)).

We can obtain a linear code by the following steps:
Step 1: Select an [r + dmax − 1, r, dmax]q linear MDS code

C∗ whose canonical generator matrix is given as (Ir , P) with
P = (P1, P2, · · · , Pdmax−1), where dmax = max(D);

Step 2: Generate an (r + d j
i − 1)-subset of Fqm , Vi, j =!

v j , v
(i, j )
1 , v

(i, j )
2 , · · · , v

(i, j )

r−2+d j
i

"
for 1 � j � k and 1 � i �

N j satisfying�
v(i, j )

r , v
(i, j )
r+1 , · · · , v

(i, j )

r−2+d j
i

�

=
	
v j , v

(i, j )
1 , v

(i, j )
2 , · · · , v

(i, j )
r−1



(P1, P2, · · · , P

d j
i −1

), (20)

where
#
v j , v

(i, j )
1 , v

(i, j )
2 , · · · , v

(i, j )
r−1

$
can be any r -subset

of Fqm ;
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Step 3: Let V = �
1� j�k

1�i�N j

Vi, j . Construct a code C with

length |V | � n by means of (19).

Firstly, we have the following theorem for the code gener-
ated by Construction A.

Theorem 2: For any given positive integers r , k, m with
r < k, if q � r + dmax − 1, V ⊆ Fqm , |V | = n and Rank({vi :
1 � i � k}) = k, then the code C generated by Construction
A is an [n, k]qm linear code with information (r, N, δ)-locality,
where

n =
�

1� j�k

(1 +
�

1�i�N j

(r + d j
i − 2)),

and

δ = 1 + min

⎛
⎝
⎧⎨
⎩

�
1�l�N j

(d j
l − 1) : 1 � j � k

⎫⎬
⎭
⎞
⎠ . (21)

Proof: It is well known that over Fq with q � r+dmax−1,
such an MDS code C∗ for Step 1 in Construction A does exist.
Since Rank({vi : 1 � i � k}) = k, |V | = n, and V ⊆ Fqm ,
by Lemma 6, we have that the code C is an [n, k]qm linear
code. This is to say that code symbols f (v j ) for 1 � j � k
can be viewed as the k information symbols.

For 1 � j � k and 1 � i � N j , since (Ir , P) is a
generator matrix of an [r + dmax − 1, r, dmax]q MDS code,
by (20), we know that any v ∈ Vi, j can be represented as
v = �

v
(i, j)
w ∈T

e(i, j,T )
w v

(i, j )
w , where T is any r -subset of Vi, j \{v}

and e(i, j,T )
w ∈ Fq . Then, the linearized property of f (x) over

Fqm results in

f (v) = f

⎛
⎜⎝ �

v
(i, j)
w ∈T

e(i, j,T )
w v(i, j )

w

⎞
⎟⎠ =

�
v

(i, j)
w ∈T

e(i, j,T )
w f

	
v(i, j )
w




for any r -subset T ⊂ Vi, j \{v}. This is to say the code symbol
f (v) can be recovered by { f (v

(i, j )
w ) : v

(i, j )
w ∈ T } for any

r -subset T of Vi, j \ {v}, which means that the code

C|Vi, j �
!�

f
�
v j
�
, f

	
v

(i, j )
1



, f

	
v

(i, j )
2



, · · ·, f

�
v

(i, j )

r+d j
i −2

��
:

f (x) ∈ F(q, m, k)

"

is an [r +d j
i −1, r j

i � 1, d j
i ]qm linear code for any 1 � j � k

and 1 � i � N j , where f (v j ) is an information symbol means
that r j

i � 1. Note that

|V | = n =
�

1� j�k

⎛
⎝1 +

�
1�i�N j

	
r + d j

i − 2

⎞⎠

implies that for any 1 � j � k, Vi1, j ∩ Vi2, j = {v j } for
1 � i1 < i2 � N j . Therefore, for any 1 � j � k, f (v j )
has (r, N j , δ)-locality by Definition 4 and (21), i.e., the code
C has information (r, N, δ)-locality according to Definition 4.
This completes the proof.

Next, we determine the minimum Hamming distance of the
code C generated by Construction A.

Lemma 7: For 1 � j � k, denote Vj = �
1�i�N j

Vi, j .
Let

Vj \
#

v
(i, j )
t : 1 � i � N j , t � r

$
be linearly independent over Fq and have size 1 + N j (r − 1).
For any S ⊆ Vj , if Rank(S) = τ , then |S| � τ + � j (� τ−1

r−1 
),
where � j (i) = �

1�l�i

	
d j

l − 1



for any positive integer 1 �
i � N j and d j

1 � d j
2 � · · · � d j

N j
.

