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Reconstruction Codes for DNA Sequences With
Uniform Tandem-Duplication Errors

Yonatan Yehezkeally , Student Member, IEEE, and Moshe Schwartz , Senior Member, IEEE

Abstract— DNA as a data storage medium has several
advantages, including far greater data density compared to
electronic media. We propose that schemes for data storage in
the DNA of living organisms may benefit from studying the
reconstruction problem, which is applicable whenever multiple
reads of noisy data are available. This strategy is uniquely suited
to the medium, which inherently replicates stored data in multiple
distinct ways, caused by mutations. We consider noise introduced
solely by uniform tandem-duplication, and utilize the relation
to constant-weight integer codes in the Manhattan metric. By
bounding the intersection of the cross-polytope with hyperplanes,
we prove the existence of reconstruction codes with full rate,
as well as suggest a construction for a family of reconstruction
codes.

Index Terms— DNA storage, reconstruction, string-duplication
systems, tandem-duplication errors.

I. INTRODUCTION

DNA is attracting considerable attention in recent years
as a medium for data storage, due to its high density

and longevity [8]. Data storage in DNA may provide inte-
gral memory for synthetic-biology methods, where such is
required, and offer a protected medium for long-period data
storage [4], [42]. In particular, storage in the DNA of living
organisms is now becoming feasible [40]; it has varied usages,
including watermarking genetically modified organisms [3],
[16], [35] or research material [21], [42], and even affords
some concealment to sensitive information [9]. Naturally,
therefore, data integrity in such media is of great interest.

Several recent works have studied the inherent constraints
of storing and retrieving data from DNA. While desired
sequences (over quaternary alphabet) may be synthesized
(albeit, while suffering from substitution noise), generally data
can only be read by observation of its subsequences, quite
possibly an incomplete observation [22]. Moreover, the nature
of DNA and current technology results in asymmetric errors
which depend upon the dataset [14]. The medium itself also
introduces other types of errors which are atypical in electronic
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storage, such as symbol/block-deletion and adjacent transposi-
tions (possibly complemented) [15]. Finally, the purely com-
binatorial problem of recovering a sequence from the multiset
of all its subsequences (including their numbers of incidence),
was also studied, e.g., [1], [41], as well as coding schemes
involving only these multisets (or their profile vectors –
describing the incidence frequency of each subsequence) [38].

Other works were concerned with data storage in the
DNA of a living organism. While this affords some level
of protection to the data, and even propagation (through
DNA replication), it is also exposed to specific noise mech-
anisms due to mutations. Examples of such noise include
symbol insertions, deletion, substitutions (point-mutation), and
duplication (including tandem- and interspersed-duplication).
Therefore, schemes for data storage in live DNA must address
data integrity and error-correction.

In an effort to better understand these typical noise
mechanisms, their potential to generate the diversity observed
in nature was studied. [12] classified the capacity and/or
expressiveness of the systems of sequences over a finite alpha-
bet generated by four distinct substring duplication rules: end-
duplication, tandem-duplication, palindromic-duplication, and
interspersed-duplication. [18] fully characterized the expres-
siveness of bounded tandem-duplication systems, proved
bounds on their capacity (and, in some cases, even exact
values). [20] later showed that when point-mutations act
together with tandem-duplication as a sequence-generation
process, they may actually increase the capacity of the gen-
erated system. [2] looked at the typical duplication distance
of binary sequences; i.e., the number of tandem-duplications
generating a binary sequence from its root. It was proven
that for all but an exponentially small number of sequences
that number is proportional to the sequence length. Further,
when tandem-duplication is combined with point-mutations
(here, only within the duplicated string), it was shown that
the frequency of substitutions governs whether that distance
becomes logarithmic.

The generative properties of interspersed-duplication were
also studied from a probabilistic point of view. [11], [13]
showed (under assumption of uniformity) that the frequencies
of incidence for each subsequence converge to the same
limit achieved by an i.i.d. source, thus reinforcing the notion
that interspersed-duplication is–on its own–capable of gen-
erating diversity. [10] specifically looked at tandem- and
end-duplication, and found exact capacities in the case of
duplication length 1 by a generalization of the Pólya urn model
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that applies to strings. It also tightly bounded the capacity of
complement tandem-duplication, a process where the dupli-
cated symbol is complemented (using binary alphabet).

Finally, error-correcting codes for data affected by tandem-
duplication have been studied in [19], which presented a
construction of optimal-size codes for correcting any number
of errors under uniform tandem-duplication (fixed duplication
length), computing their (and thus, the optimal-) capacity. It
also presented a framework for the construction of optimal
codes for the correction of a fixed number of errors. Next,
it studies bounded tandem-duplications, where a characteri-
zation of the capacity of error-correcting codes is made for
small constants. In general, it characterized the cases where
the process of tandem-duplication can be traced back uniquely.
More recently, a flurry of activity in the subject includes works
such as [27], [29], [30] which provide some implicit and
explicit constructions for uniform tandem-duplication codes,
as well as some bounds.

However, classical error-correction coding ignores some
properties of the DNA storage channel; namely, stored infor-
mation is expected to be replicated, even as it is mutated.
This lends itself quite naturally to the reconstruction problem
[34], which assumes that data is simultaneously transmitted
over several noisy channels, and a decoder must therefore
estimate that data based on several (distinct) noisy versions
of it. Solutions to this problem have been studied in several
contexts. It was solved in [34] for sequence reconstruction over
finite alphabets, where several error models were considered,
such as substitutions, transpositions and deletions. Moreover,
a framework was presented for solving the reconstruction
problem in general cases of interest in coding theory, utilizing
a graph representation of the error model, which was further
developed in [32] and [33]. The problem was also studied
in the context of permutation codes with transposition and
reversal errors [23]–[25], and partially solved therein. Later,
applications were found in storage technologies [6], [7], [43],
[44], since modern application might preclude the retrieval of a
single data point, in favor of multiple-point requests. However,
the problem hasn’t been addressed yet for data storage in the
DNA of living organisms, where it may be most applicable.

In this paper, we study the reconstruction problem over
DNA sequences, with uniform tandem-duplication errors.
The main contributions of the paper are the following: We
show that reconstruction codes in this setting are necessarily
error-correcting codes with appropriately chosen minimum
distance, based on the uncertainty parameter. We also show
that in two asymptotic regimes, we can always obtain higher
size than error-correcting codes. These asymptotic regimes
include what we believe is the most interesting one, where the
uncertainty is sublinear, and the time (number of mutations)
is bounded by a constant.

