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1. Introduction

For a prime power q, let Fq be the finite field with q elements. For a positive integer α, 
let Fqα be its algebraic extension of degree α, that can be viewed as a vector space of 
dimension α over Fq by fixing an ordered basis ω = (ω1, . . . , ωα) of Fqα over Fq. For an 
integer n, a code C ⊆ Fn

qα is called linear over Fqα (or linear, in short) if it is a linear 
subspace of Fn

qα , in which case its dimension is denoted by k.
Traditionally, the coding-theoretic literature discusses encoding and decoding of linear 

codes under erasures, i.e., where codeword symbols are replaced by some symbol ∗ outside 
the field, and errors, where codeword symbols are replaced by arbitrary field elements. 
The mathematical framework for erasures and errors is very well understood, and bounds 
and matching constructions are well known in most cases.

However, in some scenarios, the decoder receives each codeword symbol sequentially, 
i.e., each codeword symbol is received in some gradual manner, rather than instanta-
neously. When these scenarios involve codes over Fqα , codeword symbols are viewed as 
vectors over Fq, and the decoder receives these vectors one Fq element after another. In 
this paper we study bounds and code constructions for this scenario. That is, codes that 
enable the decoder to complete the decoding process once sufficiently many Fq symbols 
are obtained regardless of their source, and in particular, even if Fqα-symbols have not 
been obtained in full. Practical applications which present this behavior, for which our 
techniques are useful, are discussed in the sequel.

In the next section we lay the mathematical framework by which we study the problem, 
discuss potential applications, and summarize our contributions. Several constructions 
of codes capable of correcting hierarchical erasures are given in Section 3 while upper 
and lower bounds are discussed in Section 4.

2. Preliminaries

2.1. Framework and problem definition

Let c = (ci)ni=1 ∈ Fn
qα be a codeword in a linear code. By fixing a basis1 ω =

(ω1, . . . , ωα) of Fqα over Fq, consider each ci as a vector in Fα
q , and denote (by abuse of 

notation) ci = (ci,1, . . . , ci,α) where ci =
∑α

j=1 ci,jωj .
For an integer m, an m-hierarchical erasure in c amounts to erasing at most m

left-justified entries of all ci’s. That is, for every m-hierarchical erasure in c, there 
exists a tuple (t1, . . . , tn) of nonnegative integers whose sum is at most m such 
that c1,1, . . . , c1,t1 , c2,1, . . . , c2,t2 , . . ., cn,1, . . . , cn,tn are replaced by ∗. For example, 
for α = 3, n = 4, and m = 5, all of the following are examples of m-hierarchical 
erasures in a codeword c ∈ F4

q3 :

1 Typically, bases are considered as sets, not as vectors. In this paper however, we consider bases of Fqα

over Fq as (row) vectors of length α over Fqα , the entries of whom span Fqα over Fq.
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((∗, c1,2, c1,3), (∗, ∗, c2,3), (∗, c3,2, c3,3), (∗, c4,2, c4,3))
((c1,1, c1,2, c1,3), (∗, ∗, ∗), (∗, c3,2, c3,3), (∗, c4,2, c4,3))
((∗, ∗, c1,3), (c2,1, c2,2, c2,3), (∗, ∗, c3,3), (∗, c4,2, c4,3)) . (1)

In contrast, the following is not a hierarchical erasure, since the erasures are not 
left-justified:

((c1,1, ∗, c1,3), (∗, c2,2, c2,3), (∗, ∗, c3,3), (∗, c4,2, c4,3)) .

Given a basis ω of Fqα over Fq, a linear code C is called an m-correcting code over ω if it 
is possible to correct any m-hierarchical erasure, where codeword symbols are represented 
in the basis ω. The goal of this paper is, given the parameters n, m, and α, to find a 
basis ω and construct a linear m-correcting code over ω, with maximum dimension k

and minimum base-field size q.
For positive integers α, n, and m let

Nn
α,m �

{
(t1, t2, . . . , tn)

∣∣∣∣∣ 0 � ti � α for all i and
n∑

i=1
ti � m

}
.

In the special case where α = m we use the shorthand notation Nn
α . An element t ∈ Nn

α,m

is called an erasure pattern, and it uniquely determines the locations of the ∗ symbols in a 
hierarchical erasure. For instance, the erasure patterns which appear in (1) are (1, 2, 1, 1), 
(0, 3, 1, 1), and (2, 0, 2, 1), respectively. For a set T ⊆ Nn

α,m, we say that C ⊆ Fn
qα is T -

correcting over ω if all erasure patterns in T can be corrected. An Nn
α,m-correcting code 

is called an m-correcting code.
We make repeated use of the following notations. For an integer � let [�] � {1, 2, . . . , �}. 

For c ∈ F �
qα and a basis ω of Fqα over Fq let

wω(c) �
∑
i∈[�]

max{j ∈ [α] | ci,j �= 0},

where the ci,j ’s are the coefficients of the entries c in the representation over ω, as 
explained above, and the subscript ω is omitted if clear from the context.

Finally, we note that to the best of our knowledge, this paper is the first to study 
linear hierarchical erasure correcting codes. Yet, similar problems have been studied in 
the past. The closest one is [2], in which exactly the same erasure patterns have been 
studied, bounds formulated, and constructions provided. However, the codes there are 
linear after having each element from Fqα expanded to its coordinate vector of length 
α over Fq in some basis ω. But when considered as a code over Fqα , the code is closed 
under addition and multiplication only by scalars from Fq, and not necessarily under 
multiplication by scalars from Fqα , namely, it is not necessarily linear. Such codes are 
sometimes referred to as vector-linear codes. This work was later generalized in [3], but 
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still under the vector-linear coding framework. In another recent work [4], the decoder 
does not access the entire Fqα code symbol, but unlike our paper, it is allowed to freely 
choose the function to extract from the symbol.

2.2. Potential applications

Linear codes have widespread applications in coding for distributed storage sys-
tems [5]. Normally, a database x ∈ Fk

qα is mapped to a codeword c ∈ Fn
qα , and each 

codeword symbol is stored on a different storage server. Then, in cases where some servers 
might be unavailable due to hardware failures, the reconstruction of the entire database x
by communicating with the storage servers corresponds to (ordinary) erasure correction.

