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Abstract

For z1, z2, z3 ∈ Zn, the tristance d3(z1, z2, z3) is a generalization of the L1-distance on Zn to
a quantity that reflects the relative dispersion of three points rather than two. A tristance anticode
Ad of diameter d is a subset of Zn with the property that d3(z1, z2, z3)�d for all z1, z2, z3 ∈ Ad .
An anticode is optimal if it has the largest possible cardinality for its diameter d. We determine the
cardinality and completely classify the optimal tristance anticodes in Z2 for all diameters d �1. We
then generalize this result to two related distance models: a different distance structure on Z2 where
d(z1, z2) = 1 if z1, z2 are adjacent either horizontally, vertically, or diagonally, and the distance
structure obtained when Z2 is replaced by the hexagonal lattice A2. We also investigate optimal
tristance anticodes in Z3 and optimal quadristance anticodes in Z2, and provide bounds on their
cardinality. We conclude with a brief discussion of the applications of our results to multi-dimensional
interleaving schemes and to connectivity loci in the game of Go.
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1. Introduction

Given two points z = (z1, z2, . . . , zn) and z′ = (z′
1, z

′
1, . . . , z

′
n) in Zn, the L1-distance

between z and z′ is defined as d(z, z′) = |z1 −z′
1|+|z2 −z′

2|+· · ·+|zn −z′
n|. Alternatively,

let G�
n = (V , E) denote the grid graph of Zn whose vertex set is V = Zn and whose edges

are defined as follows:
{
z, z′} ∈ E if and only if d(z, z′) = 1. Then the L1-distance between

z and z′ in Zn is the number of edges in the shortest path joining z and z′ in G�
n . The latter

point of view leads to a natural generalization of the L1-distance on Zn to a quantity that
reflects the relative dispersion of three points rather than two.

Definition 1. Let z1, z2, z3 ∈ Zn. Then the tristance d3(z1, z2, z3) is defined as the number
of edges in a minimal spanning tree for z1, z2, z3 in the grid graph G�

n of Zn.

The notion of tristance defined above can be further generalized in two different ways.
First, the quadristance d4(z1, z2, z3, z4), the quintistance d5(z1, z2, z3, z4, z5), and more
generally the r-dispersion dr(z1, z2, . . . , zr ) may be defined [9,14,18] as the number of
edges in a minimal spanning tree for z1, z2, . . . , zr in the grid graph G�

n . Herein, we consider
only the tristance d3(z1, z2, z3) and, briefly, the quadristance d4(z1, z2, z3, z4) in §4.2.

Another way to generalize Definition 1 is to replace the grid graph G�
n by a different graph.

We will consider two alternative graphs G∞
2 and GO

2 that are useful in applications to two-
dimensional interleaving [5,6,9,18]. The graph G∞

2 has Z2 as its vertex set, with z = (x, y)

and z′ = (x′, y′) in Z2 being adjacent if and only if

d
∞
(z, z′) def= max

{|x − x′|, |y − y′|} = 1.

Thus tristance in G∞
2 may be thought of as a generalization of the L∞-distance on Z2. The

vertex set of the graph GO
2 is the hexagonal lattice A2 = {(1/2v, u + √

3/2v) : u, v ∈ Z
}
, with

two points z = (x, y) and z′ = (x′, y′) in A2 being adjacent iff

dE(z, z′) def=
√

(x − x′)2 + (y − y′)2 = 1.

The three graphs G�
2 , G∞

2 , and GO
2 are illustrated in Fig. 1. We will sometimes refer to the

graphs G�
2 , G∞

2 , and GO
2 as the grid graph, the infinity graph, and the hexagonal graph,

respectively (or the � model, the ∞ model, and the O model, for short).
Given a set S and a definition of distance between points of S, a code C ⊆ S of minimum

distance d is characterized by the property that the distance between any two distinct points
of C is at least d. Similarly, an anticode A ⊆ S of diameter d is characterized by the
property that the distance between any two distinct points of A is at most d. One is usually
interested in codes and anticodes of the largest possible cardinality for a given minimum
distance or diameter—such codes/anticodes are said to be optimal. An encyclopedic survey
of optimal codes in the Hamming graph may be found in [12,16]; for codes in other graphs,
see [3,4,8,11,17,18]. Optimal anticodes in the Hamming metric and related distance-regular
graphs have been studied in [1,2,8,13,17] and other papers.

The concepts of a code and an anticode can be generalized using the notion of tristance
in Definition 1. Thus a tristance code C ⊆ Zn of minimum tristance d is a subset of Zn such
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Fig. 1. The grid graph G�
2 , the infinity graph G∞

2 , and the exagonal graph GO
2 .

that d3(z1, z2, z3)�d for all z1, z2, z3 ∈ C. Numerous results on optimal tristance codes
in Z2 can be found in [9,14,18]. Optimal tristance anticodes are the subject of this paper.

Definition 2. A set Ad ⊂ Zn is a tristance anticode of diameter d if d3(z1, z2, z3)�d

for all z1, z2, z3 ∈ Ad ; it is optimal if it has the largest possible cardinality for its
diameter d.

Observe that Definition 2 can be extended in the obvious way to other graphical models
(such as the ∞ and theO models) as well as to higher dispersions (such as quadristance).

One can also define tristance anticodes centered about a given point or a pair of points.
Given z0 ∈ Zn, a set Ad(z0) ⊂ Zn is said to be a tristance anticode of diameter d cen-
tered about z0 if d3(z0, z1, z2)�d for all z1, z2 ∈ Ad(z0). Given distinct z1, z2 ∈ Zn, a set
Ad(z1, z2) ⊂ Zn is said to be a tristance anticode of diameter d centered about z1 and z2
if d3(z1, z2, z)�d for all z ∈ Ad(z1, z2). Once again, we are interested in optimal cen-
tered tristance anticodes that have the largest possible cardinality for their diameter and
center(s). We note that the corresponding problem for conventional (distance) anticodes is
trivial. The unique optimal anticode of diameter d centered about a given point z0 ∈ Zn is
Sd(z0) = {z ∈ Zn : d(z, z0)�d

}
, which is just a sphere of radius d about z0.

The rest of this paper is organized as follows. The next section is concerned with optimal
tristance anticodes in Z2. We determine the cardinality and classify the optimal tristance
anticodes Ad(z1, z2), Ad(z0), and Ad in the grid graph G�

2 , for all d �1. We also introduce
in §2 certain methods and techniques that will be useful throughout this paper. In §3, we
extend the results of §2 to the ∞ model and theOmodel. In §4, we pursue generalizations to
higher dimensions and to higher dispersions: we investigate optimal tristance anticodes in Z3

and optimal quadristance anticodes in Z2. In §5, we discuss some of the applications of our
results to multi-dimensional interleaving schemes with repetitions [6,5,9,18] to multicasting
in processor networks, and to the study of connectivity loci in the game of Go.

2. Optimal tristance anticodes in the grid graph

We will first need some auxiliary results. Trivially, the L1-distance between two
points (x1, y1) and (x2, y2) in Z2 can be written as (max1� i �2 xi − min1� i �2 xi) +
(max1� i �2 yi − min1� i �2 yi). The following theorem of [9] shows that a similar expres-
sion holds for tristance in Z2.
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Theorem 1. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) be distinct points in Z2. Then

d3(z1, z2, z3) =
(

max
1� i �3

xi − min
1� i �3

xi

)
+
(

max
1� i �3

yi − min
1� i �3

yi

)
. (1)

Next, we recall some results on optimal distance anticodes in the grid graph G�
2 . Let d

be even, let z0 = (x0, y0) be an arbitrary point in Z2, and consider the set

Sd/2(z0) =
{
(x, y) ∈ Z2 : |x − x0| + |y − y0| � d

2

}
(2)

which is the L1-sphere of radius d/2 about z0. By triangle inequality, for all z1, z2 ∈Sd/2(z0)

we have d(z1, z2)�d(z1, z0) + d(z0, z2)�d , so Sd/2(z0) is an anticode of diameter d. It
is easy to see that

∣∣Sd/2(z0)
∣∣ = d2/2 + d + 1. On the other hand, it is shown in [6] that Z2

can be partitioned into d2/2 +d +1 codes such that the minimum L1-distance of each code
is d + 1. Obviously, any anticode of diameter d can contain at most one point from each
such code. It follows that the anticode Sd/2(z0) is optimal for all even d. For odd d, we let
z0 be an arbitrary point in (1/2 , 0) + Z2 or in (0, 1/2) + Z2. Then Sd/2(z0) defined in (2) is
again an anticode of diameter d (by triangle inequality), and

∣∣Sd/2(z0)
∣∣ = d2/2 + d + 1/2 .

Once again, it is shown in [6] that Z2 can be partitioned into d2/2 + d + 1/2 codes with even
minimum distance d + 1, so the anticode Sd/2(z0) is optimal for all odd d.

2.1. Uniqueness of optimal anticodes in the grid graph

We now show that optimal distance anticodes in G�
2 are unique: if A is an optimal anticode

of diameter d, then A = Sd/2(z0), where z0 ∈ Z2 if d is even, whereas if d is odd then
z0 ∈ (1/2 , 0) + Z2 or z0 ∈ (0, 1/2) + Z2. This result is established in a series of lemmas.

A set S ⊆ Z2 is vertically contiguous if it has the following property: if (x, y1) ∈ S
and (x, y2) ∈ S, then (x, y) ∈ S for all y in the range min {y1, y2} �y� max {y1, y2}.
Similarly, S ⊆ Z2 is horizontally contiguous if the fact that (x1, y) ∈ S and (x2, y) ∈ S
implies that (x, y) ∈ S for all min {x1, x2} �x� max {x1, x2}.

Lemma 2. Let A be an optimal anticode of diameter d in the grid graph G�
2 . Then A is

both vertically contiguous and horizontally contiguous.

Proof. Suppose that z1 = (x0, y1) and z2 = (x0, y2) are points in A. Assume w.l.o.g.
that y2 > y1, and consider a point z3 = (x0, y3) with y1 �y3 �y2. If z = (x, y) ∈ A, then

d(z, z3) = |x − x0| + |y − y3| � |x − x0| + max {|y − y1|, |y − y2|}
= max {d(z, z1), d(z, z2)}

Thus d(z, z3)�d for all z ∈ A, and if A is optimal, it must contain the point z3 = (x0, y3).
Hence A is vertically contiguous. By a similar argument, A is horizontally contiguous. �
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Given z = (x, y) ∈ Z2, we say that the points (x − 1, y) and (x + 1, y) are the horizontal
neighbors of z, while the points (x, y − 1) and (x, y + 1) are the vertical neighbors of z.

Lemma 3. Let A be an optimal anticode of diameter d in the grid graph G�
2 . If A contains

the two horizontal neighbors of a point z ∈ Z2, or if A contains the two vertical neighbors
of z, then A necessarily contains z itself and all the four neighbors of z.

Proof. Suppose A contains the points z1 = (x0 − 1, y0) and z2 = (x0 + 1, y0). Since A is
horizontally contiguous by Lemma 2, it also contains the point z0 = (x0, y0). Moreover, if
z = (x, y) is any point in A, then d(z, z0) = max {d(z, z1), d(z, z2)} − 1�d − 1. Now, let
z3 = (x0, y0 + 1). Then we have

d(z, z3) = |x − x0| + |y − y0 − 1|� |x − x0| + |y − y0| + 1 = d(z, z0) + 1�d.

Hence, if A is optimal, it must contain z3 = (x0, y0 + 1). By a similar argument, A also
contains the point (x0, y0 − 1). The claim for vertical neighbors follows by symmetry. �

Given a set S ⊆ Z2, let G�
2 (S) denote the induced subgraph of G�

2 , consisting of S and
the edges of G�

2 with both endpoints in S. We say that z ∈ S is an internal point of S if z

has degree 4 in G�
2 (S); otherwise we say that z is a boundary point of S.

Lemma 4. An optimal anticode of diameter d in G�
2 has at most 2d boundary points.

