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Abstract— Minimal multicast networks are fascinating and
efficient combinatorial objects, where the removal of a single
link makes it impossible for all receivers to obtain all messages.
We study the structure of such networks, and prove some
constraints on their possible solutions. We then focus on the com-
bination network, which is one of the simplest and most insightful
network in network-coding theory. Of particular interest are
minimal combination networks. We study the gap in alphabet size
between vector-linear and scalar-linear network-coding solutions
for such minimal combination networks and some of their
sub-networks. For minimal multicast networks with two source
messages we find the maximum possible gap. We define and study
sub-networks of the combination network, which we call Kneser
networks, and prove that they attain the upper bound on the
gap with equality. We also prove that the study of this gap may
be limited to the study of sub-networks of minimal combination
networks, by using graph homomorphisms connected with the
q-analog of Kneser graphs. Additionally, we prove a gap for
minimal multicast networks with three or more source messages
by studying Kneser networks. Finally, an upper bound on the
gap for full minimal combination networks shows nearly no gap,
or none in some cases. This is obtained using an MDS-like bound
for subspaces over a finite field.

Index Terms— Linear network coding, minimal networks, com-
bination network, graph coloring, q-Kneser graphs.

I. INTRODUCTION

NETWORK coding has been attracting increased atten-
tion for almost two decades since the seminal

papers [1], [18]. Multicast networks have received most of
this attention. A recent survey on the foundations of multicast
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network coding may be found in [11]. The multicast network-
coding problem can be formulated as follows: given an acyclic
network with one source which has h messages, for each edge
find a function of the messages received at the starting node of
the edge, such that each terminal can recover all the messages
from its received messages. Such an assignment of a function
to each edge is called a solution for the network.

Obviously, received messages on an edge can be expressed
as functions of the source messages. If these functions are
linear, we obtain a linear solution. Otherwise, we have a
nonlinear solution. In linear network coding, each linear
function on an edge consists of coding coefficients for each
incoming message. If the coding coefficients and the messages
are scalars, it is called a scalar solution. If the messages are
vectors and the coding coefficients are matrices then it is called
a vector solution. A network which has a solution is called a
solvable network. It is well known that a multicast network
with one source, h messages, and N terminals, is solvable if
and only if the min-cut between the source and each terminal
is at least h [1], [18].

The minimal alphabet size, and in the linear setting, field
size, of a solution is an important parameter that directly influ-
ences the complexity of the calculations at the network nodes.
An efficient algorithm to find a field size (not necessarily
minimal) that allows a linear solution, and the related linear
network code was given in [16]. It is known that any field
size q � N suffices for a linear solution, but it is conjectured
that the smallest field size allowing a linear solution is much
smaller [10], [11]. This, however, was proved only for two
messages [10].

In this work we distinguish between scalar and vector linear
solutions. The potential benefits of vector linear solutions have
been recognized as early as [21], in which insufficiency of the
linear paradigm has been studied in non-multicast networks.
We, however, are interested in multicast networks with a linear
solution, and take a closer look at the required field size. Given
a network N , we define qs(N ) to be the smallest field size q
for which N has a scalar linear solution. Similarly, we define
qv(N ) to be the smallest value qt, q a prime power, such that
N has a vector solution with vectors of length t over a field
of size q. By definition,

qs(N ) � qv(N ),

and we define the gap by

gap(N ) � qs(N ) − qv(N ).
0018-9448 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
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Fig. 1. The Nh,r,s (full) combination network: it has an edge from the
source to each of the r nodes in the middle layer. Each of the

�r
s

�
terminals

is connected to a unique set of s middle-layer nodes, and wants to recover
all of the h source messages.

While this definition of gap (which was implicitly used in [9])
measures the difference in alphabet size, from an information-
theoretic point of view, we might also be interested in the
difference in the number of information bits, which we define
as

gap2(N ) � log2 qs(N ) − log2 qv(N ).

One of the most celebrated families of networks is the
family of combination networks [25], which has been used
for various topics in network coding, e.g., [13], [14], [20],
[23], [28]. The Nh,r,s combination network, where s � h,
consists of a single source node with h source messages, r
nodes in the middle layer, each s-subset of which is connected
to a unique receiver, which is shown in Fig. 1. The network
has three layers: the first layer consists of a single source
with h messages. The source transmits r messages to the r
nodes of the middle layer. Any s nodes in the middle layer
are connected to a terminal, and each one of the

(
r
s

)
terminals

wants to recover all the h messages. Since we shall also
examine sub-networks of the combination network, we will
sometimes stress that no part of the network has been removed
by saying that the network is a full combination network.

It was proved in [29, Chapter 4] that a solution for a combi-
nation network exists if and only if a related error-correcting
code exists. This network was also generalized to compare
scalar and vector network coding [9]. Its sub-networks were
used to prove that finding the minimum required field size
of a (linear or nonlinear) scalar network code for a certain
multicast network is NP-complete [17].

Of particular interest are minimal multicast networks.
In such a network, the removal of even a single link reduces
the cut between the source and at least one of the terminals,
which in turn, makes the network unable to transmit all of
its messages to all the terminals, i.e., the network becomes
unsolvable. In the case of combination networks, only the
Nh,r,h networks are minimal. Minimal networks are not only a
fascinating extremal combinatorial objects, but also of practi-
cal importance since they require the least amount of network
resources to enable the multicast operation. Minimal networks
have been studied in the past, e.g., [8], [17], but only in the
context of scalar network coding.

The goal of this work is to consider two problems which
are related to vector coding solutions for minimal combination
networks and their sub-networks. Our main contributions are

the following: we first study general multicast networks which
are minimal. We extend the scalar setting of [8], [17] to the
vector setting, and we show minimality entails some structural
properties of the graph, as well as some constraints on linear
solutions.

We then focus on the gap in general minimal multicast
networks. The first to demonstrate a gap exists in some net-
work was [27]. However, the gap there is only 1, and requires
at least h � 8190 source messages. This was significantly
improved by [9], which showed much larger gaps for as
little as h � 4 source messages, in non-minimal networks.
In this paper we show that large gaps exist already for h = 2
messages, the lowest number of messages for which a gap
is possible. Not only that, but the networks we construct are
minimal, and we show that they attain the highest possible gap
of all minimal multicast networks with two source messages.
We further prove that studying the gap in general minimal
multicast networks with two source messages is equivalent to
studying it only in minimal multicast networks which are sub-
networks of combination networks, thus, further motivating
the study of combination networks. The main tool we use is
a connection with q-Kneser graphs (which are q-analogs of
Kneser graphs), as well as a generalization to a new q-Kneser
hypergraph.

Finally, we also prove an upper bound on the gap in full
minimal combination networks. To the best of our knowledge,
this is the first such upper bound on the gap. The bound is
obtained using certain longest MDS array codes (e.g., see [4])
or a combinatorial structure which we call an independent
configuration. While an upper bound on the length of such
codes already exists, we present a different proof approach
based on the properties of subspaces in the configuration.