Proof: First of all, it is easy to see that the set Vj satisfies
the following properties:
P2. Each set Vi, j can be spanned by any r of their symbols;
P3. Any two sets of r symbols, respectively from Vi1, j and

Vi2, j , are linearly dependent;
P4. For any two sets Vi1, j and Vi2, j for 1 � i1 < i2 � N j ,

Vi1, j ∩ Vi2, j = {v j }.
This is because P2 is a direct consequence of (20)

and the fact that (Ir , P) is a generator matrix of an
[r + dmax − 1, r, dmax]q MDS code. P3 follows immediately
from P1, i.e., Vi, j for 1 � i � N j can be spanned by
v j and any other r − 1 symbols. As for P4, clearly v j ∈
Vi1, j ∩ Vi2, j . Assume that there exists an element v such that
{v j , v} ⊆ Vi1, j ∩ Vi2, j . If so, we can find a set W of size
|W | � 2 + 2(r − 2) = 2r − 2 containing v j and v with
|W ∩ Vi1, j | = |W ∩ Vi2, j | = r , which by P1, (Vi1, j ∪ Vi2, j ) ⊆
Span(W ). However, Rank(Vi1, j ∪ Vi2, j ) � 2r − 1 since

Vj \
#
v

(i, j )
t : 1 � i � N j , t � r

$
is linearly independent over

Fq and has size 1 + N j (r − 1), a contradiction.
Combining P2-P4 and (23), we know that the hypothesis,

namely, Vj \
#
v

(i, j )
t : 1 � i � N j , t � r

$
is linearly indepen-

dent over Fq , is equivalent to saying that:
• v j and any r − 1 elements from each set Vi, j \ {v j }; or
• any r elements from one set Viw, j \ {v j } and any r − 1

elements from each remaining set Vi, j \{v j }, with i 	= iw
and 1 � i � N j , (a total of 1 + N j (r − 1) elements) are
linearly independent.

Hence, we have

Rank(S)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Rank({v j }) + �
|S∩Vi, j |�r

(Rank(Vi, j ) − 1)

+ ∑
|S∩Vi, j |<r

(|S ∩ Vi, j | − 1), if v j ∈ S,

�
|S∩Vi, j |<r

|S ∩ Vi, j | + �
|S∩Vi, j |�r

i 	=iw

(Rank(Vi, j ) − 1)

+ Rank({Viw, j }),
if v j 	∈ S, ∃iw, s.t. |Viw, j ∩ S| � r ,�

|S∩Vi, j |<r
|S ∩ Vi, j |, otherwise,

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + �
|S∩Vi, j |�r

(r − 1) + �
|S∩Vi, j |<r

(|S ∩ Vi, j | − 1),

if v j ∈ S,

1 + �
|S∩Vi, j |�r

(r − 1) + �
|S∩Vi, j |<r

|S ∩ Vi, j |,
if v j 	∈ S and ∃iw, s.t. |Viw, j ∩ S| � r ,

|S|, otherwise,

(22)
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where for v j 	∈ S, we set Viw, j = ∅ if |S∩Viw, j | < r for all 1 �
iw � N j , otherwise we choose a set Viw, j with |S∩Viw, j | � r .

It follows from P2 and the fact that |Vi, j | = r + d j
i − 1 for

all 1 � i � N j , that

|S| �

⎧⎪⎨
⎪⎩

1 + �
1�i�N j

|(S ∩ Vi, j ) \ {v j }|, if v j ∈ S,

�
1�i�N j

|(S ∩ Vi, j ) \ {v j }|, otherwise,

�

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 + �
|S∩Vi, j |�r

(r + d j
i − 2)

+ ∑
|S∩Vi, j |<r

(|S ∩ Vi, j | − 1), if v j ∈ S,

�
|S∩Vi, j |�r

(r + d j
i − 2)

+ �
|S∩Vi, j |<r

|S ∩ Vi, j |, otherwise.

(23)

Finally, comparing (22) with (23), we have

|S| � Rank(S) +
�

|S∩Vi, j |�r

	
d j

i − 1



� Rank(S) + � j (M),

where M = |{Vi, j : |S ∩ Vi, j | � r, 1 � i � N j }| and in

the second inequality we use
�

|S∩Vi, j |�r

	
d j

i − 1



� � j (M)

from the assumption d
(I j )
1 � d

(I j )
2 � · · · � d

(I j )
N j

. Obviously,

M � � τ−1
r−1 
 by (22), which completes the proof.

Consider
	

d1
1 , d1

2 , · · · , d1
N1

, d2
1 , · · · , dk

Nk



and reorder its

elements as (d1, d2, · · · , du) such that d1 � d2 � · · · � du

and u = �
1� j�k N j . Define �(t) = �

1� j�t(d j − 1) for
1 � t � u.

Lemma 8: For 1 � j � k, let Vj = �
1�i�N j

Vi, j , V =�
1� j�k Vj , and N = max({N j : 1 � j � k}).
1. If

Vj \
#
v

(i, j )
t : 1 � i � N j , t � r

$
is linearly independent over Fq and has size 1+ N j (r −1)
for 1 � j � k, then

�
1� j�k Rank(V � ∩ Vj ) � k for any

(k + �(� (k−1)N
(r−1)N+1
))-subset V � of V ;

2. Furthermore, if

V \
#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
is linearly independent over Fq and has size

�
1� j�k(1+

N j (r −1)), then Rank(V �) = Rank(
�

1�i�k V �∩Vj ) � k

for any
	

k + �
	�

(k−1)N
(r−1)N+1

 


-subset V � of V .