Proof. Let A be an optimal anticode of diameter d in G�
2 , and define the integers xmin,

xmax as follows: xmin = min {x : (x, y) ∈ A} and xmax = max {x : (x, y) ∈ A}. Clearly
� = xmax − xmin �d . Let us partition A into � + 1 vertical segments

Vi
def=
{
(x, y) ∈ A : x = xmin + i

}
for i = 0, 1, . . . ,�. (3)

Since A is vertically contiguous by Lemma 2, for each i = 0, 1, . . . ,�, the vertical segment
Vi in (3) can be written as

Vi =
{
(xmin+ i, ymin,i ), (xmin+ i, ymin,i + 1), . . . , (xmin+ i, ymax,i )

}
(4)

for some integers ymin,i �ymax,i . Notice that for each point z ∈ Vi , except (xmin+ i, ymin,i )

and (xmin+ i, ymax,i ), both vertical neighbors of z are in Vi , and hence also in A.
Lemma 3 thus implies that z has degree 4 in G�

2 (A). It follows that each Vi contains at
most two boundary points of A, so that A has at most 2(�+ 1) boundary points altogether.
If ��d −1 we are done, so it remains to consider the case � = d. But then |V0| = |V�| = 1
(if ymin,0 = ymax,0 = ymin,� = ymax,� does not hold, there are points in V0 ∪V� at distance
�d + 1 from each other). Thus A has at most 2d boundary points in this case as well. �

Lemma 5. Let A be an anticode of diameter d �2 in the grid graph G�
2 . Then the set of

internal points of A, if nonempty, forms an anticode of diameter d − 2.

Proof. By convention, a set of size �1 has diameter zero. Otherwise, if z1, z2 are distinct
internal points of A, then all of their neighbors are also in A. Observe that the set of 4



194 T. Etzion et al. / Journal of Combinatorial Theory, Series A 113 (2006) 189–224

neighbors of z1 always contains at least one point z such that d(z, z2) = d(z1, z2) + 1. It
follows that among the neighbors of z1 and z2, there are (at least) two points at distance
d(z1, z2) + 2 from each other. Hence if A has diameter d, then d(z1, z2)�d − 2. �

Theorem 6. Let A be an optimal anticode of diameter d in the grid graph G�
2 . Then A =

Sd/2(z0), where z0 ∈ Z2 if d is even and z0 ∈ {(1/2 , 0) + Z2} ∪ {(0, 1/2) + Z2} otherwise.

Proof. We will only prove the theorem for even d; the proof for odd d is similar. We proceed
by induction on d. For d = 2, it can be readily verified that an anticode of diameter 2 and
size 5 is necessarily the L1-sphere S1(z0) for some z0 ∈ Z2. Now, let A be an anticode of
diameter d and cardinality |A| = d2/2 + d + 1. Let D(A) denote the set of internal points
of A. Then D(A) is an anticode of diameter d − 2 by Lemma 5, and

|D(A)| � |A| − 2d = (d − 2)2

2
+ (d − 2) + 1

by Lemma 4. It follows that A has exactly 2d boundary points and D(A) is an optimal
anticode of diameter d−2. Hence, by induction hypothesis,D(A) = S(d/2)−1(z0) for some
z0 ∈ Z2. Referring to (3) and (4), we see that each vertical segment V1, V2, . . . ,V�−1 in A
must have exactly two boundary points of A, and |V0| = |V�| = 1. In other words, there is
a unique way to adjoin 2d boundary points to D(A) = S(d/2)−1(z0) to obtain an optimal
anticode, and it is easy to see that the result is precisely the L1-sphere Sd/2(z0). �

The foregoing theorem, which is the main result of this subsection, establishes the unique-
ness of optimal distance anticodes in G�

2 . All such anticodes are L1-spheres of radius d/2.
We are now in a position to begin the classification of optimal tristance anticodes in G�

2 .

2.2. Centered tristance anticodes in the grid graph

Recall that Ad(z0) ⊂ Z2 is a tristance anticode of diameter d centered about z0 ∈ Z2, if
d3(z0, z1, z2)�d for all z1, z2 ∈ Ad(z0). First assume that d is even, and consider the L1-
sphereSd/2(z0). For all z1, z2 ∈Sd/2(z0), we have d3(z0, z1, z2)�d(z0, z1)+d(z0, z2)�d.
It follows that Sd/2(z0) is a centered tristance anticode of diameter d = 2t and cardinality
2t2 +2t +1. Now suppose that d = 2t +1 is odd, and consider the L1-sphere Sd/2(z0 +�),
where � = (1/2 , 0). Let z0 = (x0, y0), and let z1 = (x1, y1) be any point inSd/2(z0+�). Then
d(z0, z1)� t +1 and, moreover, d(z0, z1)� t unless x1 > x0. It follows that Sd/2(z0 +�) is
a tristance anticode centered about z0, of diameter d = 2t + 1 and cardinality 2t2 + 4t + 2.
The following theorem shows that the anticodes constructed above are the unique optimal
tristance anticodes centered about z0 in the grid graph G�

2 .

Theorem 7. Let Ad(z0) be an optimal tristance anticode of diameter d in G�
2 centered about

z0 ∈ Z2. If d is even, then Ad(z0) = Sd/2(z0). If d is odd, then Ad(z0) = Sd/2(z0 + �) for
some � ∈ {(1/2 , 0), (0, 1/2), (−1/2 , 0), (0, −1/2)}.

Proof. We will prove the theorem for even d only; the proof for odd d is similar. For all
z1, z2 ∈ Ad(z0), we have d(z1, z2)�d3(z0, z1, z2)�d by definition. Hence Ad(z0) is also
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a distance anticode of diameter d and

|Ad(z0)| � d2/2 + d + 1. (5)

We have shown that Sd/2(z0) is a tristance anticode of diameter d centered about z0.
Since |Sd/2(z0)| = d2/2 + d + 1, this anticode is optimal in view of (5). Moreover, by
Theorem 6, equality in (5) is possible only if Ad(z0) = Sd/2(z0). �

Next, we consider the anticodes Ad(z1, z2) ⊂ Z2 centered about a pair of points z1 and
z2 and defined by the property that d3(z1, z2, z)�d for all z ∈ Ad(z1, z2). Such anticodes
cannot have an arbitrary diameter: if d(z1, z2) = �, then Ad(z1, z2) = � unless d ��. For
d = �, it turns out that the optimal anticode A�(z1, z2) is the bounding rectangle of z1, z2.

Definition 3. Let z1 = (x1, y1), z2 = (x2, y2), . . . , zn = (xn, yn)bendistinct points in Z2.
The bounding rectangle of z1, z2, . . . , zn is the smallest rectangle R(z1, z2, . . . , zn) with
edges parallel to the axes that contains all the n points. Explicitly, let xmax = max{x1, . . . ,

xn}, xmin = min{x1, . . . , xn}, ymax = max{y1, . . . , yn}, and ymin = min{y1, . . . , yn}. Then

R(z1, z2, . . . , zn)
def=

{
(x, y) ∈ Z2 : xmin �x�xmax and ymin �y�ymax

}
. (6)

By Theorem 1, the tristance of any three points in R(z1, z2) is at most d(z1, z2). Moreover,
if z/∈ R(z1, z2), then d3(z1, z2, z) > d(z1, z2). This implies that if d = d(z1, z2), then
R(z1, z2) is the optimal anticode Ad(z1, z2). For general d, we have the following theorem:

Theorem 8. Let z1 = (x1, y1), z2 = (x2, y2) be distinct points in Z2 and assume, w.l.o.g.,
that x2 �x1 and y2 �y1 so that d(z1, z2) = (x2 − x1) + (y2 − y1). Let Ad(z1, z2) be the
optimal tristance anticode in G�

2 of diameter d �d(z1, z2) centered about z1 and z2. Write
c = d − d(z1, z2). Then Ad(z1, z2) consists of all z = (x, y) in Z2 such that

x1 − c � x � x2 + c , x1 + y1 − c � x + y � x2 + y2 + c, (7)

y1 − c � y � y2 + c , x1 − y2 − c � x − y � x2 − y1 + c. (8)

Proof. The given points z1, z2 completely determine all the other points in Ad(z1, z2), as
follows: Ad(z1, z2) = {z ∈ Z2 : d3(z1, z2, z)�d

}
. It is now easy to see that z ∈ Ad(z1, z2) if

and only if the L1-distance from z to (the closest point of) the bounding rectangle R(z1, z2)

is at most c = d − d(z1, z2). This is precisely the property expressed by (7) and (8). �

2.3. General tristance anticodes in the grid graph

We will now use the results of §2.2, especially Theorem 8, to classify unrestricted (non-
centered) optimal tristance anticodes in G�

2 . The subset of Z2 defined by Eqs. (7), (8) in
Theorem 8 is an example of a set we call an octagon. We formalize this as follows.
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�1

�4

�6

�7

�5

�8

�2

�3

Fig. 2. A generic octagon O(�1, �2, . . . , �8) in the grid graph G�
2 .

Definition 4. Let �1, �2, . . . , �8 be arbitrary real constants. An octagon O(�1, �2, . . . , �8)

is a subset of Z2 defined by the inequalities

�1 �x��5 , �3 �x + y��7, (9)

�2 �y��6 , �4 �x − y��8. (10)

A generic octagon O(�1, �2, . . . , �8) is illustrated in Fig. 2. Note that O(�1, �2, . . . , �8)

may have fewer than eight sides (say, if �3 ��1 +�2), or may be empty altogether. Octagons
will play an important role in this paper. Note that the L1-spheresSd/2(z0) andSd/2(z0 +�)

in Theorem 7 are octagons. By Theorem 8, the optimal anticode Ad(z1, z2) is also an
octagon. The following lemma establishes another useful property of octagons.

Lemma 9. The intersection of any two octagons is an octagon.

Proof. It is clear that O(�1, �2, . . . , �8) ∩ O(�1, �2, . . . , �8) = O(�1, �2, . . . , �8), where
�i = max{�i , �i} for i = 1, 2, 3, 4 and �i = min{�i , �i} for i = 5, 6, 7, 8. �

We are now in a position to begin the classification of unrestricted optimal tristance
anticodes in G�

2 . The next lemma establishes a certain closure property of such anticodes.

Lemma 10. Let Ad be an optimal tristance anticode of diameter d in G�
2 . Then Ad is closed

under intersection with anticodes centered about pairs of its own points, namely

Ad =
⋂

z1,z2 ∈Ad

Ad(z1, z2). (11)

Proof. If z ∈ Ad then, by the definition of an anticode, we have d3(z1, z2, z)�d for all
z1, z2 ∈ Ad . Thus z ∈ Ad(z1, z2) for all z1, z2 ∈ Ad , and hence z ∈ ⋂z1,z2 ∈Ad

Ad(z1, z2).
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Thus for any tristance anticode A of diameter d , we have

A ⊆
⋂

z1,z2 ∈A
Ad(z1, z2).

Now, if Ad is optimal and z 	∈ Ad , then there exist z1, z2 ∈ Ad such that d3(z1, z2, z) > d;
otherwise, we could adjoin z to Ad to obtain a larger anticode. For these z1, z2 ∈ Ad ,
we have z 	∈ Ad(z1, z2). Hence z 	∈⋂z1,z2 ∈Ad

Ad(z1, z2), and the lemma follows. �

Combining Theorem 8, Lemma 9 and Lemma 10 makes it possible to determine the
shape of optimal tristance anticodes in the grid graph.

Lemma 11. Let Ad be an optimal tristance anticode of diameter d in G�
2 . Then Ad is an

octagon O(�1, �2, . . . , �8) for some �1, �2, . . . , �8 ∈ Z.

Proof. By Lemma 10, we have Ad = ⋂
z1,z2 ∈Ad

Ad(z1, z2). By Theorem 8, each of
the sets Ad(z1, z2) is an octagon. By Lemma 9, an intersection of octagons is also an
octagon. �

Using translations in Z2, we may always assume w.l.o.g. that �1 = �2 = 0 in (9) and (10).
Thus, in view of Lemma 11, we have Ad = O(0, 0, �3, �4, . . . , �8), and it remains to
determine the six integer parameters �3, �4, �5, �6, �7, �8 as a function of the diameter d.