The paper is organized as follows. In Section II we provide
the basic notation and definitions used in the paper. Section III
studies fundamental properties of general minimal multicast
networks. In Section IV we study the gap in networks with
two source messages, whereas Section V is devoted to three
or more source messages. Section VI focuses on an upper
bound on the gap for full minimal combination networks.
We conclude in Section VII with a summary of the results
and some open problems.

II. PRELIMINARIES

We now provide the basic notation and definitions used
throughout the paper. If W is some finite set of n elements,
we use

(
W
t

)
to denote the set of all subsets of W of size t.

Obviously, using the binomial coefficients,∣∣∣∣
(
W

t

)∣∣∣∣ =
(
n

t

)
� n!
t!(n− t)!

.

Now, let Fq denote the finite field of size q, where q ∈ P and
P ⊂ N denotes the set of prime powers. Taking the q-analog
of sets, if V is a vector space over Fq, with n = dimV ,
we use

[
V
t

]
to denote the set of all vector subspaces of V of

dimension t. It is well known that the size of
[
V
t

]
is given by

the Gaussian coefficient, namely,∣∣∣∣
[
V

t

]∣∣∣∣ =
[
n

t

]
q

�
∏n

i=1(q
i − 1)∏t

i=1(qi − 1)
∏n−t

i=1 (qi − 1)
.
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We omit the subscript q whenever the field size is understood
from the context, and just write

[
n
t

]
.

A combinatorial object we shall encounter several times is a
spread. If V = F

n
q , a t-spread, S, is a collection of subspaces

of V of dimension t, i.e., S ⊃
[
V
t

]
, such that the subspaces in

S intersect only trivially, and their union is V . Alternatively,
every subspace of V of dimension one is contained in exactly
one element of S. Thus, the

[
n
1

]
q

subspaces of dimension one
are equally distributed among the elements of S, and since
each t-dimensional subspace contains exactly

[
t
1

]
q

subspaces
of dimension one, it follows that the number of subspaces in
a t-spread is exactly

|S| =

[
n
1

]
q[

t
1

]
q

=
qn − 1
qt − 1

, (1)

and it is known that t-spreads exist exactly when t|n (e.g.,
see [26]).

For any x ∈ R, x > 0 we use ψ(x) to denote the smallest
prime power that is greater or equal to x, i.e.,

ψ(x) � min {q ∈ P : q � x} . (2)

By Bertrand’s postulate (e.g., see [2]),

0 � ψ(n) − n � n, (3)

for all n ∈ N. We mention that much stronger results may be
obtained at the cost of working only for large enough n. For
example, [3] showed that the interval [x, x+ x21/40] contains
a prime for all large enough x. Thus, for all large enough n,

0 � ψ(n) − n � n21/40. (4)

Our main objects of interest are networks. We shall always
assume that our network consists of a finite directed acyclic
graph G = (V , E). Nodes in the graph will be denoted using
lower-case Greek letters. The network contains a single node
that is designated as the source, σ ∈ V . It also contains
terminal nodes T = {τ1, τ2, . . . , τN} ⊃ V . Finally, the source
has no incoming edges, but is in possession of h messages,
denoted x1, . . . , xh ∈ F

t
q . We therefore denote this network

by N = (G, σ, T , h).
In the network-coding model, each edge e ∈ E carries a

value from F
t
q . For a node ν ∈ V , let din(ν) denote the in-

degree of ν, and let In(ν) denote the set of incoming edges
into ν, hence |In(ν)| = din(ν). For each node ν and each
edge e outgoing from ν, the value e carries is a function of
the values on edges incoming into ν. In a linear setting, this
value is a linear combination of the incoming values, where
the coefficients are t× t matrices over Fq.

The goal of the terminals is to gain knowledge of source
messages. In the multicast setting, every terminal wants to
recover all the source messages. When working with vectors
from F

t
q , if each of the terminals may recover all the source

messages then a linear solution to the network is possible, and
we say N has a (q, t)-linear solution. When t = 1 we call it a
scalar linear solution, and in general, a vector linear solution.

The source messages naturally form a vector space over Fq

of dimension ht, namely, F
ht
q . In the linear case, for each edge

e ∈ E , the values carried by e also form a vector space over

Fq, which we denote by M(e). More precisely, this vector
space is given by

M(e) =
{
Ge · (x1| . . . |xh)T : xi ∈ F

t
q

}
,

where Ge is a t× ht matrix over Fq . The matrix Ge is called
the global coding matrix (and when t = 1, the global coding
vector). Obviously,

0 � dimM(e) = rank(Ge) � t.

We also say each vertex ν ∈ V has access to

M(ν) �
{
Gν · (x1| . . . |xh)T : xi ∈ F

t
q

}
, (5)

where Gν is the (din(ν) · t) × ht matrix over Fq defined by

Gν �

⎛
⎜⎜⎜⎝

Ge1

Ge2

...
Gedin(ν)

⎞
⎟⎟⎟⎠ ,

with In(ν) =
{
e1, . . . , edin(ν)

}
. Thus,

dimM(ν) = rank(Gν) � min(din(ν) · t, ht). (6)

Combining these facts together, a terminal τ ∈ T is successful
in the linear multicast setting if and only if

dimM(τ) = rank(Gτ ) = ht.

A node in the network is said to be essential if it is on a
path from the source to some terminal. We assume throughout
the paper that all nodes are essential, since non-essential nodes
may be removed without affecting the solution.

A cut in the network is defined by a partition V = S ∪ T ,
with the source σ ∈ S, and some terminal τi ∈ T . We say the
size of the cut is m if there are exactly m edges crossing it
from S to T . It is well known (see [11]) that in a multicast
network there exists a (q, t)-linear solution if and only if every
cut has size at least h.

Given a network N = (G, σ, T , h), we define qs(N ) to be
the smallest field size q for which N has a (q, 1)-scalar linear
solution. Such a solution is said to be scalar-optimal. We also
define qv(N ) to be the smallest value qt such that N has a
(q, t)-linear solution for some t, and such a solution is said to
be vector-optimal. By definition, qs(N ) � qv(N ), and so we
define the (vector) gap by

gap(N ) � qs(N ) − qv(N ),

and the information gap by

gap2(N ) � log2 qs(N ) − log2 qv(N ).

Finally, as mentioned in the previous section, a celebrated
family of networks that has been studied extensively is the
family of combination networks. We briefly recall its defini-
tion: for h, r, s ∈ N, r � s, the Nh,r,s combination network
(depicted in Fig. 1) is a multicast network with a single source
σ, connected to r nodes in the middle layer, which we denote
L = {λ1, . . . , λr}. We then have

(
r
s

)
terminal nodes, which

we may think of as indexed by
(L

s

)
. Each of the terminals is

connected to a unique subset of s nodes from the middle layer.
These networks and their sub-networks will be the focus of
this work.
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III. MINIMAL MULTICAST NETWORKS

A minimal multicast network can deliver h messages from
the source to each of the terminals while each of its proper
sub-networks (containing all the original terminals) can deliver
at most h−1 messages to at least one of the terminals. From a
practical point of view, considering such minimal networks is
interesting as it minimizes the used network resources. From
a theoretical perspective, minimal networks are a fascinating
extremal combinatorial object. Minimal networks have been
considered in the past [8], [17], however only in the scalar
case. The results of this section may be considered as a
generalization of these works.