The paper is organized as follows: In Section II we present
notations and definitions. In Section III we demonstrate that
reconstruction codes partition into error-correcting codes and
find the requisite minimal-distance of each part, as a function
of the reconstruction parameters. We see that these parts
can be isometrically embedded as constant-weight codes in
the Manhattan metric. Finally, in Section IV we show that

reconstruction codes exist with full capacity, and also suggest
a construction for reconstruction codes; we also briefly review
recent results, published after the submission of this paper.
We conclude with closing remarks in Section V.

II. PRELIMINARIES

Throughout this paper, though DNA is composed of four
nucleotide bases, we observe the more general case of
sequences over a finite alphabet; since the alphabet elements
are immaterial to our discussion, we denote it throughout as
Zq . We observe the set of finite sequences (also: words) over
it Z

∗
q �

⋃∞
n=0 Z

n
q . For any two words u, v ∈ Z

∗
q , we denote

their concatenation uv. For each word x ∈ Z
n
q , we denote its

length |x | = n. We also take special note of the set of words
with length higher than or equal to some 0 < k ∈ N, which
we denote Z

�k
q � {x ∈ Z

∗
q | |x | � k}. For ease of notation,

we let N stand for the set of non-negative integers throughout
the paper; when an integer is assumed to be strictly positive,
we make special note of that fact.

For 0 < k ∈ N, i ∈ N, we define a tandem-duplication of
duplication-length k by the mappings

Tk,i (x) �
{

uvvw x = uvw, |u| = i, |v| = k,

x otherwise.

If y = Tk,i (x) and y �= x (which occurs whenever |x | � i +k),
we say that y is a descendant of x , and denote x �⇒

k
y.

In what follows, we focus on the uniform tandem-duplication
model (i.e., we fix k) because of its simplicity.

Further, given a sequence
{

x j
}t

j=0 ⊆ Z
∗
q such that for all

0 � j < t , x j �⇒
k

x j+1, we say that xt is a t-descendant

of x0, and denote x0
t�⇒
k

xt . For completeness, we also

denote x
0�⇒
k

x . Finally, if there exists some t ∈ N such that

x
t�⇒
k

y, we also denote x
∗�⇒
k

y.

We denote the set of t-descendants of x ∈ Z
∗
q as

Dt
k(x) �

{
y ∈ Z

∗
q

∣∣∣∣ x
t�⇒
k

y

}
,

for some t ∈ N. We also denote the descendant cone of x by
D∗

k (x) �
⋃∞

t=0 Dt
k(x).

We say that x ∈ Z
�k
q is irreducible if x ∈ D∗

k (y) implies
y = x . We exclude from the definition shorter words, for
which the condition vacuously holds. We denote by Irrk the
set of all irreducible words, and Irrk(n) � Irrk ∩Z

n
q .

It was shown in [20] and [31] that for each word x ∈ Z
�k
q ,

a unique irreducible word exists for which x is a descendant.
We call it the root of x , and denote it by Rk(x). This induces
an equivalence relation by x ∼k y if Rk(x) = Rk(y).

We also follow [20] in defining, for x ∈ Z
�k
q , Prefk(x)

as the length-k prefix of x , and Suffk(x) as its suffix; i.e.,
if x = uu′ = v ′v where |u| = |v| = k, then Prefk(x) = u and
Suffk(x) = v. Using this notation, we define an embedding
φk : Z

�k
q → Z

k
q × Z

∗
q by

φk(x) �
(
Prefk(x),Suff|x |−k(x)− Pref |x |−k(x)

)
.
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It is seen in [20] that this mapping is indeed injective. Further,
it was shown that, defining ζk,i : Z

k
q × Z

∗
q → Z

k
q × Z

∗
q by

ζk,i (a, b) �
{
(a, b10kb2) b = b1b2, |b1| = i,

(a, b) otherwise,

where 0 < k ∈ N, i ∈ N, we have

φk
(
Tk,i (x)

) = ζk,i (φk(x)) .

The simplicity of ζk,i in comparison to Tk,i motivates the
analysis of tandem-duplications using the φk images of
sequences.

If b ∈ Z
∗
q is composed of the subsequences

b = 0s1w10s2 · · ·wm0sm+1; w1, . . . , wm ∈ Zq \ {0}
we define

μ(b) � 0s1 mod kw10s2 mod k · · ·wm0sm+1 mod k,

σ (b) �
(⌊s1

k

⌋
, . . . ,

⌊ sm+1

k

⌋)
.

We may note that wtH (b) = wtH (μ(b)) = m, where wtH is
the Hamming weight, and σ(b) ∈ N

wtH (b)+1 = N
wtH (μ(b))+1.

We also observe that b is recoverable from σ(b), μ(b). It was
proven in [20, Corollary 10] that if φk(x) = (a, b) then

φk (Rk(x)) = (a, μ(b)).

Thus, if x, y ∈ Z
�k
q , φk(x) = (a1, b1) and φk(y) = (a2, b2),

then x ∼k y if and only if a1 = a2 and μ(b1) = μ(b2).
Moreover, x ∈ Irrk if and only if σ(b1) = (0, 0, . . . , 0). Note
that, equivalently, we may say that b contains no zero-runs of
length k; such sequences are called (0, k − 1)q-Run-Length-
Limited, or (0, k − 1)q-RLL.

For x ∈ Irrk , φk(x) = (a, b), we denote m(x) � wtH (b)
and define ψx : D∗

k (x) → N
m(x)+1 by ψx (y) � σ(b′), where

φk(y) = (a, b′).
Finally, for n � k and x, y ∈ Z

n
q we define

dk(x, y) � min{t ∈ N | Dt
k(x) ∩ Dt

k(y) �= ∅},
or dk(x, y) = ∞ if {t ∈ N | Dt

k(x) ∩ Dt
k(y) �= ∅} = ∅. It was

shown in [20, Lemma 14] that dk(x, y) = ∞ if and only if
x �∼k y, hence dk(·, ·) is finite on Dt

k(x), for any particular
x ∈ Z

�k
q . Furthermore, [20, Lemma 19] shows that for any

x ∼k y with |x | = |y| it holds that

dk(x, y) = 1
2 ‖σ(b1)− σ(b2)‖1 ,

thus dk(·, ·) defines a metric on each equivalence class of ∼k .

III. RECONSTRUCTION CODES

The reconstruction problem in the context of uniform
tandem-duplication errors can be stated as follows: suppose
data is encoded in C ⊆ Z

n
q , and suppose we later are able to

read distinct x0, x1, . . . , xN ∈ Dt
k(c) for some specific c ∈ C

and t ∈ N; can we uniquely identify c?
It is apparent (see [34]) that to allow successful reconstruc-

tion we require codes to satisfy the following.