However, it has been demonstrated recently that modern distributed systems are 
prone to the stragglers phenomenon [6], which are servers that respond much slower than 
the average. Moreover, communicating a large amount of data from a server does not 
occur instantaneously, but rather as an ordered sequence of bits or packets. Therefore, 
it is evident that our problem is directly applicable to storage systems that employ 
linear codes, and suffer from the straggler phenomenon. For applications of this sort, one 
might be more interested in the regime α � n, since the number of storage servers in 
the systems is likely to be much smaller than the content of each individual server.

Additional applications can be found in flash storage devices that employ low-density 
parity-check (LDPC) codes. A flash memory cell can store 2α distinct charge levels, each 
representing a stored binary vector of length α. Reading the cell can be done by applying 
a series of 2α − 1 threshold tests, ordered in a way that recovers the α bits one after 
another.2 In the event that this series of threshold tests discontinues abruptly due to 
hardware failures, the missing bits from the readout value correspond to a hierarchical 
erasure. A common and effective approach to decoding LDPC codes consists of variable 
nodes, representing the codeword symbols, and check nodes, which represent a linear 
combination of variable nodes. Then, decoding is performed in an iterative manner, 
where variable nodes communicate with check nodes and vice versa [7].

Each check node represents an equation
∑n

i=1 hixi = 0, where each xi ∈ Fqα is a 
variable node representing a value contained in a flash memory cell, and the hi’s are 
pre-determined coefficients in Fqα . It is readily verified that if the right kernel of the row 
vector h = (hi)ni=1 is an m-correcting code, one can resolve any m-hierarchical erasure in 
the code symbols (x1, . . . , xn). For applications of this sort, one might be more interested 
in the regime n � α, since the typical number of bits stored per cell is much smaller than 
a useful codeword length n. Decoding of LDPC codes with m-correcting check nodes was 
studied in [8,9], which served as the main inspiration for the current paper.

2 While a single cell may be tested using only α tests using a binary-search algorithm, in a typical flash 
memory a threshold test is administered to a large array of cells at once. Thus, typically, some cells in 
the array would test below the threshold and some above. To find out the charge levels in all the cells we 
would typically need to test all 2α − 1 thresholds. Nonetheless, the thresholds may be ordered to test at 
1/2-range, 1/4-range, 3/4-range, and so on, making the first test obtain the most-significant bit of each 
cell, the following two tests to obtain the second-most-significant bit, and so on.
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2.3. Universally decodable matrices

The problems in this paper are intimately connected to Universally Decodable Matrices
(UDMs) [10,11], which are a useful tool in error correction of slow-fading channels [12].

Definition 1 ([10, Def. 1]). For m � α, matrices A1, . . . , An ∈ Fα×m
q are called Uni-

versally Decodable Matrices (UDMs) if for every t = (t1, . . . , tn) ∈ Nn
α,m the following 

condition is satisfied: the matrix composed of the first t1 rows of A1, the first t2 rows 
of A2, ..., the first tn rows of An, has full rank.

In the following theorem let Iα×m be the first α rows of an m ×m identity matrix. 
Similarly, let Jα×m be the first α rows in the anti-identity matrix, i.e., the matrix which 
contains 1’s in its anti-diagonal, and zero elsewhere.

Theorem 1 ([11, Prop. 14]). Let n, m, and α be positive integers, let q be a prime power 
such that q � n −1, and let γ be a primitive element in Fq. Then, the following are α×m

UDMs over Fq

A0 � Iα,m, A1 � Jα,m, A2, . . . , An−1 where

(Ai+1)a,b =
(
b

a

)
γ(i−1)(b−a) for (i, a, b) ∈ [n− 2] × [α] × [m].

UDMs will be used in Subsection 3.2 to define the parity check matrix of the con-
structed codes. Further, in Appendix A it is shown that the important special case α = m

is tightly connected to the existence of UDMs with a certain mutual eigenvector.

2.4. Main lemma

Most of the results in this paper are based on the following lemma. It is stated gen-
erally for T -correcting codes for any T ⊆ Nn

α,m, and specifies to m-correcting code by 
choosing T = Nn

α,m. For an erasure pattern t ∈ Nn
α,m and a basis ω, denote

Xt = Xt(ω) �
〈
{(ωi, 0, . . . , 0)}i∈[t1]

〉
⊕〈

{(0, ωi, 0, . . . , 0)}i∈[t2]
〉
⊕

· · ·〈
{(0, . . . , 0, ωi)}i∈[tn]

〉
, (2)

where each vector in (2) is of length n, 〈·〉 denotes span over Fq, and ⊕ is the sum of 
subspaces that intersect trivially. For example, for n = 3, m = 4, and t = (2, 1, 1) ∈ N 3

2,4
we have Xt = 〈(ω1, 0, 0), (ω2, 0, 0), (0, ω1, 0), (0, 0, ω1)〉. Note that the elements of Xt
are precisely the ones that are indistinguishable from the zero vector under the erasure 
pattern t.
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Lemma 1. For any T ⊆ Nn
α,m, a linear code C ⊆ Fn

qα is T -correcting over ω if and only 
if C ∩ Xt = {0} for every t ∈ T .

Proof. To prove one direction, assume that C is T -correcting. If C contains a nonzero 
codeword which belongs to Xt for some t ∈ T , then this codeword is indistinguishable 
from the zero word under the erasure pattern t, which implies that t is not correctable.

Conversely, assume that C ∩ Xt = {0} for every t ∈ T . If C is not T -correcting, it 
follows that there exist two distinct words

c(1) =
(
(c(1)1,1, . . . , c

(1)
1,α), . . . , (c(1)n,1, . . . , c

(1)
n,α)

)
c(2) =

(
(c(2)1,1, . . . , c

(2)
1,α), . . . , (c(2)n,1, . . . , c

(2)
n,α)

)

that are indistinguishable after some erasure pattern t = (ti)ni=1 ∈ T . This indistin-
guishability implies that c

(1)
i,j = c

(2)
i,j for every (i, j) ∈ [n] × ([α] \ [ti]); and since the code 

is linear, it follows that d � c(1)−c(2) belongs to C as well. However, it is readily verified 
that d is a nonzero codeword in C ∩ Xt, a contradiction. �
2.5. Our contribution

We begin in Subsection 3.1 with a construction for the parameters (n, k, m) = (2, 1, α). 
The well-known trace operator is used in Subsection 3.2 to construct m-correcting codes 
that are better suited for the regime n � α.