To this end, we first rewrite the definition of an octagon O(0, 0, �3, �4, . . . , �8) in
a different form. This octagon can be defined as the set of all (x, y) ∈ Z2 such that

0 � x � a , c0 � x + y � a + b − c2, (12)

0 � y � b , c3 − b � x − y � a − c1, (13)

where a = �5, b = �6, c0 = �3, c1 = �5 − �8, c2 = �5 + �6 − �7, and c3 = �4 + �6.
We omit the tedious, but easy, proof of the transformation from (9)–(10) to (12)–(13).

We will use O(a, b, c0, c1, c2, c3) to denote an octagon O(0, 0, �3, �4, . . . , �8) specified
in terms of the alternative parameters a, b, c1, c2, c3, c4 of (12) and (13). It is easy to see
from Fig. 3 that the size of O(a, b, c0, c1, c2, c3) is given by

|O(a, b, c0, c1, c2, c3)| = (a + 1)(b + 1) −
3∑

i=0

ci(ci + 1)

2
. (14)

The next step is to determine the maximum tristance d of an optimal tristance anticode
Ad = O(a, b, c0, c1, c2, c3) as a function of its parameters. We say that points z1, z2, z3 in
Ad are diametric if they attain the maximum tristance in Ad , that is, if d3(z1, z2, z3) = d.

Lemma 12. An optimal tristance anticode Ad = O(a, b, c0, c1, c2, c3) always contains
diametric points z∗

1, z
∗
2, z

∗
3 such that z∗

1 = (x∗
1 , 0) and z∗

3 = (x∗
3 , b) for some x∗

1 , x∗
3 ∈ Z.

Proof. Let z1 = (x1, y1), z2 = (x2, y2), and z3 = (x3, y3) be three diametric points in Ad .
W.l.o.g. assume that min{y1, y2, y3} = y1 and max{y1, y2, y3} = y3. As d3(z1, z2, z3) = d,
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Fig. 3. An octagon O(0, 0, �3, �4, . . . , �8) defined in terms of a, b, c0, c1, c2, and c3.

Theorem 1 implies that the point z1−(0, 1) = (x1, y1−1) is not in Ad . Referring to (9)–(13)
along with Figs. 2 and 3, this in turn implies that either y1 = 0 or x1 +y1 = c0 or x1 −y1 =
a − c1. If y1 = 0, we take z∗

1 = z1. Otherwise, if x1 + y1 = c0, let

z′
1

def= z1 − (x1 − c0, y1) = (c0, 0)

(the point z′
1 is obtained from z1 by moving down along the South–West edge of the octagon

until reaching the South edge). Clearly z′
1 ∈ Ad . Moreover d3(z

′
1, z2, z3)�d3(z1, z2, z3)

= d, since replacing y1 = min{y1, y2, y3} by 0 increases the tristance by y1 (cf.
Theorem 1) while replacing x1 by c0 = x1 + y1 decreases the tristance by at most y1.
Hence the points z′

1, z2, z3 are diametric, and we take z∗
1 = z′

1. If x1 − y1 = a − c1,
we replace z1 by z′

1 = (a−c1, 0). Again, it is easy to see that z′
1, z2, z3 are diametric,

and we take z∗
1 = z′

1. Now proceed with the diametric points z∗
1, z2, z3 in a similar

fashion to obtain z∗
3. �

Corollary 13. The diameter of an optimal tristance anticode Ad = O(a, b, c0, c1, c2, c3)

is given by

d = a + b − min{c0, c1, c2, c3}. (15)

Proof. W.l.o.g. assume that min{c0, c1, c2, c3} = c0. Let z1 = (x1, 0), z2 = (x2, y2), and
z3 = (x3, b) be the diametric triple exhibited in Lemma 12. Then, in view of Theorem 1,

d = d3(z1, z2, z3) = b + max{x1, x2, x3} − min{x1, x2, x3}. (16)

It is easy to see that max{x1, x2, x3} − min{x1, x2, x3}�a − min{c0, c1, c2, c3} = a − c0.
Equality in this bound is achieved for x2 = a and x1 = c0, as illustrated in Fig. 4. �
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Fig. 4. A diametric configuration in Ad .

Table 1
Parameters of optimal tristance anticodes in the grid graph G�

2

d (mod 7) a b c |Ad |

0 4d
7

4d
7

d
7

2d2+6d+7
7

1 4d+3
7

4d−4
7

d−1
7

2d2+6d+6
7

2 4d−1
7

4d−1
7

d−2
7

2d2+6d+8
7

3 4d+2
7

4d−5
7

d−3
7

2d2+6d+6
7

4 4d−2
7

4d−2
7

d−4
7

2d2+6d+7
7

5
4d+1

7
4d+1

7

4d+1
7

4d−6
7

d+2
7

d−5
7

2d2+6d+4
7

6
4d−3

7
4d+4

7

4d−3
7

4d−3
7

d−6
7

d+1
7

2d2+6d+4
7

Corollary 14. If Ad = O(a, b, c0, c1, c2, c3) is an optimal tristance anticode, then

c0 = c1 = c2 = c3. (17)

Proof. Obviously, (17) maximizes the size of Ad = O(a, b, c0, c1, c2, c3) in (14) for the
given diameter d = a + b − min{c0, c1, c2, c3}. �

Theorem 15. Let Ad be an optimal tristance anticode of diameter d in the grid graph G�
2 .

Then

|Ad | =
⌈

2d2 + 6d + 4

7

⌉
=
⌈

2(d + 1)(d + 2)

7

⌉
.

Moreover, up to rotation by an angle of �/2 and translation, Ad = O(a, b, c, c, c, c) where
the parameters a, b, and c are given as a function of d in Table 1.

Proof. It follows from Lemma 11 in conjunction with Corollary 14 that Ad is an octagon of
the form O(a, b, c, c, c, c), for some a, b, c ∈ Z. The size of Ad is (a+1)(b+1)−2c(c+1)
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Fig. 5. Optimal tristance anticodes in G�
2 of diameter d = 15, 16, . . . , 20.

by (14) and its diameter is d = a +b− c by Corollary 13. To complete the proof, it remains
to maximize (a + 1)(b + 1) − 2c(c + 1) subject to the constraint a + b − c = d. The
solution to this simple optimization problem is given in Table 1. �

Theorem 15 completely characterizes the optimal tristance anticodes of a given diameter
in the grid graph G�

2 . Some examples of such anticodes are illustrated in Fig. 5.

3. Optimal tristance anticodes in the infinity graph and the hexagonal graph
models

We now classify the optimal tristance anticodes in two related graphical models: the infin-
ity graph G∞

2 and the hexagonal graph GO
2 (defined in §1). To obtain the classification for G∞

2 ,
we make use of a mapping � : R2 → R2 which takes G∞

2 into a power graph of G�
2 . For the

hexagonal graph GO
2 , we first derive an expression for the corresponding tristance d O

3 (·),
and then follow the same line of argument as in the previous section.

3.1. Optimal tristance anticodes in the infinity graph

It is easy to see that the unique, up to translation, optimal anticode of diameter d in G∞
2 is

the square Sd = {(x, y) ∈ Z2 : 0�x�d and 0�y�d}. To deal with tristance anticodes,
we first need an expression for tristance in G∞

2 . It turns out that tristance in G∞
2 is related to

tristance in G�
2 via the mappings � : R2 → R2 and � ∈ v : R2 → R2 defined by

�(x, y) = (x − y, x + y) and � ∈ v(x, y) =
(

x + y

2
,

y − x

2

)
. (18)

Geometrically, the mapping � is simply a rotation by an angle of �/4 followed by scaling
by a factor of

√
2. Note that �(Z2) = D2, where D2 = {(x, y) ∈ Z2 : x + y ≡ 0 mod 2}
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is the two-dimensional checkerboard lattice. Also note that for all z1, z2 ∈ Z2, we have

d
∞
(z1, z2) = |(x1 − y1) − (x2 − y2)|

2
+ |(x1 + y1) − (x2 + y2)|

2

= d
(
�(z1), �(z2)

)
2

. (19)

Now define the graph �(G∞
2 ) = (V , E) as follows: V = �(Z2) = D2 and {z1, z2} ∈ E

if and only if {� ∈ v(z1), � ∈ v(z2)} is an edge in G∞
2 . Clearly, the graphs G∞

2 and �(G∞
2 )

are isomorphic. It follows from (19) that the edges of �(G∞
2 ) are precisely the paths of

length 2 in the grid graph G�
2 . This fact was used in [9] to prove the following theorem:

Theorem 16. Let z1=(x1, y1), z2=(x2, y2), z3=(x3, y3) be three distinct points
in Z2, and let z′

1, z
′
2, z

′
3 ∈ D2 denote their images under �. Then

d
∞
3 (z1, z2, z3) = ⌈d3(z

′
1, z

′
2, z

′
3)/2

⌉
.

Theorem 16 and the mappings in (18) make it possible to classify the optimal tristance
anticodes in G∞

2 using the classification of tristance anticodes in G�
2 carried out in §2.

Theorem 17. Let z1 = (x1, y1), z2 = (x2, y2) be distinct points in Z2 and assume, w.l.o.g.,
that x2−x1 � |y2−y1| so that d∞

(z1, z2) = x2−x1. Let A∞
d (z1, z2) be the optimal tristance

anticode in G∞
2 of diameter d �d

∞
(z1, z2) centered about z1 and z2. Let c = d−d

∞
(z1, z2).

Then A∞
d (z1, z2) consists of all z = (x, y) in Z2 such that

x1 − c � x � x2 + c, (20)

x1 + y1 − 2c � x + y � x2 + y2 + 2c, (21)

x1 − y1 − 2c � x − y � x2 − y2 + 2c, (22)

(x1 + y1) − (x2 − y2) − 2c � 2y � (x2 + y2) − (x1 − y1) + 2c. (23)

Proof. Let z′
1, z

′
2 ∈ D2 be the images of z1 and z2 under �. Let z ∈ A∞

d (z1, z2). Then
d

∞
3 (z1, z2, z)�d and d3(z

′
1, z

′
2, �(z))�2d by Theorem 16, so that �(z) ∈ A2d(z′

1, z
′
2).

Since �(z) ∈ D2 for all z ∈ Z2, it follows that

�
(A∞

d (z1, z2)
) ⊆ A2d(z′

1, z
′
2) ∩ D2.

Conversely, let z′ ∈ A2d(z′
1, z

′
2)∩D2. Then d3(z

′
1, z

′
2, z

′)�2d and d
∞
3 (z1, z2, � ∈ v(z′))�d

by Theorem 16. Hence � ∈ v
(A2d(z′

1, z
′
2) ∩ D2

) ⊆ A∞
d (z1, z2) and therefore

�
(A∞

d (z1, z2)
) = A2d(z′

1, z
′
2) ∩ D2. (24)

In view of (24) and Theorem 8, a point z ∈ Z2 belongs to A∞
d (z1, z2) if and only if �(z) satis-

fies conditions (7)–(8) for z′
1 = �(z1) and z′

2 = �(z2), with c replaced by 2d −2d
∞
3 (z1, z2)

in view of (19). This is precisely the property expressed by (20)–(23). �

Corollary 18. Let A∞
d be an optimal tristance anticode of diameter d in G∞

2 . Then A∞
d is

an octagon O(�1, �2, . . . , �8) for some �1, �2, . . . , �8 ∈ Z.
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Proof. It is obvious from (20)–(23) that the set A∞
d (z1, z2) is an octagon. Since the closure

property of Lemma 10 holds regardless of a particular distance model, the corollary now
follows in exactly the same way as Lemma 11. �

As before, we can use translations in Z2 to write the octagon A∞
d as O(a,b,c0,c1, c2, c3)

for some a, b, ci ∈ Z. Then the cardinality of A∞
d is given by (14), and the next step is to

determine its diameter d as a function of the parameters a, b, c0, c1, c2, c3.