Proof: For the first part, we assume to the contrary that
there exists a set V � with

|V �| = k + �

��
(k − 1)N

(r − 1)N + 1

��
(24)

but �
1�i�k

Rank(Sj ) � k − 1, (25)

where we set Sj = V � ∩ Vj for 1 � j � k.
The fact that���Vj \

#
v

(i, j )
t : 1 � i � N j , t � r

$��� = 1 + N j (r − 1)

for each 1 � j � k means�
Rank(Sj ) − 1

r − 1

�
=

�
Rank(Sj )N

(r − 1)N + 1

�
,

since Rank(Sj ) � Rank(Vj ) = 1 + N j (r − 1) � 1 + N(r − 1)

and
�

t−1
r−1

 
=

�
t N

(r−1)N+1

 
for any positive integer t � 1 +

N(r − 1). Thus, by Lemma 7 and (25),

|V �| �
�

1� j�k

|Sj |

�
�

1� j�k

�
Rank(Sj ) + � j

��
Rank(Sj ) − 1

r − 1

���

=
�

1� j�k

�
Rank(Sj ) + � j

��
Rank(Sj )N

(r − 1)N + 1

���

� k − 1 + �

��
(k − 1)N

(r − 1)N + 1

��
,

where the last inequality follows from d1 � d2 � · · · � du ,
i.e., for 1 � a j � N j and 1 � j � k,

�
1� j�k

� j (a j ) � max
�⊆[u]

|�|= ∑
1� j�k

a j

+�
τ∈�

(dτ − 1)

,

= �

⎛
⎝ �

1� j�k

a j

⎞
⎠ ,

which contradicts (24). Thus, the desired result follows.
For the second part, the fact that���V \

#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$���
=

�
1� j�k

(1 + N j (r − 1))

means that���Vj \
#

v
(i, j )
t : 1 � i � N j , t � r

$��� = 1 + N j (r − 1)

for any 1 � j � k. Since V \ -v
(i, j )
t : 1 � j � k, 1 � i �

N j , t � r
.

is linearly independent over Fq , we have

Span(V ) =
/

1� j�k

Span(Vj ), (26)

and Vj \
#

v
(i, j )
t : 1 � i � N j , t � r

$
is also linearly inde-

pendent over Fq , where “
0

” denotes the direct sum of linear
spaces. According to (26) and the result of the first part,

Rank(V �) = Rank

⎛
⎝ �

1� j�k

V � ∩ Vj

⎞
⎠

=
�

1� j�k

Rank(V � ∩ Vj ) � k,

for any V � ⊆ V with |V �| = k + �
	�

(k−1)N
(r−1)N+1

 

.

Based on Lemmas 7 and 8, we are able to prove our result
on the minimum Hamming distance.
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Theorem 3: For 1 � j � k, let Vj = �
1�i�N j

Vi, j and
V = �

1� j�k Vj . If q � r + dmax − 1 and

V \
#

v
(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
⊆ Fqm

is linearly independent over Fq and has size
�

1� j�k(1 +
N j (r − 1)), then the code C generated by Construction A
is an [n, k, d]qm linear code C with information (r, N, δ)-
locality, where N = (N1, N2, · · · , Nk), n = �

1� j�k(1 +�
1�i�N j

(r + d j
i − 2)) and d � n − k + 1 −�

	�
(k−1)N

(r−1)N+1

 

.

Proof: According to Theorem 2, it suffices to show that
|V | = n = �

1� j�k(1 + �
1�i�N j

(r + d j
i − 2)) and d �

n −k +1−�
	�

(k−1)N
(r−1)N+1

 

. By P4 in the proof of Lemma 7,

the facts that V \
#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
⊆

Fqm is linearly independent over Fq and���V \
#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$���
=

�
1� j�k

(1 + N j (r − 1))

mean that Vi1, j ∩Vi2, j = {v j } for 1 � i1 < i2 � N j , 1 � j � k
and Vj1 ∩ Vj2 = ∅ for 1 � j1 < j2 � k, i.e.,

|V | =
�

1� j�k

|Vj | =
�

1� j�k

⎛
⎝1+

�
1�i�N j

	
r + d j

i − 2

⎞⎠ = n.

For the minimum Hamming distance d of C, we have

d � n − k + 1 − �

��
(k − 1)N

(r − 1)N + 1

��
according to Lemma 6 and Lemma 8-2. This completes the
proof.

Corollary 4: Let N = (N1, N2, · · · , Nk ) be a sequence
of positive integers, D = {d j

i : 1 � j � k, 1 � i � N j } and
N = max({N j : 1 � j � k}). Denote

δ = 1 + min

⎛
⎝
⎧⎨
⎩

�
1�l�N j

	
d j

l − 1



: 1 � j � k

⎫⎬
⎭
⎞
⎠ , (27)

and dmax = max(D). For any given positive integers r , k, m
with r < k, if m � k((r − 1)N + 1), q � r + dmax − 1,
then Construction A can generate an [n, k, d]qm linear code
C with information (r, N, δ)-locality, where n = �

1� j�k(1 +�
1�i�N j

(r + d j
i − 2)) and d � n − k + 1 −�

	�
(k−1)N

(r−1)N+1

 

.