Since extending these two constructions to other parameters proved to be difficult, in 
Subsection 3.3 we resort to restricted types of erasure patterns called balanced and the 
important case k = n − 1, which generalizes the prevalent parity code. In Subsection 3.4
we discuss power erasure patterns, that generalize the balanced ones, and provide a 
code construction for k = n − 1 at the price of a larger base field than for balanced 
patterns. We conclude the constructive part of the paper in Subsection 3.5, by showing 
that Gabidulin codes can correct yet another restricted type of erasure patterns. The 
parameters for all the constructions in this paper are given in Table 1. Finally, several 
simple upper bounds and an existential lower bound are given in Section 4.

3. Constructions

3.1. α-correcting codes of length two

Theorem 2. For any prime power q and any even α ∈ N, the code

C �
{
c ∈ F2

qα | (1, b) · cᵀ = 0
}

is α-correcting, where b is a root of an irreducible quadratic polynomial over Fq.



N. Raviv et al. / Finite Fields and Their Applications 68 (2020) 101743 7
Table 1
Summary of constructions.

Subsection Field Parameters Patterns Tool
3.1 Any n = 2

k = 1
m = α even

N 2
α Irreducible polynomial

3.2 q � n − 1 k � n − m Nn
α,m Trace, dual bases

3.3 q � n − 1
α = 2β

k = n − 1
m = α

Nn
α|bal Subfield independence

3.4 q � α
2 n + 1

α = 2β

α
2 |q − 1

k = n − 1
m = α

Nn
α|pow Determinant

3.5 Any k = n − r
α � n � r

Nn
r,nr Gabidulin codes

To prove this theorem, the following lemmas are given. In what follows, for an ele-
ment b ∈ Fqα and an even α, a basis ω = (ω1, . . . , ωα) of Fqα over Fq is called b-symmetric
if ωα−i+1 = bωi for all i ∈ [α/2]; namely, if

ω = (ω1, ω2, . . . , ωα/2, bωα/2, . . . , bω2, bω1).

Lemma 2. For any even α ∈ N and any prime power q, there exists a b-symmetric basis 
of Fqα over Fq, where b ∈ Fqα is a root of an irreducible quadratic polynomial P (x)
over Fq.

Proof. Denote α = 2t�, where � is odd and t � 1. We prove this claim by induction on t. 
For t = 1 let ω1, . . . , ω� be a basis of Fq� over Fq. Notice that P (x) remains irreducible 
when seen as a polynomial over Fq� ; otherwise, we have that P (x) is a minimal polynomial 
of some element in Fq� , whose degree does not divide �, a contradiction. Hence, we have 
that b /∈ Fq� , and thus (ω1, . . . , ω�, bω�, . . . , bω1) is a b-symmetric basis of Fqα over Fq.

For t > 1, by the induction hypothesis there exists a b-symmetric basis (ω1, . . . , ωα/2)
of Fqα/2 over Fq. By choosing any γ ∈ Fqα \ Fqα/2 , it is readily verified that

ω � (γω1, ω1, . . . , γωα/4, ωα/4, ωα/4+1, γωα/4+1, . . . , ωα/2, γωα/2)

= (γω1, ω1, . . . , γωα/4, ωα/4, bωα/4, bγωα/4, . . . , bω1, bγω1)

is a b-symmetric basis of Fqα over Fq, where the last equality follows from the induction 
hypothesis. �
Lemma 3. If ω = (ωi)i∈[α] is a b-symmetric basis, with b ∈ Fqα being a root of an 
irreducible quadratic polynomial P (x) = x2 + a1x + a0 over Fq, then

〈bω1, bω2, . . . , bωt〉 = 〈ωα, ωα−1 . . . , ωα−t+1〉

for every t ∈ [α].
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Proof. If t � α/2, then the claim follows from the definition of a b-symmetric basis. 
If t � α/2 + 1, we have that

〈bω1, . . . , bωt〉 =
〈
{bωi}α/2i=1

〉
+

〈
{bωi}ti=α/2+1

〉
=

〈
{ωi}αi=α/2+1

〉
+
〈
{b2ωα−i+1}ti=α/2+1

〉
=

〈
{ωi}αi=α/2+1

〉
+
〈
{(−a1b− a0)ωα−i+1}ti=α/2+1

〉
=

〈
{ωi}αi=α/2+1

〉
+
〈
{−a1ωi − a0ωα−i+1}ti=α/2+1

〉
=

〈
{ωi}αi=α/2+1

〉
+
〈
{ωi}α/2i=α−t+1

〉
= 〈ωα, ωα−1, . . . , ωα−t+1〉. �

Lemma 2 and Lemma 3 imply Theorem 2 as follows.

Proof of Theorem 2. Let ω be a b-symmetric basis of Fqα over Fq, as guaranteed by 
Lemma 2. According to Lemma 1, it suffices to prove that C∩Xt = {0} for every t ∈ N 2

α. 
Assume to the contrary that there exists t ∈ N 2

α and a nonzero codeword c = (c1, c2) ∈ C
such that c ∈ Xt(ω). This readily implies that

c1 ∈ 〈ω1, . . . , ωt1〉, (3)

c2 ∈ 〈ω1, . . . , ωt2〉, and (4)

c1 + bc2 = 0. (5)

Furthermore, Lemma 3 and Eq. (4) imply that bc2 is in 〈ωα, ωα−1, . . . , ωα−t2+1〉. 
Since t1 + t2 < α + 1, it follows that t1 < α− t2 + 1, and hence (3) implies that (5) is a 
sum of elements from trivially intersecting subspaces that results in zero, and hence c1
and bc2 must both be zero. Since b is nonzero, this implies that (c1, c2) = (0, 0), a con-
tradiction. �
Remark 1. An alternative proof for this construction can be obtained by viewing it as 
a pair of UDMs with the added property that they share an eigenvector whose entries 
span Fqα over Fq. More details on this view (for general n ≥ 2) are given in Appendix A.

3.2. m-Correcting codes from traces

In this section we make use of the trace operator Tr [13, Def. 2.22] and dual bases [13, 
Def. 2.30]. These are well-studied notions in the theory of finite fields, and are extensively 
used in coding techniques for distributed storage systems (e.g., [14,15]).

