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On Optimal Locally Repairable Codes
With Super-Linear Length

Han Cai , Member, IEEE, Ying Miao , Moshe Schwartz , Senior Member, IEEE,

and Xiaohu Tang , Senior Member, IEEE

Abstract— In this paper, locally repairable codes which have
optimal minimum Hamming distance with respect to the bound
presented by Prakash et al. are considered. New upper bounds
on the length of such optimal codes are derived. The new bounds
apply to more general cases, and have weaker requirements
compared with the known ones. In this sense, they both improve
and generalize previously known bounds. Further, optimal codes
are constructed, whose length is order-optimal with respect to
the new upper bounds. Notably, the length of the codes is super-
linear in the alphabet size.

Index Terms— Distributed storage, locally repairable codes,
packings, Steiner systems.

I. INTRODUCTION

LARGE-SCALE cloud storage and distributed file
systems, such as Amazon Elastic Block Store (EBS)

and Google File System (GoogleFS), have reached such a
massive scale that disk failures are the norm and not the
exception. In those systems, to protect the data from disk
failures, the simplest solution is a straightforward replication
of data packets across different disks. However, this solution
suffers from a large storage overhead. As an alternative
solution, [n, k] maximum distance separable (MDS) codes,
i.e., codes achieving the Singleton bound, are used as storage
codes, which encode k information symbols to n symbols
and store them across n disks. Using MDS codes leads
to a dramatic improvement in redundancy compared with
replication. However, for MDS codes, when one node fails,
the system recovers it at the cost of contacting k surviving
symbols, thus complicating the repair process.
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To improve the repair efficiently, in [15], locally repairable
codes were introduced to reduce the number of symbols
contacted during the repair process of a failed node. More
precisely, locally repairable codes ensure that a failed symbol
can be recovered by accessing only r � k other symbols [15].

The original concept of locality only works when exactly
one erasure occurs (that is, one node fails). Over the past
few years, several generalizations have been suggested for
the definition of locality. As examples we mention locality
with a single repair set tolerating multiple erasures [26],
locality with disjoint multiple repairable sets [7], [28], [31],
[35], hierarchical locality [30], and unequal locality [20].
For constructions of locally repairable codes refer to [4], [6],
[14], [25] as examples.

In this paper, we focus on locally repairable codes with a
single repair set that can repair multiple erasures locally [26].
By ensuring δ − 1 � 2 redundancies in each repair set, this
kind of locally repairable codes guarantees that the system
can recover from δ−1 erasures by accessing r surviving code
symbols for each erasure. This is denoted as (r, δ)-locality.

Research on codes with (r, δ)-locality has proceeded along
two main tracks. In the first track, upper bounds on the
minimum Hamming distance and the code length have been
studied. Singleton-type bounds were introduced for codes with
(r, δ)-locality in [26], [32], [36]. In [5], a bound depending on
the size of the alphabet was derived for the Hamming distance
of codes with (r, δ)-locality. Via linear programming, another
bound related with the size of the alphabet was introduced in
[1]. Very recently, in [13], an interesting connection between
the length of optimal linear codes with (r, 2)-locality and the
size of the alphabet was derived.

In the second research track, constructions for optimal
locally repairable codes have been studied. In [27], a con-
struction of optimal locally repairable codes was introduced
based on Gabidulin codes over a finite filed with size
q = Θ((r + δ − 1)(rn)/(r+δ−1)). By analyzing the structure
of repair sets, optimal locally repairable codes were also
constructed in [32] with q = Θ(

�
n
k

�
). In [34], a construction

of optimal locally repairable codes with q = Θ(n) was pro-
posed. In [33] and [37], optimal locally repairable codes were
constructed using matroid theory. The construction of [34] was
generalized in [21] to include more flexible parameters when
n � q. Recently, in [23], cyclic optimal locally repairable
codes with unbounded length were constructed for δ = 2
and Hamming distance d = 3, 4. Finally, for the case of
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δ = 2 and Hamming distance d = 5, [3], [13], [17] presented
constructions of locally repairable codes that have optimal
distance as well as order-optimal length n = Θ(q2).

In a practical setting, long codes over small fields are
preferred. This is due to the fact that smaller fields have
much cheaper and faster implementations both in hardware
and in software. Thus, a common question is, given a desirable
code family, and given a field size, how long can a code
of this family be. Perhaps the most famous instance of this
question is the MDS conjecture (e.g., see [24]), stating that
any MDS code has length linear in the field size (in fact, its
length is almost exactly the field size). Recently, analogous
with the case of MDS codes, Guruswami et al. [13] asked a
fundamental interesting question: How long can an optimal
code with (r, δ)-locality (with respect to the Singleton-type
bound in [26]) be for given r, δ, and field size q? An answer
to this question was given for the aforementioned case δ = 2,
which was proved to be tight for some cases. The motivation
of this paper is to further answer this question for the general
case δ > 2.

The main contribution of this paper is the study of optimal
linear codes with (r, δ)-locality and length that is super-linear
in the field size. We analyze the structure of optimal locally
repairable codes. Firstly, we derive a new upper bound on
the length of optimal locally repairable codes for the case of
δ > 2. Secondly, as a byproduct, we prove that the bound
for δ = 2 in [13] not only holds for some other cases (see
Remark 1 in this paper) besides the one mentioned in [13]
but also can be improved for the case d > r + δ. Finally,
we give a general construction of locally repairable codes with
length that is super-linear in the field size. Based on some
special structures such as packings and Steiner systems, locally
repairable codes with optimal Hamming distances and order-
optimal length Ω(qδ) with respect to the new bound (δ > 2)
are obtained. This is to say, the bound for δ > 2 is also
asymptotically tight for some special cases.

The remainder of this paper is organized as follows.
Section II introduces some preliminaries about locally
repairable codes. Section III establishes an upper bound for
the length of optimal locally repairable codes for the case
δ > 2. Section IV presents a construction of optimal locally
repairable codes with length n > q. Section V concludes this
paper with some remarks.

II. PRELIMINARIES

We present the notation and basic definitions used through-
out the paper. For a positive integer n ∈ N, we define
[n] = {1, 2, . . . , n}. For any prime power q, let Fq denote
the finite field with q elements. An [n, k]q linear code C
over Fq is a k-dimensional subspace of F

n
q with a k × n

generator matrix G = (g1,g2, . . . ,gn), where gi is a column
vector of dimension k for all i ∈ [n]. Specifically, it is
called an [n, k, d]q linear code if the minimum Hamming
distance is d. For a subset S ⊆ [n], let |S| denote the
cardinality of S, let 2S denote the set of all subsets of S,
and define

Rank(S) = Rank(Span {gi|i ∈ S}).

In [11], Gopalan et al. introduce the following definition
for the locality of code symbols. The ith (1 � i � n) code
symbol ci of an [n, k, d]q linear code C is said to have locality
r (1 � r � k), if it can be recovered by accessing at most r
other symbols in C. More precisely, symbol locality can also
be rigorously defined as follows.

Definition 1 ([11]): For any column gi of G with i ∈ [n],
define Loc(gi) as the smallest integer r such that there exists
an (r + 1)-subset Ri = {i, i1, i2, . . . , ir} ⊆ [n] satisfying

gi ∈ Span(Ri \ {i}), i.e., gi =
r�

t=1

λtgit , λt ∈ Fq. (1)

Equivalently, for any codeword C = (c1, c2, . . . , cn) ∈ C,
the ith component

ci =
r�

t=1

λtcit , λt ∈ Fq.

Define Loc(S) = maxi∈S Loc(gi) for any set S ⊆ [n]. Then,
an [n, k, d]q linear code C is said to have information locality
r if there exists S ⊆ [n] with Rank(S) = k satisfying
Loc(S) = r. Furthermore, an [n, k, d]q linear code C is said
to have all symbol locality r if Loc([n]) = r.

To guarantee that the system can locally recover from
multiple erasures, say, δ−1 erasures, the definition of locality
was generalized in [26] as follows.

Definition 2 ([26]): The jth column gj , j ∈ [n], of a
generator matrix G of an [n, k]q linear code C is said to have
(r, δ)-locality if there exists a subset Sj ⊆ [n] such that:

• j ∈ Sj and |Sj | � r + δ − 1; and
• the minimum Hamming distance of the punctured code

C|Sj obtained by deleting the code symbols ct (t ∈ [n] \
Sj) is at least δ,

where the set Sj is also called a (r, δ)-repair set of gj . The
code C is said to have information (r, δ)-locality if there exists
S ⊆ [n] with Rank(S) = k such that for each j ∈ S, gj has
(r, δ)-locality. Furthermore, the code C is said to have all sym-
bol (r, δ)-locality if all the code symbols have (r, δ)-locality.

In [26] (for the case δ = 2 [11]), the following upper
bound on the minimum Hamming distance of linear codes
with information (r, δ)-locality was derived.

Lemma 1 ([26]): For an [n, k, d]q linear code with infor-
mation (r, δ)-locality,

d � n − k + 1 −
��

k

r

�
− 1

�
(δ − 1). (2)

Additionally, a locally repairable code is said to be optimal
if its minimum Hamming distance attains this bound with
equality.

The following fact is very useful to determine the minimum
Hamming distance.

Fact 1 ([24]): An [n, k]q linear code C has minimum Ham-
ming distance d if and only if d is the largest integer such that

|S| � n − d

for every S ⊆ [n] with Rank(S) � k − 1.
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III. BOUNDS ON THE LENGTH OF LOCALLY

REPAIRABLE CODES

The goal of this section is to derive upper bounds on the
length of optimal locally repairable codes. We extend known
techniques which were employed for the case of δ = 2, and
apply them to the case of δ > 2. In particular, we construct
linear codes from locally repairable codes and then apply the
Hamming bound to the constructed codes. This connection
requires a careful analysis of the structure and properties
of the repair sets. More precisely, we need to find a set
of repair sets that form a partition of the n code symbols,
where the punctured codes over each repair set is an MDS
code. This has been studied before only in some special
cases [13], [32], but in the general case it is still an open
question.

We open this section by first characterizing the properties
of repair sets of locally repairable codes in Theorem 1. We
then give connections between optimal locally repairable codes
with δ > 2 and the case δ = 2 (linear codes), in Lemma 2.
Then Theorem 2 provides bounds on the length of optimal
locally repairable codes. Finally, Corollaries 2 and 3 introduce
a method that may improve the performance of known bounds
for the cases d > r + δ.

Throughout this section, let

n = (r + δ − 1)w + m, k = ru + v,

where δ � 2, 0 � m � r + δ − 2, and 0 � v � r − 1 are all
integers.