Proof: Since Construction A has no restriction on the set
V \

#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
, the hypothesis

m � k((r − 1)N + 1) �
�

1� j�k(1 + N j (r − 1)) implies
that we can select the set

V \
#

v
(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
⊆ Fqm

to be linearly independent over Fq with size
�

1� j�k(1 +
N j (r − 1)) in Step 2, Construction A. For instance, we can
let it be a

�
1� j�k(1 + N j (r − 1))-subset of a base

for Fqm over Fq . Now the corollary follows directly from
Theorem 3.

In particular, we have the following two specific optimal
constructions.

Corollary 5: Let d1 = d2 = · · · = du = 2, N j = δ − 1
for 1 � j � k, m � k((r − 1)(δ − 1) + 1), and q � 2. If
V \

#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
is linearly inde-

pendent over Fq , then the code C generated by Construction
A is an optimal [n, k, d]qm linear code with information
(r, δ − 1, δ)-locality with respect to the bound in Lemma 2,
where n = k(1+r(δ−1)) and d = n−k +2−

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
.

Proof: For the case d1 = d2 · · · = du = 2 = dmax,
to make sure that [r +1, r, 2]q linear code C∗ exists for Step 1
of Construction A we only need q � 2 rather than q � r +
dmax − 1. Thus, by Theorem 3, the code C is an [n, k, d]qm

linear code with information (r, δ − 1, δ)-locality and

d � n − k + 1 − �

��
(k − 1)N

(r − 1)N + 1

��

= n − k + 1 −
�

(k − 1)(δ − 1)

(r − 1)(δ − 1) + 1

�

= n − k + 2 −
�

(k − 1)(δ − 1) + 1

(r − 1)(δ − 1) + 1

�
,

where n = k(1 + r(δ − 1)). Recall that by Lemma 2, d �
n−k+2−

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
. Then d = n−k+2−

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
and the code C is an optimal linear code with information
(r, δ −1, δ)-locality with respect to the bound in Lemma 2.

Corollary 6: Let d1 = d2 = · · · = du = d∗ > 2, N j = N
for 1 � j � k, δ − 1 = N(d∗ − 1), q � r + d∗ − 1 and m �
k((r−1)N+1). If V \

#
v

(i, j )
t : 1 � j � k, 1 � i � N j , t � r

$
is linearly independent over Fq and has size k((r − 1)N + 1),
then the code C generated by Construction A is an optimal
[n, k, d]qm linear code with information (r, N, δ)-locality with
respect to the bound in Corollary 3, where n = k(1 + N(r +
d∗ − 2)) and d = n − k + 1 −

�
(k−1)N

(r−1)N+1

 
(d∗ − 1).

Proof: According to Theorem 3, the code C is an
[n, k, d]qm linear code with information (r, N, N(d∗ −1)+1)-
locality, where n = k(1 + N(r + d∗ − 2)) and

d � n − k + 1 − �

��
(k − 1)N

(r − 1)N + 1

��

= n − k + 1 −
�

(k − 1)N

(r − 1)N + 1

�
(d∗ − 1).

(28)

In the case N j = N for 1 � j � k and δ − 1 = N(d∗ − 1),
by Corollary 3,

d �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

n − k + 1 −
�

k−1
1+N(r−1)

 
(δ − 1),

if (1 + N(r − 1)) | (k − 1),

n − k + 1 −
�(⌈

(k−1)N
1+N(r−1)

⌉
−1

)
(δ−1)

N

�
, otherwise,

= n − k + 1 −
�

(k − 1)N

(r − 1)N + 1

�
(d∗ − 1).

Therefore, d = n − k + 1 −
�

(k−1)N
(r−1)N+1

 
(d∗ − 1) and the code

C is an optimal linear code with (r, N, δ)-locality with respect
to the bound in Corollary 3.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on March 18,2020 at 13:04:12 UTC from IEEE Xplore.  Restrictions apply. 



2412 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 4, APRIL 2020

We conclude this section with four remarks for locally
repairable codes by Construction A.

Remark 6: In [28], Wang and Zhang showed the existence
of optimal [n, k, d]q linear codes with information (r, δ−1, δ)-
locality via the Sparse Zero Lemma [6], when n � k(r(δ −
1)+1) and q > 1+� n

k+σ

�
with σ =

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
. However,

to the best of our knowledge, no explicit construction has
achieved the bound in Lemma 2. Thus, Construction A seems
to be the first explicit construction that can yield optimal
locally repairable codes with respect to the bound in Lemma 2.

Remark 7: If N = 1, then Construction A is exactly the
one introduced in [21] for optimal locally repairable codes
with respect to the bound in Lemma 1. Thus, Construction A
can be viewed as a generalization of the one in [21] for the
codes with multiple disjoint repair sets.