The trace of an element c ∈ Fqα (with respect to Fq) is defined as

Tr(c) � c + cq + cq
2
+ . . . + cq

α−1
.
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The trace function is linear over Fq, i.e., Tr(γa +δb) = γ Tr(a) +δTr(b) for every γ, δ ∈ Fq

and a, b ∈ Fqα . Two bases ω = (ωi)αi=1 and μ = (μi)αi=1 are called dual if

Tr(ωi · μj) =
{

0 if i �= j,
1 if i = j,

and for every basis there exists a unique dual basis [13, Def. 2.30].

Theorem 3. For positive integers m ≥ α, let {Ai}i∈[n] be α×m UDMs over Fq, and let μ
be a basis of Fqα over Fq. Then, the code

C �
{
(c1, . . . , cn) ∈ Fn

qα | (Aᵀ
1μ

ᵀ| · · · |Aᵀ
nμ

ᵀ) · (c1, . . . , cn)ᵀ = 0
}

is m-correcting over the dual ω of μ, and dim C � n −m.

Proof. Assume to the contrary that there exists t ∈ Nn
α,m and a nonzero codeword c ∈

C such that c ∈ Xt(ω). Therefore, any codeword symbol ci can be written as ci =∑
j∈[ti] ci,jωj for some coefficients ci,j ∈ Fq, and hence

μᵀci =

⎛
⎜⎜⎜⎝

∑
j∈[ti] ci,jωjμ1∑
j∈[ti] ci,jωjμ2

...∑
j∈[ti] ci,jωjμα

⎞
⎟⎟⎟⎠ .

Thus, for every � ∈ [m], the �’th entry of the equation
∑

i∈[n] A
ᵀ
i μ

ᵀci = 0 equals

∑
i∈[n]

∑
r∈[α]

A
(r,�)
i

∑
j∈[ti]

ci,jωj · μr = 0,

where A
(r,�)
i is the (r, �)’th entry of Ai. Applying the trace function on both sides, and 

exploiting the linearity of the trace and the fact that ω and μ are dual, yields
∑
i∈[n]

∑
r∈[ti]

A
(r,�)
i ci,r = 0 for every � ∈ [m].

In turn, this implies that the vector (c1,1, . . . , c1,t1 , · · · , cn,1, . . . , cn,tn) is in the left kernel 
of ⎛

⎜⎜⎜⎜⎝
A

(1:t1)
1

A
(1:t2)
2
...

A
(1:tn)
n

⎞
⎟⎟⎟⎟⎠ ,
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where A
(1:ti)
i is a matrix which contains the top ti rows of Ai, which contradicts the 

definition of UDMs. The bound dim C � n − m follows since C is the right kernel of 
an m × n matrix. �

In light of the bound dim C � n −m that is given above, one might prefer to employ 
this construction in the regime n � α. However, for the case of even m = α = n, one 
can guarantee dim C > 0 by using techniques from Subsection 3.1. The proof is given in 
Appendix B.

Corollary 1. For even m = α = n ∈ N, let {Ai}ni=1 be α× α UDMs such that A1 is the 
identity matrix, and

A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1

. .
.

1
−a0 −a1

. .
. . . .

−a0 −a1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where x2 + a1x + a0 is an irreducible quadratic polynomial over Fq with a root b ∈ Fqα . 
In addition, let μ be a b-symmetric basis (see Lemma 2), and let ω be its dual. Then, 
the code

C �
{
(c1, . . . , cn) ∈ Fn

qα | (Aᵀ
1μ

ᵀ| · · · |Aᵀ
nμ

ᵀ) · (c1, . . . , cn)ᵀ = 0
}

is an α-correcting code over ω with dim C � 1.

3.3. Correcting balanced erasure patterns

The case k = n − 1 and m = α is of particular importance, since it generalizes 
the widely used parity code (for storage applications), and corresponds to hierarchical 
erasure correction in check nodes of LDPC codes (see Subsection 2.2). This case is not 
handled well by previous subsections; in Subsection 3.1 it necessitates n = 2 (i.e., a short 
code), and in Subsection 3.2 one must have m = 1 (i.e., low erasure correction) to get 
k = n − 1. Hence, in this subsection we focus on this case, and show a code construction 
which protects against erasure patterns that we call balanced. This case is also addressed 
in Subsection 3.4 which follows, where a stronger erasure correction is guaranteed at the 
price of a larger base field, by using similar techniques.

Assume that α = 2β for some integer β. An erasure pattern t ∈ Nn
α is called balanced 

if there exists an integer 0 � i � min{β, log n} (where the logarithm is to base 2) and a 
set J ⊆ [n] with |J | ≤ 2i, such that for all j ∈ [n],
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{
tj ≤ α

2i if j ∈ J ; and
tj = 0 otherwise.

For example, for n = 4 the erasure patterns

(α/2, 0, α/2, 0), and

(α/4, α/4, α/4, α/4)

are balanced, whereas (α/2, α/4, α/4, 0) is not. The set of all balanced erasure patterns 
is denoted by Nn

α|bal.
We consider bases ω = (ω1, . . . , ωα) of Fqα over Fq that we call recursive, i.e., bases 

such that
〈
ω1, . . . , ωα/2i

〉
= Fqα/2i for all 0 � i � β. For a vector h = (h1, . . . , hn) ∈ Fn

qα

we define a code

C = C(h) � ker(h) �
{
c ∈ Fn

qα

∣∣hcᵀ = 0
}
. (6)

The ability of the code C to protect against balanced erasure patterns reduces to linear 
independence of some subsets of the hi’s over certain subfields of Fqα , as we now show.

Lemma 4. The code C (6) is Nn
α|bal-correcting over a recursive basis ω if and only if for 

every 1 � i � min{β, logn}, every 2i-subset of {hj}j∈[n] is a linearly independent set 
over Fqα/2i .