Theorem 1: Let C be an optimal [n, k, d]q linear code with
all symbol (r, δ)-locality, where the optimality is with respect
to the bound in Lemma 1. Let Γ ⊆ 2[n] be the set of all
possible (r, δ)-repair sets. Write k = ru + v, for integers u
and v, and 0 � v � r − 1. If (r + δ − 1)|n, k > r, and
additionally, u � 2(r − v + 1) or v = 0, then there exists a
set of (r, δ)-repair sets S ⊆ Γ, such that all R ∈ S are of
cardinality |R| = r + δ − 1, and S is a partition of [n].

The proof of Theorem 1 is lengthy, involving several aux-
iliary lemmas. It is therefore deferred to the appendix. Based
on Theorem 1, we derive a corollary that slightly extends [32,
Theorem 9], which was originally proved only for r|k. It has
a very similar proof, which we give here for completeness.

Corollary 1: Let C be an optimal [n, k, d]q linear code with
all symbol (r, δ)-locality, where the optimality is with respect
to the bound in Lemma 1. If k > r, n = w(r + δ − 1), and
additionally r|k or u � 2(r+1−v), then there are w pairwise-
disjoint (r, δ)-repair sets, R1, . . . , Rw ⊆ [n], such that for all
1 � i � w, |Ri| = r + δ − 1, and the punctured code C|Ri is
a linear [r + δ − 1, r, δ]q MDS code.

Proof: We contend that the repair sets, S, from Theorem 1,
satisfy the requirements. Thus, it remains to prove that for each
C|R, R ∈ S, the Hamming distance is exactly δ. Assume to
the contrary, and without loss of generality, that d(C|R1) > δ.

Note that
	

1�i�w Ri = [n] means Rank(
	

1�i�w Ri) = k

and then w = n
r+δ−1 � �k

r � since Rank(Ri) � r for 1 � i �
w. Also recall our notation that v ≡ k mod r and 0 � v < r.
Fix some arbitrary set R� ⊆ R� k

r �, with |R�| = v if v �= 0,

and |R�| = r if v = 0. Consider now the set

S = R� ∪

⎛
⎝ �

1�i�� k
r �−1

Ri

⎞
⎠ .

By the Singleton bound we have,

Rank(S) �Rank(R�) +
�

1�i�� k
r �−1

Rank(Ri)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v +
�

1�i�� k
r �−1(r + δ − 1 − d(C|Ri) + 1)

< v + r(�k
r � − 1) = k, if v �= 0,

r +
�

1�i�� k
r �−1(r + δ − 1 − d(C|Ri) + 1)

< r + r(�k
r � − 1) = k, if v = 0.

We also have

|S| =

�
v + (r + δ − 1)

��
k
r

�
− 1

�
, if v �= 0,

r + (r + δ − 1)
��

k
r

�
− 1

�
, if v = 0,

= k +
��

k

r

�
− 1

�
(δ − 1).

But now this contradicts the optimality of C by Fact 1.
In the sequel, the discussion is based on the structure of the

repair sets given in Corollary 1.
Lemma 2: Let n = w(r + δ − 1), δ > 2, k = ur + v > r,

and additionally, r|k or u � 2(r+1−v), where all parameters
are integers. If there exists an optimal [n, k, d]q linear code C
with all symbol (r, δ)-locality, then

i There exists a [w(r + 1), k, d�]q linear code C� with
all symbol (r, 2)-locality (i.e., locality r), and d� �
2 
(d − 1)/δ� + 1;

ii There exists a linear code with parameters [wr, k� �
k, d� � t + 1]q.

Proof: For the first claim, by Corollary 1, and up to a
rearrangement of the code coordinates, the code C has parity-
check matrix P of the following form,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L(1) 0 0 . . . 0
0 L(2) 0 . . . 0
0 0 L(3) . . . 0
...

...
...

. . .
...

0 0 0 . . . L(w)

H1 H2 H3 . . . Hw

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where L(i) = (Iδ−1, Pi) is a (δ − 1)× (r + δ − 1) matrix for
all 1 � i � w. Herein, without loss of generality, we assume
L(i) with canonical form for 1 � i � w. For all 1 � i � w,
rewrite the (δ − 1) × (r + δ − 1) matrix L(i) = (Iδ−1, Pi) as

L(i) =

�
L

(i)
1,1 L

(i)
1,2

L
(i)
2,1 L

(i)
2,2

�
,

where L
(i)
2,2 is a (δ − 2) × (δ − 2) matrix. It is easy to check

that det(L(i)
2,2) �= 0 for all 1 � i � w, since L(i) is a parity-

check matrix of an [r + δ − 1, r, δ]q MDS code according to
Corollary 1. By column linear transformations, the matrix P
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is equivalent to ⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q1 0 0 . . . 0
0 Q2 0 . . . 0
0 0 Q3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Qw

H �
1 H �

2 H �
3 . . . H �

w

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (3)

where

Qi =

�
Qi,1 = L

(i)
1,1 − L

(i)
1,2(L

(i)
2,2)

−1L
(i)
2,1 L

(i)
1,2

0 L
(i)
2,2

�
, (4)

H �
i = (H �

i,1 = Hi,1 − Hi,2(L
(i)
2,2)

−1L
(i)
2,1, H

�
i,2 = Hi,2) (5)

with Hi = (Hi,1, Hi,2).
Now consider the code C� with parity-check matrix

P � =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Q1,1 0 0 . . . 0
0 Q2,1 0 . . . 0
0 0 Q3,1 . . . 0
...

...
...

. . .
...

0 0 0 . . . Qw,1

H �
1,1 H �

2,1 H �
3,1 . . . H �

w,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (6)

where Qi,1 and H �
i,1, for 1 � i � w, are defined by (4) and

(5), respectively.
Given a set of coordinates T = {t1, . . . , t�} ⊆ [r + δ − 1],

and given A = (A1, . . . , Ar+δ−1), we define the projection of
A onto T by ΔT (A) = (At1 , At2 , . . . , Atl

) (where the order
of coordinates in the projection will not matter to us). We
emphasize that Qi,1, for all 1 � i � w, does not have a zero
coordinate, since according to Corollary 1, ΔSτ (Qi) has full
rank, where we define Sτ = {τ}∪{r+2, r+3, . . . , r+δ−1},
τ ∈ [r + 1]. Thus, by (6), C� is a code with all symbol
(r, 2)-locality.

To complete the proof we only need to show d� � 2t + 1,
where we define t = 
(d − 1)/δ�. Namely, we need to show
that any 2t columns of P � are linearly independent. A selection
of 2t columns from P �, denoted by T �, has the following
general form,

ΔT ′(P �) �

⎛
⎜⎜⎜⎜⎜⎝

ΔT ′
1
(Q1,1) 0 . . . 0
0 ΔT ′

2
(Q2,1) . . . 0

...
...

. . .
...

0 0 . . . ΔT ′
w
(Qw,1)

ΔT ′
1
(H �

1,1) ΔT ′
2
(H �

2,1) . . . ΔT ′
w
(H �

w,1)

⎞
⎟⎟⎟⎟⎟⎠ ,

where
�

1�i�w |T �
i | = 2t. Since the locality of C� guarantees

recovery from any one erasure independently, the non-trivial
cases to consider are those where T �

τi
� 2 for 1 � τi � w

and 1 � i � s, where s denotes the number of sets T �
i with

|T �
i | � 2 and s � min(t, w).
With a coordinate selection T � from P � we naturally asso-

ciate a coordinate selection T from P , defined by

Tτi = T �
τi
∪ {r + 2, r + 2, . . . , r + δ − 1},

for 1 � i � s, and with
�

1�i�s |Tτi | = 2t+ s(δ− 2) � tδ �
d−1. Recall that if {r+2, r+3, . . . , r+δ−1} ⊂ T ⊆ [r+δ−1]

then (3), (4) and (5) imply that�
ΔT (L(i))
ΔT (Hi)

�
and

�
ΔT (Qi)
ΔT (H �

i)

�

are rank equivalent, based on only invertible column linear
transformations for 1 � i � w. Note that the distance of C
satisfies d � δt+1 � 2t+s(δ−2)+1, which implies that any�

1�i�s |Tτi | � 2t + s(δ− 2) columns of P have full rank of�
1�i�s |Tτi |, i.e.,�

1�i�s

|Tτi |

=Rank

⎛
⎜⎜⎜⎜⎜⎝

ΔTτ1
(L(τ1)) 0 . . . 0
0 ΔTτ2

(L(τ2)). . . 0
...

...
. . .

...
0 0 . . .ΔTτs

(L(τs))
ΔTτ1

(Hτ1) ΔTτ2
(Hτ2) . . . ΔTτs

(Hτs)

⎞
⎟⎟⎟⎟⎟⎠

=Rank

⎛
⎜⎜⎜⎜⎜⎝

ΔTτ1
(Qτ1) 0 . . . 0
0 ΔTτ2

(Qτ2). . . 0
...

...
. . .

...
0 0 . . .ΔTτs

(Qτs)
ΔTτ1

(H �
τ1

)ΔTτ2
(H �

τ2
). . .ΔTτs

(H �
τs

)

⎞
⎟⎟⎟⎟⎟⎠ , (7)

where the second equality holds by (3), (4), (5) and the fact
that {r+2, r+3, . . . , r+δ−1} ⊆ Tτi for 1 � i � s. Therefore,
by (4), (5), and (7), we have

Rank (ΔT ′(P �))

=Rank

⎛
⎜⎜⎜⎜⎜⎜⎝

ΔT ′
τi

(Qτ1,1) 0 . . . 0
0 ΔT ′

τ2
(Qτ2,1) . . . 0

...
... . . .

...
0 0 . . . ΔT ′

τs
(Qτs,1)

ΔT ′
τ1

(H �
τ1,1) ΔT ′

τ2
(H �

τ2,1) . . . ΔT ′
τs

(H �
τs,1)

⎞
⎟⎟⎟⎟⎟⎟⎠

=
�

1�i�s

|T �
τi
|,

where T �
τi

= Tτi \ {r + 2, r + 3, . . . , r + δ− 1} for 1 � i � s.
This is to say, the code C� can recover from any 2t erasures,
hence, d� � 2t + 1.

For the second claim, the proof is similar and the only
different is that we consider the parity-check matrix P , which
is equivalent with⎛

⎜⎜⎜⎜⎜⎝

(Iδ−1, 0) (0, 0) . . . (0, 0)
(0, 0) (Iδ−1, 0) . . . (0, 0)

...
...

. . .
...