Remark 8: Construction A and Corollaries 5 and 6 also
show that the bound in Theorem 1 is tight for some cases.

Remark 9: The fact that
�

1�i�k
1� j�Ni

V j,i = [n] where the

sets Vj,i\{vi } for 1 � i � k and 1 � j � Ni correspond
to the repair sets for the k information symbols implies that
all the n code symbols have locality r . However, besides the
k information symbols corresponding to {v1, v2, · · · , vk}, it is
not clear that the other code symbols also have multiple repair
sets or their repair sets would tolerate overall δ − 1 erasures.
In fact, for all symbol locality, generally how to construct an
optimal locally repairable code with multiple repair sets is still
an open problem. For further discussion on this problem the
reader is referred to [27].

VI. LOCALLY REPAIRABLE CODES VIA LINEARIZED

REED-SOLOMON CODES

Inspired by the constructions in [17] for maximal recov-
erable codes (or Partial MDS codes), we also employ lin-
earized Reed-Solomon codes to reduce the size of the finite
field required for optimal locally repairable codes. This
section briefly describes linearized Reed-Solomon codes in
Definition 7, citing [17] in Lemma 9. We then give Con-
struction B which replaces Gabidulin codes with linearized
Reed-Solomon codes as the building block. Then Theorem 4
provides an analysis of the locality and minimum distance
of the constructed code. As in the previous section, two
corollaries present specific parameter choices for the construc-
tion: Corollaries 7 and 8 give two families of optimal codes
emanating from Construction B.

We start by recalling some necessary definitions for lin-
earized Reed-Solomon codes. For positive integers M and g,
let L = (L1, L2, . . . , Lg), M = L1 + L2 + · · · + Lg and
1 � Li � m. Let q be a prime power with q − 1 � g. Define
σ : Fqm → Fqm as σ(α) � αq . We first recall the definition
of a linear operator over a finite field as in [16].

Definition 6: For any α ∈ Fqm and i ∈ N, define
Normi (α) � σ i−1(α) · · · σ(α)α. The Fq -linear operator 
 i

α :
Fqm → Fqm is defined by


 i
α(β) = σ i (β) Normi (α). (29)

Definition 7: Let γ be a primitive element of Fqm and
let B = {β1, β2, · · · , βm} be a basis of Fqm over Fq . For
1 � i � g and k ∈ N, define the matrices

D(k)
i =

⎛
⎜⎜⎜⎜⎝

β1 β2 · · · βLi


1
γ i−1(β1) 
1

γ i−1(β2) · · · 
1
γ i−1(βLi )

...
...

. . .
...


k−1
γ i−1(β1) 
k−1

γ i−1(β2) · · · 
k−1
γ i−1(βLi )

⎞
⎟⎟⎟⎟⎠ .

The linearized Reed-Solomon code with dimension k, primi-
tive element γ , and basis B is the linear code Cσ

L ,k(B, γ ) ⊆
Fn

qm with generator matrix

D =
	

D(k)
1 , D(k)

2 , · · · , D(k)
g



k×M

. (30)

Let Diag(W1, W2, · · · , Wg) denote the block-diagonal
matrix, whose main-diagonal blocks are W1, W2, · · · , Wg , i.e.,

Diag(W1, W2, · · · , Wg) =

⎛
⎜⎜⎜⎝

W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · Wg

⎞
⎟⎟⎟⎠ .

The following property is introduced in [17].

Lemma 9 ( [17]): Let Cσ
L ,k(B, γ ) be the [M, k]qm lin-

earized Reed-Solomon code in Definition 7 with M = L1 +
L2 + · · · + Lg . Then for all integers ni � 1 and all matrices
Wi ∈ FLi×ni

q , for 1 � i � g, satisfying�
1�i�g

Rank(Wi ) � k, (31)

there exists a decoder

Dec : Cσ
L ,k(B, γ ) Diag(W1, W2, · · · , Wg) → Cσ

L ,k(B, γ )

such that

Dec(C Diag(W1, W2, · · · , Wg))=C for any C ∈ Cσ
L ,k(B, γ ),

where

Cσ
L ,k(B, γ ) Diag(W1, W2, · · · , Wg)

� {C Diag(W1, W2, · · · , Wg) : C ∈ Cσ
L ,k(B, γ )}.

By replacing the Gabidulin code with a linearized
Reed-Solomon code in Construction A, we get the following
construction.

Construction B: For any given N = (N1, N2, · · · , Nk )

and D = {d j
l � 2 : 1 � j � k, 1 � l � N j }, let

n j = 1 +
�

1�i�N j

(r + d j
i − 2),

for 1 � j � k, and define n = �
1� j�k n j . Let g = k,

L j = 1 + N j (r − 1), M = �
1� j�k Li , for 1 � j � k.