Definition 1 Take N, t, n > 0. We say that C ⊆ Z
n
q is a

uniform tandem-duplication reconstruction code, which we
abbreviate as an (N, t, k)q -UTR code, if

max
{|Dt

k(c) ∩ Dt
k(c

′)| | c, c′ ∈ C, c �= c′} � N.

The purpose of this section is to characterize reconstruc-
tion codes. By an evaluation of the size of intersection
of descendant cones, we determine the achievable size of
(N, t, k)q -UTR codes. We shall state the solution to this
problem in terms of error-correcting codes for the Manhattan
metric, and devote the next section to an observation of such
codes.

A. Structure of Descendant Cones

Throughout this section we fix some x ∈ Irrk , and denote
φk(x) = (a, b).

As noted above, for all y ∈ D∗
k (x), we have φk(y) = (a, b′),

with μ(b′) = b (hence, in particular, wtH (b′) = wtH (b)). We
therefore denote m = m(x) = wtH (b) and make the following
definition:

Definition 2 We let ψx : D∗
k (x) → N

m+1 be defined by
ψx (y) = σ(b′), where φk(y) = (a, b′).

It was noted in the previous section that ψx is then distance-
preserving from

(
D∗

k (x), dk
)

to
(
N

m+1, 1
2 ‖·‖1

)
(the definition

of dk , made here specifically for sequences of equal-length,
can be extended to D∗

k (x) by considering the shortest path
between any two sequences, but for simplicity in what follows,
we shall implicitly only consider dk as a metric over Dt

k(x)
for any given t ∈ N).

Definition 3 We define on N
m+1 the partial order b′ � b′′ if

for every coordinate i = 1, . . . ,m + 1 it holds that b′
i � b′′

i
(� is the well-known product order).

The poset
(
N

m+1,�) has a simple structure. We shall
therefore find it more convenient to consider D∗

k (x) in these
terms:

Lemma 4 ψx is a poset isomorphism from

(
D∗

k (x),
∗�⇒
k

)
to
(
N

m+1,�). In particular,

1) For all y, y ′ ∈ D∗
k (x) there exists z ∈ D∗

k (y) ∩ D∗
k (y

′)
such that

D∗
k (y) ∩ D∗

k (y
′) = D∗

k (z);
2) If in addition |y| = ∣∣y ′∣∣ then for all t ∈ N

∣∣Dt
k(y) ∩ Dt

k(y
′)
∣∣ =
{

0 t < dk(y, y ′),∣∣∣Dt−dk(y,y′)
k (x)

∣∣∣ t � dk(y, y ′).

Proof: We note that x ∈ Irrk , hence ψx (x) =
(0, 0, . . . , 0) ∈ N

m+1. Further, we note that in the image of
φk , a tandem-duplication ζk,i corresponds to increasing by one
a single coordinate of σ(·), i.e., an addition of a unit vector
e j ∈ N

m+1 to ψx (·).
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Hence, ψx is indeed a poset isomorphism, and we see that∗�⇒
k

endows D∗
k (x) with a lattice structure; We denote the

join of y, y ′ ∈ D∗
k (x) as y∨y ′, and their meet y∧y ′. It follows

that z = y ∨ y ′ satisfies item 1.
Finally, if |y| = ∣∣y ′∣∣ then by definition of d � dk(y, y ′)

we have z = y ∨ y ′ ∈ Dd
k (y) ∩ Dd

k (y
′), and item 2 is now

straightforward to prove from the poset-isomorphism.
Given Lemma 4, we can now find the size of intersection

of descendant cones for any c, c′ ∈ Z
n
q (n � k), keeping in

mind that D∗
k (c) ∩ D∗

k (c
′) �= ∅ if and only if c ∼k c′.

Lemma 5 For x ∈ Irrk ,
∣∣Dt

k(x)
∣∣ = (t+m(x)

m(x)

)
.

Proof: By Lemma 4 we know that

Dt
k(x) = {y ∈ D∗

k (x) | ‖ψx (y)‖1 = t}.
Since ψx : D∗

k (x) → N
m(x)+1 is bijective,

∣∣Dt
k(x)
∣∣ equals the

number of distinct integer solutions to
∑m+1

j=1 x j = t , where
x1, . . . , xm+1 � 0 (equivalently, the number of distinct ways
to distribute t identical balls into m(x)+ 1 bins).

B. Size of Reconstruction Codes

In this section we aim to estimate the maximal size of
(N, t, k)q -UTR codes.

Definition 6 For m, r > 0 we denote the simplex of dimension
m and weight r , or (m, r)−simplex

�m
r �

⎧⎨
⎩(xi )

m+1
i=1 ∈ N

m+1

∣∣∣∣∣∣
m+1∑
j=1

x j = r

⎫⎬
⎭ .

Theorem 7 We take positive integers N, t and n > k. For
C ⊆ Z

n
q and x ∈ Irrk we partition Cx � C ∩ D∗

k (x) and define
r(x) � n−|x |

k .
If Cx �= ∅ then r(x) ∈ N and r(x) <

⌊ n
k

⌋
. Moreover, C is

an (N, t, k)q -UTR code if and only if for all x ∈ Irrk such
that Cx �= ∅, the image ψx (Cx ) ⊆ �

m(x)
r(x) satisfies

min
{ 1

2

∥∥c − c′∥∥
1 | c �= c′ ∈ ψx (Cx)

}
� dN,t (m(x)) ,

where we make the notation

dN,t (m) � min

{
δ ∈ N

∣∣∣∣
(

t − δ + m

m

)
� N

}
.

Proof: If C ∩ D∗
k (x) �= ∅ then it follows from the

definitions that for some r ∈ N we have |x | + rk = n;
since |x | � k, necessarily r = r(x) <

⌊ n
k

⌋
. Furthermore,

C ∩ D∗
k (x) = C ∩ Dr

k (x), hence we have seen in the proof of
Lemma 4 that for all y ∈ Dr

k(x) we have

ψx (y) =
r∑

u=1

e ju ∈ �m(x)
r .

In addition, by Lemma 4 and Lemma 5, for all x ∈ Irrk

and y �= y ′ ∈ Cx the size of intersection Dt
k(y) ∩ Dt

k(y
′)

is
(t−dk(y,y′)+m(x)

m(x)

)
. It follows that Cx is an (N, t, k)q -UTR

code if and only if that size is no greater than N for all such
y, y ′ ∈ Cx .

Recalling that ψx is bijective and distance-preserving,
i.e., that dk(y, y ′) = 1

2

∥∥ψx (y)− ψx (y ′)
∥∥

1, the claim follows
for Cx .