(0, 0) (0, 0) . . . (Iδ−1, 0)
(H1,1, H

∗
1 ) (H2,1, H

∗
2 ) . . . (Hw,1, H

∗
w)

⎞
⎟⎟⎟⎟⎟⎠ ,

where H∗
i = (Hi,2 −Hi,1) for 1 � i � w. By the analysis as

the first case, it is easy to check that

(H∗
1 , H∗

2 , . . . , H∗
w)

=(H1,2 − H1,1, H2,2 − H2,1, · · · , Hw,2 − Hw,1)

is a parity check matrix of a linear code with parameters
[w(r + 1), k� � k, d � t + 1]q.
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The following bound is derived from Lemma 2. The proof
follows the same path as the proof of [13, Theorem 3.2].
We bring it here for completeness.

Theorem 2: Let n = w(r + δ − 1), δ � 2, k = ur + v, and
additionally, r|k or u � 2(r+1−v), where all parameters are
integers. Assume there exists an optimal [n, k, d]q linear code
C with all symbol (r, δ)-locality, and define t = 
(d − 1)/δ�.
If 2t + 1 > 4, then

n �

⎧⎨
⎩

r+δ−1
r

�
t−1

2(q−1)q
2(w−u)r−2v−2

t−1 + 1
�

, if t is odd,

t(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t , if t is even,

where w − u can also be rewritten as w − u = 
(d − 1 + v)/
(r + δ − 1)�.

Proof: By Lemma 2-(ii), we have a linear code C1, with
parameters [wr, k = ur + v, d2 � t + 1]q.

Now we apply the Hamming bound [24] to C1. We distin-
guish between two cases, depending on the parity of t.

Case 1: t is odd. In this case, consider the shortened code
of C1 with parameters [wr − 1, k = ur + v, d2 � t]q , then by
the Hamming bound we have

qur+v� qwr−1�
0�i� t−1

2

�
wr−1

i

�
(q − 1)i

� qwr−1�wr−1
t−1
2

�
(q − 1)

t−1
2

� qwr−1�
wr−1

t−1
2

� t−1
2

(q − 1)
t−1
2

,

i.e.,

wr � t − 1
2(q − 1)

q
2(w−u)r−2v−2

t−1 +1.

This is to say,

n � r + δ − 1
r

�
t − 1

2(q − 1)
q

2(w−u)r−2v−2
t−1 + 1

�
.

Case 2: t is even. Similarly, by the Hamming bound,
we have

qur � qwr�
1�i� t

2

�
wr
i

�
(q − 1)i

� qwr�
wr

t
2

�
(q − 1)

t
2

� qwr�
wr

t
2

� t
2

(q − 1)
t
2

,

which means

n � t(r + δ − 1)
2r(q − 1)

q
2(w−u)r−2v

t .

By Lemma 1, C is optimal means that

d − 1

=

�
w(r + δ − 1) − ur − v − u(δ − 1), if v �= 0,

w(r + δ − 1) − ur − (u − 1)(δ − 1), if v = 0,
(8)

i.e., w − u = 
(d − 1 + v)/(r + δ − 1)�. This completes the
proof.

Remark 1: For the case δ = 2, let d = 4τ + a for
a ∈ {1, 2, 3, 4}, then t = 2τ for a = 1, 2 and t = 2τ + 1

for a = 3, 4. Note that by (8), t = 
d−1
δ � � 2 (or d � 5)

means that w � u. By Lemma 1 and (8), the bounds can be
rewritten as

n �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r+1
r

�
d−a

4(q−1)q
4(d−3−w+u)

d−a + 1
�

� r+1
r

�
d−a

4(q−1)q
4(d−3)

d−a + 1
�

, if a = 3, 4,

(d−a)(r+1)
4r(q−1) q

4(d−2−w+u)
d−a

� (d−a)(r+1)
4r(q−1) q

4(d−2)
d−a , if a = 1, 2,

for v = 0, and

n �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r+1
r

�
d−a

4(q−1)q
4(d−2−w+u)

d−a + 1
�

� r+1
r

�
d−a

4(q−1)q
4(d−3)

d−a + 1
�

, if a = 3, 4,

(d−a)(r+1)
4r(q−1) q

4(d−1−w+u)
d−a

� (d−a)(r+1)
4r(q−1) q

4(d−2)
d−a , if a = 1, 2

for v > 0.
Although, for the case of δ = 2, we obtain a similar bound

to the one in [13], our bound is an improvement since it
has more relaxed conditions. In particular, the bound of [13,
Theorem 10] requires n

r+1 � (d − 2 −
�

d−2
r+1

�
)(3r + 2) +


d−2
r+1� + 1, i.e., k = Ω(dr2) [13], whereas we only require

k = Ω(r2).
Recalling Corollary 1 again, we can improve the perfor-

mance of the bounds on the length of optimal locally repairable
codes with all symbol (r, δ)-locality for the case d > r+ δ by
the following corollary.

Corollary 2: Let n = w(r+ δ−1), δ � 2, k = ur+v > r,
and additionally, r|k or u � 2(r+1−v), where all parameters
are integers. If there exists an optimal [n, k, d]q linear code C
with d > r + δ and all symbol (r, δ)-locality, then there exists
an optimal linear code C� with all symbol (r, δ)-locality and
parameters [n− �(r+ δ− 1), k, d� = d− �(r + δ− 1)]q, where
� = �(d − 1)/(r + δ − 1)� − 1.

Proof: By Corollary 1, there are R1, R2, · · · , Rw such that
C|Ri , 1 � i � w, is an [r + δ − 1, r, δ]q MDS code. Note that
� = �(d − 1)/(r + δ − 1)� − 1. The fact C is optimal means
that

d = n − k + 1 −
��

k

r

�
− 1

�
(δ − 1), (9)

by Lemma 1. Recall that k > r, n = w(r + δ − 1), and
d > r + δ. Thus, we have 1 � � � w − 1. Now let C� be
the punctured code of C over the set W =

	
�+1�i�w−1 Ri,

i.e., C� = C|W . The fact C�|Ri = C|Ri for � + 1 � i � w
is an [r + δ − 1, r, δ]q MDS code means that C� has
all symbol (r, δ)-locality. The fact C� = C|W implies
n� = n −

�
1�i�� |Ri| = n − �(r + δ − 1) and

d� � d −
�

1�i��

|Ri| = d − �(r + δ − 1) > 0,

which also means |C| = |C�|. However, by Lemma 1, we have

d��n� − k + 1 −
��

k

r

�
− 1

�
(δ − 1)

=n − �(r + δ − 1) − k + 1 −
��

k

r

�
− 1

�
(δ − 1)

=d − �(r + δ − 1),
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where the last equality follows by (9). Thus, we have
d� = d − �(r + δ − 1). Again by Lemma 1 the code C� is
also an optimal linear code with all symbol (r, δ)-locality
and parameters [n − �(r + δ − 1), k, d� = d − �(r + δ − 1)]q,
which completes the proof.

By Corollary 2, we can firstly reduce the optimal locally
repairable code C into an optimal locally repairable code C�

with d� � r + δ and then apply Theorem 2 to get an upper
bound for the length of C.

Corollary 3: Let n = w(r+ δ−1), δ � 2, k = ur+v > r,
and additionally, r|k or u � 2(r+1−v), where all parameters
are integers. If there exists an optimal [n, k, d]q linear code C
with d > r + δ and all symbol (r, δ)-locality, then

n � �(r + δ − 1) +

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r+δ−1
r

�
t−1

2(q−1)q
2(w′−u)r−2v−2

t−1 + 1
�

,

if t is odd,
t(r+δ−1)
2r(q−1) q

2(w′−u)r−2v
t ,

if t is even,

where � = �(d − 1)/(r + δ − 1)� − 1, d� = d − �(r + δ − 1),
w� = w − �, and t = 
(d� − 1)/(δ)� so that 2t + 1 > 4 holds.

In the next section, we will prove that the bound in Theorem
2 is asymptotically tight for some special cases, i.e., there
indeed exist some optimal linear codes with all symbol (r, δ)-
locality and asymptotically optimal length. In addition, we
will also prove the condition 2t + 1 > 4 is necessary,
by constructing linear codes with length independent of the
field size q for the case 2t + 1 � 4.

IV. OPTIMAL LOCALLY REPAIRABLE CODES WITH

SUPER-LINEAR LENGTH

In this section, our goal is to construct optimal locally
repairable codes with length n that is super-linear in the field
size q. To this end, we first introduce a generic construction of
locally repairable codes (Construction A). Next, in Theorem 3,
we derive our main result on the minimum Hamming distance
of codes constructed by Construction A. Finally, we demon-
strate applications of Construction A by employing some
combinatorial structures such as union-intersection-bounded
families, packings, and Steiner systems to generate optimal
locally repairable codes with super-linear length.

A. A General Construction

In the subsection, to streamline the presentation we adopt
a slightly different notation than the previous one: we use
n = w(r + δ− 1) and k = (w− 1)r+ v for 0 < v � r, where
all parameters are integers.

Construction A: Let the k information symbols be parti-
tioned into w sets, say,

I(i) = {Ii,1, Ii,2, . . . , Ii,r}, for i ∈ [w − 1],

I(w) = {Iw,1, Iw,2, . . . , Iw,v}.
A linear code with length n is constructed by describing a
linear map from the information I = (I1,1, . . . , Iw,v) ∈ F

k
q

to a codeword C(I) = (c1,1, . . . , cw,r+δ−1) ∈ F
n
q , thus the

[n, k]q linear code is C = {C(I) : I ∈ F
k
q}. This mapping

is performed by the following three steps:

1) Step 1 – Partial Parity Check Symbols: For 1 � i �
w− 1, let Si = {θi,t : 1 � t � r + δ− 1} be an (r + δ− 1)-
subset of Fq and let fi(x) be the unique polynomial over Fq

with deg(fi) � r−1 that satisfies fi(θi,t) = Ii,t for 1 � t � r.
For 1 � i � w − 1 and 1 � t � r + δ − 1, set ci,t = fi(θi,t).

2) Step 2 – Auxiliary Symbols: Let {αt : 1 � t � r−v} ⊆
Fq \ (

	
1�i�w−1 Si). For 1 � i � w − 1, and 1 � t � r − v,

define

ai,t =
fi(αt)�

θ∈Si
(αt − θ)

. (10)

3) Step 3 – Global Parity Check Symbols: Let Sw =
{θw,t : 1 � t � r + δ − 1} be an (r + δ − 1)-subset
of Fq \ {αt : 1 � t � r − v} and let fw(x) be the
unique polynomial over Fq with deg(fw) � r−1 that satisfies
fw(θw,t) = Iw,t for 1 � t � v, as well as�

1�i�w

ai,t = 0 for 1 � t � r − v, (11)

where aw,t = fw(αt)�
θ∈Sw

(αt−θ) for 1 � t � r − v. Here, the

polynomial fw(x) can be viewed as a polynomial over Fq

determined by Iw,j , 1 � j � v and aw,t for 1 � t � r − v.
Thus, fw(x) is unique and well defined. Set cw,j = fw(θw,j),
for 1 � j � r + δ − 1.