Definition 1: A multicast network N = (G, σ, T , h) is said
to be minimal if every edge crosses a cut of size h.

Thus, in a minimal network, the removal of any edge from
E makes at least one cut have size strictly less than h, and
therefore unsolvable.

Given a directed graph G = (V , E), and m ∈ N, we define
the m-parallelized version of it as mG = (V ,mE), where mE
denotes the multiset obtained from E by having each element
appear m times. In essence, in the m-parallelized graph we
keep the same nodes, but duplicate each edge m times.

Lemma 2: If N = (G, σ, T , h) is a minimal multicast
network with a (q, t)-linear solution, then N ′ = (tG, σ, T , ht)
is a minimal multicast network with a (q, 1)-scalar linear
solution.

Proof: The claim is entirely trivial: each transmitted vector
on an edge ν1

e−→ ν2 in N is broken up into its t components
which are then transmitted separately over the corresponding
t parallel edges in N ′. These are clearly linear combinations
(with scalar coefficients from Fq) of the values entering the
node ν1 in N ′. Finally, the size of each cut in N ′ is obviously
t times the size of the same cut in N , hence the minimality
of N ′.

Lemma 3: Consider a minimal multicast network N =
(G, σ, T , h) with a (q, t)-linear solution. Then

dimM(ν) = din(ν) · t

for each ν ∈ V \ {σ}, where M(ν) was defined in (5).
Proof: Define N ′ = (tG, σ, T , ht), and construct a

(q, 1)-scalar linear solution to N ′ from the solution to N ,
as described in the proof of Lemma 2. It is obvious that
M(ν) remains unchanged for all ν ∈ V . To avoid confusion,
we let dGin denote the in-degree in the graph G, and dtG

in the in-
degree in the t-parallelized graph tG. Assume to the contrary
that dimM(ν) < t · dGin(ν) = dtG

in (ν). Then, in the network
N ′ there exists an edge e ∈ In(ν) that always carries some
fixed linear combination of other edges in In(ν). Removing
e still allows a solution to N ′ since the original M(ν) may
still be computed from the surviving edges, and therefore the
original values on edges leaving ν may be computed as a linear
combination as well. However, this contradicts the minimality
of N ′ obtained by Lemma 2.

The following corollary is trivial in the scalar regime,
appearing as a side note in [8]. Using the previous lemmas
it may also be proved for the general case.

Corollary 4: In a minimal multicast network N =
(G, σ, T , h) with a (q, t)-linear solution we have din(ν) � h
for all ν ∈ V \ {σ}.

Proof: Combining Lemma 3 with (6) we get

din(ν) · t = dimM(ν) � ht.

The claim follows immediately.

IV. MINIMAL NETWORKS WITH TWO SOURCE MESSAGES

In this section we focus on the case of two source messages,
i.e., h = 2. Our goal is to show that there exist networks with
two source messages with a positive gap. Such networks have
not been demonstrated in the past, and a gap was shown to
exist only in networks with at least three messages [9]. A part
of the method we describe here bears some resemblance to
the ones described in [8], [10], [17]. The resulting networks
are in fact minimal, as well as sub-networks of the (minimal)
combination network Nh,r,h. Additionally, we show that the
networks we construct attain the largest possible gap of any
minimal multicast network with two source messages.

Of particular interest in what follows, will be the q-analog
of the Kneser graph, denoted qKn:m, whose set of vertices
is

[
V
m

]
, where V = F

n
q , and an undirected edge connects two

vertices iff the corresponding m-dimensional subspaces have
a trivial intersection (e.g., see [6], [7], [15] and references
therein).

We also recall graph homomorphisms, which act as a
generalization of graph coloring. Given two undirected graphs,
G1 = (V1, E1) and G2 = (V2, E2), we say φ : V1 → V2 is a
homomorphism if {ν, ν′} ∈ E1 implies {φ(ν), φ(ν′)} ∈ E2 for
all ν, ν′ ∈ E1. As is customary, we shall denote this homomor-
phism simply by writing G1 → G2. This is a generalization of
coloring since a homomorphism G2 → Kn (where Kn denotes
the complete graph on n vertices) is equivalent to a coloring
of G2 with n colors (think of each of the vertices of Kn

representing a distinct color, which is assigned to the vertices
in the reverse image of the homomorphism). Additionally,
it is easy to see that χ(G2) (the chromatic number of G2)
is the minimum n such that there exists a homomorphism
G2 → Kn. Since homomorphisms are easily seen to be
transitive, i.e., G1 → G2 → G3 implies G1 → G3, we therefore
have that G1 → G2 implies χ(G1) � χ(G2).

We now continue with the case of two source messages. Let
G = (V , E) be a finite directed acyclic graph. We describe the
following construction of an undirected graph, skel(G), which
we call the skeleton of G.

Construction A: Let G = (V , E) be a finite directed acyclic
graph. Define

V �=1 � {ν ∈ V : din(ν) �= 1} ,
E �=1 � {(ν, ν′) ∈ E : ν ∈ V �=1, ν

′ ∈ V} .

Additionally, for each e ∈ E �=1 we define T (e) to be the set of
all edges e′ ∈ E that may be reached from e by directed paths
in G that pass only through vertices in V \ V �=1. Namely, for
an edge e = (v, u) with din(v) > 1, T (e) is the set of edges
reachable from e along paths that pass only through vertices
with in-degree one. The set T (e) describes a tree with root v.
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Fig. 2. (a) The famous butterfly network N = (G, σ, {τ1, τ2} , 2), and
(b) its skeleton skel(G). In the upper figure, the shaded parts show the trees
T (e1), T (e2), and T (e6).

We now define the skeleton graph skel(G) = (V ′, E ′). The
vertex set is defined as

V ′ = {T (e) : e ∈ E �=1} ,

namely, a node for each tree T (e). The edge set is defined by

E ′ = {{T (e1), T (e2)} : T (e1), T (e2) ∈ V ′, T (e1) �= T (e2),
∃(ν1, ν), (ν2, ν) ∈ E s.t. (ν1, ν) ∈ T (e1), (ν2, ν) ∈ T (e2)},

namely, two trees, T (e1) and T (e2), induce an edge between
their respective nodes in skel(G), if an edge in T (e1) and an
edge in T (e2) enter the same node in G. �

Example 5: Figure 2(a) shows the famous butterfly net-
work, N = (G, σ, {τ1, τ2} , 2). For the graph G we have

(in terms of Construction A) that

V �=1 = {σ, ν3, τ1, τ2} .

Note that we must always have σ ∈ V �=1 since din(σ) = 0.
Additionally,

E �=1 = {e1, e2, e6} ,

i.e., the set of edges whose source has in-degree that is not 1.
We also have

T (e1) = {e1, e3, e5} ,
T (e2) = {e2, e4, e7} ,
T (e6) = {e6, e8, e9} .

Each of these sets becomes a vertex in skel(G), shown in
Figure 2(b).