To conclude the proof, we recall that for x, x ′ ∈ Irrk we
have D∗

k (x) ∩ D∗
k (x

′) = ∅, hence C is an (N, t, k)q -UTR if
and only if the same is true for Cx , for all x ∈ Irrk .

In other words, Theorem 7 states that the intersection of
a uniform-tandem-duplication reconstruction code C with the
descendant cone of any irreducible word D∗

k (x) can be viewed
as an error-correcting code with a suitable minimal distance.
Further, we see that these error-correcting codes are equivalent
to codes in the Manhattan metric over a simplex �m(x)

r(x) . We
note here, however, that this does not hold for C in general:
not only is each code’s minimal distance dependent on x , but
the dimension and weight of the simplex in which that code
exists do, as well.

We therefore see that constructions and bounds on the
size of error-correcting codes for uniform tandem-duplication
depend on doing the same for error-correcting codes in the
Manhattan metric over �m

r . We start by notating the maximal
size of such codes:

Definition 8 For m, r > 0 and d � 0 we define

M(m, r, d) � max
{
|C|
∣∣∣ C ⊆ �m

r , min
c,c′∈C
c �=c′

1
2

∥∥c − c′∥∥
1 � d

}
.

We now reiterate that if C ⊆ Z
n
q , x, x ′ ∈ Irrk(n − rk) (i.e.,

r(x) = r(x ′) = r ) and m(x) = m(x ′), then Dn−rk
k (x) ∼=

Dn−rk
k (x ′) (through, e.g., ψ−1

x ′ ◦ ψx ). It is therefore practical
to assume |Cx | = |Cx ′ | = M

(
m, r, dN,t (m)

)
for all such x, x ′.

This results in the following corollary, which concludes this
section:

Corollary 9 If C ⊆ Z
n
q is an (N, t, k)q -UTR code, and for all

x ∈ Irrk it holds that |Cx | = M
(
m, r, dN,t (m)

)
, then

|C| =
�n/k�−1∑

r=0

∑
m

M
(
m, r, dN,t (m)

) ·
· ∣∣{x ∈ Irrk(n − rk) | m(x) = m}∣∣

=
�n/k�−1∑

r=0

∑
m

M
(
m, r, dN,t (m)

) · qk ·

·
∣∣∣{b ∈ Z

n−(r+1)k
q

∣∣∣ b is (0,k−1)q - RLL
wtH (b)=m

}∣∣∣
Proof: First, trivially, |C| =∑x∈Irrk

|Cx |.
Observe that x ∈ Irrk satisfies Cx �= ∅, r(x) = r and

m(x) = m, if and only if x ∈ Z
n−rk
q and in φk(x) = (a, b), b

is (0, k − 1)q -RLL, and wtH (b) = m.
The rest now follows from Theorem 7.
Corollary 9 motivates us to estimate the optimal size

of error-correcting codes in the Manhattan metric over the
(m, r)-simplex. This topic was examined in some depth
in [28], where a construction based on Sidon sets (of par-
ticular interest for our application, see [26], and references
therein) was proposed, leading to lower bounds tighter than
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the Gilbert-Varshamov bound. For our purposes, we cite an
asymptotic result (we slightly rephrase):

Lemma 10 [28, Eq. (36)] Take μ ∈ (0, 1), ρ > 0 and integer
sequences (mn)n>0, (rn)n>0 such that limn→∞ mn

n = μ and
limn→∞ rn

n = ρ. Also take a fixed d > 0. Then

lim
n→∞

1

n
log2 M (mn, rn , d) = (μ+ ρ)H

(
1

1 + ρ
μ

)
. (1)

C. Minimal Distance of Reconstruction Codes

Next, before we can ascertain the sizes of error-correcting
codes over simplices, we bound their requisite minimal dis-
tance. That is, given N, t > 0 and m > 0, we establish bounds
on

dN,t (m) � min

{
δ ∈ N

∣∣∣∣
(

t − δ + m

m

)
� N

}

seen in Theorem 7.

Lemma 11 If N � m then dN,t (m) = t .

Proof: We may verify by substitution that δ = t satisfies(t−δ+m
m

)
� N , while δ = t − 1 does not. Using the strict

monotonicity of s �→ (s+m
m

)
, we are done.

In order to find a practical bound for dN,t (m) when N > m,
we first require the following three lemmas:

Lemma 12 1) [36, Ch. 10, Sec. 11, Lemma 7] For integers
0 < k < n it holds that√

n

8k(n − k)
2

nH
(

k
n

)
�
(

n

k

)
�
√

n

2πk(n − k)
2

nH
(

k
n

)

where H is the binary entropy function, defined by
H (p) � −p log2 p − (1 − p) log2(1 − p).

2)

nH

(
k

n

)
− 1

2
log2(2n) � log2

(
n

k

)
< nH

(
k

n

)
.

Proof: For item 2, we see that if 0 < k < n we have
n − 1 � k(n − k) � n2

4 , hence

n

2πk(n − k)
� 1

2π

(
1 + 1

n − 1

)
� 1

π
< 1,

n

8k(n − k)
� 1

2n
.

Thus the claim trivially follows from item 1.
For ease of notation in what follows, we make the notation,

for 1 � x ∈ R:

H(x) � x H

(
1

x

)
.

Lemma 13 For N > m > 0 and t > 0 it holds that

dN,t (m) � min

{
δ ∈ N

∣∣∣∣ H
(

1 + t − δ

m

)
� log2 N

m

}
.

Proof: Under the assumption, δ = t − 1 satisfies the
inequality

(t−δ+m
m

)
� N . Therefore we may restrict the

minimum to δ < t , giving 0 < m < (t − δ) + m. Now,
Lemma 12 implies

log2

(
t − δ + m

m

)
� m

(
1 + t − δ

m

)
H

(
1

1 + t−δ
m

)
,

which completes the proof.

Lemma 14 For x � 1 it holds that H(x) � 2
√

x − 1.

Proof: The claim can be restated by the substitution p = 1
x

as the known inequality H (p)2 � 4 p(1− p) (its proof follows
elementary calculus, and is omitted here).

Finally,

Theorem 15 Take N > m > 0. Then

dN,t (m) � max

{
1, t −

⌊
(log2 N)2

4m

⌋}
.

Proof: Using Lemma 14 we may bound H
(
1 + t−δ

m

)
�

2
√

t−δ
m . Lemma 13 therefore implies that it suffices to require

2
√

t−δ
m � log2 N

m , and reordering the inequality we get δ �
t − (log2 N)2

4m , yielding the claim.