Remark 2: At first glance there appears to be a distinction
between code symbols ci,j with 1 � i � w−1 and those with
i = w. However, careful thought reveals that the code symbols
that correspond to the sets Si for 1 � i � w are essentially
symmetric, i.e., any w−1 sets of code symbols can determine
v code symbols of the remaining set according to (11).

Theorem 3: Let μ be a positive integer, and let Si ⊆ Fq,
i ∈ [w] be the sets defined in Construction A. If every subset
R ⊆ {Si : 1 � i � w}, |R| = μ, satisfies that for all
S� ∈ R,       S� ∩

⎛
⎝ �

S∈R\{S′}
S

⎞
⎠

      < δ, (12)

then the code C generated by Construction A is an [n, k, d]q
linear code, with d � min{r − v + δ, (μ + 1)δ} and
with all symbol (r, δ)-locality, where n = w(r + δ − 1),
k = (w− 1)r + v, 1 � v � r, and all parameters are integers.

Proof: By Steps 1 and 3, it is easy to check that the code
C generated by Construction A has all symbol (r, δ)-locality.
By Definition 2, the repair sets are the coordinates of the
code symbols {fi(θ) : θ ∈ Si} for 1 � i � w. To simplify
the notation, instead of define those coordinates, we directly
use Si, 1 � i � w to denote the repair sets in this proof. The
code C is an [n, k]q linear code with n = w(r + δ − 1) and
k = (w − 1)r + v according to Construction A. To complete
the proof, we only need to show that d � d1 = min{r−v+δ,
(μ + 1)δ}, i.e., the code C can recover from any d1 − 1
erasures.

According to the all symbol (r, δ)-locality, it is sufficient to
consider those repair sets containing strictly more than δ − 1
erasures, where for the code C the repair sets correspond to
Si for 1 � i � w. Since the maximum number of erasures we
should consider is d1 − 1, there are at most d1−1

δ repair sets
which can have size larger than or equal to δ. Without loss
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of generality, we assume that there are � sets, S1, . . . , S�, that
contain at least δ erasures each, and those erasures are located
in coordinates Ei ⊆ Si for 1 � i � � � d1−1

δ . Denote |Ei| =
τi � δ for 1 � i � � and

�
1�i�� τi � d1−1 � r−v + δ−1.

In what follows, we prove the claim by induction on both �
and the total number of erasures

�
1�i�� τi.

For the induction base consider the case of � = 1 and δ �
|E1| � d1−1. By Steps 1 and 3, we know fi(x) for 2 � i � w,
i.e., ai,t is available for 2 � i � w and 1 � t � r − v.
By (11), a1,t for 1 � t � r − v can be calculated. Recall
that |E1| � d1 − 1 � r − v + δ − 1. We know at least v
values f1(θ) for θ ∈ S1 \ E1, which together with f1(αt) =
a1,t

�
1�j�r+δ−1(αt−θ1,j) for 1 � t � r−v show that f1(x)

can be recovered. Here we use the fact that {αt : 1 � t �
r − v} ∩ S1 = φ, i.e.,

�
1�j�r+δ−1(αt − θ1,j) �= 0. This is to

say, we can recover all the code symbols f1(θ) for θ ∈ E1.
We emphasize that in this case, the Si’s are not required to
satisfy (12), so the restriction on the size of the finite field in
this case is q � 2r + δ − v − 1.

For the induction hypothesis assume that for the case 1 �
� = s < d1−1

δ and
�

1�i�s τi = T < d1−1, the code symbols
fi(θ) for θ ∈ Ei and 1 � i � s are recoverable.

The induction step is divided into two cases. For the first
case, assume an erasure pattern with

�
1�i�s τi = T + 1 �

d1 − 1. Note that if s = 1 the claim holds by the induction
base. Therefore, we only consider s � 2. Since s < d1−1

δ �
(μ+1)δ−1

δ , we have s � μ. Thus, by (12),

        
Ei ∩

⎛
⎜⎜⎝ �

1�j�s
j �=i

Ej

⎞
⎟⎟⎠

        
�

        
Si ∩

⎛
⎜⎜⎝ �

1�j�s
j �=i

Sj

⎞
⎟⎟⎠

        
� δ − 1,

which means that the elements of each Ei may be indexed
Ei = {ei,t : 1 � t � τi} such that

{ei,t : 1 � t � τi−δ+1}∩Ej = φ for 1 � i �= j � s. (13)

By polynomial interpolation, fi(x) for 1 � i � s with
deg(fi(x)) � r − 1 is represented as

fi(x)

=
�

θ∈Si\{ei,j : τi−δ+2�j�τi}

fi(θ)
�

τi−δ+2�j�τi

(θ − ei,j)�
θ1∈Si\{θ}

(θ − θ1)

·

�
θ1∈Si

(x − θ1)

(x − θ)
�

τi−δ+2�j�τi

(x − ei,j)

=
�

θi,t∈Si\Ei

ci,t

�
τi−δ+2�j�τi

(θi,t − ei,j)�
θ1∈Si\{θi,t}(θi,t − θ1)

·
�

θ∈Si
(x − θ)

(x − θi,t)
�

τi−δ+2�j�τi

(x − ei,j)

+
�

1�t�τi−δ+1


i,t

�
θ∈Si

(x − θ)
(x − ei,t)

�
τi−δ+2�j�τi

(x − ei,j)

=gi(x) +
�

1�t�τi−δ+1


i,t

�
θ∈Si

(x − θ)
(x − ei,t)

�
τi−δ+2�j�τi

(x − ei,j)
,

(14)

where gi(x) is determined by the accessible code symbols
corresponding to Si \ Ei and


i,t = fi(ei,t)

�
τi−δ+2�j�τi

(ei,t − ei,j)�
θ1∈Si\{ei,t}(ei,t − θ1)

,

with
�

τi−δ+2�j�τi
(ei,t − ei,j)/

�
θ1∈Si\{ei,t}(ei,t − θ1)

being a nonzero constant for 1 � i � s and 1 � t � τi−δ+1.
Combining (14) with (11), we have

(
1,1, . . . , 
1,τ1−δ+1, . . . , 
s,τs−δ+1)M

=(
1,1, . . . , 
1,τ1−δ+1, . . . , 
s,τs−δ+1)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mλ1,1,1 mλ1,1,2 . . . mλ1,1,r−v

mλ1,2,1 mλ1,2,2 . . . mλ1,2,r−v

...
... . . .

...
mλ1,τ1−δ+1,1 mλ1,τ1−δ+1,2 . . . mλ1,τ1−δ+1,r−v

...
... . . .

...
mλs,τs−δ+1,1 mλs,τs−δ+1,2 . . . mλts,τs−δ+1 ,r−v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=(w1, w2, . . . , wr−v), (15)

where (w1, w2, . . . , wr−v) is a constant vector determined by
the accessible code symbols with

wi = −
�

1�j�s

gj(αi)�
θ∈Sj

(αi − θ)
−

�
s+1�j�w

fj(αi)�
θ∈Sj

(αi − θ)

for 1 � i � r − v,

v1 =
�

1�j�s

(τi − δ + 1) � r − v − (s − 1)(δ − 1) < r − v

and

mλi,j ,z =
1

(αz − ei,j)
�

τi−δ+2�t�τi
(αz − ei,t)

for 1 � i � s, 1 � j � τi − δ + 1, and 1 � z � r − v.
Recall that!

τi−δ+2�j�τi

(ei,t − ei,j)/
!

θ1∈Si\{ei,t}
(ei,t − θ1)

is a nonzero constant for 1 � i � s and 1 � t � τi − δ + 1.
Thus, recovering the vector

(f1(e1,1), . . . , f1(e1,τ1−δ+1), . . . , fs(es,τs−δ+1))

is equivalent to recovering the vector

(
1,1, . . . , 
1,τ1−δ+1, . . . , 
s,τs−δ+1).

Note that the equation (15) has at least one solution, namely,
the solution that corresponds to the original codeword. Thus,
by (15), (f1(e1,1), . . . , f1(e1,τ1−δ+1), . . . , fs(es,τs−δ+1)) is
recoverable if and only if the solution is unique, i.e., the rank
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of M is v1, or equivalently, there exist v1 columns of M
forming a non-singular sub-matrix. Recall that by the induction
hypothesis, the erasure pattern E1, E2, . . . , Es \ {es,τs−δ+1}
is recoverable, i.e., there exists a (v1 − 1) × (v1 − 1) matrix
with

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv1−1

mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv1−1

...
... . . .

...
mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv1−1

...
... . . .

...
mλs,τs−δ,t1 mλs,τs−δ,t2 . . . mλs,τs−δ,tv1−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�=0. (16)

If the erasure pattern E1, E2, . . . , Es is not recoverable, then
each v1 × v1 sub-matrix of M is singular. Thus, αi for 1 �
i � r − v are roots of h(x) = 0 with

h(x) =

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mλ1,1,t1 . . . mλ1,1,tv1−1 mλ1,1(x)
mλ1,2,t1 . . . mλ1,2,tv1−1 mλ1,2(x)

... . . .
...

...
mλ1,τ1−δ+1,t1 . . . mλ1,τ1−δ+1,tv1−1 mλ1,τ1−δ+1(x)

...
... . . .

...
mλs,τs−δ+1,t1 . . . mλs,τs−δ+1,tv1−1 mλs,τs−δ+1(x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(17)

where

mλi,j (x) =
1

(x − ei,j)
�

τi−δ+2�t�τi
(x − ei,t)

(18)

for 1 � i � s and 1 � j � τi − δ + 1.
Note that h(x)

�
1�u�s

�
θ∈Eu

(x−θ) is a polynomial with
degree less than

�
1�i�s τi − δ � r − v + δ − 1 − δ =

r − v − 1 and αi for 1 � i � r − v are its roots, hence
h(x)

�
1�u�s

�
θ∈Eu

(x− θ) ≡ 0. However, for 1 � i, i1 � s,
1 � j � τi − δ + 1 and 1 � j1 � τi1 − δ + 1, (13) means that
ei,j �∈ {ei1,j1} ∪ {ei1,t : τi − δ + 2 � t � τi} when (i, j) �=
(i1, j1). It follows that for 1 � i � s and 1 � j � τi − δ + 1,
ei,j is a root of mλi1,j1

(x)
�

1�u�s

�
θ∈Eu

(x− θ) = 0 for all
(i1, j1) �= (i, j) with 1 � i1 � s and 1 � j1 � τi1 − δ + 1.
Again by (13), ei,j for 1 � i � s and 1 � j � τi − δ +1 only
appears in one of Et for 1 � t � s, i.e.,

(x − ei,j)
    !
1�u�s

!
θ∈Eu

(x − θ),

however,

(x − ei,j)2 �
    ( !