Lemma 19. The diameter of an optimal tristance anticode A∞
d = O(a, b, c0, c1, c2, c3) in

the infinity graph G∞
2 is given by

d = a + b −
⌊

min{a + c0 + c1, a + c2 + c3, b + c0 + c3, b + c1 + c2}
2

⌋
. (25)

Proof. We again make use of the mapping in (18), in conjunction with Corollary 13. First
consider the set �(A∞

d ). Even though A∞
d = O(a, b, c0, c1, c2, c3), the set �(A∞

d ) is, in
general, not an octagon, since �(A∞

d ) ⊂ D2. However, we can convert this into an octagon
by adjoining the “missing” points as follows:

A′ def= �(A∞
d ) ∪

{
z ∈ Z2 : at least 3 of the 4 neighbors of z in G�

2 are in �(A∞
d )
}
.

(26)

A straightforward analysis of the effect of the mapping � on (12)–(13) now shows that A′
is an octagon (c3 − b, c0) + O(a′, b′, c′

0, c
′
1, c

′
2, c

′
3), where

a′ = a + b − (c1+c3) , c′
0 = b − (c0+c3) , c′

1 = a − (c0+c1), (27)

b′ = a + b − (c0+c2) , c′
2 = b − (c1+c2) , c′

3 = a − (c2+c3). (28)

Let d ′ denote the diameter of A′, and let z1, z2, z3 be diametric points in A∞
d . Then �(z1),

�(z2), �(z3) are in A′ and their tristance in G�
2 is at least 2d − 1 by Theorem 16. Hence

d ′ �2d − 1. Now let z′
1, z

′
2, z

′
3 be diametric points in A′. If z′

1 	∈ �(A∞
d ), then it has at least

three neighbors in �(A∞
d ) by (26). By Theorem 1, this means that we can replace z′

1, z
′
2, z

′
3

by another diametric configuration z′′
1, z

′
2, z

′
3 ∈ A′, where z′′

1 is a neighbor of z′
1 such that

z′′
1 ∈ �(A∞

d ). Repeating the argument for z′
2 and z′

3, we can find points z′
1, z

′
2, z

′
3 ∈ �(A∞

d )

such that d3(z
′
1, z

′
2, z

′
3) = d ′. We now have d

∞
3 (� ∈ v(z′

1), � ∈ v(z′
2), � ∈ v(z′

2)) = ⌈
d ′/2

⌉
�d, in view of Theorem 16. Hence d = ⌈d ′/2

⌉
. But d ′ = a′ + b′ − min{c′

0, c
′
1, c

′
2, c

′
3} by

Corollary 13. The lemma now follows straightforwardly from (27)–(28). �

Theorem 20. Let A∞
d be an optimal tristance anticode of diameter d in the infinity graph.

Then

|A∞
d | =

⌈
4d2 + 8d + 2

7

⌉
.

Moreover, up to rotation by an angle of �/2 and translation, A∞
d = O(a, b, c0, c1, c2, c3)

where the parameters a, b, c0, c1, c2, c3 are given as a function of d in Table 2.
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Table 2
Parameters of optimal tristance anticodes in the infinity graph G∞

2

d (mod 7) a, b c0, c2 c1, c3 |A∞
d

|

0 6d
7

2d
7

2d
7

4d2+8d+7
7

1 6d+1
7

2d−2
7

2d+5
7

4d2+8d+2
7

2 6d+2
7

2d+3
7

2d+3
7

4d2+8d+3
7

3 6d−4
7

2d−6
7

2d−6
7

4d2+8d+3
7

4 6d−3
7

2d−8
7

2d−1
7

4d2+8d+2
7

5 6d−2
7

2d−3
7

2d−3
7

4d2+8d+7
7

6 6d−1
7

2d−5
7

2d+2
7

4d2+8d+4
7

Fig. 6. Optimal tristance anticodes in G∞
2 of diameter d = 9, 10, . . . , 13.

Proof. In view of Corollary 18 and Lemma 19, we need to maximize the cardinality of A∞
d

given by (14) subject to constraint (25). Let t = a + b − 2d + max{a, b}. If t is even, then
choosing c0 = c1 = c2 = c3 = t/2 satisfies (25) and maximizes (14). If t is odd, then
the corresponding extremal values are c0 = c2 = (t − 1)/2 and c1 = c3 = (t + 1)/2 (or
vice versa). If we now assume w.l.o.g. that a�b, then the cardinality of A∞

d is given by
(a + 1)(b + 1) − ⌊(2a + b − 2d + 1)2/2

⌋
. It remains to maximize this expression, subject

to a�b. The solution to this optimization problem is given in Table 2. �

Theorem 20 completes our classification of optimal tristance anticodes in the infinity
graph G∞

2 . Some examples of such anticodes are illustrated in Fig. 6.

3.2. Optimal tristance anticodes in the hexagonal graph

Many different coordinate systems for the hexagonal lattice A2 are known [7]. For our
purposes, it would be most convenient to identify A2 with the Eisenstein integers. That is,
we write A2 = {x + �y : x, y ∈ Z}, where � = −1/2 + √

3/2 i is a complex cube root of
unity. 2 Thus a generic vertex v of GO

2 will be written as v = (x, y), with the understanding
that v = x + �y. The resulting labeling of the hexagonal graph is shown in Fig. 7.

2 Note that the numbers 1, �, and �2 represent the three different edge orientations in the hexagonal graph
(cf. Fig. 7). However, two rather than three coordinates suffice to describe GO

2 , since �2 = �̄ = −1 − �.
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Fig. 7. The graph GO
2 with vertices labeled by the Eisenstein integers.

Our first task is to find expressions for distance and tristance in GO
2 . To this end, let us intro-

duce the following notation: given a, b ∈ Z, we shall write max{a, b} = max{a, b, 0} and
min{a, b} = min{a, b, 0}. Now let v1 = (x1, y1) and v2 = (x2, y2) be two arbitrary points
of A2. It is easy to see that the distance between v1 and v2 in GO

2 is given by

d O(v1, v2) = max {x1 − x2, y1 − y2} − min {x1 − x2, y1 − y2}. (29)

Note that if (x1−x2)(y1− y2)�0, then (29) reduces to d O(v1, v2) = |x1−x2| + |y1− y2|
while if (x1 − x2)(y1 − y2)�0 then d O(v1, v2) = max{|x1 − x2|, |y1 − y2|}. Thus distance
in GO

2 is, in a sense, “half-way” between the L1-distance of G�
2 and the L∞-distance of G∞

2 .
Deriving an expression for tristance in GO

2 is a bit more involved. First, we need a lemma.

Lemma 21. Let v1, v2, and v3 be distinct points in A2. Then there exists a point v ∈ A2,
such that d O

3 (v1, v2, v3) = d O(v1, v) + d O(v2, v) + d O(v3, v).

Proof. By definition, d O
3 (v1, v2, v3) is the number of edges in a minimal spanning tree for

v1, v2, v3 in the hexagonal graph GO
2 . Let T be such a tree. Further, for i = 1, 2, . . . , 6,

let �i denote the number of vertices of degree i in T . First observe that �1 �3. Indeed,
if there is a leaf in T that is not one of v1, v2, v3, then we could remove this leaf along
with the single edge incident upon it, to obtain a smaller spanning tree for v1, v2, v3 in GO

2 .
Now, the order of T is |V | = �1 + �2 + �3 + �4 + �5 + �6, while its size is |E| =
(�1 + 2�2 + 3�3 + 4�4 + 5�5 + 6�6)/2. Since T is a tree, we have |V | − |E| = 1. With
|V |, |E| expressed in terms of �1, �2, . . . , �6, this condition is equivalent to

�3 + 2�4 + 3�5 + 4�6 = �1 − 2 � 1.
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It follows that �4 = �5 = �6 = 0 and �3 �1. In other words, there are only two possible
configurations for T : either it is star-like, with a single vertex of degree 3 and v1, v2, v3 as
its three leaves, or it is snake-like with only some two of v1, v2, v3 as leaves and all other
vertices of degree 2. If T is star-like, we take v to be the unique vertex of degree 3 in T . If
T is snake-like, we take v to be one of v1, v2, v3, the one which is not a leaf in T . �

Theorem 22. Let v1 = (x1, y1), v2 = (x2, y2), v3 = (x3, y3) be distinct points in A2. Let
xmid denote the middle value among x1, x2, x3—that is, if x′

1, x
′
2, x

′
3 is a permutation of

x1, x2, x3 such that x′
1 �x′

2 �x′
3, then xmid = x′

2. Let ymid be similarly defined. Then

d O
3 (v1, v2, v3) =

3∑
i=1

(
max

{
xi−xmid, yi−ymid

}− min
{
xi−xmid, yi−ymid

})
. (30)

Proof. Let v = (x, y) be a point with d O
3 (v1, v2, v3) = d O(v1, v)+d O(v2, v)+d O(v3, v).

Such a point exists by Lemma 21. Then by (29) we have

d O
3 (v1, v2, v3) =

3∑
i=1

(
max

{
xi − x, yi − y

} − min
{
xi − x, yi − y

})
. (31)

Clearly, the expression in (31) is an upper bound on d O
3 (v1, v2, v3) for all x, y ∈ Z. To

establish the tristance, it remains to find x, y ∈ Z that minimize this expression. This is a
tedious, but simple, optimization problem (an optimal solution must satisfy x ∈ {x1, x2, x3}
and y ∈ {y1, y2, y3}, so there are nine cases to consider). The reader can easily verify that
x = xmid and y = ymid is indeed an optimal solution. �

Remark. The expressions max{·, ·, 0} and min{·, ·, 0} in (29), (30) arise from the asym-
metry in our coordinate system for GO

2 . If, instead, we represent a generic point of A2 as
v = (x, y, z), with the understanding that v = x + �y + �2z, then (29) becomes

d O(v1, v2) = max {x1 − x2, y1 − y2, z1 − z2} − min {x1 − x2, y1 − y2, z1 − z2}
and (30) should be modified accordingly. In some sense, these expressions are more natural,
since they reflect the three edge directions in GO

2 . On the other hand, this coordinate system
is redundant: (x, y, z) and (x −	, y −	, z−	) represent the same point of A2 for all 	 ∈ Z,
since 1+�+�2 = 0. One can use this property to zero-out any one of the three coordinates.
Zeroing out the last coordinate by choosing 	 = z (as we have done) is precisely the source
for the remnant zeros in max{·, ·, 0} and min{·, ·, 0} in (29), (30).

From here, we proceed along the lines of §2.3. Let a hexagonH(�1, �2, . . . , �6) be a sub-
set of A2 defined by the inequalities

�1 � x � �4 , �2 � y � �5 , �3 � x − y � �6. (32)

The next lemma and theorem show that the optimal centered anticode AO
d (v1, v2) ⊂ A2,

centered about an arbitrary pair of points v1, v2 ∈ A2, is a hexagon for all d �d O(v1, v2).
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Lemma 23. Letv1 = (x1, y1),v2 = (x2, y2)be distinct points ofA2.Thend O
3 (v1, v2, v3) =

d O(v1, v2) if and only if v3 belongs to the bounding parallelepiped of v1, v2, which is
a subset of A2 defined by the inequalities

min{x1, x2} � x � max{x1, x2}, (33)

min{y1, y2} � y � max{y1, y2}, (34)

min{x1 − y1, x2 − y2} � x − y � max{x1 − y1, x2 − y2}. (35)

Proof. Let P(v1, v2) denote the bounding parallelepiped of v1, v2 (note that it is, indeed,
a parallelepiped since one of (33)–(35) is always redundant). Assume w.l.o.g. that x1 �x2.
(⇐) Suppose v3 ∈ P(v1, v2). Then (33), (34) imply that xmid = x3 and ymid = y3 in (30).
Thus (30) reduces to

d O
3 (v1, v2, v3)

=
{

(y1 − y3) − (x1 − x3) + (x2 − x3) − (y2 − y3) if y1 �y2,

max{x2− x3, y2− y3} − min{x1− x3, y1− y3} if y1 �y2.
(36)

If y1 �y2, then d O
3 (v1, v2, v3) = d O(v1, v2) directly by (36) and (29). If y1 �y2, then the in-

equality d O
3 (v1, v2, v3)�d O(v1, v2) follows by straightforward manipulation from (36) and