Proof. Assume that every 2i-subset of {hj}nj=1 is linearly independent over Fqα/2i for 
every 0 � i � min{β, log n}. According to Lemma 1, if C is not Nn

α|bal-correcting, then 
there exists a nonzero c = (c1, c2, . . . , cn) in C and an erasure pattern t ∈ Nn

α|bal such 
that c ∈ C ∩Xt. By the definition of Nn

α|bal, it follows that there exists an integer i and a 
set J ⊆ [n] of size at most 2i such that tj � α/2i if j ∈ J , and tj = 0 otherwise. Hence, 
we have that

cj ∈
〈
ω1, . . . , ωα/2i

〉
= Fqα/2i for all j ∈ J,

which implies that
∑

j∈J hjcj = 0. However, this sum is a linear combination of a 2i-
subset of {hj}j∈[n] over Fqα/2i , a contradiction. The proof of the inverse direction is 
similar. �

In what follows we construct an [n, n −1]qα Nn
α|bal-correcting code, for any n and any α

over a base field Fq with q � n −1. To this end, recall that α = 2β , and let {bi}i∈[β] ⊆ Fqα

such that

Fqα/2i−1 = Fqα/2i (bi), (7)

for all i ∈ [β], i.e., we consider each subfield Fqα/2i−1 as a vector space of dimension two 
over F α/2i by fixing the basis {1, bi}.
q
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For 0 � i � β and a 2i × n matrix M over Fqα/2i , let

Hi(M) � UH(M) + biLH(M),

where UH and LH denote the upper half and lower half of M , respectively. Further, for 
an integer 1 � i � β and an α× n matrix M over Fq let

H(i)(M) � Hβ−i+1(· · · (Hβ−1(Hβ(M)))),

H(0)(M) � M.

Throughout the remainder of this section we use a recursive basis induced by 
the {bi}i∈[β] from (7). Namely, the basis is

ω � Wβ , where W0 � (1), and Wi+1 � Wi|(bβ−i ·Wi), (8)

and | denotes concatenation. Alternatively,

ω � (1, b1) ⊗ (1, b2) ⊗ · · · ⊗ (1, bβ),

where ⊗ denotes the Kronecker product.
Finally, recall that a Vandermonde matrix defined by ν = (ν1, . . . , νn) ∈ Fn

q is a matrix 
whose (i, j)’th entry equals νi−1

j . We say that a matrix V is a generalized Vandermonde
(GV) matrix defined by ν if V = M · diag(d) for some Vandermonde matrix M defined 
by ν and some vector d = (d1, . . . , dn) with nonzero entries. Note that a GV matrix V ∈
Fr×s
q for some integers s � r, which is defined by s distinct field elements, is also an 

MDS matrix, i.e., all its r × r submatrices are invertible.

Theorem 4. For an integer α = 2β and an integer n, let q be a prime power such that q �
n, and let V ∈ Fα×n

q be a Vandermonde matrix defined by distinct n elements. Then, for 
h = (h1, h2, . . . , hn) � H(β)(V ), the code C � ker(h) is a Nn

α|bal-correcting code over the 
basis ω of (8).

The proof of this theorem requires the following lemma.

Lemma 5. Let α = 2β and let V be an α×n GV matrix defined by ν = (ν1, . . . , νn) ∈ Fn
q . 

Then for all 0 � i � β, the matrix H(i)(V ) is a GV matrix over Fq2i also defined by ν.

Proof. We prove this claim by induction, in which the base case i = 0 is clear. For i � 1, 
assume that Vi � H(i)(V ) ∈ F (α/2i)×n

q2i is a GV matrix, and let Ui and Li be its upper 
and lower halves, respectively. Since Vi is a GV matrix, there exists a Vandermonde 

matrix M ∈ F (α/2i)×n

q2i defined by ν and a vector d ∈ (F∗
q2i )n such that Vi = M diag(d). 

Hence, it follows that Ui = UH(M) diag(d) and Li = LH(M) diag(d), and therefore
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Vi+i = H(i+1)(V ) = Hβ−i(Vi)

= Ui + bβ−iLi

= UH(M) diag(d) + bβ−iLH(M) diag(d).

Now, since M is a Vandermonde matrix, it is readily verified that LH(M) =
UH(M) diag(x) for some x = (x1, . . . , xn) ∈ (F∗

q2i )n, and thus

Vi+i = UH(M) diag(d) + bβ−iUH(M) diag(x) diag(d)

= UH(M) (diag(d) + bβ−i diag(x) diag(d))

= UH(M) diag((1 + bβ−ix) � diag(d)),

where � denotes the pointwise product of vectors (also called the Hadamard product), 
and 1 is the all 1’s vector. Since UH(M) is a Vandermonde matrix defined by ν, to 
finish the proof it suffices to show that the entries of (1 + bβ−ix) � diag(d) are nonzero. 
Assuming otherwise, it follows that (1 + bβ−ixj)dj = 0 for some j ∈ [n]; and since dj �= 0
and xj �= 0, we have that bβ−i = −x−1

j . However, −x−1
j ∈ Fq2i and bβ−i /∈ F

q
α

2β−i
= Fq2i , 

a contradiction. �
We are now ready to prove Theorem 4.

Proof of Theorem 4. According to Lemma 4, it suffices to show that for any 1 � i �
min{logn, β}, any 2i-subset of {hj}j∈[n] is linearly independent over Fqα/2i . For any 

such i, let J ⊆ [n] be a subset of size 2i, and let HJ ∈ F2i×2i

qα/2i be the matrix whose 

columns are the representations of all elements in {hj}j∈J over the (ordered) basis Wi. 
Notice that {hj}j∈J is a linearly independent set over Fqα/2i if and only if HJ is invertible. 
However, HJ is a 2i× 2i submatrix of H(β−i)(V ) ∈ F2i×n

qα/2i , which is a GV matrix defined 
by distinct elements according to Lemma 5, and hence also an MDS matrix. Thus, HJ

is invertible, and the claim follows. �
Remark 2. According to Theorem 4 it follows that

hj =
β∏

i=1

(
1 + bia

α/2i

j

)
for all j ∈ [n],

where a1, . . . , an are the distinct Fq-elements in the underlying Vandermonde matrix V .

Remark 3. The above construction is closely related to a classical coding theoretic notion 
called alternant codes [16, Sec. 5.5]. An [n, k]q Generalized Reed-Solomon (GRS) code is 
a linear code whose parity check matrix is an (n −k) ×n GV matrix over Fq. An alternant 
code Calt is defined as C ∩ Fn, where C is an [n, k]q GRS code and F is a subfield of Fq. 
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Let α < n, and for any 0 � i � β let Ci be the right kernel of H(i)(V ) over Fq2i . Notice 
that Lemma 5 shows that Ci is an [n, n − α/2i]q2i GRS code. Furthermore, it is readily 
verified that Cj is an alternant code of Ci whenever j � i. Lemma 5 also implies that the 
codes we construct here have the property that all the alternant codes in the hierarchy 
are of maximum distance, and in cases where q is prime, these are all possible alternant 
codes.