1�u�s

!
θ∈Eu

(x − θ)),

for 1 � i � s and 1 � j � τi − δ + 1. By (18), we have that
ei,j is not a root of mλi,j (x)

�
1�u�s

�
θ∈Eu

(x − θ) = 0 for
1 � i � s and 1 � j � τi − δ + 1. Thus, the polynomials
mλi,j (x)

�
1�u�s

�
θ∈Eu

(x − θ) for 1 � i � s and 1 �
j � τi − δ + 1 are linearly independent over Fq . Therefore,
h(x)

�
1�u�s

�
θ∈Eu

(x− θ) ≡ 0 implies that the coefficients
of mλi,j (x)

�
1�u�s

�
θ∈Eu

(x − θ) for 1 � i � s and 1 �

j � τi−δ+1 in h(x)
�

1�u�s

�
θ∈Eu

(x−θ) are 0. This is to
say, the coefficient of mλs,τs−δ+1(x)

�
1�u�s

�
θ∈Eu

(x − θ)
in h(x)

�
1�u�s

�
θ∈Eu

(x − θ) is zero, i.e.,

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv1−1

mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv1−1

...
... . . .

...
mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv1−1

...
... . . .

...
mλs,τs−δ,t1 mλs,τs−δ,t2 . . . mλs,τs−δ,tv1−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0,

which is a contradiction with (16). Thus, the erasure pattern
E1, E2, . . . , Es is also recoverable.

For the second case of the induction step, assume � = s +
1 � d1−1

δ sets and |Es+1| = δ, when T < d1 − δ � r − v. In
this case, by a similar analysis, we have s + 1 � μ, and thus
we also have

{ei,t : 1 � t � τi − δ + 1} ∩Ej = φ for 1 � i �= j � s + 1,

with Ei = {ei,t : 1 � t � τi} for 1 � i � s + 1, and

(
1,1, . . . , 
1,τ1−δ+1, . . . , 
s,τs−δ+1, 
s+1,1)Ms+1

=(
1,1, . . . , 
1,τ1−δ+1, . . . , 
s,τs−δ+1, 
s+1,1)⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mλ1,1,1 mλ1,1,2 . . . mλ1,1,r−v

mλ1,2,1 mλ1,2,2 . . . mλ1,2,r−v

...
... . . .

...
mλ1,τ1−δ+1,1 mλ1,τ1−δ+1,2 . . . mλ1,τ1−δ+1,r−v

...
... . . .

...
mλs+1,1,1 mλs+1,1,2 . . . mλts+1,1 ,r−v

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

=(w1, w2, . . . , wr−v),

where (w1, w2, . . . , wr−v) is a constant vector determined by
the accessible code symbols, v2 =

�
1�j�s+1(τi − δ + 1) �

T + δ − (s + 1)(δ − 1) < r − v + 1 − s(δ − 1) � r − v, and

mλi,j ,z =
1

(αz − ei,j)
�

τi−δ+2�t�τi
(αz − ei,t)

for 1 � i � s + 1, 1 � j � τi + δ − 1, and 1 � z �
r − v. Again by the induction hypothesis, there should exists
a (v2 − 1) × (v2 − 1) matrix with

det

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

mλ1,1,t1 mλ1,1,t2 . . . mλ1,1,tv2−1

mλ1,2,t1 mλ1,2,t2 . . . mλ1,2,tv2−1

...
... . . .

...
mλ1,τ1−δ+1,t1 mλ1,τ1−δ+1,t2 . . . mλ1,τ1−δ+1,tv2−1

...
... . . .

...
mλs,τs−δ,t1 mλs,τs−δ,t2 . . . mλs,τs−δ,tv2−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

�= 0, (19)

i.e., the erasure pattern E1, E2, . . . , Es, (Es+1 \ {es+1,1})
is recoverable. Here, fs+1(θ) for θ ∈ Es+1 \ {es+1,1} is
recovered by the (r, δ)-locality independently, since |Es+1 \
{es+1,1}| = δ − 1. If E1, E2, . . . , Es+1 is not recover-
able, then all the v2 × v2 sub-matrices of Ms+1 are sin-
gular. Therefore, by the same analysis, the polynomials
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mλi,j (x)
�

1�u�s+1

�
θ∈Eu

(x − θ) for 1 � i � s + 1 and
1 � j � τi − δ + 1 are linearly independent over Fq. This
is also a contradiction with (19) and all the v2 × v2 sub-
matrices of Ms+1 are singular, by the same analysis as the
previous case. Thus, the erasure pattern E1, E2, . . . , Es+1 is
also recoverable.

Therefore, by mathematical induction, the distance of C
satisfies d � d1, which completes the proof.

Example 1: Let r = 2, δ = 3, w = 3, n = w(r + δ − 1) =
12, v = 1, and k = (w − 1)r + v = 5. Consider the linear
code over F7 = Z7. Set S1 = {1, 2, 3, 4}, S2 = {3, 4, 5, 6}
S3 = {1, 2, 5, 6}, and α1 = 0. Then the generator matrix of
the linear code C by Construction A can be listed as

G =(g1,g2, . . . ,g12)

=

⎛
⎜⎜⎜⎜⎝

1 0 0 0 0 6 5 0 0 5 6 4
0 1 0 0 0 2 3 0 0 1 4 5
0 0 1 0 0 0 0 6 5 3 5 1
0 0 0 1 0 0 0 2 3 3 5 1
0 0 0 0 1 0 0 0 0 2 5 6

⎞
⎟⎟⎟⎟⎠ .

It is easy to check that (g1,g2,g6,g7) is a generator
matrix of a [4, 2, 3]7 linear code (as are (g3,g4,g8,g9) and
(g5,g10,g11, g12)). Thus, the code C has all symbol (2, 3)-
locality. A computer program verified that indeed the weight
of the codewords generated by G is at least 4, i.e., d = 4 =
n − k + 1 − (�k

r � − 1)(δ − 1) = r − v + δ. Thus, the code
C generated by G is a [12, 5, 4]7 optimal locally repairable
codes with all symbol (2, 3)-locality, which is consistent with
the result of Theorem 3.

B. Explicit Locally Repairable Codes With n > q

According to the bound of Lemma 1, the minimal Hamming
distance of the code C generated by Construction A, i.e, n =
w(r + δ − 1) and k = (w − 1)r + v for 0 < v � r, is at
most r − v + δ. In fact, the key point in applying Theorem 3
is to find sets S1, . . . , Sw of evaluation points, that both allow
optimal code construction with the minimal Hamming distance
d = r−v+δ as well a long code. In this subsection, based on
Construction A, we analyze special structures of S1, . . . , Sw

that can yield optimal locally repairable codes with n > q.
Two trivial optimal locally repairable codes with n > q

Corollary 4: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 � v � r, be integers. If r − v � δ and q � 2r + δ − v − 1,
then there exists an optimal [n, k, d = r − v + δ]q linear code
with all symbol (r, δ)-locality, where optimality is with respect
to the bound in Lemma 1.

Proof: By Lemma 1, a code with the given n and k is
optimal if d = r − v + δ. Since r − v � δ, in the proof
of Theorem 3 we only need to consider the case that there is
only one repair set containing strictly more than δ−1 erasures,
which easily holds.

Remark 3: We remark that in the case described in Corol-
lary 4, we can let Si = Sj for 1 � i �= j � w. In this
case, r − v � δ and q � 2r + δ − v − 1 are sufficient for
the code generated by Construction A to be optimal. This
is to say, the value w is independent of q. Thus, the length
n = w(r + δ − 1) of the code C can be as long as we wish.

This result is already known for the case δ = 2 and d � 4 (see
[23]), and is, to the best of our knowledge, new for the case of
δ > 2. This result also shows that the condition 2t + 1 > 4 is
necessary for Theorem 2, since the code length is unbounded
for the case 2t + 1 � 4, i.e., t � 1 corresponding to the case
r − v � δ, where t = 
(d − 1)/δ� = 
 r+v+δ−1

δ �.
Corollary 5: Let n = w(r + δ − 1), k = (w − 1)r + v,

1 � v � r, be integers. Let S ⊆ Fq \ {αi : 1 � i � r − v},
|S| = δ − 1, be a fixed subset. Take Si ⊆ Fq \ {αi : 1 �
i � r − v} for 1 � i � w. If Si ∩ Sj ⊆ S for 1 � i �= j � w,
then the code C generated by Construction A is an optimal
[n, k, d = r−v+δ]q linear code with all symbol (r, δ)-locality,
where optimality is with respect to the bound in Lemma 1.

Corollary 6: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 � v � r, be integers. If q � (w + 1)r + δ − v − 1, then
there exists an optimal [n, k, d = r − v + δ]q linear code with
all symbol (r, δ)-locality, where optimality is with respect to
the bound in Lemma 1.

Proof: When q � (w + 1)r + δ − v − 1, those Si’s in
Corollary 5 can be easily constructed by letting |S| = δ − 1
and Si ∩ Sj = S for all 1 � i �= j � w, which form a
sunflower with center S [9].

Remark 4: When w > 1 + r−v
δ−1 , the optimal linear codes

with all symbol (r, δ)-locality in Corollary 6 are all with n >
q. In [21], optimal locally repairable codes are also constructed
with flexible parameters. However, in [21] the construction is
based on the so-called good polynomials [22], [34] and n � q.
Optimal locally repairable codes with n > q based on
union-intersection-bounded families

A combinatorial structure that captures the interaction
between the evaluation-point sets, S1, . . . , Sw, in Construction
A is a union-intersection-bounded family [12]. Its definition
is now given:

Definition 3 ([12]): Let n1, τ, δ, t, s be positive integers
such that n1 � τ � 2, τ � δ, and t � s. The (s, t; δ)-union-
intersection-bounded family (denoted by (s, t; δ)-UIBF(τ, n1))
is a pair (X ,S), where X is a set of n1 elements (called
points) and S ⊆ 2X is a collection of τ -subsets of
X (called blocks), such that any s + t distinct blocks
A1, A2, . . . , As, B1, B2, . . . , Bt ∈ S satisfy

      
⎛
⎝ �

1�i�s

Ai

⎞
⎠"⎛

⎝ �
1�i�t

Bi

⎞
⎠

      < δ.