(35). (⇒) Now suppose that d O
3 (v1, v2, v3) = d O(v1, v2). Then every minimal spanning

tree for v1, v2, v3 in GO
2 must be snake-like, with v1, v2 as its leaves. Indeed, by Lemma 21

we have

d O
3 (v1, v2, v3) = d O(v1, v) + d O(v2, v) + d O(v3, v) = d O(v1, v2)

for some v ∈ A2. This is only possible if d O(v3, v) = 0, since d O(v1, v) + d O(v2, v)�
d O(v1, v2) by the triangle inequality. The fact that d O(v3, v) = 0 implies that the third term
in the summation of (30) is zero, which is only possible if xmid = x3 and ymid = y3. This
establishes (33) and (34). Moreover, the expression for d O

3 (v1, v2, v3) in (30) once again
reduces to (36). If y1 �y2, then d O

3 (v1, v2, v3) = d O(v1, v2) further reduces to

max{x2− x3, y1− y3} − min{x1− x3, y1− y3} = max{x2− x1, y2− y1}
by (36) and (29). It is straightforward to show that this condition is equivalent to (35).
Otherwise, if y1 �y2, then (33) and (34) imply (35), and we are done. �

Theorem 24. Let v1 = (x1, y1), v2 = (x2, y2) be distinct points of A2, and let AO
d (v1, v2)

be the optimal tristance anticode in GO
2 of diameter d �d O(v1, v2) centered about v1

and v2. Write c = d − d O(v1, v2). Then AO
d (v1, v2) consists of all v = (x, y) in A2

such that

min{x1, x2} − c � x � max{x1, x2} + c, (37)

min{y1, y2} − c � y � max{y1, y2} + c, (38)

min{x1 − y1, x2 − y2} − c � x − y � max{x1 − y1, x2 − y2} + c. (39)

Proof. When c = 0, the theorem follows immediately from Lemma 23. Otherwise, it is
easy to see that v ∈ AO

d (v1, v2) if and only if the distance in GO
2 from v to (the closest point
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of) the bounding parallelepiped P(v1, v2) is at most c = d − d O(v1, v2). This is precisely
the property expressed by (37)–(39). �

Corollary 25. Let AO
d be an optimal tristance anticode of diameter d in GO

2 . Then AO
d is

a hexagon H(�1, �2, . . . , �6) for some �1, �2, . . . , �6 ∈ Z.

Proof. It is obvious from Theorem 24 and (32) that the set AO
d (v1, v2) is a hexagon. The

fact that the intersection of any two hexagons is a hexagon is also obvious (cf. Lemma 9).
The corollary now follows in exactly the same way as Lemma 11 and Corollary 18. �

Since A2 is invariant under translation by a lattice point, we can again shift AO
d to the

origin, so that AO
d = H(0, 0, �3, �4, �5, �6), and then write it asH(a, b, c1, c3), where a =

�4, b = �5, c1 = �4−�6, and c3 = �3+�5 (cf. Fig. 3). This is just a special case of (12)–(13).

Lemma 26. The diameter of an optimal tristance anticode AO
d = H(a, b, c1, c3) in the

hexagonal graph GO
2 is given by d = a + b − min{c1, c3}.

Proof. Assume w.l.o.g. that c1 �c3. Observe that we can further assume w.l.o.g. that
0�c1, c3 � min{a, b}; otherwise at least one of the inequalities in

0 � x � a , 0 � y � b , c3 − b � x − y � a − c1 (40)

is redundant, and the hexagon H(a, b, c1, c3) can be translated and/or re-parametrized so
that 0�c1, c3 � min{a, b} holds. Thus the points v1 = (0, 0), v2 = (a, c1), and v3 = (a, b)

belong to H(a, b, c1, c3) by (40), and d O
3 (v1, v2, v3) = a + b − c1 by (30). Now let

v1, v2, v3 be arbitrary points in H(a, b, c1, c3). We assume w.l.o.g. that x1 �x2 �x3, and
distinguish between six cases. In each case, we compute d O

3 (v1, v2, v3) using (30).

Case 1: y3 �y2 �y1. Then d O
3 (v1, v2, v3) = (x3 − x1) + (y1 − y3).

Case 2: y3 �y1 �y2. Then d O
3 (v1, v2, v3) = (x3 − x1) + (y2 − y3).

Case 3: y2 �y3 �y1. Then d O
3 (v1, v2, v3) = (x3 − x1) + (y1 − y2).

Case 4: y2 �y1 �y3. Then d O
3 (v1, v2, v3) = (x2−x1)+(y1−y2)+ max{x3−x2, y3−y1}.

Case 5: y1 �y3 �y2. Then d O
3 (v1, v2, v3) = (x3−x2)+(y2−y3)+ max{x2−x1, y3−y1}.

Case 6: y1 �y2 �y3. Then d O
3 (v1, v2, v3) =

max{x3 − x2, y3 − y2} + max{x2 − x1, y2 − y1}.
In each of these cases, it is straightforward to show that d O

3 (v1, v2, v3)�a + b − c3 or
d O

3 (v1, v2, v3)�a + b − c1 by (40), and the lemma follows. �

Theorem 27. Let AO
d be an optimal tristance anticode of diameter d in the hexagonal

graph. Then

|AO
d | =

⌈
d2 + 3d + 2

3

⌉
=
⌈

(d + 1)(d + 2)

3

⌉
.
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Table 3
Parameters of optimal tristance anticodes in the hexagonal graph GO

2

d (mod 3) a b c1, c3 |AO
d

|

0 2d
3

2d
3

d
3

d2+3d+3
3

1
2d+1

3
2d+1

3

2d+1
3

2d−2
3

d+2
3

d−1
3

d2+3d+2
3

2
2d−1

3
2d+2

3

2d−1
3

2d−1
3

d−2
3

d+1
3

d2+3d+2
3

Fig. 8. Optimal tristance anticodes in GO
2 of diameter d = 12, 13, 14.

Moreover, up to rotation by an angle of �/3 and translation, AO
d = H(a, b, c1, c3) where

the parameters a, b, c1, c3 are given as a function of d in Table 3.

Proof. The optimal tristance anticode is a hexagon H(a, b, c1, c3) by Corollary 25. Its
cardinality is |AO

d | = (a + 1)(b + 1) − 1/2c1(c1 + 1) − 1/2c3(c3 + 1) as in (14), and its
diameter is a + b − min{c1, c3} by Lemma 26. Clearly, the choice c1 = c3 = c maximizes
|AO

d | for a given diameter. It remains to maximize (a + 1)(b + 1) − c(c + 1) subject to
a + b − c = d. The solution to this optimization problem is given in Table 3. �

Some examples of optimal tristance anticodes in GO
2 are illustrated in Fig. 8. It can be

seen from Table 3 that such anticodes are regular hexagons if and only if d ≡ 0 (mod 3).

Remark. Using similar methods, we can also characterize the optimal distance anticodes
in the hexagonal graph. For even diameter d , such anticodes are regular hexagons (spheres
in GO

2 ) centered about a lattice point v0 = (x0, y0), namely

Sd/2(v0)

=
{
(x, y) ∈ A2 : |x − x0|� d

2
, |y − y0|� d

2
, |(x−y) − (x0−y0)|� d

2

}
.

For odd d, optimal distance anticodes are again “spheres” of radius (d + 1)/2, but no
longer centered about a lattice point. Specifically, an optimal distance anticode of an odd
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diameter d is given by{
(x, y) ∈ A2 : |x − x′

0|� d + 1
2

, |y − y′
0|� d + 1

2
, |(x−y) − (x′

0−y′
0)|� d + 1

2

}
,

where (x′
0, y

′
0) = v0 + �, with v0 = (x0, y0) being an arbitrary point of A2 and � being one

of (1/3 , −1/3), (2/3 ,
1/3), (1/3 ,

2/3), (−1/3 ,
1/3), (−2/3 , −1/3), (−1/3 , −2/3). Such anticodes

can be construed as regular hexagons over R2 � C, but they are not regular hexagons when
viewed as subsets of A2. The cardinality of an optimal distance anticode of diameter d is
1 + 3d(d + 2)/4 if d is even, and 3(d + 1)2/4 if d is odd.

4. Higher dimensions and higher dispersions

In general, extending our results for tristance anticodes in Z2 to higher dimensions and/or
higher dispersions appears to be a difficult problem. Nevertheless, we pursue such general-
izations in this section, in part to illustrate the difficulties that arise along the way.

In §4.1, we study tristance anticodes in Z3. Here, the general approach developed in §2 still
works: we first characterize the optimal centered anticodes Ad(v1, v2) ⊂ Z3 and thus de-
termine, using Lemma 10, the shape of an optimal unrestricted tristance anticode Ad ⊆ Z3.
The problem is that the expressions for the diameter and the cardinality of Ad are much
more involved than their counterparts for Z2 in (14) and (15). The resulting optimization
task involves 23 variables and does not appear to be tractable. We conjecture, however,
that optimal tristance anticodes in Z3 satisfy a certain symmetry condition. Subject to this
conjecture, we determine the parameters of such anticodes and their cardinality.

In §4.2, we consider quadristance anticodes in Z2. This serves to illustrate a situation
where the approach of §2 breaks down. We can still characterize the optimal centered
quadristance anticodes Ad(z1, z2, z3) ⊂ Z2 and (the appropriate generalization of) Lemma
10 still applies. However, such centered anticodes are no longer convex and their general
shape is not preserved under intersection. Thus Lemma 10 tells us nothing about the shape
of unrestricted optimal quadristance anticodes in Z2. We use the octagon shape to derive
a lower bound on the cardinality of such anticodes. We conjecture that this bound is, in fact,
exact. Observe, however, that shapes other than octagons occur among optimal quadristance
anticodes, at least for certain diameters (cf. Fig. 12).

4.1. Optimal tristance anticodes in the grid graph of Z3

We first need an expression for tristance in G�
3 , the grid graph of Z3. Fortunately, the tris-

tance formula of Theorem 1 easily generalizes to arbitrary dimensions.

Theorem 28. Let v = (v1, v2, . . . , vn), v′ = (v′
1, v

′
2, . . . , v

′
n), and v′′ = (v′′

1, v
′′
2, . . . , v

′′
n)

be distinct points in Zn. Then

d3(v, v′, v′′) =
n∑

i=1

(
max{vi, v

′
i , v

′′
i } − min{vi, v

′
i , v

′′
i }
)

. (41)
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Proof. It is easy to see that, for all i = 1, 2, . . . , n, any spanning tree for v, v′, v′′ must
contain at least max{vi, v

′
i , v

′′
i }−min{vi, v

′
i , v

′′
i } edges that are parallel to the ith coordinate

axis. Thus the sum on the right-hand side of (41) is a lower bound on d3(v, v′, v′′). To show
that this bound holds with equality, we use induction on n, with Theorem 1 serving as the
induction base. Assume w.l.o.g. that v′

n �vn �v′′
n and let u, w ∈ Zn be defined by

u = (v′
1, v

′
2, . . . , v

′
n−1, vn) and w = (v′′

1, v
′′
2, . . . , v

′′
n−1, vn).

It takes vn − v′
n edges to connect v′ with u and another v′′

n − vn edges to connect v′′ with w,
altogether v′′

n −v′
n = max{vn, v

′
n, v

′′
n} − min{vn, v

′
n, v

′′
n} edges. Since the points u, v, w be-

long to the same coset of Zn−1 in Zn, the claim now follows by induction hypothesis. �

Next, we generalize to three dimensions the definition of a bounding rectangle in §2.1.
Let v1 = (x1, y1, z1), v2 = (x2, y2, z2), . . . , vn = (xn, yn, zn) be n distinct points in Z3.
Then the bounding cuboid of v1, v2, . . . , vn is the smallest cuboid C(v1, v2, . . . , vn)

with edges parallel to the axes that contains all the n points. Explicitly, define xmax =
max{x1, x2, . . . , xn} and xmin = min{x1, x2, . . . , xn}. Let ymax, ymin, zmax, and zmin be
defined similarly. Then

C(v1, v2, . . . , vn)
def=
{
(x, y, z) ∈ Z3 : xmin �x�xmax, ymin �y�ymax, zmin �z�zmax

}
.