Assume m � L j for 1 � j � k. We can obtain a linear code
by the following steps:

Step 1: Select an [r + dmax − 1, r, dmax]q linear MDS code
C∗ whose canonical generator matrix is given as (Ir , P) with
P = (P1, P2, · · · , Pdmax−1), where dmax = max(D);

Authorized licensed use limited to: Moshe Schwartz. Downloaded on March 18,2020 at 13:04:12 UTC from IEEE Xplore.  Restrictions apply. 



CAI et al.: ON OPTIMAL LOCALLY REPAIRABLE CODES WITH MULTIPLE DISJOINT REPAIR SETS 2413

Step 2: Generate an (r + d j
i − 1)-subset of Fqm , Vi, j =!

v j , v
(i, j )
1 , v

(i, j )
2 , · · · , v

(i, j )

r−2+d j
i

"
for 1 � j � k and 1 � i �

N j satisfying�
v(i, j )

r , v
(i, j )
r+1 , · · · , v

(i, j )

r−2+d j
i

�

=
	
v j , v

(i, j )
1 , v

(i, j )
2 , · · · , v

(i, j )
r−1


	
P1, P2, · · · , P

d j
i −1



, (32)

where
#
v j , v

(i, j )
1 , v

(i, j )
2 , · · · , v

(i, j )
r−1

$
can be any r -subset of

Fqm . Then, based on (32), for each 1 � j � k, an L j × n j

matrix A j , can be uniquely determined as follows

V j =
�

v j , v
(1, j )
1 , v

(1, j )
2 , · · · , v

(1, j )

r+d j
1 −2

, v
(2, j )
1 ,

· · · , v
(2, j )

r+d j
2 −2

, · · · , v
(N j , j )

r+d j
N j

−2

,

=
	
v j , v

(1, j )
1 , v

(1, j )
2 , · · · , v

(1, j )
r−1 , v

(2, j )
1 ,

· · · , v
(2, j )
r−1 , · · · , v

(N j , j )
r−1



A j . (33)

Step 3: Let D be the generator matrix of the [M, k]qm

linearized Reed-Solomon code Cσ
L ,k(B, γ ). Construct a code C

with length n over Fqm by the generator matrix G =
D Diag (A1, A2, · · · , Ak), i.e.,

C = Cσ
L ,k(B, γ ) Diag (A1, A2, · · · , Ak)

� {C Diag (A1, A2, · · · , Ak) : C ∈ Cσ
L ,k(B, γ )}.

Note from (33) that

P5. For 1 � j � k, if Vj \
#
v

(i, j )
t : 1 � i � N j , t � r

$
is

linearly independent over Fq , then

Rank(V j (S)) = Rank(A j (S)), (34)

where for S = {s1, s2, · · · , st } ⊆ [L j ],
V j = (v j,1, v j,2, · · · , v j,L j ) ∈ F

L j
qm ,

and
A j = (A1,1, A1,1, · · · , A1,L j ),

we define

V j (S) � (v j,s1, v j,s2, · · · , v j,st ),

and
A j (S) � (A j,s1, A j,s1, · · · , A j,st ).

Then, applying it to Lemma 9, the requirement on the rank
of submatrix A j (S) can be transformed to the rank of the
corresponding subset V j (S). Immediately, using Lemma 8,
we get the following result.

Theorem 4: For 1 � j � k, let Vj = �
1�i�N j

Vi, j ,
V = �

1� j�k Vj , and m = max1� j�k(1 + N j (r − 1)), where

Vj =
!

v j , v
(1, j )
1 , v

(1, j )
2 , · · · , v

(1, j )

r+d j
1 −2

, v
(2, j )
1 ,

· · · , v
(2, j )

r+d j
2 −2

, · · · , v
(N j , j )

r+d j
N j

−2

2
.

If q � max{k + 1, r + dmax − 1} and

Vj \
#

v
(i, j )
t : 1 � i � N j , t � r

$
is linearly independent over Fq and has size 1+ N j (r −1) for
1 � j � k, then the code C generated by Construction B
is an [n, k, d]qm linear code C with information (r, N, δ)-
locality, where n = �

1� j�k(1 + �
1�i�N j

(r + d j
i − 2))

and d � n − k + 1 − �
	�

(k−1)N
(r−1)N+1

 

and δ = 1 +

min
	#�

1�l�N j
(d j

l − 1) : 1 � j � k
$


.

Proof: The fact that q � r + dmax − 1 guarantees the
existence of the MDS code C∗ over Fq for Step 1 in Con-
struction B. Further, the facts m = max1� j�k(1 + N j (r − 1))
and q � k + 1 imply that the linearized Reed-Solomon code
for Step 3 in Construction B exists. By Construction B, C is
an [n, k]qm code.