Example 2: Let n1 = 6, τ = 4, δ = 3, s = t = 1, and
X = [6]. Then it is easy to check that the family of sets {S1 =
{1, 2, 3, 4}, S2 = {3, 4, 5, 6}, S3 = {1, 2, 5, 6}} in Example 1
forms a (1, 1; 3)-UIBF(3, 6).

The following corollary follows from Theorem 3 and
Lemma 1.

Corollary 7: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 � v � r, be integers, and let μ be a positive integer with
μδ � r−v. If (Fq\{αt : 1 � t � r−v},S = {Si : 1 � i �
w}) is a (1, μ−1; δ)-UIBF(r+δ−1, q−r+v), then the code C
generated by Construction A is an optimal [n, k, d = r−v+δ]q
linear code with all symbol (r, δ)-locality, where optimality is
with respect to the bound in Lemma 1.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on July 16,2020 at 04:57:04 UTC from IEEE Xplore.  Restrictions apply. 



4862 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

Proof: By Definition 3, each μ-subset R ⊆ S satisfies
that for any S� ∈ R,      S�

"⎛
⎝ �

S∈R\{S′}
S

⎞
⎠

      < δ.

By Lemma 1 we have d � r − v + δ. Thus, the desired
conclusion follows from Theorem 3 and Lemma 1.

In [12], a lower bound on the size of (1, μ−1; δ)-UIBF(r+
δ−1, q) is given, which immediately implies a lower bound on
the length of the codes generated by Construction A according
to Corollary 7.

Lemma 3 ([12]): Let μ, δ, r, n1 be positive integers. Then
there exists a (1, μ − 1; δ)-UIBF(r + δ − 1, n1) (X ,S) with
|S| = Ω(n1

δ
μ−1 ), where r, δ, μ are regarded as constants.

Based on Corollary 7 and Lemma 3, we have the following:
Corollary 8: Let n = w(r + δ − 1), k = (w − 1)r + v,

1 � v � r, be integers, and let μ be a positive integer with
μδ � r − v. Then Construction A can generate an optimal
(with respect to the bound in Lemma 1) [n, k, d = r− v + δ]q
linear code C with all symbol (r, δ)-locality and length n =
Ω(q

δ
μ−1 ), where we regard r, δ, and μ as constants.

Optimal locally repairable codes with n > q based on
packings or Steiner systems

In the following, we consider some special sufficient condi-
tions for (12) to construct optimal linear codes with all symbol
(r, δ)-locality.

Theorem 4: Let n = w(r + δ − 1), k = (w − 1)r + v,
1 � v � r, be integers, and let a be a positive integer. If
|Si ∩ Sj | � a for 1 � i �= j � w and r − v � δ2

a , then the
code C generated by Construction A is an optimal [n, k, d =
r − v + δ]q linear code with all symbol (r, δ)-locality, where
optimality is with respect to the bound in Lemma 1.

Proof: Denote S = {S1, . . . , Sw}, and let μ = � δ
a�. Then

the fact that |Si∩Sj | � a means that for any μ-subset, R ⊆ S,
and for any S� ∈ R, we have      S� ∩

⎛
⎝ �

S∈R\{S′}
S

⎞
⎠

      � (μ − 1)a =
��

δ

a

�
− 1

�
a � δ − 1.

Since μδ � δ2

a � r − v, the conclusion follows by
Theorem 3.

Definition 4 ([8], VI. 40): Let n1 � 2 be an integer and
u a positive integer. A τ -(n1, t, 1)-packing is a pair (X ,S),
where X is a set of n1 elements (called points) and S ⊆ 2X

is a collection of t-subsets of X (called blocks), such that
each τ -subset of X is contained in at most one block of S.
Furthermore, if each τ -subset of X is contained in exactly
one block of S, then (X ,S) is also called a (τ, t, n1)-Steiner
system.

The following corollary follows directly from Theorem 4.
Corollary 9: Let n1 = q − r + v. If there exists a

(τ + 1)-(n1, r + δ − 1, 1)-packing with blocks S and
0 � r − v � δ2

τ , then there exists an optimal
[n, k, d]q linear code with all symbol (r, δ)-locality, where
n = |S|(r + δ − 1), k = (|S| − 1)r + v, and
d = r − v + δ.

The number of blocks of a packing is upper bounded by
the following Johnson bound [18]:

Lemma 4 ([18]): The maximum possible number of blocks
of a (τ + 1)-(n1, r + δ − 1, 1)-packing S is bounded by

|S| �
#

n1

r + δ − 1

#
n1 − 1

r + δ − 2
. . .

#
n1 − τ

r + δ − 1 − τ

$
. . .

$$
.

Thus, the number of blocks for a (τ +1)-(n1, r + δ− 1, 1)-
packing can be as large as O(nτ+1

1 ), when τ , r, and δ are
regarded as constants.

Corollary 10: Let n1 = q− r + v. If there exists a (τ +1)-
(n1, r + δ− 1, 1)-packing with blocks S, |S| = O(nτ+1

1 ), and
0 � r − v � δ2

τ , then there exists an optimal [n, k, d]q linear
code with all symbol (r, δ)-locality, where n = w(r+δ−1) =
|S|(r+δ−1) = O(qτ+1), k = (|S|−1)r+v and d = r−v+δ.
In particular, for the case w−1 � 2(r−v +1), r−v = δ +1,
i.e., d = 2δ +1 and τ = δ− 1, the code based on the (τ +1)-
(n1, r + δ − 1, 1)-packing has asymptotically optimal length,
where r and δ are regarded as constants.

Proof: By Corollary 9, we have n = |S|(r + δ − 1) =
O(qτ+1) for the code generated by Construction A. For the
case r − v = δ + 1, w − 1 � 2(r − v + 1), d = 2δ + 1, and
t = 
(d − 1)/δ� = 2, by Theorem 2 we have

n� t(r + δ − 1)
2r(q − 1)

q
2(w−w+1)r−2v

t

� t(r + δ − 1)
2r(q − 1)

qr−v = O(qr−v−1).

Thus, for the case r − v = δ + 1 and τ = δ − 1, the code
C has length n = O(qτ+1) = O(qδ), which is asymptotically
optimal with respect to the bound in Theorem 2, when r and
δ are regarded as constants.

As an example, we also analyze the length of the codes
based on Steiner systems.

Corollary 11: Let n1 = q − r + v. If there exists a
(τ +1, r+ δ−1, n1)-Steiner system and 0 � r−v � δ2

τ , then
there exists an optimal [n, k, d]q linear code with all symbol
(r, δ)-locality, where

n = w(r + δ − 1) =

�
n1

τ+1

�
(r + δ − 1)�
r+δ−1

τ+1

� ,

k =

� �
n1

τ+1

�
�
r+δ−1

τ+1

� − 1

�
r + v,

and d = r−v+δ. In particular, for the case w−1 � 2(r−v+1),
r−v = δ+1, i.e., d = 2δ+1 and τ = δ−1, the code based on
the (δ, r + δ− 1, q− δ− 1)-Steiner system has asymptotically
optimal length, where r and δ are regarded as constants.

Proof: The first part of the corollary follows directly from
Corollary 9 and Definition 4. For the second part, the fact
τ = δ − 1 means that r− v = δ + 1 < δ2

δ−1 is possible, which
also means the code C has length (r+δ−1)

�
q−δ+1

δ

�
/
�
r+δ−1

δ

�
and d = 2δ + 1. Since w − 1 � 2(r − v + 1), u = w − 1,
r − v = δ − 1, and d = 2δ + 1, i.e., t = 2, by Theorem 2,
we have

n � t(r + δ − 1)
2r(q − 1)

q
2(w−u)r−2v

t � t(r + δ − 1)
2r(q − 1)

qr−v = O(qδ).
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Now the conclusion comes from the fact that the upper bound
is O(qδ) and the constructed code has length n = Ω(qδ),
where we assume r and δ are constants.

Remark 5: For the existence of packings in general the
reader may refer to [29] and the survey in [8, VI.40].

Remark 6: For the case δ = 2 and d = 5, optimal linear
codes with all symbol (r, 2)-locality and asymptotically opti-
mal length Θ(q2) have been introduced in [3], [13], [17]. The
constructions in [3], [17] are given by parity-check matrices
with 3 or 4 global parity checks, which means they only works
for the cases d = 5, 6. It is easy to check that our construction
yields codes for more general cases even if we only consider
the case δ = 2.

Given positive integers τ , r and δ > 2, the natural nec-
essary conditions for the existence of a (τ + 1, r + δ − 1,
q−r+v)-Steiner system are that

�
q−r+v−i

τ+1−i

�
|
�
r+δ−1−i

τ+1−i

�
for all

0 � i � τ . It was shown in [19] that these conditions
are also sufficient except perhaps for finitely many cases.
While q might not be a prime power, any prime power
q � q will suffice for our needs. It is known, for example,
that there is always a prime in the interval [q, q + q21/40]
(see [2]). Thus, Construction A provides infinitely many opti-
mal linear [n, k, d]q locally repairable codes, with all symbol
(r, δ)-locality, and

n = (r + δ − 1) ·
�
q−r+v

τ+1

�
�
r+δ−1

τ+1

� = Ω(qτ+1) = Ω(qτ+1),

k =

��
q−r+v

τ+1

�
�
r+δ−1

τ+1

� − 1

�
r + v,

d = r − v + δ,

i.e., with length super-linear in the field size. This is to say,
Corollary 12: For given integers r, δ, τ with 0 � r − v �

δ2

τ , let t be an integer with
�
t−r+v−i
τ+1−i

�
|
�
r+δ−1−i

τ+1−i

�
for all

0 � i � τ . Then, for all large enough t, there exists an
optimal [n, k, d]q locally repairable code, with all symbol
(r, δ)-locality, and

n = (r + δ − 1) ·
�
t−r+v
τ+1

�
�
r+δ−1

τ+1

� = Ω(tτ+1) = Ω(qτ+1),

k =

��
t−r+v
τ+1

�
�
r+δ−1

τ+1

� − 1

�
r + v,

d = r − v + δ,

where q is a prime power with t � q � t + t21/40.

V. CONCLUDING REMARKS

In this paper, we first derived an upper bound for the
length of optimal locally repairable codes when δ > 2. As a
byproduct, we also extended the range of parameters for the
known bound (the case δ = 2) and improve its performance
for the case d > r + δ. A general construction of locally
repairable codes was introduced. By the construction, locally
repairable codes with length super-linear in the field size can
be generated. In particular, for some cases those codes have
asymptotically optimal length with respect to the new bound.