By Theorem 28, the tristance of any three points that lie in the bounding cuboid C(v1, v2) of
v1 = (x1, y1, z1) and v2 = (x2, y2, z2) is at most d(v1, v2) = |x1−x2|+|y1−y2|+|z1−z2|.
This immediately leads to the following characterization of optimal tristance anticodes in Z3

that are centered about two given points v1, v2 ∈ Z3 (cf. Theorem 8).

Theorem 29. Let v1=(x1, y1, z1), v2=(x2, y2, z2) be distinct points in Z3. LetAd(v1, v2)

be the optimal tristance anticode in G�
3 of diameter d �d(v1, v2) centered about v1 and v2.

Write 	 = d − d(v1, v2). Let xmax = max{x1, x2}, xmin = min{x1, x2} with ymax, ymin and
zmax, zmin defined similarly. Then Ad(v1, v2) consists of all v = (x, y, z) in Z3 such that

xmin − 	 � x � xmax + 	, (42)
ymin − 	 � y � ymax + 	, (43)
zmin − 	 � z � zmax + 	, (44)

xmin + ymin − 	 � x + y � xmax + ymax + 	, (45)
xmin − ymax − 	 � x − y � xmax − ymin + 	, (46)
xmin + zmin − 	 � x + z � xmax + zmax + 	, (47)
xmin − zmax − 	 � x − z � xmax − zmin + 	, (48)
ymin + zmin − 	 � y + z � ymax + zmax + 	, (49)
ymin − zmax − 	 � y − z � ymax − zmin + 	, (50)

xmin + ymin + zmin − 	 � x + y + z � xmax + ymax + zmax + 	, (51)
xmin − ymax + zmin − 	 � x − y + z � xmax − ymin + zmax + 	, (52)
xmin + ymin − zmax − 	 � x + y − z � xmax + ymax − zmin + 	, (53)
xmin − ymax − zmax − 	 � x − y − z � xmax − ymin − zmin + 	. (54)

Proof. It follows from Theorem 28 that Ad(v1, v2) = C(v1, v2) if 	 = 0. Hence for
	 > 0, the set Ad(v1, v2) = {v∈ Z3 : d3(v1, v2, v)�d(v1, v2) + 	} consists of all points
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(x, y, z)∈ Z3 whose L1-distance from the bounding cuboid C(v1, v2) is at most 	. It can be
readily verified that this is precisely the set described by Eqs. (42)–(54). �

The centered anticode Ad(v1, v2) in Theorem 29 is an example of a set we call the
icosihexahedron. In general, we define an icosihexahedron I(�1, �2, . . . , �26) as the set of
all points of Z3 that lie within the convex polyhedron with 26 faces, given by the inequalities

�1 � x � �14 , �2 � y � �15 , �3 � z � �16, (55)

�4 � x + y � �17 , �5 � x + z � �18 , �6 � y + z � �19, (56)

�7 � x − y � �20 , �8 � x − z � �21 , �9 � y − z � �22, (57)

�10 � x + y + z � �23 , �11 � x − y − z � �24, (58)

�12 � x − y + z � �25 , �13 � x + y − z � �26. (59)

It is clear from (55)–(59) that an intersection of two icosihexahedra is again an icosihexa-
hedron. Along with Lemma 10 and Theorem 29, this immediately implies the following:

Corollary 30. Let Ad be an optimal tristance anticode of diameter d in G�
3 . Then Ad is an

icosihexahedron I(�1, �2, . . . , �26) for some �1, �2, . . . , �26 ∈ Z.

As in §2.3, we can assume that �1 = �2 = �3 = 0 in (55), up to a translation in Z3. We
furthermore re-parametrize an icosihexahedron I(0, 0, 0, �4, �5, . . . , �26) as follows:

0 � x � a , 0 � y � b , 0 � z � c, (60)

ex̄ȳ � x + y � a + b − exy, (61)

ex̄y − b � x − y � a − exȳ, (62)

ex̄z̄ � x + z � a + c − exz, (63)

ex̄z − c � x − z � a − exz̄, (64)

eȳz̄ � y + z � b + c − eyz, (65)

eȳz − c � y − z � b − eyz̄, (66)


x̄ȳz̄ � x + y + z � a + b + c − 
xyz, (67)


x̄yz̄ − b � x − y + z � a + c − 
xȳz, (68)


x̄ȳz − c � x + y − z � a + b − 
xyz̄, (69)


x̄yz − b − c � x − y − z � a − 
xȳz̄, (70)

where a = �14, b = �15, c = �16 while ex̄ȳ = �4, exy = �14 + �15 − �17, ex̄y = �7 + �15,
exȳ = �14 −�20, ex̄z̄ = �5, exz = �14 +�16 −�18, ex̄z = �8 +�16, exz̄ = �14 −�21, eȳz̄ = �6,
eyz = �15 + �16 − �19, eȳz = �9 + �16, eyz̄ = �15 − �22, and 
x̄ȳz̄ = �10, 
x̄ȳz = �13 + �16,

x̄yz̄ = �12 + �15, 
x̄yz = �11 + �15 + �16, 
xȳz̄ = �14 − �24, 
xȳz = �14 + �16 − �25,

xyz̄ = �14 + �15 − �26, 
xyz = �14 + �15 + �16 − �23.

Eqs. (60)–(70) make it apparent that an icosihexahedron is just a truncated cuboid: the
eight values 
x̄ȳz̄, 
x̄ȳz, . . . , 
xyz give the amount of truncation at the vertices, while the
twelve values ex̄ȳ, ex̄y, . . . , eyz describe the amount of truncation along the edges. Fig. 9
shows a generic icosihexahedron as a 26-faceted three-dimensional solid along with our
labeling of the edges and vertices of the corresponding cuboid, as reflected in (60)–(70).
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Fig. 9. A generic icosihexahedron and a labeling of its 20 truncations.

Observe that one can assume w.l.o.g. that each of the 26 inequalities in (55)–(59) holds
with equality for at least one point of I(�1, �2, . . . , �26)—otherwise, we can always
increase the corresponding constant �i if i�13 or decrease it if i�14. This implies that each
of the inequalities in (60)–(70) must also hold with equality for at least one point of the
icosihexahedron. We will make use of this observation later on. We next determine the
diameter of an icosihexahedron I(a, b, c, {e��, e��, e��}, {
���}) parametrized as in
(60)–(70). To this end, we need to consider certain configurations of edges and vertices
of a cuboid. Referring to Fig. 9, we define ¯̄x = x, ¯̄y = y, and ¯̄z = z, so that the complement
operation ·̄ is an involution, as expected. Let � denote x or x̄, let � denote y or ȳ, and let �
denote z or z̄. With this notation, we say that a vertex V��� lies opposite the edges E�̄�̄, E�̄�̄,
and E�̄�̄ (indeed, these are the three edges incident upon the diagonally opposite vertex
V�̄�̄�̄). We also say that the edges E��, E�̄�, E�̄�̄ span the cuboid (these are the 8 possible
choices of three edges such that each face contains one of them).

Lemma 31. Let I(a, b, c, {e��, e��, e��}, {
���}) be an icosihexahedron, parametrized
as in (60)–(70). Define

s
def= min

�,�,�

{
e�� + e�̄� + e�̄�̄

}
, (71)

t
def= min

�,�,�

{
min{e�̄�̄, e�̄�̄, e�̄�̄} + 
���

}
, (72)

where the minimum in (71) and (72) is taken over the eight possible assignments of values
to �, �, and �. Then the diameter of I(a, b, c, {e��, e��, e��}, {
���}) is given by

d = a + b + c − min{s, t}. (73)

Proof. Let v1 = (x1, y1, z1), v2 = (x2, y2, z2), and v3 = (x3, y3, z3) be a triple of
distinct points of I(a, b, c, {e��, e��, e��}, {
���}) and consider their bounding cuboid
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C(v1, v2, v3). The key observation is that each of the six faces of C(v1, v2, v3) must contain
at least one of the three points. This leads to the following three cases.

Case 1: Suppose that none of the points v1, v2, v3 is a vertex of C(v1, v2, v3). Then each
of the points v1, v2, v3 must belong to an edge of C(v1, v2, v3) and, moreover, the three
edges must span the cuboid. Thus if the cuboid C(v1, v2, v3) is labeled as in Fig. 9, we
can assume w.l.o.g. that v1 ∈ E��, v2 ∈ E�̄�, and v3 ∈ E�̄�̄ for some �, �, �. Referring to
Fig. 9, it follows that in the definition of C(v1, v2, v3), we must have xmax−xmin = |x1−x2|,
ymax − ymin = |y1 − y3|, and zmax − zmin = |z2 − z3|. Thus

d3(v1, v2, v3) = |x1 − x2| + |y1 − y3| + |z2 − z3|
= ± (x1 ± y1) ∓ (x2 ± z2) ∓ (y3 ∓ z3).

There are eight cases, depending on the 8 possible values of �, �, �; but in each case x1 ±y1
is bounded by (61) or (62), x2 ± z2 is bounded by (63) or (64), and y3 ∓ z3 is bounded by
(65) or (66). In all cases, these bounds produce the same result, namely

d3(v1, v2, v3) � a + b + c −
(
e�� + e�̄� + e�̄�̄

)
� a + b + c − s. (74)

Note that we can always achieve the second inequality in (74) with equality by choosing
v1 ∈ E��, v2 ∈ E�̄�, v3 ∈ E�̄�̄ so that �, �, � attains the minimum in (71). The first inequality
in (74) can be also achieved with equality, because of the assumption that each of (61)–(66)
holds with equality for some point of the icosihexahedron.

Case 2: Suppose that one of the three points v1, v2, v3 is a vertex of C(v1, v2, v3), say
v1 = V���, but none of the other two points is in the diagonally opposite vertex V�̄�̄�̄. Then
one of v2, v3 must belong to an edge that lies opposite V���, say v2 ∈ E�̄�̄, while the other
point must belong to the remaining face of C(v1, v2, v3). Referring once again to Fig. 9, we
see that xmax − xmin = |x1 − x2|, ymax − ymin = |y1 − y2|, and zmax − zmin = |z1 − z3|. It
follows that

d3(v1, v2, v3) = |x1 − x2| + |y1 − y2| + |z1 − z3|
= ± (x1 ± y1 ± z1) ∓ (x2 ± y2) ∓ z3.

As before, there are eight cases depending on the values of �, �, �, but in each case x1 ±
y1 ± z1 is bounded by one of (67)–(70), x2 ± y2 is bounded by (61) or (62), and ∓z3 is
bounded by (60). In all the eight cases, we get the same result, namely

d3(v1, v2, v3) � a + b + c −
(
e�̄�̄ + 
���

)
� a + b + c − t. (75)

Once again, we can attain the first inequality in (75) with equality by choosing suitable
points v1, v2, v3 in the icosihexahedron. The other two cases where v2 ∈ E�̄�̄ or v2 ∈ E�̄�̄
are similar, leading to the minimization among e�̄�̄, e�̄�̄, e�̄�̄ in (72).

Case 3: Now suppose that one of the points v1, v2, v3 is a vertex of C(v1, v2, v3) and
another of the points is the diagonally opposite vertex, say v1 = V��� and v2 = V�̄�̄�̄.
Then xmax − xmin = |x1 − x2|, ymax − ymin = |y1 − y2|, and zmax − zmin = |z1 − z2|, so

d3(v1, v2, v3) = |x1 − x2| + |y1 − y2| + |z1 − z2|
= ± (x1 ± y1 ± z1) ∓ (x2 ± y2 ± z2).



214 T. Etzion et al. / Journal of Combinatorial Theory, Series A 113 (2006) 189–224

We again get eight cases depending on the values of �, �, �, with x1±y1±z1 and x2±y2±z2
both bounded by the same equation—one of (67)–(70)—one from above and the other from
below. This produces

d3(v1, v2, v3) � a + b + c −
(

��� + 
�̄�̄�̄

)
. (76)

We can again achieve the bound in (76) with equality but, as we shall see, this case does
not produce a diametric triple of points in I(a, b, c, {e��, e��, e��}, {
���}).