IV. CAPACITY OF RECONSTRUCTION CODES

Definition 16 We define the rate of a code C ⊆ Z
n
q as

R(C) � 1

n
logq |C| ,

and the capacity of a system C ⊆ Z
∗
q as

cap(C) � lim sup
n→∞

1

n
logq

∣∣∣C ∩ Z
n
q

∣∣∣ .
We are interested in sup {cap(C)}, where C is any family of

reconstruction codes (i.e., C ∩ Z
n
q is an (Nn, tn, k)q -code for

all n).
The purpose of this section is to determine that optimal

capacity in two asymptotic regimes:

Regime I When Nn = o(n) and tn = t is fixed.

Regime II When Nn = 2αn and tn = βn for constants
α, β > 0 (such that Nn , tn ∈ N for some, hence infinitely
many, indices).

In practical applications, Regime I is likely to apply, since
we may indeed expect the number of duplications t , which
is dependent on the period of time before data is read,
to be fixed w.r.t. n. The allowed uncertainty Nn will also
likely be bounded. Regime II requires Theorem 15 (and some
restrictions over the values of α, β), but allows us to calculate
capacity in much the same way, which we do after presenting
the first.

Note, since [19] showed that Irrk(n) can correct any number
of tandem-duplication errors, they are trivially (N, t, k)q -codes
for all N, t (more precisely, they are (0, t, k)q -codes for all t).
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In comparison, in the setting we consider only t tandem-
duplications are assumed to have occurred, therefore the codes
we seek are less restrictive. Nevertheless, at the time of this
paper’s submission no bounds on the size of error-correcting
codes for a fixed number of tandem-duplications were known;
It is our purpose, then, to demonstrate that reconstruction
codes exist which have strictly higher capacity than Irrk , and
suggest constructions for families of such codes.

First, we denote for any n, r ∈ N such that n � k and
r <
⌊ n

k

⌋
, and any N, t ∈ N

MN,t (n, r) �
∑

m

M
(
m, r, dN,t (m)

) ·
·
∣∣∣{b ∈ Z

n−(r+1)k
q

∣∣∣ b is (0,k−1)q - RLL
wtH (b)=m

}∣∣∣ .
We recall for all n, if rn = arg maxr MN,t (n, r), that by
Corollary 9 we have an (N, t, k)q -code C ⊆ Z

n
q with |C| �

qkMN,t (n, rn). Corollary 9 also implies that for all C ⊆ Z
n
q

it holds that |C| � n
k qkMN,t (n, rn). We therefore focus on

maximizing lim supn→∞ 1
n logq MN,t (n, rn) by choice of rn .

In what follows, we take γ ∈ (0, 1) and set rn = 1−γ
k n − 1

for any n ∈ N for which rn ∈ N; we shall assume that such
n exist (hence, infinitely many exist), and refer only to such
indices.

For all x ∈ Irrk(n − rnk) = Irrk (k + γ n), recall that we
denoted φk(x) = (a, b) with b ∈ Z

γ n
q in (0, k − 1)q - RLL.

We shall build a reconstruction code in the descendant cones
of only such x , which we denote Cγ .

Lemma 17 There exists a system S ⊆ (0, k − 1)q - RLL and
θ ∈ ( 1

2 , 1
)

such that

cap(S) = lim
l→∞

1

l
logq

∣∣∣S ∩ Z
l
q

∣∣∣ = cap
(
(0, k − 1)q- RLL

)
and for all b ∈ S it holds that wtH (b) � θ |b|.

Proof: Let Gq(k −1) be the strongly connected determin-
istic digraph representing the (0, k −1)q- RLL system, seen in
Figure 1, whose adjacency matrix is

Tq(k − 1) =

⎛
⎜⎜⎜⎜⎜⎜⎝

q − 1 1 0 · · · 0

q − 1 0 1
...

...
...

. . . 0
q − 1 0 · · · 0 1
q − 1 0 · · · · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

As is well known for the case of q = 2 (see, e.g., [17], [45]),
its characteristic polynomial is

p(k−1)
q (x) = xk − (q − 1)

k−1∑
j=0

x j = xk+1 − qxk + (q − 1)

x − 1
,

hence the Perron eigenvalue λ of Tq(k − 1) is the unique
positive root of p̂(k−1)

q (x) = xk+1 − qxk + (q − 1) greater
than 1 (in fact, λ ∈ (q −1, q), which can readily be confirmed
either using elementary calculus or by information-theoretic
methods, since

(
Zq \ {0})∗ ⊆ (0, k − 1)q- RLL ⊆ Z

∗
q ).

Further, Tq(k − 1) has positive right- and left-eigenvectors
associated with λ, which we denote v̄ , w̄ respectively; specif-
ically,

v̄ =
⎛
⎝1, λ− (q − 1), . . . , λ j−1 − (q − 1)

j−2∑
i=0

λi , . . . ,

. . . λk−1 − (q − 1)
k−2∑
i=0

λi

)
,

w̄ =
(
λk−1, λk−2, . . . , λk− j , . . . , 1

)
.

and we may verify that

vk = λk−1 − (q − 1)
k−2∑
i=0

λi = 1

λ

⎡
⎣λk − (q − 1)

k−1∑
j=1

λ j

⎤
⎦

= q − 1

λ
> 0

and v j = v j+1+(q−1)
λ , hence every entry of v̄ is indeed positive.

Denoting qi, j = (Tq(k − 1)
)

i, j · v j
λvi

, it follows (see, e.g.,
[37, Sec. 3.5]) that Q = (qi, j )1�i, j�k is stochastic, and
represents a transition matrix of a stationary Markov chain P
on Gq(k−1) (a probability measure on its edges set Eq(k−1))
satisfying H (P) = logq λ = cap

(
(0, k − 1)q - RLL

)
. Further,

the stationary distribution of the Markov chain, i.e., a positive
π̄ = (π1, . . . , πk) such that

∑k
j=1 π j = 1 and π̄T Q = π̄T ,

is given by π j = π̂ j∑k
i=1 π̂i

, where π̂ is defined by π̂ j = w j v j .

It holds for all j that π j is the sum of probabilities
∑

P(e)
of edges terminating at the j ’th node.

Note, then, that

k∑
i=1

π̂i = λk−1 +
k∑

i=2

[
λk−1 − (q − 1)

λk−1 − λk−i

λ− 1

]

= λk−1
[

1 + (k − 1)

(
1 − q − 1

λ− 1

)]
+ q − 1

λ− 1

k∑
i=2

λk−i

= λk−1
[

k − (k − 1)
q − 1

λ− 1

]
+ q − 1

λ− 1

k−2∑
j=0

λ j

= λk−1
[

k − (k − 1)
q − 1

λ− 1

]
+ λk − (q − 1)λk−1

λ− 1

= λk−1

λ− 1
[λ− k(q − λ)]

and in particular π1 = λ−1
λ−k(q−λ) . (Incidentally, it follows from

π1 ∈ (0, 1) that 1 < k(q − λ) < λ, that is, q − q
k+1 < λ <

q − 1
k .)