Several combinatorial structures, e.g., union-intersection-
bounded families, packings, and Steiner systems, satisfy (12)
and play a key role in determining the length of the codes
generated by Construction A. If more of those structures with
a large number of blocks can be constructed, more good codes
with length n > q can be generated. Finding more such
combinatorial structures and explicit constructions for them,
is left for future research.

APPENDIX

The goal of this appendix is to prove Theorem 1. In
Lemmas 5 and 6, we first characterize how many code symbols
should have more than one repair set if the repair sets do
not form a partition of all the code symbols. Following that,
in Lemmas 7-10, we prove a relationship between the rank,
the number of repair sets, and the number of code symbols
that have more than one repair set. Finally, we prove, under
some restrictions, that if the repair sets do not form a partition
of all the code symbols then the Singleton bound in Lemma 1
cannot hold with equality, namely, Theorem 1 holds.

To prove Theorem 1, we need some basic combinatorial
covering designs and property of repair sets. We begin with
some notation and definitions. Recall that

n = (r + δ − 1)w + m, k = ru + v,

where δ � 2, 0 � m � r + δ − 2, and 0 � v � r − 1 are all
integers.

Definition 5: Let n, T, s ∈ N. Also, let X be a set of
cardinality n, whose elements are called points. Finally, let
B = {B1, B2, . . . , BT } ⊆ 2X be a set of blocks such
that

	
i∈[T ] Bi = X , and for all i ∈ [T ], |Bi| � s and	

j∈T\{i} Bj �= X . We then say (X ,B) is an (n, T, s)-
essential covering family (ECF). If all blocks are the same
size we say (X ,B) is a uniform (n, T, s)-ECF.

There are some similarities between ECFs and covering
designs. Recall that in an (n, k, t)-covering design we
have n points, all blocks are of size k, and every t-set
of points is contained in at least one block. An ECF
is more relaxed, in the sense that blocks need not be
of the same size. On the other hand, coverage is tested
only for single elements, i.e., t = 1, and each block
must contain a unique element not found in other blocks.
For example {{2, 4, 1}, {3, 5, 2}, {0, 6}} is an ECF. In
contrast, the well known 2-design with parameters (7, 3, 1),
i.e.,{{2, 4, 1}, {3, 5, 2}, {4, 6, 3}, {5, 0, 4}, {6, 1, 5}, {0, 2, 6},
{1, 3, 0}} is not an ECF for the simple reason that each
element appears exactly in 3 sets. This is to say for any given
set we can not find an element only included in that set.

An important quantity associated with any family of subsets,
B ⊆ 2X , is its overlap, denoted D(B), and defined as

D(B) =
�
B∈B

|B| −
     
�

B∈B
B

     .
Obviously D(B) � 0 and D(B) is monotonically increasing.
Additionally, D(B) = 0 if and only if its sets are pairwise
disjoint.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on July 16,2020 at 04:57:04 UTC from IEEE Xplore.  Restrictions apply. 



4864 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 8, AUGUST 2020

In what follows we investigate the structures of repair
sets.

Lemma 5: Let (X ,B) be an (n, T, r + δ − 1)-ECF, and
assume it is non-uniform or that D(B) �= 0. Then for every
0 � t � T , there exists a subset B� ⊆ B, |B�| = t, such that

t(r + δ − 1) −
     

�
B∈B′

B

     � min {r + δ − 1 − m, 
t/2�} .

Proof: We first construct a uniform B from B, by arbitrar-
ily adding elements to sets in B that contain less than r+δ−1
elements. Note that B is not necessarily an ECF. Obviously
D(B) � D(B). We contend now that D(B) > 0. If D(B) �= 0
this is immediate, since we have D(B) � D(B) > 0. If B is
not uniform, at least one set B ∈ B has |B| < r + δ − 1, and
adding elements to it in the process of creating B necessarily
increases the overlap, i.e., D(B) > D(B) � 0. We also
observe that,

D(B)=
�
B∈B

|B| −

      
�

B∈B

B

      
=|B|(r + δ − 1) − n

≡−m (mod r + δ − 1).

Next, we partition B into two subsets, B1 and B2, where

B1 = {B ∈ B : ∃B
� ∈ B, B

� �= B, B ∩ B
� �= ∅},

and
B2 = B \ B1.

For convenience, denote B1 = {B1, . . . , BK} and B2 =
{BK+1, . . . , BT } where 0 � K � T .

Let 1 � t � T be a positive integer. Obviously, if t � K ,
then B�

= {B1, . . . , BK , . . . , Bt} is a t-subset satisfying

D(B�
) =

t�
i=1

|Bi| −
     

t�
i=1

Bi

     = D(B). (20)

For the case 0 � t � 1, the fact 
t/2� = 0 means that the
lemma follows trivially. For the case 2 � t < K , we claim that
we can select a t-subset B� ⊆ B1 containing 
t/2� different
pairs of sets {Bτ2i−1 , Bτ2i} for 1 � i � 
t/2� with

�
B∈Bj

|B| −

      
�

B∈Bj

B

      �1 +
�

B∈Bj−1

|B| −

      
�

B∈Bj−1

B

      
�j,

for B0 = ∅ and Bj = {Bτi : 1 � i � 2j}, 1 � j �
%

t
2

&
,

especially B� ⊇ B
 t
2� satisfying

�
B∈B′

|B| −

      
�

B∈B′
B

      �
�

B∈B
 t
2�

|B| −

        
�

B∈B
 t
2�

B

        
�

#
t

2

$
. (21)

Otherwise, there exists a subset B∗
1 ⊆ B1 with size at most

2(
 t
2� − 1) such that for any B

� ∈ B1 \ B
∗
1, B

�� ∈ B1,

�
B∈B∗

1∪{B
′
,B

′′}

|B| −

      
�

B∈B∗
1∪{B

′
,B

′′}

B

      
�

�
B∈B∗

1

|B| −

      
�

B∈B∗
1

B

      ,
which implies⎧⎨
⎩
|B�| + |B��| �

   (B� ∪ B
��
) \

	
B∈B∗

1
B

   , if B
�� ∈ B1 \ B

∗
1,

|B�| �
   B� \

	
B∈B∗

1
B

   , if B
�� ∈ B∗

1.

However, this means that every B
� ∈ B1 \ B∗

1 has an empty
intersection with any other set in B1, which contradicts the
definition of B1.

By combining (20) and (21), for any given 0 � t � |B|,
there exists a t-subset, say B�

=
'
B1, B2, . . . , Bt

(
⊆ B,

such that

D(B�
)=

�
B∈B′

|B| −

      
�

B∈B′
B

      
�min

'
D(B), 
t/2�

(
�min {r + δ − 1 − m, 
t/2�} , (22)

where the last inequality holds since D(B) > 0 and
D(B) ≡ −m (mod r + δ − 1).

If Bi ∈ B�
was created from Bi ∈ B, i.e., Bi ⊆ Bi, then

by (22) we have,

t(r + δ − 1) −
     

t�
i=1

Bi

     =
t�

i=1

|Bi| −
     

t�
i=1

Bi

     
�

t�
i=1

|Bi| −
     

t�
i=1

Bi

     
�min {r + δ − 1 − m, 
t/2�} .

Now set B� = {B1, . . . , Bt} to complete the proof.
Lemma 6: For any [n, k]q linear code C with all symbol

(r, δ)-locality, let Γ ⊆ 2[n] be the set of all possible (r, δ)-
repair sets. Then we can find a subset R ⊆ Γ such that ([n],R)
is an (n, |R| , r + δ − 1)-ECF with |R| � �k

r �.
Proof: By Definition 2, Γ contains at least one repair set

for each code symbol, hence�
R∈Γ

R = [n]. (23)

If for each R ∈ Γ, R �⊆
	

R′∈Γ\{R} R�, then set R = Γ and
the lemma follows. Otherwise, set Γ1 = Γ\{R}, where R ∈ Γ
satisfies that R ⊆

	
R′∈Γ\{R} R�. Thus, by (23), we conclude

that �
R′∈Γ\{R}

R� = [n].

Since |Γ1| < |Γ|, and Γ1 also satisfies (23), we can repeat the
elimination procedure to obtain the desired set R. The facts
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Rank(
	

R∈R R) = k and Rank(R) � r imply that |R| �
�k

r �, which completes the proof.
Lemma 7: Let C be an [n, k]q linear code with all symbol

(r, δ)-locality. Let R be the ECF given by Lemma 6. If for a
subset V ⊆ R, and for all R� ∈ V ,      R�

"⎛
⎝ �

R∈V\{R′}
R

⎞
⎠

      � |R�| − δ + 1, (24)

then we have

Rank

� �
R∈V

R

�
�

     
�

R∈V
R

     − |V|(δ − 1).

Proof: Denote |V| = � and V = {R1, . . . , R�} ⊆ R. For
each Ri ∈ V , (24) means that there exists a (δ − 1)-subset
R�

i ⊆ Ri such that R�
i ∩ (

	
j∈[�]\{i} Rj) = ∅. Thus, we can

get � pairwise disjoint subsets R�
1, R

�
2, . . . , R

�
�.

By Definition 2, Rank(Ri) = Rank(Ri\R�
i) for 1 � i � �.

Therefore, we have

Rank

� �
R∈V

R

�
=Rank

⎛
⎝ �

i∈[�]

(Ri \ R�
i)

⎞
⎠

�

      
�

i∈[�]

(Ri \ R�
i)

      
=

     
�

R∈V
R

     −
�
i∈[�]

|R�
i|

=

     
�

R∈V
R

     − |V|(δ − 1).

We note that when δ = 2, (24) is always satisfied by
the ECF R. We now continue with our exploration of the
properties of R.

Lemma 8: Let C be an [n, k]q linear code with all symbol
(r, δ)-locality. Let R be the ECF given by Lemma 6. If
there are subsets V ⊆ R� ⊆ R with |V| � �k

r � − 1,
Rank(

	
R∈R′ R) = k, and

Rank

� �
R∈V

R

�
�

     
�

R∈V
R

     − |V|(δ − 1) (25)

then we can obtain a (�k
r �−1)-set V � with V ⊆ V � ⊆ R� such

that

Rank

� �
R∈V′

R

�
�

     
�

R∈V′
R

     − |V �|(δ − 1).

Proof: If |V| = �k
r � − 1, then the lemma follows by

setting V � = V . Otherwise, we have |V| < �k
r � − 1. Since

every R ∈ R is an (r, δ)-repair set, Rank(R) � r. This
means that Rank

�	
R∈V R

�
< (�k

r � − 1)r < k. Note
that by the lemma requirements, Rank

�	
R∈R′ R

�
= k,

which implies that there exists a R� ∈ R� \ V such that
Rank(R� ∪ (

	
R∈V R)) > Rank(

	
R∈V R). We recall,

however, that since R� is an (r, δ)-repair set, if R∗ ⊆ R�,

|R∗| � |R�| − δ + 1, then Span(R∗) = Span(R�). It follows
that R� cannot have a large intersection with

	
R∈V R, namely,     R� ∩

� �
R∈V

R

�     < |R�| − δ + 1.