Since the three cases above are exhaustive, in order to complete the proof of the lemma,
it would suffice to show that


�̄�̄�̄ �
e�̄�̄ + e�̄�̄ + e�̄�̄

2
� min

{
e�̄�̄, e�̄�̄, e�̄�̄

}
(77)

which, in conjunction with (76), would imply that d3(v1, v2, v3)�a + b + c − t in
Case 3. This follows from the fact that each of the 26 inequalities in (60)–(70) must hold with
equality at some point of the icosihexahedron. For example, let � = x, � = y, and � = z.
Adding the first inequalities of (61), (63), (65) yields 2(x +y + z)�ex̄ȳ+ ex̄z̄+ eȳz̄. Thus if
the first inequality in (67) is to hold with equality, we must have 
x̄ȳz̄�1/2

(
ex̄ȳ + ex̄z̄ + eȳz̄

)
.

The other seven ways to assign values to �, �, � can be treated similarly. �

The next task is to determine the volume of I(a, b, c, {e��, e��, e��}, {
���}) in terms
of its parameters. This innocuous task is surprisingly arduous: a complete expression for
|I(a, b, c, {e��, e��, e��}, {
���})| would entail hundreds of cases depending upon the
relationships between various parameters. Moreover, given such an expression, we would
need to solve a nonlinear integer optimization problem involving 23 variables—the pa-
rameters a, b, c, {e��, e��, e��}, {
���} in (60)–(70). This problem does not appear to be
tractable. The situation simplifies considerably, however, with the help of the following:

Conjecture 32. For each diameter d �2, there exists an optimal tristance anticode in G�
3

Ad = I(a, b, c, {e��, e��, e��}, {
���}) with equally truncated edges; that is, such that

ex̄ȳ = ex̄y = ex̄z̄ = ex̄z = eȳz̄ = eȳz̄ = eyz̄ = eyz = exz̄ = exz = exȳ = exy
def= e. (78)

It is easy to see from (72) that if Ad = I(a, b, c, {e��, e��, e��}, {
���}) is an optimal
anticode with equally truncated edges, then its vertices must also be equally truncated:


x̄ȳz̄ = 
x̄ȳz = 
x̄yz̄ = 
x̄yz = 
xȳz̄ = 
xȳz = 
xyz̄ = 
xyz
def= 
. (79)

We will denote an icosihexahedron satisfying (78) and (79) asI(a, b, c, e, 
). It now follows
from (71)–(73) and (77) that if Ad = I(a, b, c, e, 
) then

3e

2
� 
 � 2e. (80)

The condition that each of the inequalities in (60)–(70) holds with equality at some point of
I(a, b, c, e, 
) further implies that 2e� min{a, b, c}. We present the next lemma without
proof; while its proof is not conceptually difficult, it is rather tedious.
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Table 4
Parameters of (conjecturally) optimal tristance anticodes in G�

3

d (mod 3) a b c e

0 d
3 + e d

3 + e d
3 + e (d + 1) −

[√
2/3 (d+1)(d+2)

]

1 d+2
3 + e d−1

3 + e d−1
3 + e (d + 1) −

[√
2/3 (d+1)(d+2) + 1/3

]

2 d+1
3 + e d+1

3 + e d−2
3 + e (d + 1) −

[√
2/3 (d+1)(d+2) + 1/3

]

Lemma 33. Subject to the condition 3/2 e�
�2e� min{a, b, c}, the volume of an icosi-
hexahedron I(a, b, c, e, 
) is given by

|I(a, b, c, e, 
)| = (a + 1)(b + 1)(c + 1) − 2e(e + 1)(a + b + c + 3)

+24e3 + 4

3


(

3
(6e−1) − 9e(3e−1) − (2
+1)(2
−1)
)
.

Using the expression for |I(a, b, c, e, 
)| in Lemma 33 along with (73), it can be
furthermore shown that if Ad = I(a, b, c, e, 
) is an optimal tristance anticode in G�

3 ,
then 
 = 2e. With this, the expression for the volume of the icosihexahedron further
simplifies to

|I(a, b, c, e, 2e)| = (a + 1)(b + 1)(c + 1)

− 2e(e + 1)

(
a + b + c + 3 − 4

3
(2e + 1)

)
. (81)

It remains to maximize the cubic on the right-hand side of (81) subject to the constraints
a + b + c − 3e = d and a�b�c�2e. Note that for each fixed e, we have

|I(a, b, c, e, 2e)| = (a + 1)(b + 1)(c + 1) − const

since a+b+c = d+3e. This immediately shows that the optimal values of a, b, c are given
by c = �d/3� + e with a, b being equal to either c or c + 1. The complete solution to the
optimization problem is given in Table 4, where [
] denotes the integer that is closest to
the real number 
 (rounding). We have verified by exhaustive computer search that the
anticodes in Table 4 are, in fact, the unique optimal tristance anticodes in G�

3 up to diameter
d = 11. Fig. 10 shows some of these anticodes, for diameters d = 9, 10, 11.

4.2. Optimal quadristance anticodes in the grid graph of Z2

Recall that, given distinct points z1, z2, z3, z4 in Z2, the quadristance d4(z1, z2, z3, z4)

is defined as the number of edges in a minimal spanning tree for z1, z2, z3, z4 in the grid
graph G�

2 of Z2. The following expression for quadristance is implicit in [9].
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Fig. 10. Optimal tristance anticodes in G�
3 of diameter d = 9, 10, 11.

Theorem 34. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3), z4 = (x4, y4) be distinct
points in Z2. Let � and � be permutations of {1, 2, 3, 4} such that x�(1) �x�(2) �x�(3)

�x�(4) and y�(1) �y�(2) �y�(3) �y�(4). Then

d4(z1, z2, z3, z4) =
(
x�(4) − x�(1)

)
+
(
y�(4) − y�(1)

)
(82)

provided ��−1 ∈ �, where � is the subgroup of the symmetric group generated by the
permutations (1, 2), (3, 4), and (1, 3)(2, 4). If ��−1 	∈ � then

d4(z1, z2, z3, z4) =
(
x�(4) − x�(1)

)
+
(
y�(4) − y�(1)

)
+ min

{
x�(3) − x�(2), y�(3) − y�(2)

}
. (83)
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Note that one can assume w.l.o.g. that � is the identity permutation. Then d4(z1, z2, z3, z4)

is given by (82) precisely in the eight cases where

y1 �y2 �y3 �y4 , y1 �y2 �y4 �y3 , y2 �y1 �y3 �y4 , y2 �y1 �y4 �y3,

y3 �y4 �y2 �y1 , y3 �y4 �y1 �y2 , y4 �y3 �y1 �y2 , y4 �y3 �y2 �y1.

We next determine the optimal quadristance anticode Ad(z1, z2, z3) ⊂ Z2 centered about
three given points z1, z2, z3, namely the set

Ad(z1, z2, z3)
def=

{
z ∈ Z2 : d4(z1, z2, z3, z)�d

}
. (84)

Clearly Ad(z1, z2, z3) = � for d < d3(z1, z2, z3). As before, we first consider the case
where d = d3(z1, z2, z3). Recall that R(z1, z2) denotes the bounding rectangle of z1, z2.

Lemma 35. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) be distinct points in Z2, and
let � = d3(z1, z2, z3). Write R1 = R(z1, z2), R2 = R(z1, z3), and R3 = R(z2, z3). Then

A�(z1, z2, z3) =
(
R1 ∩ R2

)
∪
(
R1 ∩ R3

)
∪
(
R2 ∩ R3

)
. (85)

Proof. By definition, z ∈ A�(z1, z2, z3) iff d4(z1, z2, z3, z) = d3(z1, z2, z3). This happens
if and only if z belongs to the vertex set of a minimal spanning tree for z1, z2, z3. Hence

A�(z1, z2, z3) =
⋃

T (z1,z2,z3)

{
vertex set of T (z1, z2, z3)

}
,

where the union is over all the minimal spanning trees for z1, z2, z3. Observe that given
any u, v ∈ Z2, the union of all the shortest paths (minimal spanning trees) between u and v

in G�
2 is precisely the bounding rectangle R(u, v). Now consider R(z1, z2, z3), the bounding

rectangle of z1, z2, z3. Since each of the four edges of R(z1, z2, z3) must contain at least
one of the three points, at least one of z1, z2, z3 must be a vertex of R(z1, z2, z3). Thus we
can assume w.l.o.g. that z1 is a vertex of R(z1, z2, z3). We distinguish between two cases.

Case 1: Suppose that one of the other two points, say z3, is the opposite vertex of the
bounding rectangle R(z1, z2, z3), as illustrated on the right-hand side of Fig. 11. It is easy
to see that, in this case, any minimal spanning tree for z1, z2, z3 is a union of a shortest path
from z1 to z2 with a shortest path from z2 to z3. Hence

A�(z1, z2, z3) = R(z1, z2) ∪ R(z2, z3). (86)

Since R2 = R(z1, z3) = R(z1, z2, z3) in this case, we have R1 ∩ R2 = R(z1, z2) and
R2 ∩ R3 = R(z2, z3). It follows that (86) coincides with (85).

Case 2: Suppose that none of the other two points is the vertex of R(z1, z2, z3) opposite
to z1. Then z2 and z3 must belong to the two edges of R(z1, z2, z3) that lie opposite z1. This
case is illustrated on the left-hand side of Fig. 11. As in (30), let xmid and ymid denote the
middle values among x1, x2, x3 and y1, y2, y3, respectively. Write v = (xmid, ymid). Then
any minimal spanning tree for z1, z2, z3 consists of a shortest path from z1 to v along with
the unique shortest path from v to z2 and the unique shortest path from v to z3. Thus

A�(z1, z2, z3) = R(z1, v) ∪ R(z2, v) ∪ R(z3, v). (87)
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z1

z3

z2

v

z3

z1

z2

Fig. 11. Centered quadristance anticodes Ad (z1, z2, z3) for d = d3(z1, z2, z3).

Notice that R(z1, v) = R1 ∩ R2, R(z2, v) = R1 ∩ R3, and R(z3, v) = R2 ∩ R3 (even
though the two rectangles R(z2, v), R(z3, v) are degenerate). Hence, (87) again coincides
with (85), and we are done. �

Theorem 36. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3) be distinct points in Z2. Let d
be an integer such that d �d3(z1, z2, z3), and write c = d − d3(z1, z2, z3). Further define

�1 = max
{
min{x1, x2}, min{x1, x3}

}
, �1 = min

{
max{x1, x2}, max{x1, x3}

}
,

�1 = max
{
min{y1, y2}, min{y1, y3}

}
, 	1 = min

{
max{y1, y2}, max{y1, y3}

}
,

�2 = max
{
min{x1, x2}, min{x2, x3}

}
, �2 = min

{
max{x1, x2}, max{x2, x3}

}
,

�2 = max
{
min{y1, y2}, min{y2, y3}

}
, 	2 = min

{
max{y1, y2}, max{y2, y3}

}
,

�3 = max
{
min{x1, x3}, min{x2, x3}

}
, �3 = min

{
max{x1, x3}, max{x2, x3}

}
,

�3 = max
{
min{y1, y3}, min{y2, y3}

}
, 	3 = min

{
max{y1, y3}, max{y2, y3}

}
.

Then the centered quadristance anticode Ad(z1, z2, z3) is a union of three octagons
O1, O2, and O3, where for i = 1, 2, 3, the octagon Oi consists of all (x, y) ∈ Z2 such
that

�i − c � x � �i + c , �i + �i − c � x + y � �i + 	i + c,

�i − c � y � 	i + c , �i − 	i − c � x − y � �i − �i + c.