Next, recall that for a given ε > 0, a (P, ε)- strongly-
typical path in G is a path γ = (e1, e2, . . . , el) (denoted
by its edges {e1, e2, . . . , el} ⊆ Eq(k − 1)) such that each
e ∈ Eq(k − 1) appears in the path l · τ times, for some
τ satisfying |τ − P(e)| � ε. If we let Sε ⊆ Z

∗
q be the

system induced by (P, ε
k(q−1) )-strongly-typical paths, then it

is well known that cap(Sε) = cap
(
(0, k − 1)q - RLL

)
. Note,

for b ∈ Sε of length |b| = l, which is generated by the
path γ = (e1, . . . , el), wtH (b) is precisely the number of
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Fig. 1. The graph Gq (k − 1) generating the (0, k − 1)q - RLL system.

edges which terminate at the first node; since γ is (P, ε
k(q−1) )-

strongly-typical,

wtH (b) �
∑

e terminates
at first node

l ·
(
P(e)− ε

k(q − 1)

)
= l(π1 − ε)

To conclude the proof, note

λ+k(q − λ) = q + (k − 1)(q − λ) > q � 2

�⇒ λ > 2 − k(q − λ)

�⇒ 2(λ− 1) > λ− k(q − λ) �⇒ π1 >
1

2

Hence we can take any 0 < ε < π1 − 1
2 , and observe that

S = Sε , θ = π1 − ε satisfy the proposition.
Lemma 17 implies that there exists a subset Sk ⊆ Irrk such

that cap(Sk) = cap(Irrk), and for every x ∈ Sk of length
|x | = k + γ n we have m(x) � �θ · γ n�. For the rest of this
section we only build codes Cn

γ in the descendant cones of
roots in Sk . Note, then, that if we denote mn = �θ · γ n� and
Cγ �

⋃
Cn
γ , then

cap(Cγ ) � lim sup
n→∞

1

n
logq

[
|Irrk(k + γ n)| ·

· M
(
mn, rn, dN,t (mn)

) ]
= γ cap (Irrk)+

+ lim sup
n→∞

1

n
logq M

(
mn, rn, dN,t (mn)

)
(2)

We evaluate the second addend in the following theorem:

Theorem 18 As before, we denote rn = 1−γ
k n − 1 and mn =

�θ · γ n�. Then

lim
n→∞

1

n
logq M(mn, rn, dNn ,tn (mn)) =

= θγ

log2 q
· H
(

1 + 1 − γ

kθγ

)
in both of the aforementioned two regimes:

1) Regime I: when Nn = o(n) and tn = t is fixed.
2) Regime II: when Nn = 2αn and tn = βn, if we

additionally require α2

β > 4θγ .

Proof:
1) Note, for sufficiently large n, that Nn < θ · γ n � mn ,

resulting by Lemma 11 in dNn ,t (mn) = t . We note that

limn→∞ rn
n = 1−γ

k and limn→∞ mn
n = θγ , hence by

Theorem 10 the claim is proven when t is fixed.

2) By Theorem 15:

dNn ,tn (mn) � max

{
1, βn −

⌊
n

α2 n

4 �θ · γ n�
⌋}

= max

{
1,

⌈(
β − α2 n

4 �θ · γ n�
)

n

⌉}
.

If α2

β > 4θγ then for sufficiently large n we have β <
α2 n

4�θ ·γ n� , hence dNn ,tn (mn) = 1. Since it is fixed, we may
now apply the same argument used in the previous part.

Going forward, we shall view the lower bound to cap(Cγ ),

R(γ ) � γ cap (Irrk)+ θγ

log2 q
· H
(

1 + 1 − γ

kθγ

)
,

as a function of γ . Before moving on to show that it may be
made to exceed cap(Irrk) by a careful choice of γ , we look
at the following example.

Example 19 Set q = k = 2. Then the Perron eigenvalue of
T2(1) is λ = 1+√

5
2 , and

cap(Irr2) = log2(λ) = log2

(
1 + √

5

2

)
≈ 0.6942.

In addition, any θ which is less than π1 = 1
2

(
1 + 1√

5

)
≈

0.7236 satisfies Lemma 17.
Alternatively, we may set q = 4 (for the special case

of DNA) and duplication-length k = 2. Now the Perron
eigenvalue of T4(1) is given by λ = 3+√

21
2 , hence

cap(Irr2) = log4(λ) = log4

(
3 + √

21

2

)
≈ 0.9613.

Further, we may choose any θ which is less than

π1 = 1
2

(
1 +
√

3
7

)
≈ 0.8273.

R(γ ) is shown for both cases in Figure 2, under the
assumptions of asymptotic regime made in Theorem 18. The
figure demonstrates that the capacity of reconstruction codes
(bounded from below by the maximum of the curve) is greater
than cap(Irrk). �
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Fig. 2. Rate R(γ ) in the cases (a) q = k = 2, θ = 0.7236, and (b) q = 4,
k = 2, θ = 0.8273. The value at γ = 1 equals cap(Irrk ).

We now attempt to maximize R(γ ) by a proper choice of
γ ∈ (0, 1). Analysis of R(γ ) is simpler using the following
change of variable:

Definition 20 Define x : (0, 1) → (0,∞) by x(γ ) � 1−γ
γ .

We observe that x(γ ) is a decreasing diffeomorphism, and
γ = 1

1+x(γ ) .

Lemma 21 One has

R(γ ) = γ cap(Irrk)+ θγ

[(
1 + x(γ )

kθ

)
logq

(
1 + x(γ )

kθ

)

− x(γ )

kθ
logq

(
x(γ )

kθ

)]

Proof: We observe that for all x > 0, log
(
1 + 1

x

) =
log
( x+1

x

) = log(x + 1)− log x ; in particular

logq

(
1 + kθγ

1 − γ

)
= logq

(
1 + 1 − γ

kθγ

)
− logq

(
1 − γ

kθγ

)
Hence,

R(γ ) =γ cap(Irrk)+ θγ

log2 q
· H
(

1 + 1 − γ

kθγ

)

=γ cap(Irrk)+ θγ logq

(
1 + 1 − γ

kθγ

)

+ 1 − γ

k
logq

(
1 + kθγ

1 − γ

)

=γ cap(Irrk)+
(
θγ + 1 − γ

k

)
logq

(
1 + 1 − γ

kθγ

)

− 1 − γ

k
logq

(
1 − γ

kθγ

)

=γ cap(Irrk)+ θγ

[(
1 + 1 − γ

kθγ

)
logq

(
1 + 1 − γ

kθγ

)

− 1 − γ

kθγ
logq

(
1 − γ

kθγ

)]

We can now show that there always exists a choice of γ
for which we get R(Cn

γ ) > cap(Irrk):

Theorem 22 maxγ∈(0,1) R(γ ) > cap(Irrk).