Hence, there exists a R�� ⊆ R� \
�	

R∈V R
�

with |R��| = δ−1.
Again, using the fact that R� is an (r, δ)-repair set and
|R� \ R��| = |R�|−δ+1, we have Rank(R�) = Rank(R�\R��),
and therefore,

Rank

⎛
⎝ �

R∈V∪{R′}
R

⎞
⎠

=Rank

⎛
⎝

⎛
⎝ �

R∈V∪{R′}
R

⎞
⎠ \ R��

⎞
⎠

�
     R� \

�� �
R∈V

R

�
∪ R��

�     + Rank

� �
R∈V

R

�

�
     R� \

� �
R∈V

R

�     − δ + 1 +

     
�

R∈V
R

     − |V|(δ − 1)

=

      
�

R∈V∪{R′}
R

      − |V ∪ {R�}|(δ − 1),

where the last inequality holds by the fact R�� ⊆ R� \�	
R∈V R

�
and (25). Therefore, repeating the above opera-

tions, we can extend V to a (�k
r �−1)-subset V � ⊆ R� such that

Rank

� �
R∈V′

R

�
�

     
�

R∈V′
R

     − |V �|(δ − 1).

Lemma 9: Let C be an [n, k]q linear code with all symbol
(r, δ)-locality. Let R be the ECF given by Lemma 6. Assume
V ⊆ R such that |V| � �k

r �− 1. If there exists a R� ∈ V such
that       R�

"⎛
⎝ �

R∈V\{R′}
R

⎞
⎠

      > |R�| − δ + 1, (26)

then there exists S ⊆ [n] with Rank(S) = k − 1 and

|S| � k +
��

k

r

�
− 1

�
(δ − 1).

Proof: Assume V satisfies (26). Let V � ⊆ V be a minimal
subset for which (26) holds, i.e., there exists a set R� ∈ V � with
|R� ∩ (

	
R∈V′\{R′} R)| > |R�| − δ + 1, which in turn implies

that Span(R�) ⊆ Span(
	

R∈V′\{R′} R). By the minimality of
V �, the set V � \ {R�} satisfies the requirements of Lemma 7,
which implies

Rank

⎛
⎝ �

R∈V′\{R′}
R

⎞
⎠ �

      
�

R∈V′\{R′}
R

      − |V � \ {R�}|(δ − 1).

As noted before, Span(R�) ⊆ Span(
	

R∈V′\{R′} R), and
since trivially Rank(

	
R∈R R) = k, we also necessarily have

Rank(
	

R∈R\{R′}} R) = k. Therefore, by Lemma 8, we can
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extend V � \ {R�} to a (�k
r � − 1)-subset V �� ⊆ R \ {R�} such

that

Rank

� �
R∈V′′

R

�
�

     
�

R∈V′′
R

     − |V ��|(δ − 1)

=

     
�

R∈V′′
R

     −
��

k

r

�
− 1

�
(δ − 1).

Considering the set V �� ∪ {R�}, we have

Rank

⎛
⎝ �

R∈V′′∪{R′}
R

⎞
⎠

=Rank

� �
R∈V′′

R

�

�
     

�
R∈V′′

R

     −
��

k

r

�
− 1

�
(δ − 1)

�

      
�

R∈V′′∪{R′}
R

      − 1 −
��

k

r

�
− 1

�
(δ − 1), (27)

where the last inequality holds due to the fact that R� �⊆	
R∈V′′ R by the properties of the ECF R.
Since

Rank

⎛
⎝ �

R∈V′′∪{R′}
R

⎞
⎠=Rank

� �
R∈V′′

R

�

�
��

k

r

�
− 1

�
r

�k − 1,

we can find a set S with Rank(S) = k − 1 by taking	
R∈V′′∪{R′} R and adding arbitrary coordinates until reaching

the desired rank. This set S has size

|S|�k − 1 − Rank

⎛
⎝ �

R∈V′′∪{R′}
R

⎞
⎠ +

      
�

R∈V′′∪{R′}
R

      
�k +

��
k

r

�
− 1

�
(δ − 1),

which follows from (27).
Lemma 10: Let C be an [n, k]q linear code with all symbol

(r, δ)-locality. Let R be the ECF given by Lemma 6. Assume
V ⊆ R such that |V| � �k

r � − 1. If Δ is an integer such that

|V|(r + δ − 1) −
     
�

R∈V
R

     � Δ > 0 (28)

and �k+Δ
r � > �k

r �, then there exists a set S ⊆ [n] with
Rank(S) = k − 1 and

|S| � k +
��

k

r

�
− 1

�
(δ − 1). (29)

Proof: If the requirements of Lemma 9 hold for V , then
the desired S may be obtained by Lemma 9, and we are done.
Otherwise, V does not satisfies the requirements of Lemma 9,
and then using Lemmas 7 and 8 (setting R� = R in the latter),

V may be extended to a set V � ⊆ R with �k
r � − 1 elements

satisfying

Rank

� �
R∈V′

R

�
�

     
�

R∈V′
R

     − |V �|(δ − 1)

=

     
�

R∈V′
R

     −
��

k

r

�
− 1

�
(δ − 1).

Recall that k = ru + v, with 0 � v � r − 1. It now follows
that

k − 1 − Rank

� �
R∈V′

R

�

� ru + v − 1 −
     

�
R∈V′

R

     + |V �|(δ − 1)

=

�
u(r + δ − 1) −

  	
R∈V′ R

  + v − 1, if v �= 0,

r + (u − 1)(r + δ − 1) −
  	

R∈V′ R
  + v − 1, if v = 0,

=

�
|V �|(r + δ − 1) −

  	
R∈V′ R

  + v − 1, if v �= 0,

r + |V �|(r + δ − 1) −
  	

R∈V′ R
  − 1, if v = 0,

(a)

�
�
|V|(r + δ − 1) −

  	
R∈V R

  + v − 1, if v �= 0,

r + |V|(r + δ − 1) −
  	

R∈V R
  − 1, if v = 0,

(b)

�
�

Δ + v − 1, if v �= 0,

r + Δ − 1, if v = 0,

(30)

where (a) follows from the fact that |R| � r + δ − 1 for all
R ∈ V �, and (b) follows from (28).

For the case v �= 0, �k+Δ
r � = u + � v+Δ

r � > �k
r � = u + 1

means that Δ + v > r, i.e., Δ + v − 1 � r. Thus, by (30) and
Δ > 0,

Rank

� �
R∈V′

R

�
� k − 1 − r, (31)

for both v = 0 and v �= 0.
Again, by the same analysis as in Lemma 8, we can obtain

yet another set R� ∈ R \ V � with Rank(R� ∪ (
	

R∈V′ R)) >
Rank(

	
R∈V′ R) and then

Rank

⎛
⎝ �

R∈V′∪{R′}
R

⎞
⎠

�

      
�

R∈V′∪{R′}
R

      − |V � ∪ {R�}| (δ − 1)

=

      
�

R∈V′∪{R′}
R

      −
�

k

r

�
(δ − 1). (32)

Note that Rank(
	

R∈V′∪{R′} R) � Rank(
	

R∈V′ R) + r �
k − 1 by (31). Therefore, construct S by adding
coordinates to

	
R∈V′∪{R′} R until reaching sufficient
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rank, Rank(S) = k − 1, and then by (32) we have

|S|�k − 1 − Rank

⎛
⎝ �

R∈V′∪{R′}
R

⎞
⎠ +

      
�

R∈V′∪{R′}
R

      
�k − 1 +

�
k

r

�
(δ − 1)

�k +
��

k

r

�
− 1

�
(δ − 1),

which completes the proof.
Now we are ready to prove Theorem 1.
Proof of Theorem 1: Let R ⊆ Γ be the ECF obtained in

Lemma 6. If D(R) = 0 and |R| = r + δ − 1 for all R ∈ R,
then set S = R the theorem follows.

Otherwise, we have D(R) �= 0 or |R| < r + δ − 1 for
some R ∈ R. We distinguish between two cases. First, assume
k > 2r. By Lemma 6, we know that |R| � �k/r�. According
to Lemma 5 we can find a (�k

r �−1)-subset V ⊆ R satisfying

|V|(r + δ − 1) −
     
�

R∈V
R

     
�Δ = min

�
r + δ − 1,

)
�k

r � − 1
2

*+

>0.

Since u � 2(r − v + 1) or v = 0, we have �k+Δ
r � >

�k
r �. Therefore, by Lemma 10, there is a set S ⊆ [n] with

Rank(S) = k − 1 and

|S| � k +
��

k

r

�
− 1

�
(δ − 1).

Thus, by Fact 1

d � n − |S| � n − k −
��

k

r

�
− 1

�
(δ − 1).

This is a contradiction to the optimality of C with respect to
the bound in Lemma 1.

In the second case, r < k � 2r. We note that we only
need to consider the case v = 0, namely, k = 2r, since if
v �= 0 then the condition u � 2(r − v + 1) � 2 implies that
k = ur + v > 2r. We therefore assume k = 2r. The theorem
now follows directly from [32, Theorem 9]. In what follows,
we include a proof for this case for completeness.

If D(R) �= 0 or |R| < r + δ − 1 for some R ∈ R then
we can find two distinct repair sets R, R� ∈ R such that
R ∩ R� �= ∅ or min(|R|, |R�|) < r + δ − 1. In either case,
we have Rank(R ∪ R�) < 2r = k.

We again distinguish between two cases depending on |R∩
R�|. For the first case, if |R∩R�| � min(|R|, |R�|)−δ+1 then
we have Rank(R∪R�) � |R∪R�|−2(δ−1) < |R∪R�|−δ+1.
In the second case, when |R ∩ R�| > min(|R|, |R�|) − δ + 1,
assume without loss of generality, that |R∩R�| > |R�|−δ+1,
then Rank(R∪R�) = Rank(R) � |R|−δ+1 < |R∪R�|−δ+1.

We now construct a set S ⊆ [n] by arbitrarily adding
coordinates to R ∪ R� ⊆ S such that Rank(S) = k − 1.
Therefore, |S|− (k− 1) � |R∪R�|−Rank(R∪R�) > δ− 1,
or equivalently, |S| � k + δ − 1. Again by Fact 1, we get

d � n − |S| � n − k − (δ − 1),

which is again a contradiction with the optimality of C with
respect to the bound in Lemma 1. �
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