For the convenience of discussion, we index the codeword
C ∈ Cσ

L ,k(B, γ ) as

C =
	

c1, c(1,1)
1 , · · · , c(1,1)

r−1 , c(2,1)
1 , · · · , c(2,1)

r−1 , · · · , c(N1,1)
1 , · · · ,

c(N1,1)
r−1 , c2, c(1,2)

1 , · · · , c(N2,2)
r−1 , · · · ck, c(1,k)

1 , · · · c(Nk ,k)
r−1



and

C � =
	

c1, c(1,1)
1 , · · · , c(1,1)

r+d1
1 −2

, c(2,1)
1 , · · · , c(2,1)

r+d1
2 −2

, · · · , c(N1,1)
1

· · · , c(N1,1)

r+d1
N1

−2
, c2, c(1,2)

1 , · · · , c(N2,2)

r+d2
N2

−2
, · · · ck, c(1,k)

1 ,

· · · c(Nk ,k)

r+dk
Nk

−2



for C � = C Diag(A1, A2, · · · , Ak) ∈ C.

Firstly we claim that c j for 1 � j � k can be
regarded as information symbols. By (34), we have k =�

1� j�k Rank((v j )) = �
1� j�k Rank(A j,1). According to

Lemma 9, this means that the code symbols c j (1 � j � k)
are able to recover the whole codeword C and then C �. Thus,
the claim follows.

Next, we prove the locality of the code symbol c j for
1 � j � k. For each 1 � j � k and 1 � t � N j ,
equations (32) and (33) mean that�

c j , c(i, j )
1 , c(i, j )

2 , · · · , c(i, j )

r+d j
i −2

�

=
	

c j , c(i, j )
1 , c(i, j )

2 , · · · , c(i, j )
r−1


	
Ir , P1, P2, . . . , P

d j
i −1



.

Hence, the punctured code

CVi, j �
!�

c j , c(i, j )
1 , c(i, j )

2 , · · · , c(i, j )

r+d j
i −2

�
: C � ∈ C

"

is an [r + d j
i − 1, r j

i � 1, d j
i ]qm linear code, where r j

i � 1
follows by the fact that c j for 1 � j � k is an information
symbol. Therefore, by Definition 4, the code symbol c j for
1 � j � k has (r, N j , δ)-locality, i.e., the code C generated by
Construction B has information (r, N, δ)-locality, where δ =
1 + min

	#�
1�l�N j

(d j
l − 1) : 1 � j � k

$

.

As for the minimum Hamming distance d of C, assume that
erasure pattern is E with |E | � n − k − �

	�
(k−1)N

(r−1)N+1
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and Sj ⊆ [L j ] is the set of the indices for the elements
of Vj \ E over V j for 1 � j � k. Recall that Vj \#
v

(i, j )
t : 1 � i � N j , t � r

$
is linearly independent over Fq

and has size 1 + N j (r − 1) for 1 � j � k. According
to Lemma 8-1, we have

�
1� j�k Rank(Vj\E) � k. Imme-

diately, it follows from (34) that
�

1� j�k Rank(A j (Sj )) =�
1� j�k Rank(V j (Sj )) = �

1� j�k Rank(Vj\E) � k. That

is, any erasure pattern E with |E | � n − k −�
	�

(k−1)N
(r−1)N+1

 

can be recovered by Lemma 9. Therefore,

d � n − k + 1 − �

��
(k − 1)N

(r − 1)N + 1

��
,

which completes the proof.
In what follows, we discuss two specific settings in which

Construction B yields optimal codes.

Corollary 7: Let d1 = d2 = · · · = du = 2, N j = δ − 1
for 1 � j � k, m � (r − 1)(δ − 1) + 1 and q � k + 1. If
Vj \

#
v

(i, j )
t : 1 � i � N j , t � r

$
is linearly independent over

Fq and has size (r − 1)(δ − 1) + 1, then the code C generated
by Construction B is an optimal [n, k, d]qm linear code with
information (r, δ − 1, δ)-locality with respect to the bound in
Lemma 2, where n = k(1 + r(δ − 1)) and d = n − k + 2 −�

(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
.

Proof: By Theorem 4, the code C is an [n, k, d]qm linear
code with information (r, δ − 1, δ)-locality and

d � n − k + 1 − �

��
(k − 1)N

(r − 1)N + 1

��

= n − k + 1 −
�

(k − 1)(δ − 1)

(r − 1)(δ − 1) + 1

�

= n − k + 2 −
�

(k − 1)(δ − 1) + 1

(r − 1)(δ − 1) + 1

�
,

where n = k(1 + r(δ − 1)). Recall that by Lemma 2, d �
n−k+2−

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
. Then d = n−k+2−

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
and the code C is an optimal linear code with information
(r, δ −1, δ)-locality with respect to the bound in Lemma 2.

Corollary 8: Let d1 = d2 = · · · = du = d∗ > 2, N j = N
for 1 � j � k, δ −1 = N(d∗ −1), q � max{r +d∗ −1, k +1}
and m � (r − 1)N + 1. If

Vj \
#
v

(i, j )
t : 1 � i � N j , t � r

$
is linearly independent over Fq and has size (r − 1)N + 1,
then the code C generated by Construction B is an optimal
[n, k, d]qm linear code with information (r, N, δ)-locality with
respect to the bound in Corollary 3, where n = k(1 + N(r +
d∗ − 2)) and d = n − k + 1 −

�
(k−1)N

(r−1)N+1

 
(d∗ − 1).