Proof: Observe that R(γ ) is continuously differentiable
and satisfies limγ→0 R(γ ) = 0, limγ→1 R(γ ) = cap(Irrk). We
find R′(γ ) in Figure 3; Thus, We can show that R′(γ ) = 0 if
and only if

q−k cap(Irrk) =
(

1 + x(γ )

kθ

)kθ−1

· x(γ )

kθ
(4)

This equation has a unique solution x0 = x(γ0), since the RHS
is a monotonic increasing function of x , vanishing at x = 0
and unbounded as x grows. Moreover, 0 < x0 < kθ , since
kθ > 1, hence the RHS is greater than 1 at x = kθ . Thus
R(γ ) has a unique local extremum in (0, 1).

It now suffices to show that R(γ ) is concave, hence the
extremum is a maximum. Indeed,

R′′(γ ) = 1

k

dx

dγ
· d

dx

[
(kθ − 1) logq

(
1 + x

kθ

)

+ logq

( x

kθ

) ]
x=x(γ )

= −1

k ln(q)γ 2

[
kθ − 1

kθ + x(γ )
+ 1

x(γ )

]
< 0

It follows that R(γ0) > limγ→1 R(γ ) = cap(Irrk).
Thus, the main result of this paper is established. In what

remains of this section we show that we can bound γ0 which
maximizes R(γ ), in practice, to any desired level of accuracy.
We begin by establishing bounds in the following lemma.

Lemma 23 Let γ0 ∈ (0, 1) be the unique maximum of R(γ ),
and denote x0 = x(γ0). Then

x0 � kθ(
2θqcap(Irrk)

)k − 1

and

x0 � 1

2

[√(
1 − q− cap(Irrk)k

)2 + kθq2−cap(Irrk)k

−
(

1 − q− cap(Irrk )k
)]

� kθq2

4
(
qcap(Irrk)k − 1

) .
Proof: For fixed x ∈ [0,∞) define gx : (0,∞) → R by

gx(y) = y ln
(

1 + x
y

)
. Then

g′
x(y) = ln

(
1 + x

y

)
+ y

1 + x
y

· −x

y2 = ln

(
1 + x

y

)
− x

y + x

= − ln

(
1 − x

x + y

)
− x

y + x

� −
(

− x

x + y

)
− x

y + x
� 0.

Therefore, fx (y) = egx (y) =
(

1 + x
y

)y
satisfies 1 + x =

fx (1) � fx (y) =
(

1 + x
y

)y
for all y � 1. In our case kθ > 1
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R′(γ ) = cap(Irrk )+ dx

dγ
· d

dx

[
θ

1 + x

((
1 + x

kθ

)
logq

(
1 + x

kθ

)
− x

kθ
logq

( x

kθ

))]
x=x(γ )

= cap(Irrk )−
1

γ 2

[ −θ
(1 + x)2

((
1 + x

kθ

)
logq

(
1 + x

kθ

)
− x

kθ
logq

( x

kθ

))
+ θ

(1 + x)
·
(

1

kθ
logq

(
1 + x

kθ

)
− 1

kθ
logq

( x

kθ

))]
x=x(γ )

= cap(Irrk )+
1

k

[
(kθ − 1) logq

(
1 + x(γ )

kθ

)
+ logq

(
x(γ )

kθ

)]
(3)

and x0 satisfies Eq. (4), hence

q− cap(Irrk )k =
(

1 + x0

kθ

)kθ−1 x0

kθ
� 1 + x0

1 + x0
kθ

· x0

kθ
= x0 + x2

0

kθ + x0

which we simplify to 0 � x2
0 + (1 − q− cap(Irrk )k

)
x0 −

kθq− cap(Irrk)k . Thus, the first upper bound is proven. For
the second, we require only that for a, b > 0 it holds that√

a + b2 − b � a
2b , which is readily shown by differentiation.

On the other hand, Eq. (4) implies that x0 � kθ . Therefore

q− cap(Irrk )k =
(

1 + x0

kθ

)kθ−1 x0

kθ
� 2kθ

1 + x0
kθ

· x0

kθ

⇐⇒ kθq− cap(Irrk )k �
(

2kθ − q− cap(Irrk )k
)

x0

which proves the lower bound.
Next, we show that we may tighten the bounds we derived

in the previous lemma.

Lemma 24 Let x0 > 0 be the unique solution to Eq. (4), and
denote z0 = x0

kθ . If z � z0 � z then F(z) � z0 � F(z), where

F(z) � q− cap(Irrk)k(
1 + q− cap(Irrk )k

(1+z)kθ−1

)kθ−1 .

Proof: By assumption we have q− cap(Irrk)k =
(1 + z0)

kθ−1·z0, hence q− cap(Irrk)k � (1 + z)kθ−1·z0, implying
that z0 � G(z) where G(z) = q− cap(Irrk )k

(1+z)kθ−1 . Similarly, z0 � G(z).
The proposition now trivially follows for F(z) = G(G(z)).

Finally, we can show that x0 may be found by the following
limiting process:

Theorem 25 The unique solution to Eq. (4) is given by
x0 = kθ limn→∞ Fn(z1), for all z1 ∈ [0, 1].

Proof: As before, we denote the unique solution x0 > 0,
and take z0 = x0

kθ .
Note that Lemma 24 implies that z0 = F(z0). We will

prove that F : [0, 1] → [0, 1] is a contraction; that is, for
all z1, z2 ∈ [0, 1] we have |F(z1)− F(z2)| � c |z1 − z2| for
some c < 1. Indeed, recalling kθ > 1 we find

F ′(z) = 2−2 cap(Irrk)k(kθ − 1)2

(1 + z)kθ
(

1 + q− cap(Irrk )k

(1+z)kθ−1

)kθ

� (kθ − 1)2

(22 cap(Irrk))k
� (k − 1)2

2k
� 9

16
< 1,

where the next to last inequality may be directly verified for
all small k.

Having done so, we utilize Banach’s fixed-point theorem to
deduce that F has a unique fixed point (necessarily z0), and for
all z1 ∈ [0, 1], defining zn+1 = F(zn) we get limn→∞ zn = z0.