In [17] only the reverse process, i.e., mapping what we
call skel(G) back into a network, is used. This is later also
cited and used in [8]. The forward process of mapping a
network to its skeleton bears some resemblance to the pro-
cedure described in [10]. There, however, a variation on the
line graph is used and not the graph. Additionally, the tree
decomposition described in [10] creates a directed graph
unlike the undirected skeleton we have here. The trees in
the decomposition of [10] form a subset (sometimes a proper
subset) of {T (e) : e ∈ E �=1} which was defined here.

A simple observation is proved in the next lemma.
Lemma 6: In Construction A, the set P �

{T (e) : e ∈ E �=1} is a partition of E .
Proof: Since G is directed and acyclic, find a topological

ordering of its vertices. Assume to the contrary that P is not
a partition of E , which implies an edge e1 = (ν1, ν2) ∈ E is
not a member of any of the sets in P or a member of two sets
in P . Assume further, without loss of generality, that among
all such edges, e1 denotes an edge for which ν1 is minimal
under the topological ordering.

If ν1 ∈ V �=1, then by construction, e1 ∈ T (e1) ∈ P
uniquely. Otherwise, there exists exactly a single edge e0 =
(ν0, ν1) ∈ E . By the minimality of our choice of e1, we have
e0 ∈ T (e) ∈ P uniquely, for some e ∈ E �=1. By construction,
e1 ∈ T (e) ∈ P uniquely as well.

The following lemma connects the existence of a (q, t)-
linear solution to the existence of a certain graph homomor-
phism when we have h = 2 source messages.

Lemma 7: Let N = (G, σ, T , 2) be a minimal multicast
network. Then N has a (q, t)-linear solution if and only if
skel(G) → qK2t:t, i.e., there is a homomorphism from skel(G)
to qK2t:t.

Proof: For the only if part, assume N has a (q, t)-linear
solution. We assume without loss of generality that nodes
with in-degree 1 simply forward their incoming message.
Thus, given any e ∈ E �=1, all the edges e′ ∈ T (e) carry
the same message, i.e., M(e′) = M(e). We construct the
homomorphism φ : skel(G) → qK2t:t by setting φ(T (e)) =
M(e) for each e ∈ E �=1.

We verify this is indeed a homomorphism, since an edge
{T (e1), T (e2)} in skel(G) corresponds to edges (ν1, ν) ∈
T (e1) and (ν2, ν) ∈ T (e2) in G. By Corollary 4, din(ν) = 2.
By Lemma 3, dimM(ν) = 2t, hence dimM(e1) =
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Fig. 3. The sub-network of a combination network that is constructed in
Lemma 8, which has the same skeleton as the butterfly network of Figure 2.

dimM(e2) = t and M(e1),M(e2) must intersect trivially.
Thus, M(e1) and M(e2) are joined by an edge in qK2t:t.

For the if part, assume we have a homomorphism φ :
skel(G) → qK2t:t. It is easy to verify that setting M(e′) =
φ(T (e)), for all e′ ∈ T (e), e ∈ E �=1, is indeed a (q, t)-
linear solution, since nodes with in-degree 1 simply forward
their incoming message, whereas nodes with in-degree two
receive two trivially intersecting subspaces, and may therefore
reconstruct the entire space F

2t
q . Such nodes can linearly create

any subspace as an outgoing message.
We now prove that the mapping skel(·) of minimal multicast

networks with two messages to undirected graphs, is surjec-
tive. This already appears in part in [17].

Lemma 8: Let G′ = (V ′, E ′) be a finite undirected graph
with no isolated vertices. Then there exists a minimal multicast
network N = (G, σ, T , 2) such that skel(G) = G′.

Proof: Construct the desired network N = (G, σ, T , 2)
as follows. Let G = (V , E) and fix V = V ′ ∪ E ′ ∪ {σ}.
Additionally, the directed edges are defined as

E = {(σ, ν) : ν ∈ V ′} ∪
⋃

e={ν,ν′}∈E′
{(ν, e), (ν′, e)} .

The source is σ, and the terminals are T = E ′.
Intuitively, we construct the network by adding a new source

node σ, which is connected to each of the original nodes of G′.
Every edge e = {ν, ν′} in the original graph G′ defines a new
terminal node into which an edge from ν and an edge from ν′

are connected. It is easy to verify that skel(G) = G′, and that
N is minimal. The requirement that there exist no isolated
vertices ensures all nodes in the middle layer are essential.

Example 9: Continuing Example 5, in this example we use
Lemma 8 to construct a sub-network of a combination network
whose skeleton is also skel(G), where G is the butterfly
network from Example 5. Recall that skel(G) is depicted
in Figure 2(b). The construction is done by adding a source
node σ (with h source messages and no incoming edges),
each vertex in skel(G) becomes a node in the middle layer of
the constructed graph, and each edge in skel(G) becomes a
terminal node. The result is depicted in Figure 3.

We note that the network constructed in Lemma 8 is in
fact a sub-network of the combination network N2,r,2. Thus,
as a corollary we obtain that the study of minimal multicast
networks with two source messages may be restricted to sub-
networks of combination networks of the form N2,r,2.

Corollary 10: For any minimal multicast network N =
(G, σ, T , 2) there exists a minimal multicast network N ′ =
(G′, σ′, T ′, 2) such that G′ is a subgraph of a combination
network, as well as gap(N ) = gap(N ′) and gap2(N ) =
gap2(N ′).

Proof: We first note that, by construction, skel(G) does
not have isolated nodes as these would imply non-essential
nodes in G. We then use Lemma 8 to construct N ′ such
that skel(G′) = skel(G). By Lemma 7, the networks N and
N ′ have (q, t)-linear solutions for exactly the same pairs
(q, t) ∈ P × N. Thus, the gaps are the same. Finally, as
observed, N ′ is a sub-network of a minimal combination
network N2,r,2.

We can now restate the definition of the gap for minimal
multicast networks N = (G, σ, T , 2). First, we define H =
skel(G). Then, by Lemma 7,

qv(N ) = min
{
qt : q ∈ P, t ∈ N, ∃H → qK2t:t

}
,

qs(N ) = min {q : q ∈ P, ∃H → qK2:1} .

We now crucially observe that qK2:1
∼= Kq+1. To see this we

first note that the number of vertices in qK2:1 is[
2
1

]
q

=
q2 − 1
q − 1

= q + 1.

We then note that any two distinct 1-dimensional subspaces
of F

2
q have trivial intersection, and hence, any two distinct

vertices in qK2:1 are connected by an edge. Thus, the graph
qK2:1 is a complete graph on q+1 vertices, which is denoted
as Kq+1. We therefore have

qs(N ) = ψ(χ(H) − 1),

where we use ψ from (2), since qs(N ) is required to be in P.
We recall some known results on the chromatic number of

certain q-Kneser graphs.
Theorem 11 [6], [7], [15]: Let q ∈ P and t ∈ N. Then,

χ(qK2t:t) � qt + qt−1.

If q � 5 or t � 3, then

χ(qK2t:t) = qt + qt−1.

We also prove the following lemma which shall become
useful soon.

Lemma 12: Let q, q ∈ P and t, t ∈ N. If qt > qt then

qK2t:t �→ qK2t:t.