Proof: According to Theorem 4, the code C is an
[n, k, d]qm linear code with information (r, N, N(d∗ −1)+1)-
locality, where n = k(1 + N(r + d∗ − 2)) and

d � n − k + 1 − �

��
(k − 1)N

(r − 1)N + 1

��

= n − k + 1 −
�

(k − 1)N

(r − 1)N + 1

�
(d∗ − 1).

In the case N j = N for 1 � j � k and δ − 1 = N(d∗ − 1),
by Corollary 3,

d �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

n − k + 1 −
�

k−1
1+N(r−1)

 
(δ − 1),

if (1 + N(r − 1)) | (k − 1),

n − k + 1 −
�(⌈

(k−1)N
1+N(r−1)

⌉
−1

)
(δ−1)

N

�
,

otherwise,

= n − k + 1 −
�

(k − 1)N

(r − 1)N + 1

�
(d∗ − 1).

Therefore, d = n−k +1−
�

(k−1)N
(r−1)N+1

 
(d∗−1) and the code C

is an optimal linear code with information (r, N, δ)-locality
with respect to the bound in Corollary 3.

We conclude this section by an illustrative example for an
optimal locally repairable code generated by Construction B.

Example 1: Let k = 3, r = 2, δ = 3, and N = 2. Set
n = 15, L1 = L2 = L3 = 3, and M = L1 + L2 + L3 = 9.
Note that in this case d j

i = 2 for 1 � j � 3 and 1 � i � 2.
Thus, the required field size for the linearized Reed-Solomon
code is q � 4 and m � 3. Apply the primitive polynomial
f (x) = x6 + x5 + 1 over F2 to generate the finite field F26 .
Thus, γ = x is a primitive element in F26 . Let βi = γ i for
1 � i � 3, which is a basis of F26 over F4. Then the generator
matrix of the [9, 3]26 linearized Reed-Solomon code can be
given as

D =
⎛
⎝ 1 2 3 1 2 3 1 2 3

4 8 12 5 9 13 6 10 14
16 32 48 21 37 53 26 42 58

⎞
⎠ ,

where the integer i in the matrix stands for the element γ i ∈
F26 . Let C∗ be the [3, 2, 2]4 MDS code with generator matrix�

1 0 1
0 1 1

�
∈ F2×3

4 .

By Construction B, the matrix Ai for 1 � i � 3 can be given
as

Ai =
⎛
⎝1 0 0 1 1

0 1 0 1 0
0 0 1 0 1

⎞
⎠ ∈ F3×5

4 .

Then the generator matrix of the locally repairable codes with
information (2, 2, 3)-locality can be given as

G = (g1, g2, . . . , g15)

= D Diag(A1, A2, A3)

=
⎛
⎝ 1 2 3 59 54 1 2 3 59 54 1 2 3 59 54

4 8 12 47 27 5 9 13 48 28 6 10 14 49 29
16 32 48 62 45 21 37 53 4 50 26 42 58 9 55

⎞
⎠,

where the integer i in the matrix stands for the element
γ i ∈ F26. Since Rank((g1, g6, g11)) = 3, we can regard
them as information symbols. Their repair sets can be listed
as R j

i = {g j+i , g j+i+2} for j ∈ {1, 6, 11} and i = 1, 2.
A computer program verified that indeed the weight of the
codewords generated by G is at least 12, i.e., d = 12 =
n − k + 2 −

�
(k−1)(δ−1)+1
(r−1)(δ−1)+1

�
. Thus, the code C generated by

G is a [15, 3, 12]26 optimal locally repairable codes with
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information (2, 2, 3)-locality, which is consistent with the
result in Corollary 7.

Finally, if N = 1, then Construction B is a special case of
the construction introduced in [17] for locally repairable codes.
In [17], universal and dynamic locally repairable codes with a
single repair set and maximal recoverability were considered.
In contrast, in Construction B, we mainly focus on locally
repairable codes with multiple repair sets.

VII. CONCLUDING REMARKS

In this paper, a general definition of locality was given
that ensures a code symbol can be locally repaired when
the number of erasures is bounded by δ − 1. The new
definition contains the definitions in [9], [20], [28] as extremal
cases. Additionally, a Singleton-type bound was derived for
the new codes. Finally, optimal constructions were proposed
with respect to the new bound. The constructions can also
generate optimal locally repairable codes with information
(r, δ)c-locality, i.e., (r, δ − 1, δ)-locality with respect to the
bound in [28].

However, the codes constructed in this paper have two main
drawbacks, namely, low code rates (depending on the number
of disjoint repair sets) and large underlying finite fields. One
problem that is still open is whether the new bound (like the
one in [28]) is also not tight for the high code rate case
as shown in [27]. If that is the case, two open questions
that remain are how to derive a sharper bound for the high
code rate case and how to construct corresponding optimal
locally repairable codes. For the low code rate case, the bound
in [28] and the new one are tight, but all the known results
for those codes require large finite fields. It is very interesting
to construct optimal codes with multiple disjoint repair sets
over small finite fields, say, of size O(n), as the one proposed
in [26] for the single repair set case.
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