We can now suggest a construction for (N, t, k)q -UTR
codes achieving better capacity than the error-correcting codes
Irrk(n) suggested in [19] (provided that one is willing to
consider reconstruction codes over unambiguous decoding of
any single output).

Construction A We set the alphabet size q , duplication
length k. In the case that our application falls within Regime I,
we also set a fixed decoding-delay t , and restrict the ambiguity
Nn to be sub-linear in n. (with the necessary adjustments, this
construction also applies for Regime II.)

• Start by finding the Perron eigenvalue λ of Tq(k −1), and
π1 = λ−1

λ−k(q−λ) , as in the proof of Lemma 17. Set some
θ < π1.

• The upper and lower bounds on x0 from Lemma 23
can be made tighter by a repetitive application of
F(·) from Lemma 24; Theorem 25 guarantees that the
bounds–hence the acceptable error–can be made as tight
as desired for our application.

• With γ0 = 1
1+x0

we may find rn = 1−γ0
k n − 1, and we

note that a capacity-achieving subset of Irrk(n − rnk) =
Irrk (k + γ n) has weight m(x) � mn = �θ · γ n�.

• Within Drn
k (x) of just such irreducible sequences x we

may utilize any construction of codes for the Manhattan
metric over �mn

rn
with minimal distance t , if it produces

codes of size sufficiently close to M(mn, rn, t). For
practical applications, [28, Sec. IV-A] showed that if mn

is a prime power, then by [5] there exist such codes of size∣∣�mn
rn

∣∣ /mt
n−1

mn−1 (which improves on the Gilbert-Varshamov
bound, and is sufficiently tight to achieve the same result
as in Theorem 18).

�

Note that we do not establish that Construction A pro-
duces a system of codes of capacity 1, rather only greater
than cap(Irrk). To conclude this section, we also present a
non-constructive argument proving the existence of a system
of reconstruction codes with capacity 1 by an application of
the Gilbert-Varshamov bound.

Recall that in the proof of Theorem 18 we have shown that
the minimal distance, dNn ,tn (mn) was bounded. In particular,
in the case of interest Regime I, we used the fact that mn =
�(n); This does not, in general, hold for m(Rk(y)) for all
y ∈ Z

n
q .

However, if we show that to be the case for a sufficiently
large subset Sn ⊆ Z

n
q , then we may note the following: by
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[28, Lemma 1] the size of ball in the dk(·, ·) metric of radius
d in the descendant cone of x ∈ Irrk , where m(x) � d , is

d∑
j=0

(
m(x)

j

)(
d

j

)(
d + m(x)− j

d

)

� (d + 1) ·
(

m(x)

d

)(
d

�d/2�
)(

d + m(x)

d

)
= O(m(x)d) = O(nd )

It would follow that a code of size |Sn|
O(nd )

exists (and, again,
the capacity of these codes will be cap(Sn)).

It now suffices to show that except for a vanishingly small
portion of y ∈ Z

n
q , it holds that m(Rk(y)) = �(n). Indeed,

recall that m(Rk(y)) = wtH (μ(b)) = wtH (b), where φk(y) =
(a, b), b ∈ Z

n−k
q . Then, for any real 0 < ξ < 1 − 1

q ,

|{b ∈ Z
n−k
q | wtH (b) � ξ(n − k)

}|
qn−k

� q(n−k)(Hq(ξ)−1),

where Hq(·) is the q-ary entropy function,

Hq(ξ) � −ξ logq ξ − (1 − ξ) logq (1 − ξ)+ ξ logq(q − 1),

and where we used a standard bounding of the size on the
Hamming ball, e.g., see [39, Lemma 4.7].

A. Comparison to Recent Results

Before we finish, we note here that the last argument also
shows via the GV bound that error-correcting codes for a fixed
number of tandem-duplications achieve capacity 1. Indeed,
after the submission of this manuscript [27], [29] were made
available, wherein bounds on the optimal size of such error-
correcting codes were presented; these bounds show that the
redundancy required to correct a fixed number of tandem-
duplications is logarithmic in n.

More specifically, both works showed (see [27, Th. 4],
[29, Lemma 6]) that there exist codes Cn ⊆ Z

n
q that correct

up to t tandem-duplications, for a fixed t ∈ N, satisfying

qn

nt

(
q

q − 1

)t

�
∣∣Cn
∣∣

(where we say that an � bn if lim sup an
bn

� 1). They

also showed that the optimal size was �
(

qn

nt

)
. Finally, [27,

Lemma 3] demonstrated that Cn can be assumed w.l.o.g.
to only contain sequences which roots satisfy m(x) = �(n).

We note that error-correcting codes for t
tandem-duplications have minimal dk(·, ·) distance t + 1;
In comparison, then, we have showed that (N, t, k)q -UTR
codes, where t is fixed and N = o(n), have minimal distance
t (when restricted to descendant cones of irreducible words
with m(x) = �(n)). The observations above imply that codes
designed in the aforementioned works for correcting t − 1

tandem-duplications, of size � qn

nt−1

(
q

q−1

)t−1
, are (N, t, k)q -

UTR codes. Importantly, this validates the hypothesis that
reconstruction codes for data storage in the DNA of living
organisms offer greater data-density than error-correcting
codes. Namely, in comparison to the t log(n) + O(1)

redundancy achieved by optimal error-correcting codes
in [27] and [29], (N, t, k)q -UTR codes achieve redundancy
(t − 1) log(n)+ O(1).

Finally, we also note for completeness that our results in
Regime II, albeit less applicable in practice, are unique to this
work.

V. CONCLUSION

We have proposed that reconstruction codes can be applied
to data-storage in the DNA of living organisms, due to the
channel’s inherent property of data replication.

We have showed, under the assumption of uniform
tandem-duplication noise, that any reconstruction code is par-
titioned into error-correcting codes for the Manhattan metric
over a simplex, with minimal distances dependent on the
reconstruction parameters. We then proved the existence of
reconstruction codes with rate 1, and suggested a construction
of a family of codes, which relies on constructions of codes for
the simplex. Via Theorem 25, we showed that we can bound
the parameters required for code-design in any real application,
to any degree of accuracy.

We believe that further research should examine explicit
code constructions on the simplex; specifically, encoding and
decoding algorithms for sufficiently large codes haven’t yet
been developed; in addition, only specific asymptotic regimes
have been explored, and a gap still exists between lower
an upper bounds on the size of non-linear codes. It is also
desirable to examine the problem under broader noise models,
such as bounded tandem-duplication,interspersed-duplication
(perhaps complemented), as well as combinations of multiple
error models.
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