3.4. Correcting power erasure patterns

We generalize the results of the previous section by considering a larger family of 
erasure patterns, Nn

α|pow, that includes balanced patterns, i.e., Nn
α|bal ⊆ Nn

α|pow. As 
before, let α = 2β for some positive integer β. An erasure pattern t ∈ Nn

α is called a 
power erasure pattern if there exists J ⊆ [n] such that

tj =
{

α
2mj j ∈ J,

0 otherwise,

where 0 ≤ mj ≤ β is an integer for all j ∈ J , and 
∑

j∈J 2−mj = 1. Thus, for example, 
when n = 4, (α/2, α/4, α/4, 0) is a power erasure pattern but is not a balanced erasure 
pattern.

Theorem 5. For an integer α = 2β, and an integer n, let q be a prime power such that 
α
2 |q − 1. Let ν1, . . . , νn ∈ Fq be arbitrary non-zero scalars such that να/2j �= ν

α/2
k for 

all j �= k. Let V ∈ Fα×n
q be a Vandermonde matrix defined by (ν1, . . . , νn). Then, for 

h = (h1, h2, . . . , hn) � H(β)(V ), the code C � ker(h) is an Nn
α|pow-correcting code over 

the basis ω of (8).

We shall require the following natural extension of Lemma 4.

Lemma 6. The code C of (6) is Nn
α|pow-correcting over a recursive basis ω if and only 

if for every power erasure pattern t ∈ Nn
α|pow (defined by the sets J and {mj}j∈J) the 

equation
∑
j∈J

hjcj = 0,

has only the trivial solution when cj ∈ F
qα/2mj for every j ∈ J .

Proof. If C is not Nn
α|pow-correcting, then there exists a nonzero c = (c1, c2, . . . , cn) in C

and a power erasure pattern t ∈ Nn
α|pow such that c ∈ C∩Xt. By the definition of Nn

α|pow, 
it follows that there exist corresponding sets J and {mj}j∈J . Hence, we have that

cj ∈
〈
ω1, . . . , ωα/2mj

〉
= F

qα/2mj for all j ∈ J,
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as well as 
∑

j∈J hjcj = 0, thus proving one direction of the claim. The proof of the 
inverse direction is similar. �

We now give the proof of Theorem 5.

Proof of Theorem 5. Let t ∈ Nn
α|pow be a power erasure pattern, with corresponding 

sets J and {mj}j∈J . By applying Lemma 6 our goal is now to prove a solution to ∑
j∈J hjcj = 0 with cj ∈ F

qα/2mj must be a trivial all-zero solution.
Let us denote by vᵀ

j , j ∈ [n], the jth column of the Vandermonde matrix V . Addi-
tionally, recall the recursive basis ω � Wβ from (8). Thus, vᵀ

j contains the coordinates 
(over Fq) of hj when using the basis ω.

If we define vj � (1, νj , . . . , να/2
mj−1

j ) then

vᵀ
j =

⎛
⎜⎜⎜⎜⎝

vᵀ
j

ν
α/2mj

j vᵀ
j

...

ν
(2mj−1)α/2mj

j vᵀ
j

⎞
⎟⎟⎟⎟⎠ .

Similarly, we define

ωj � Wβ−mj
= (1, bmj+1) ⊗ (1, bmj+2) ⊗ · · · ⊗ (1, bβ),

which is the α/2mj -prefix of ω. By the construction of the recursive basis ω we have 
that ωj is a basis for F

qα/2mj . We now notice that

⎛
⎜⎜⎜⎜⎝

ωj · vᵀ
j

ν
α/2mj

j ωj · vᵀ
j

...

ν
(2mj−1)α/2mj

j ωj · vᵀ
j

⎞
⎟⎟⎟⎟⎠ ,

is the coordinate vector of hj when Fqα is viewed as a vector space over F
qα/2mj using 

the ordered basis

ω̂j � (1, b1) ⊗ (1, b2) ⊗ · · · ⊗ (1, bmj
).

By rewriting cj =
∑α/2mj

i=1 cj,iωi, with cj,i ∈ Fq, our goal is equivalent to proving the 
set 

⋃
j∈J{hjω1, . . . , hjωα/2mj } is linearly independent over Fq. For each j ∈ J , and for 

each i ∈ [α/2mj ], we may write a column vector of the coordinates of hjωi in F
qα/2mj

using the basis ω̂ as
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⎛
⎜⎜⎜⎜⎝

ωiωj · vᵀ
j

ν
α/2mj

j ωiωj · vᵀ
j

...

ν
(2mj−1)α/2mj

j ωiωj · vᵀ
j

⎞
⎟⎟⎟⎟⎠ ,

where we note that both ωi and ωj ·vᵀ are in F
qα/2mj , and νj ∈ Fq. Now, viewing F

qα/2mj

as a vector space over Fq using the basis ωj , multiplication by ωi may be represented 
as a multiplication of the coordinates by Cj,i, an α/2mj × α/2mj matrix over Fq (Ci,j

can be made explicit using companion matrices, but this is immaterial to the rest of the 
proof). Thus, the coordinates of hjωi over Fq using the basis ω take on the simple form 
of

zᵀ
j,i �

⎛
⎜⎜⎝
Cj,i

Cj,i

. . .
Cj,i

⎞
⎟⎟⎠ · vᵀ

j =

⎛
⎜⎜⎜⎜⎝

Cj,ivᵀ
j

ν
α/2mj

j Cj,ivᵀ
j

...

ν
(2mj−1)α/2mj

j Cj,ivᵀ
j

⎞
⎟⎟⎟⎟⎠

If we define the matrix Z ∈ Fα×α
q to have as its columns {zᵀ

j,i}, j ∈ J , i ∈ [α/2mj ], 
then it now suffices to prove det(Z) �= 0. Our strategy now is, for each j ∈ J , to take the 
α/2mj columns {zᵀ

j,i}i∈[α/2mj ] and replace them by using invertible column operations. 
The overall resulting matrix Z ′ will be shown to have det(Z ′) �= 0, implying det(Z) �= 0.