Proof. As in Lemma 35, let � = d3(z1, z2, z3). It is not difficult to show that
z ∈ Ad(z1, z2, z3) if and only if the L1-distance from z to (the closest point of) A�(z1, z2, z3)

is at most c = d − �. Lemma 35 proves that A�(z1, z2, z3) is a union of three rectangles.
For each rectangle, the set of all z ∈ Z2 that are at L1-distance at most c from it is an octagon.
Indeed, O1 is precisely the set of all points that are at L1-distance at most c from R1 ∩ R2,
while O2 and O3 are constructed similarly with respect to R1 ∩ R3 and R2 ∩ R3, where
R1, R2, R3 are as defined in Lemma 35. Hence Ad(z1, z2, z3) = O1 ∪ O2 ∪ O3. �
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diameter d = 4

diameter d = 6

diameter d = 5

diameter d = 7

diameter d = 9

diameter d = 8

Fig. 12. Optimal quadristance anticodes in G�
2 of diameter d = 4, 5, . . . , 9.

Now let Ad denote an optimal (unrestricted) quadristance anticode of diameter d in G�
2 .

Arguing as in Lemma 10, it is easy to show that

Ad =
⋂

z1,z2,z3 ∈Ad

Ad(z1, z2, z3). (88)

However, as can be seen from Fig. 11, the sets Ad(z1, z2, z3) are no longer convex and their
general shape (union of three octagons) is not preserved under intersection. Thus (88) and
Theorem 36 do not suffice to determine the shape of Ad . In fact, as we shall see in Fig. 12,
Ad may come in several different shapes, at least for certain diameters.

Nevertheless, we can use an arbitrary shape in order to derive a lower bound on the car-
dinality of Ad . Based on the available numerical evidence (cf. Fig. 12), we will use an
octagon with equally truncated corners, namely the set of all (x, y) ∈ Z2 such that

0 � x � a , c � x + y � a + b − c, (89)

0 � y � b , c − b � x − y � a − c. (90)

We will denote such a set by O(a, b, c). We assume that each of the eight inequalities in
(89) and (90) holds with equality for some point of O(a, b, c); otherwise, we can always
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re-parametrize accordingly. This, in particular, implies that

2c � min{a, b}. (91)

Note that the cardinality of O(a, b, c) is given by (14) with c0 = c1 = c2 = c3 = c. Thus
the next step is to determine the quadristance diameter of O(a, b, c).

Lemma 37. Let O(a, b, c) be the octagon in (89) and (90) and assume w.l.o.g. that a�b.
Then the quadristance diameter of O(a, b, c) is given by

d = a + 2b − 2c. (92)

Proof. Let z1 = (x1, y1), z2 = (x2, y2), z3 = (x3, y3), z4 = (x4, y4) be four arbitrary
points of O(a, b, c), and assume w.l.o.g. that x1 �x2 �x3 �x4. Let � be a permutation such
that y�(1) �y�(2) �y�(3) �y�(4). If � ∈ � so that d4(z1, z2, z3, z4) is given by (82), then

d4(z1, z2, z3, z4) = (
x4 − x1

) + (
y�(4) − y�(1)

)
� a + b � a + 2b − 2c,

where the first inequality follows from (89) and (90) while the second inequality follows
from (91). Otherwise, d4(z1, z2, z3, z4) is given by (83) so that

d4(z1, z2, z3, z4) = (x4 − x1
) + (

y�(4) − y�(1)

) + min
{
x3 − x2, y�(3) − y�(2)

}
(93)

�
(
x4 − x1

) +
(
y�(4) + y�(3) − y�(2) − y�(1)

)
(94)

= (x4 ± y4
) − (

x1 ± y1
) + (±y2 ± y3

)
. (95)

There are four simple cases depending on the signs of y1 and y4 in (95). Observe that, in
view of (94), exactly two of y1, y2, y3, y4 contribute to d4(z1, z2, z3, z4) with a positive
sign and two with a negative sign. This immediately implies the following:

Case 1: d4(z1, z2, z3, z4) = (x4 −y4) − (x1 +y1) + (y2 +y3) � (a−c) − c + (b+b),
Case 2: d4(z1, z2, z3, z4) = (x4 +y4) − (x1 −y1) − (y2 +y3) � (a+b−c) − (c−b).

In the other two cases,y1, y4 contribute tod4(z1, z2, z3, z4)with opposite signs. Hencey2, y3
also have opposite signs, so that the last term in (95) is at most |y2 − y3|�b. Thus

Case 3: d4(z1, z2, z3, z4) � (x4 − y4) − (x1 − y1) + b � (a − c) − (c − b) + b,
Case 4: d4(z1, z2, z3, z4) = (x4 + y4) − (x1 + y1) + b � (a + b − c) − c + b.
The above shows that d4(z1, z2, z3, z4)�a + 2b − 2c for any z1, z2, z3, z4 ∈O(a, b, c).

To see that this bound holds with equality, consider the points z1 = (0, b − c), z2 = (c, 0),
z3 = (a − c, b), z4 = (a, c). For these points d4(z1, z2, z3, z4) = a + 2b − 2c by (91) and
Theorem 34. �

Theorem 38. Let Ad be an optimal quadristance anticode of diameter d in G�
2 . Then

|Ad | �
⌈

d2 + 4d + 3

6

⌉
=
⌈

(d + 1)(d + 3)

6

⌉
.

Proof. The lower bound follows by considering quadristance anticodes of type O(a, b, c).
In view of (14), (91), and Lemma 37, the optimal parameters a, b, c are obtained by max-
imizing |O(a, b, c)| = (a+1)(b+1)−2c(c+1) subject to the constraints a+2b−2c = d

and a�b�2c. The solution to this optimization problem is compiled in Table 5. �
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Table 5
Parameters of (conjecturally) optimal quadristance anticodes in G�

2

d (mod 6) a b c |O(a, b, c)|

0 2d+3
3

d+3
3

d
6

d2+4d+6
6

1 2d+4
3

d+2
3

d−1
6

d2+4d+7
6

2 2d+5
3

d+1
3

d−2
6

d2+4d+6
6

3
2d+6

3
2d
3

d
3

d+3
3

d−3
6

d−3
6

d2+4d+3
6

4 2d+1
3

d+2
3

d−4
6

d2+4d+4
6

5
2d+2

3
2d+2

3

d+1
3

d+4
3

d−5
6

d+1
6

d2+4d+3
6

We have also used exhaustive computer search to find optimal quadristance anticodes
in G�

2 of diameters up to d = 9. The results of this search are presented in Fig. 12, which
shows all the optimal anticodes (up to obvious isomorphisms) for d = 4, 5, . . . , 9. For
d = 3, the optimal quadristance anticodes are simply the five tetromino shapes of [10].

Remark. We observe that—for the first time in this paper—optimal anticodes of a given
diameter do not have a unique shape. Moreover, for d = 3, 5, 9 non-convex shapes occur
among optimal quadristance anticodes, again for the first time in this paper.

Nevertheless, an octagon with equally truncated corners is always among the optimal
shapes in Fig. 12. Hence the lower bound on |Ad | in Theorem 38 is exact at least up to
d = 9. We conjecture that this bound is, in fact, exact for all diameters.

5. Applications of tristance and quadristance anticodes

Our study of tristance anticodes was originally motivated by applications to multi-
dimensional interleaving [5,6,9,14]. A two-dimensional interleaving scheme I(t, r) of
strength t with r repetitions is a labeling I(t, r) : Z2 → {1, 2, . . . , �} such that no in-
teger in the range {1, 2, . . . , �} of I(t, r) appears more than r times among the labels of
any connected subgraph of G�

2 with � t vertices. The integer � is called the interleaving
degree of I(t, r) and denoted deg I(t, r). Interleaving schemes of this kind may be used for
error-control in optical, holographic, and magnetic recording [5,6]. The graphs G∞

2 , GO
2 , and

G�
3 are also relevant for these applications. In each case, the goal is to minimize the inter-

leaving degree for a given strength t and a given number of repetitions r . Usually, the values
of interest are when r is small (say r = 1, 2, 3) and t is large. We note that for r = 1, the
problem has been completely solved in [6]. For r = 2, 3, upper bounds on the interleaving
degree are given in [9]. In particular, it is shown in [9] that there exist interleaving schemes
I(t, 2) with deg I(t, 2) = (3/16)t2+O(t), and I(t, 3) with deg I(t, 3) = (8/81)t2+O(t).

Our results on tristance anticodes provide lower bounds on the minimum possible inter-
leaving degree of I(t, 2) as follows. If Ad is a tristance anticode of diameter d = t − 1,
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then any three points in Ad belong to a connected subgraph with � t vertices, by definition.
Therefore, no integer in the range of I(t, 2) can be used more than twice in labeling the
points of At−1. Hence deg I(t, 2)� |At−1|/2. In conjunction with Theorems 15, 20, 27,
this immediately implies that

deg I(t, 2) �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⌈
t (t + 1)

7

⌉
in the grid graph G�

2 ,

⌈
t (t + 1)

6

⌉
in the hexagonal graph GO

2 ,

⌈
2t2 − 1

7

⌉
in the infinity graph G∞

2 .

(96)

For the grid graph G�
2 , a better bound was recently given in [14] in the case where t is

even. In fact, it is shown in [14] that for even t the minimum possible interleaving degree
of I(t, 2) in G�

2 is exactly
⌊
(3t2+ 4)/16

⌋
(the problem is still open for odd t). For GO

2
and G∞

2 , the bounds in (96) are the best known. Using similar reasoning, Theorem 38
implies that

deg I(t, 3) �
⌈

t (t + 2)

18

⌉

in G�
2 . This bound is also the best known (cf. [5]). Finally, the results of §4.1 herein imply

a lower bound on deg I(t, 2) in the three-dimensional grid graph G�
3 . For this graph, no

upper bounds are yet known and even the problem of determining deg I(t, 1) is still open.
Another interesting application of tristance and quadristance anticodes is related to mul-

ticasting in processor networks. The general topology of such a network is often described
by one of the graphs G�

2 , GO
2 , G∞

2 , G�
3 , G∞

3 (specifically, G�
2 and G�

3 are known as mesh
networks, while GO

2 is sometimes called the hexagonal grid network). Each processor is
viewed as a vertex in the graph capable of exchanging messages only with its neighbors.
When a given processor needs to broadcast a message to k other processors (this is called
multicasting), the most efficient solution is to send the message over the edges of a minimal
spanning tree for the k + 1 processors. This minimizes the total number of hops, where
a hop is defined as communication between two neighboring processors. In general, then,
how would one place the largest number of processors in such a network so that any one can
multicast to any other two (respectively, any other three) with at most d hops? The answer
is precisely the tristance anticode Ad (respectively, the quadristance anticode Ad ) in the
corresponding graph. Given a specific source processor P0, asking what is the largest set
of processors such that P0 can multicast to any two of them, or any three of them, with at
most d hops gives rise to centered tristance, or quadristance, anticodes.

Our results for the grid graph G�
2 also have applications to the game of Go. Indeed, the

game is played on a 19 × 19 square subgraph of G�
2 , called the goban. Two players—Black

and White—alternate moves, each move consisting of one stone of the player’s color being
placed on one of the 361 vertices of the goban.A set of stones of the same color is considered
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a connected group if the induced subgraph of G�
2 is connected. Thus our results in §2.2,

§2.3, and §4.2 answer the following questions:

• How should three stones be played on an empty goban, so that they can then be all
connected with at most k moves?

• Given a stone, how should two stones be played on an empty goban, so that all three
stones can then be connected with at most k moves?

• Given two stones, where could one play a third stone so that all three can then be
connected with at most k moves?

• Given three stones, where could one play a fourth stone so that all four can then be
connected with at most k moves?

The answers to these questions are, respectively, the tristance anticode Ak+2 given in
Theorem 15, the centered tristance anticode Ak+2(z0) in Theorem 7, the centered tristance
anticodeAk+2(z1, z2) inTheorem 8, and the centered quadristance anticodeAk+3(z1, z2, z3)

in Theorem 36. It is interesting that the answers to the third and fourth questions above are
drastically different (compare Figs. 2 and 11), even though the questions themselves appear
to be similar. Of course, all these results assume an empty goban and no active opposition to
the desired connection. Nevertheless, they could be of interest for computer Go applications
[15]. We also have an algorithmic solution (to be presented elsewhere) for the case where
the goban already has black and white stones in arbitrary positions.
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