Proof: An upper bound on the size of any clique in qK2t:t

is given by (q2t − 1)/(qt − 1) = qt + 1, describing a scenario
where (except for the zero vector) the subspaces corresponding
to the nodes in the clique form a partition of F

2t
q (except for

the zero vector). This scenario is indeed always possible, and
is attained by a t-spread of F

2t
q , and the upper bound follows

from (1).
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Assume to the contrary that there exists a homomorphism
qK2t:t → qK2t:t. Since q-Kneser graphs never contain self
loops, the nodes in a clique in qK2t:t are mapped to distinct
nodes of a clique in qK2t:t. But by assumption, qt+1 > qt+1,
namely, the size of largest clique in qK2t:t is strictly larger
than the size of the largest clique in qK2t:t, a contradiction.

We are now in a position to provide minimal multicast
networks with two messages with a positive gap. The key to
proving this claim is to build networks whose skeleton is a
q-Kneser graph. We define these networks in more generality
than required here, since they will be used in the following
section as well.

Definition 13: Let q ∈ P, and h, t ∈ N, h � 2. We define
the Kneser network, Kq,t;h in the following way: the network
has a single source node σ. Denote V � F

ht
q . The source

node is connected to
[
ht
t

]
nodes in the middle layer, which are

indexed by
[
V
t

]
= {V1, V2, . . . }. Finally, if we have indices

1 � i1 < i2 < · · · < ih �
[
ht
t

]
such that

Vi1 + · · · + Vih
= V = F

ht
q , (7)

then their corresponding nodes in the middle layer are con-
nected to a unique terminal node.

We observe that for h = 2,

skel(Kq,t;2) = qK2t:t. (8)

We can therefore determine its qv exactly, which we do in the
following lemma.

Lemma 14: For all q ∈ P, t ∈ N,

qv(Kq,t;2) = qt.

Proof: By (8), and since the identity homomorphism
qK2t:t → qK2t:t always exists, we have

qv(Kq,t;2) � qt.

By Lemma 12, this becomes an equality, as claimed.
We now show a gap exists in many Kneser networks with

two source messages.
Theorem 15: For all q ∈ P and t ∈ N, with q � 5 or t � 3,

gap(Kq,t;2) = ψ(qt + qt−1 − 1) − qt � qt−1 − 1,
gap2(Kq,t;2) = log2 ψ(qt + qt−1 − 1) − log2 qt

� log2

(
1 +

1
q
− 1
qt

)
.

Proof: By Lemma 14,

qv(Kq,t;2) = qt.

However, by Theorem 11, the chromatic number of qK2t:t is

χ(qK2t:t) = qt + qt−1,

for q � 5 or t � 3. Thus, for these cases

qs(Kq,t;2) = ψ(qt + qt−1 − 1),

and the equality part of the claim is proved. The claimed
inequality follows from ψ(n) � n for all n ∈ N.

This result is matched by the following upper bound.

Theorem 16: If N = (G, σ, T , 2) is a minimal multicast
network with a (q, t)-vector-optimal linear solution, then

gap(N ) � ψ(qt + qt−1 − 1) − qt � qt + 2qt−1 − 2,

gap2(N ) � log2 ψ(qt + qt−1 − 1) − log2 qt

� 1 + log2

(
1 +

1
q
− 1
qt

)
.

Proof: By definition, a (q, t)-vector-optimal linear solution
implies qv(N ) = qt, and we have

skel(G) → qK2t:t.

By Theorem 11 we know that χ(qK2t:t) � qt + qt−1. We
denote q′ = ψ(qt + qt−1 − 1), and therefore

qK2t:t → Kχ(qK2t:t) → Kqt+qt−1 → Kq′+1
∼= q′K2:1,

where the third homomorphism follows trivially from the fact
that q′ +1 � qt + qt−1. By the transitivity of homomorphisms
we have

skel(G) → q′K2:1,

and then by Lemma 7, the network N has a (q′, 1)-linear
solution, namely,

qs(N ) � q′ = ψ(qt + qt−1 − 1).

Finally, the last inequality follows from (3).
Corollary 17: Kneser networks with two source messages,

Kq,t;2, q ∈ P, t ∈ N, and q � 5 or t � 3, attain the maximum
possible gap among all minimal networks with two source
messages and (q, t)-vector-optimal linear solutions.

A few cases remain uncovered by our previous treatment,
namely, q ∈ {2, 3, 4} and t � 4. We can show a gap for
these cases as well, albeit a much smaller guaranteed gap of
merely 1. To that end we recall some known facts about the q-
analog of the renowned Erdős-Ko-Rado Theorem. If V � F

n
q ,

then F ⊃
[
V
�

]
is an m-intersecting family if for all W,W ′ ∈

F , dim(W∩W ′) � m. The maximal size of an m-intersecting
family was found in [12]:

Theorem 18 [12]: Let n � 2	−m, V � F
n
q , and let F ⊃[

V
�

]
be an m-intersecting family. Then

|F| � max
{[
n−m

	−m

]
,

[
2	−m

	

]}
.

If 2	−m < n < 2	, this is attained uniquely by,

F =
{
U ∈

[
V

	

]
: U ⊃ V2�−m

}
, (9)

where V2�−m ∈
[

V
2�−m

]
is arbitrary. If n > 2	, this is attained

uniquely by,

F =
{
U ∈

[
V

	

]
: Vm ⊃ U

}
, (10)

where Vm ∈
[
V
m

]
is arbitrary. If n = 2	 then both (9) and (10)

attain the maximum, and if additionally m = 1, it is uniquely
so.

In the context of coding over subspaces, m-intersecting
families have been studied as anticodes. If V � F

n
q , the dis-

tance between W,W ′ ∈
[
V
�

]
is defined as d(W,W ′) �
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	−dim(W ∩W ′). An anticode of diameter D is a set F ⊃
[
V
�

]
such that W,W ′ ∈ F implies d(W,W ′) � D. Thus, an m-
intersecting family is equivalent to an anticode of diameter
	 − m. Of particular interest to us is the following theorem
from [26] (stated originally in the anticode terminology):

Theorem 19 [26]: Let n = 2	, 1 � m � 	, and V � F
n
q .

If F1, . . . ,Fc ⊃
[
V
�

]
, and each Fi is an m-intersecting family

of type (9) or (10), then they cannot form a partition (tiling)
of

[
V
�

]
.

We are now in a position to show the gap.
Theorem 20: For all q ∈ P and all t ∈ N, t � 2,

gap(Kq,t;2) � ψ(qt + 1) − qt � 1,

gap2(Kq,t;2) � log2 ψ(qt + 1) − log2 qt � log2

(
1 +

1
qt

)
.

Proof: Again, by Lemma 14, qv(Kq,t;2) = qt. We now
contend that χ(qK2t:t) > qt + 1. Recall that the vertex set of
qK2t:t is

[
V
t

]
, where V = F

2t
q . Assume a coloring of qK2t:t

with c colors. Let Ui ⊂
[
V
t

]
, 1 � i � c, be the set of vertices

colored with color i. Then each Ui is a 1-intersecting family.
Also, the set {Ui}1�i�c forms a partition of

[
V
t

]
.