Fix any j ∈ J . Obviously the set {hjωi}i∈[α/2mj ] is linearly independent over Fq since 
{ωi}i∈[α/2mj ] is, and therefore also {zᵀ

j,i}i∈[α/2mj ]. We now contend that this implies that 
the set {Cj,ivᵀ

j }i∈[α/2mj ] is linearly independent over Fq. Assuming to the contrary it 
is not, there exist d1, . . . , dα/2mj ∈ Fq, not all zero, such that 

∑
i∈[α/2mj ] diCj,ivᵀ

j = 0, 
but then 

∑
i∈[α/2mj ] diν

�/2mj

j Cj,ivᵀ
j = 0 for any integer �, implying 

∑
i∈[α/2mj ] z

ᵀ
j,i = 0, 

a contradiction.
Let ξj ∈ Fq be an element of multiplicative order o(ξj) = α/2mj , the existence of which 

is guaranteed by the requirement α2 |q− 1. Since we established that {Cj,ivᵀ
j }i∈[α/2mj ] is 

linearly independent over Fq, by invertible column operations we may map

(
Cj,1vᵀ

j

∣∣Cj,2vᵀ
j

∣∣. . . ∣∣Cj,α/2mj vᵀ
j

)

�−−−→

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
νj ξjνj . . . ξ

α/2mj−1
j νj

ν2
j (ξjνj)2 . . . (ξα/2

mj−1
j νj)2

...
...

. . .
...

ν
α/2mj−1
j (ξjνj)α/2

mj−1 . . . (ξα/2
mj−1

j νj)α/2
mj−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

i.e., the square Vandermonde matrix defined by (νj, ξjνj , ξ2
j νj , . . . , ξ

α/2mj−1
j νj), which 

we denote by Vj for convenience. Using the same column operations on {zᵀ
j,i}i∈[α/2mj ]

the mapping becomes
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(
zᵀ
j,1

∣∣∣zᵀ
j,2

∣∣∣. . . ∣∣∣zᵀ
j,α/2mj

)
�→

⎛
⎜⎜⎜⎝

Vj

ν
α/2mj

j Vj

...

ν
(2mj−1)α/2mj

j Vj

⎞
⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
νj ξjνj . . . ξ

α/2mj−1
j νj

ν2
j (ξjνj)2 . . . (ξα/2

mj−1
j νj)2

...
...

. . .
...

να−1
j (ξjνj)α−1 . . . (ξα/2

mj−1
j νj)α−1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

which is an α× (α/2mj ) Vandermonde matrix.
We repeat the above process for each j ∈ J to obtain the matrix Z ′ which satisfies 

det(Z ′) = ξ det(Z) for some ξ ∈ Fq, ξ �= 0, since only invertible column operations were 
used. Finally, we note that Z ′ is itself a Vandermonde matrix that is defined by (the 
multiset) 

⋃
j∈J{ξi−1

j νj}i∈[α/2mj ] (in some order), and since να/2j �= ν
α/2
k for all j �= k, we 

have det(Z ′) �= 0, as desired. �
As a final note, we observe the field size requirements imposed by Theorem 5. We 

need to choose n distinct non-zero values from Fq. However, each choice precludes some 
other elements from being chosen. More specifically, let ξ ∈ Fq be an element with 
multiplicative order α2 , and let 〈ξ〉 be the multiplicative group spanned by it. Then we 
may choose at most one element from each of the cosets in F∗

q /〈ξ〉. Hence, q ≥ α
2n + 1.

3.5. Correcting bounded erasure patterns

In this subsection it is shown that Gabidulin codes, a well-known family of rank-
metric codes, are capable of protecting against a large family of erasure patterns. In 
particular, for α � n and an integer r � n, the code Gab[n, n − r]qα , defined below, can 
protect against Tr � Nn

r,nr = {0, 1, . . . , r}n. Notice that Tr does not include full erasures 
of codeword symbols (unless the code is trivial), and yet Gabidulin codes can protect 
against erasures in the usual sense (see [17]).

For the next theorem, recall that a linearized polynomial is a polynomial over Fqα in 
which all nonzero coefficients correspond to monomials of the form xqi for some nonneg-
ative integer i. For a linearized polynomial f , let its q-degree be degq(f) � logq(deg f). It 
is widely known that any function from Fqα to itself, which is linear over Fq, corresponds 
to a linearized polynomial. The following theorem applies over any basis ω.

Theorem 6. For nonnegative integers r, n, and α such that n � α and r < n, the code

Gab[n, n− r]qα �
{

(f(ω1), . . . , f(ωn)) | f is linearized and degq(f) < n− r
}

is Tr-correcting.
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Proof. We show that Gab[n, n − r] ∩ Xt = {0} for all t ∈ Tr. Assuming otherwise, we 
have a pattern t ∈ Tr and a nonzero linearized polynomial f of q-degree less than n − r

such that

f(ωj) ∈
〈
ω1, . . . , ωtj

〉
, for all j ∈ [n]. (9)

Since f is a linearized polynomial and since t ∈ Tr, Eq. (9) implies that f(〈ω1, . . . , ωn〉) ⊆
〈ω1, . . . , ωr〉, which in turn implies that dim ker(f) � n− r. Thus, f has more roots than 
its degree, which is a contradiction. �

Note that n � α is necessary, since the evaluation points ω1, . . . , ωn must be linearly 
independent over Fq. Finally, we emphasize that this construction applies to any q.

4. Lower bound

First, it is clear that any m-correcting code C ⊆ Fn
qα can correct m′ � �m/α� erasures 

in the usual sense. Therefore, the well-known Singleton bound implies that m′ � n − k. 
Moreover, in cases where m′ = n − k, namely, when C is an MDS code, the MDS 
conjecture (e.g., see [18], and its resolution in certain cases [19,20]) implies qα � n − 1. 
In the remainder of this section a Gilbert-Varshamov type argument is used to prove the 
following existence theorem.

Theorem 7. For all positive integers n, m, α, and r such that m < α(r − 1), if

q >

(
(m + 1)

(
m + n− 2

n− 2

)) 1
α(r−1)−m

then there exists an [n, n − r]qα m-correcting code C.