By Theorem 18, for all 1 � i � c,

|Ui| �
[
2t− 1
t− 1

]
,

and Ui is either of type (9) or (10) if equality holds. However,
by Theorem 19, there is no tiling of

[
V
t

]
by Ui if they are of

maximum size. Thus,

χ(qK2t:t) >

[
2t
t

]
[
2t−1
t−1

] = qt + 1.

It follows that

gap(Kq,t;2) = qs(Kq,t;2) − qv(Kq,t;2) � ψ(qt + 1) − qt � 1,

and similarly for gap2(Kq,t;2), as claimed.

V. MINIMAL NETWORKS WITH MORE THAN

TWO SOURCE MESSAGES

Prior to this work, a gap was shown to exist only in networks
with at least four source messages [9], and the networks there
are not minimal. An additional ad-hoc example with three
source messages was also given in [9] but not in the form
of a gap. Instead, it was shown that for the same field size,
a different number of nodes in the middle layer of the network
is required.

In the previous section we showed a gap exists for h =
2 source messages. We first contend this immediately shows
a gap exists in networks with any h � 3 source messages.
We show this by giving a general construction that translates
any network N with h source messages to a network N ′ with
h′ > h source messages while keeping the parameters of the
solution.

Construction B: Let N = (G, σ, T , h) be a multicast net-
work, with G = (V , E), and h ∈ N. For any h′ ∈ N,
h′ > h, we construct the network N ′ = (G′, σ′, T ′, h′), with
G′ = (V ′, E ′), as follows.

Fig. 4. The result of applying Construction B to the butterfly network
of Figure 2, to create a network with the same gap but with three source
messages.

We set V ′ = V ∪ {σ′}, and T ′ = T . We keep all of the
edges of E in E ′, and we add h parallel edges from σ′ to σ.
Finally, for each terminal τ ∈ T ′, we add h′−h parallel edges
from σ′ to τ . �

Intuitively, Construction B keeps the network N in its
entirety. The terminals also remain as they were but a new
source is added. The new source is connected to the original
source by h parallel edges, and to each of the terminals by
h′−h parallel edges. We also make the observation that if N
is minimal, then so is N ′.

Example 21: We now take the butterfly network, N =
(G, σ, T , 2), from Example 5, and using Construction B,
created a minimal network, N ′ = (G′, σ′, T , 3), with the
same gap as N , but with three source messages. The resulting
network is depicted in Figure 4.

Lemma 22: Let h, h′ ∈ N, h′ > h. If N = (G, σ, T , h)
and N ′ = (G′, σ′, T ′, h′) are as in Construction B, then there
exists a (q, t)-linear solution to N if and only if there exists
a (q, t)-linear solution to N ′.
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Proof: For the only if part, assume we have a (q, t)-linear
solution to N . We build a simple (q, t)-linear solution to N ′

by using the same messages over the edges in E , sending the h
source messages x1, . . . , xh from σ′ to σ over the new h edges,
and sending xh+1, . . . , xh′ over the h′ − h edges connecting
σ′ to each of the terminals.

For the if part, assume we have a (q, t)-linear solution to N ′.
By change of bases we can assume without loss of generality
that x1, . . . , xh are sent over the h edges connecting σ′ to σ.
Consider any terminal τ ∈ T . Since only h′ − h new parallel
edges connect σ′ to τ directly, the remaining incoming edges
into τ , namely, In(τ) ∩ E , must contain messages that enable
the recovery of x1, . . . , xh. Hence, restricting ourselves to the
original network, there is a (q, t)-linear solution allowing σ to
convey all of its h messages to the terminals.

Corollary 23: For any network N = (G, σ, T , h) there
exists a network N ′ = (G′, σ′, T ′, h′) with h′ > h such that

gap(N ) = gap(N ′) and gap2(N ) = gap2(N ′).

It now follows that there exist networks with h > 2
source messages that exhibit the same gap as the networks
we constructed in the previous section with h = 2 source
messages. Moreover, the minimality of the networks is pre-
served. However, the networks resulting from Construction B
are not combination networks, nor are they sub-networks
of combination networks. We therefore return to the main
topic of combination networks and their sub-networks, and
generalize the previous section’s results to more than two
source messages.

A full-fledged generalization of the case of h = 2 to
h > 2 via the skeleton-graph approach, seems highly intricate.
Instead, we study Kneser networks Kq,t;h with h > 2. Their
analysis is made possible by replacing their skeleton, a q-
analog of the Kneser graph, with a generalization of it to a
hypergraph.

We assume throughout this section that h > 2. We again
observe that Kq,t;h is a minimal multicast network which is
a sub-network of a minimal combination network of the type
Nh,r,h. We also observe that trivially,

qv(Kq,t;h) � qt, (11)

since a simple linear solution is for the source σ to send the
vector space Vi ∈

[
V
t

]
to the node in the middle layer indexed

by Vi, and all the nodes in the middle layer just forward their
incoming message.

It remains to consider a scalar solution for Kq,t;h. To that
end we define the q-analog Kneser hypergraph. The q-analog
Kneser hypergraph, denoted qKh

ht:t has
[
V
t

]
= {V1, V2, . . . }

as vertices, and an h-hyperedge {Vi1 , Vi2 , . . . , Vih
} exists,

if and only if (7) holds. We note that our generalization
to the q-analog Kneser hypergraph is different from other
generalizations, e.g., [22] and the references therein.

Several definitions exist for colorings of hypergraphs. In our
case, a strong coloring is an assignment of a color to each of
the vertices of the hypergraph such that no hyperedge contains
two vertices of the same color. The minimal number of colors
required to strongly color a given hypergraph G is called its
strong chromatic number, and is denoted by χs(G).

Lemma 24: For all q ∈ P, t, h ∈ N, and h � 3,

χs(qKh
ht:t) = χ(qKht:t).

Proof: We prove every strong coloring of qKh
ht:t is a

coloring of qKht:t, and vice versa. First, consider a coloring
c of qKht:t. We contend it is also a strong coloring of qKh

ht:t.
Indeed, for any h subspaces of dimension t, Vi1 , . . . , Vih

⊃
V = F

ht
q , such that (7) holds, each pair of them is trivially

intersecting, hence c gives them all different colors.
In the other direction, assume c is a strong coloring of

qKh
ht:t and we prove it is a coloring of qKht:t. Given two

trivially intersecting subspaces of dimension t, Vi1 , Vi2 , we can
easily build h−2 more subspaces of dimension t, Vi3 , . . . , Vih

,
such that (7) holds. Thus, Vi1 and Vi2 are elements in a
hyperedge of qKh

ht:t, hence c colors them distinctly.
We recall more results on the chromatic number of qKn:m.
Theorem 25 [5], [7]: Let q ∈ P, and n,m ∈ N, n � 2m+

1. Except for the case of n = 2m+ 1 and q = 2, in all other
cases,

χ(qKn:m) =
[
n−m+ 1

1

]
=
qn−m+1 − 1

q − 1
.

We can now state the existence of a gap for Kneser networks
with more than two source messages.

Theorem 26: For all q ∈ P, t, h ∈ N, t � 2, and h � 3,

gap(Kq,t;h) �

⎧⎨
⎩
ψ

(
qt + 1

h−1q
t−1

)
− qt t � h,

ψ
(
qt + 1

(h−1)2 q
t−1

)
− qt otherwise.

�
{

1
h−1q

t−1 t � h,
1

(h−1)2 q
t−1 otherwise.

and

gap2(Kq,t;h)

�

⎧⎨
⎩

log2 ψ
(
qt + 1

h−1q
t−1

)
− log2 q

t t � h,

log2 ψ
(
qt + 1

(h−1)2 q
t−1

)
− log2 q

t otherwise.

�

⎧⎨
⎩

log2

(
1 + 1

q(h−1)

)
t � h,

log2

(
1 + 1

q(h−1)2

)
otherwise.

Proof: As already observed in (11),

qv(Kq,t;h) � qt.

For the scalar solution, our choice of Kq,t;h allows us to follow
in a manner similar to the previous section. To avoid tedious
notation, denote qs � qs(Kq,t;h). The source σ sends a one-
dimensional subspace of F

h
qs

on each of the links to the nodes
in the middle layer. We may think of the choice of subspace
as a color which we assign to the nodes in the middle layer.
The total number of colors at our disposal is[

h

1

]
qs

=
qh
s − 1
qs − 1

.

The structure of Kq,t;h implies that a scalar solution must
induce a valid strong coloring of qKh

ht:t. Therefore, using
Lemma 24 and Theorem 25,

qh
s − 1
qs − 1

� χs(qKh
ht:t) = χ(qKht:t) =

q(h−1)t+1 − 1
q − 1

.
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If we define

f(x) � xh − 1
x− 1

=
h−1∑
i=0

xi,

then, since f(x) is strictly increasing,

qs � sup
{
x ∈ R : f(x) � q(h−1)t+1 − 1

q − 1

}
.

If t � h we observe that for all 1 � i � h− 1,

(
qt +

1
h− 1

· qt−1

)i

=
i∑

j=0

(
i

j

)
1

(h− 1)j
· qti−j

�
i∑

j=0

qti−j

which follows from(
i

j

)
1

(h− 1)j
�

(
i

h− 1

)j

� 1,

and i � h− 1. Thus,

f

(
qt +

1
h− 1

· qt−1

)
=

h−1∑
i=0

(
qt +

1
h− 1

· qt−1

)i

�
h−1∑
i=0

i∑
j=0

qti−j

�
(h−1)t∑

i=0

qi

=
q(h−1)t+1 − 1

q − 1
,

where the last inequality uses the fact that t � h and hence
no power of q repeats in the last double summation. It follows
that when t � h we have

qs � ψ

(
qt +

1
h− 1

· qt−1

)
.

The case of t < h requires a slightly different treatment.
For this case, when 1 � i � h− 1,

(
qt +

1
(h− 1)2

· qt−1

)i

=
i∑

j=0

(
i

j

)
1

(h− 1)2j
· qti−j

(a)

� qti +
i

h− 1
· qti−1

(b)

� qti + qti−1,

where (a) follows from

(
i

j

)
1

(h− 1)2j
�

(
i

(h− 1)2

)j

� 1
h− 1

,

since i � h− 1, and (b) follows again from i � h− 1. Thus,

f

(
qt +

1
(h− 1)2

· qt−1

)
=

h−1∑
i=0

(
qt +

1
(h− 1)2

· qt−1

)i

� 1 +
h−1∑
i=1

(qti + qti−1)

�
(h−1)t∑

i=0

qi

=
q(h−1)t+1 − 1

q − 1
.

It follows that when t < h we have

qs � ψ

(
qt +

1
(h− 1)2

· qt−1

)
.

By combining the bounds on qv and qs in all the cases we
obtain the desired result.

VI. MINIMAL FULL COMBINATION NETWORKS

We turn to consider, in this section, an upper bound on
the gap. In particular, we study the full minimal combination
network Nh,r,h, and show that it has a very small gap (if at
all) compared to its sub-networks, which were considered in
the previous section.

The key result we use is the following theorem proved
in [25]. Let (r, qh, r−s+1)q denote a code over Fq of length r
with qh codewords and minimum Hamming distance r−s+1.
If this code is linear, it is denoted by [r, h, r − s+ 1]q.

Theorem 27 [25]: The Nh,r,s combination network is solv-
able over Fq if and only if there exists an (r, qh, r − s+ 1)q

code.
In view of Theorem 27, what are the functions on the

edges of the Nh,r,s combination network in the three types
of solutions – nonlinear, vector linear, and linear?

For the (scalar) nonlinear solution, take an (r, qh, r − s +
1)q code. We can feed the h source messages to an arbitrary
encoder for the code to obtain a codeword. The r symbols of
the codeword are then transmitted on the r links leaving the
source node. In the middle layer, each node simply repeats its
incoming message on all of its outgoing links. Finally, each
terminal obtains s symbols from the codeword, and since the
code has minimum distance of r − s + 1 it may recover the
entire codeword from the surviving s symbols, and reverse the
encoding process to obtain the h source messages.

For the scalar linear solution, an [r, h, r − s + 1]q code is
required. We use the same approach as the one for nonlinear
solutions, but using a linear encoder for the code results
in a scalar linear solution. Namely, the code has an r × h
generator matrix and the h entries of its ith row are the coding
coefficients of the linear function on the link from the source
to the ith node in the middle layer.

The vector-linear case differs. A fundamental combinatorial
structure that underpins the vector solutions to minimal combi-
nation networks is a structure we call a (t;h, α)q-independent
configuration.

Definition 28: Let q ∈ P, t, h, α ∈ N, α � h, and denote
V = F

ht
q . A (t;h, α)q-independent configuration (IC) is a set

Authorized licensed use limited to: Moshe Schwartz. Downloaded on October 22,2020 at 04:37:30 UTC from IEEE Xplore.  Restrictions apply. 



6796 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 66, NO. 11, NOVEMBER 2020

C = {V1, V2, . . . , Vm} ⊃
[
V
t

]
, such that for all 1 � i1 < i2 <

· · · < iα � m,

dim(Vi1 + Vi2 + · · · + Viα) = αt.

We say |C| = m is the size of the IC.
We now make the connection between ICs and full minimal

combination networks, Nh,r,h.
Lemma 29: The Nh,r,h combination network has a (q, t)-

solution if and only if there exists a (t;h, h)q-IC of size r.
Proof: For the only if part, assume that a (q, t)-solution

exists. We note that by construction, any node i in the middle
layer of Nh,r,h receives a subspace Vi ⊃ V � F

ht
q , with

dim(Vi) � t. If the terminal Rj gets from the middle layer
the subspaces Vi1 , . . . , Vih

, then

dim(Vi1 + · · · + Vih
) = ht,

which implies that dim(Vi) = t. Thus, {Vi}1�i�r is a
(t;h, h)q-IC.

For the if part, assume C = {V1, . . . , Vr} is a (t;h, h)q-IC.
We can easily construct a vector network coding solution to
the Nh,r,h combination network. Simply send Vi to the ith
middle layer node. Since C is a (t;h, h)q-IC it follows that
each terminal has a full rank (ht)× (ht) transfer matrix from
which it can recover the h messages.

We now bound the size of ICs, which will later enable us
to upper bound the gap in minimal combination networks.

Lemma 30: Let C be a (t;h, α)q-IC. If α � 2 then

|C| � q(h−α+2)t − 1
qt − 1

+ α− 2.

Proof: If α = 2 the claim is immediate by considering
the size of a t-spread in (1).

Assume now α > 2, and denote V � F
ht
q . Let us write

C = {V1, V2, . . . , Vm}, and define

W1 � V1 + V2 + · · · + Vα−2,

where dim(W1) = (α−2)t. By the definition of an IC, F
ht
q =

W1 +W2, where W2 ∈
[

V
(h−α+2)t

]
. It follows that any vector

v ∈ Vj , α − 1 � j � m, may be written uniquely as v =
v1 + v2, where v1 ∈W1 and v2 ∈W2. We now define

V ′
j � {v2 : v1 + v2 ∈ Vj , v1 ∈W1, v2 ∈ W2} ,

for all α− 1 � j � m. It is easily seen that dim(V ′
j ) = t.

Furthermore, for any α− 1 � j1 < j2 � m,

dim(W1 + V ′
j1 + V ′

j2) = αt ⇒ dim(V ′
j1 + V ′

j2 ) = 2t.

Thus, the set {V ′
i }α−1�i�m contains |C| − α + 2 pairwise

disjoint t-subspaces of W2. The number of such subspaces is
upper bounded by the size of a t-spread, and thus, by (1),

|C| − α+ 2 �
[
(h−α+2)t

1

]
[

t
1

] .

When t = 1, bounding the size of (1;h, h)q-IC is equivalent
to finding the longest MDS codes, and hence related to the
MDS conjecture. Thus, Lemma 30 forms a generalization for
an upper bound on the length of MDS code. The related

results for (scalar, t = 1) linear codes are given in [19].
Corollary 7 [19, p. 321] asserts that for an [n, k, n− k + 1]q
MDS code, we have that n � q + k − 1. This result is
strengthened in Theorem 11 [19, p. 326] by using a more
complicated proof based on projective geometry. The theorem
asserts that if k � 3 and q is odd then n � q+k−2. Another
involved proof for the same result is given for nonlinear codes
in [24, pp. 12-13].

We can now give an upper bound on the gap for minimal
combination networks.

Theorem 31: For all h, r ∈ N, r � h � 2,

gap(Nh,r,h) � ψ(r − 1) − ψ(r − h+ 1) � r + h− 3,
gap2(Nh,r,h) � log2 ψ(r − 1) − log2 ψ(r − h+ 1)

� 1 + log2

(
1 +

h− 2
r − h+ 1

)
,

and for all large enough r,

gap(Nh,r,h) � (r − 1)21/40 + h− 2,

gap2(Nh,r,h) � log2

(
1 +

(r − 1)21/40 + h− 2
r − h+ 1

)
.

Proof: By [25], a (q, 1)-scalar linear solution to Nh,r,h

exists if and only if an [r, h, r − h + 1]qs MDS code exists.
Thus, we certainly have

qs(Nh,r,h) � ψ(r − 1),

(e.g., see [19, pp. 317–331]). On the other hand, by Lemma 29,
the existence of a (q, t)-solution to Nh,r,h implies the existence
of a (t;h, h)q-IC of size r. Then, by Lemma 30,

r � q2t − 1
qt − 1

+ h− 2.

After rearranging we get,

qt � r − h+ 1,

which gives us,

qv(Nh,r,h) � ψ(r − h+ 1).

Thus, by (3), for all r ∈ N,

gap(Nh,r,h) � ψ(r − 1) − ψ(r − h+ 1)
= (ψ(r − 1) − (r − 1))

− (ψ(r − h+ 1) − (r − h+ 1)) + h− 2
� r + h− 3,

and by (4), for all large enough r,

gap(Nh,r,h) � (r − 1)21/40 + h− 2.

Similarly we get the claimed results for gap2(Nh,r,h).
Loosely speaking, for the minimal combination network,

Nh,r,h, the gap is upper bounded by h− 2 plus the maximum
distance between powers of primes. Since it is conjectured that
ψ(n)−n � O(log n), the upper bound may be further reduced
in the future if this conjecture is proved.
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VII. CONCLUSION

In this paper we studied scalar and vector linear solutions to
the combination network and its sub-networks. We first found
the maximal possible gap for minimal multicast networks with
h = 2 source messages, and showed that the Kneser network,
which was defined in this work, attains this bound on the
gap with equality. Furthermore, we studied Kneser networks
with h � 3 source messages and proved they also exhibit a
gap. Finally, we provided an upper bound on the gap of full
minimal combination networks, showing the gap is relatively
small.

It is interesting to compare the gap results with those of [9].
In [9] it was proved that for even h � 4 there exists a
multicast network N for which gap(N ) = q(h−2)t2/h+o(t),
and for odd h � 5 there exists a multicast network N for
which gap(N ) = q(h−3)t2/(h−1)+o(t), and in any case, the gap
is of order qΘ(t2), where q and h are considered constant.
In comparison with the results of Section IV and Section V,
the gap we present is only of the order of qΘ(t), which we also
prove is optimal in the case of minimal multicast networks
with h = 2. Two important points distinguish between the
two papers: the networks in [9] are not minimal, and [9]
uses h � 4. Which of the two, minimality or the number of
source messages, contributes to this difference is still an open
question. The results of Section V may hint at the former, but
we are still missing an upper bound for h � 3.

We also want to highlight the significance of Section VI.
If we take for example the case of h = 2 source messages,
by Theorem 31, the full minimal combination network N2,r,2

has 0 gap, for any r ∈ N (a fact that was noticed in [9] using
Latin squares). If we pick q ∈ P, t ∈ N, r =

[
2t
t

]
, keep the

source and all of the middle layer of nodes, but remove a
few of the terminals, we obtain the Kneser network Kq,t;2,
the network from Theorem 15, that has the maximal possible
gap, ψ(qt + qt−1 − 1) − qt. Thus, it appears that N2,r,2 is
equally difficult for a scalar solution as it is for a vector
solution. However, by pruning some terminals, the resulting
Kneser network Kq,t;2 becomes easy for a vector solution but
difficult for a scalar solution. This upper bound on the gap by
Theorem 31 grows very slowly. As another example, if r−2 is
not a prime power then N3,r,3 has no gap. As a consequence,
from an engineering point of view, it seems beneficial to use
the sub-networks of the combination network, whose skeleton
is a q-Kneser graph. Thus, on the one hand, the network has a
simple three-layer structure as the combination networks, but
on the other hand, provides a maximum efficiency in terms of
field size, when using vector-linear network coding.

A full characterization of the gap in linear multicast net-
works is still an open question. We also suggest minimality of
such networks may play a role in limiting the gap, a problem
which we leave for future work. Finally, the gap between
non-linear and linear solutions for multicast networks is still
unknown.
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