Before proving the theorem, we prove an auxiliary claim, which applies for any basis ω. 
We say that a matrix over Fqα is m-good (good, in short) if its right kernel does not 
contain nonzero vectors x with w(x) � m. In the proof of Theorem 7 we choose the 
columns of the parity-check matrix of the code one after another, while showing that 
there always exists an eligible column to add; the question of column eligibility boils 
down to the following lemma.

Lemma 7. If H� � (gᵀ
1 , . . . , g

ᵀ
� ) ∈ Fr×�

qα is good and

gᵀ
�+1 /∈

{
γ ·

�∑
i=1

xigᵀ
i

∣∣∣∣∣ γ ∈ Fqα and w(x1, . . . , x�) � m

}
� R� (10)

then H�+1 � (gᵀ
1 , . . . , g

ᵀ
�+1) ∈ Fr×(�+1)

qα is good.
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Proof. Assume to the contrary that the right kernel of H�+1 contains a nonzero vec-
tor x = (x1, . . . , x�+1) ∈ F �+1

qα such that w(x) � m, which implies that −x�+1gᵀ
�+1 =∑�

i=1 xigᵀ
i and that w(x1, . . . , x�) � m. If x�+1 = 0, it follows that the vector x′ �

(x1, . . . , x�) satisfies H�x′ = 0 and w(x′) � m, in contradiction to H� being good. Oth-
erwise, we have that gᵀ

�+1 = (−x−1
�+1) ·

∑�
i=1 xigᵀ

i , and hence gᵀ
�+1 ∈ R� in contradiction 

with (10). �
The following two properties are easy to prove.

Lemma 8. For the sets R� from (10),

1. |Rn−1| � |R�| for all � � n − 1.
2. |Rn−1| � qα

∑m
i=0 q

i
(
i+n−2
n−2

)
≤ (m + 1)qα+m

(
m+n−2
n−2

)
.

Proof. The first property is due to simple monotonicity. For the second property we 
upper bound the size of the set by assuming that all the linear combinations in the 
definition of the set are distinct. Then, we have qα ways of choosing γ. Finally, the 
number of vectors x ∈ Fn−1

qα with w(x) ≤ m may be found using a standard balls-into-
bins argument to be 

∑m
i=0 q

i
(
i+n−2
n−2

)
. Since qi

(
i+n−2
n−2

)
is increasing in i we obtain the 

final inequality. �
We are now in a position to prove Theorem 7.

Proof of Theorem 7. We construct the parity check matrix of the code C column by 
column, starting from an r × r identity matrix. Clearly, it suffices to guarantee that all 
along this construction, the resulting matrices are good; this would guarantee that C ∩
Xt = {0} for every t ∈ Nn

α,m, and thus that C is m-correcting by Lemma 1.
Assume that H� ∈ Fr×�

qα is good for some � � r (for � = r the goodness is satisfied 
since there are no nonzero vectors in the kernel). According to Lemma 7 and the above 
observations, it follows that if |Fr

qα | − |Rn−1| > 0, then there exists a legitimate choice 
for the added column gᵀ

�+1. Hence, by the bound on |Rn−1| from Lemma 8 we have

|Fr
qα | − |Rn−1| � qαr − (m + 1)qα+m

(
m + n− 2

n− 2

)
.

If that is strictly larger than zero, the desired code exists. Thus, it suffices to require

qαr−α−m > (m + 1)
(
m + n− 2

n− 2

)

q >

(
(m + 1)

(
m + n− 2

n− 2

)) 1
α(r−1)−m

. �
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In the remainder of this section the bound on q in Theorem 7 is analyzed asymp-
totically in the two regimes of interest (see Subsection 2.2). In both regimes we focus 
on the practically important case where the dimension k (and hence r) is proportional 
to n, and the erasure correction capability m is proportional to αn; this corresponds to 
erasure correction of a constant fraction of the information symbols.

In the case α � n the parameter n is seen as constant and the parameter α tends to 
infinity. Say that m = c1α and α(r − 1) −m = c2α for some constants c1, c2, and then 
the condition on q from Theorem 7 becomes

q >

(
(c1α + 1)

(
c1α + n− 2

n− 2

)) 1
c2α

= poly(α)
1

Θ(α) α→∞−−−−→ 1.

In the case n � α we view α as constant and n as tending to infinity. Say that m = c1n

and α(r−1) −m = c2n for some c1, c2. By the well known approximation of the binomial 
coefficient (e.g., see [18, Lemma 7, p. 309]), the condition on q from Theorem 7 becomes

q >

(
(c1n + 1)

(
(1 + c1)n− 2

n− 2

)) 1
c2n

=
(

2(1+c1)nH
(

1
1+c1

)
(1+o(1))

) 1
c2n

n→∞−−−−→ 2
1+c1
c2

H
(

1
1+c1

)
,

where H(x) � −x log2(x) − (1 − x) log2(1 − x) is the binary entropy function.
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Appendix A. α-Correcting codes from mutual eigenvector of UDMs

For the case m = α, there exists an intriguing connection between UDMs and α-
correcting codes.
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Theorem 8. For h1, . . . , hn ∈ Fqα , a code C =
{
c ∈ Fn

qα | (h1, . . . , hn) · cᵀ = 0
}

is an α-
correcting code over an ordered basis ω � (ω1, . . . , ωα) if and only if there exists a 
set A1, . . . , An of UDMs over Fq such that for any i ∈ [n], the element hi is an eigenvalue 
of Ai with a corresponding eigenvector ωᵀ.

Proof. Let A1, . . . , An ∈ Fα×α
q be UDMs with eigenvalues h1, . . . , hn ∈ Fqα , respectively, 

all of which correspond to the eigenvector ω, i.e.,

Aiω
ᵀ = hiω

ᵀ for all i ∈ [n]. (A.1)

If C is not α-correcting, it follows that there exist t ∈ Nn
α and a nonzero codeword c =

(c1, c2, . . . , cn) ∈ C such that ci ∈ 〈ω1, . . . , ωti〉 for all i ∈ [n], and therefore

hici ∈ 〈hiω1, . . . , hiωti〉
(A.1)=

〈
A

(1)
i ωᵀ, . . . , A(ti)

i ωᵀ
〉
,

where A
(j)
i denotes the j-th row of Ai. In turn, this implies that for all i ∈ [n] there 

exists a nonzero vector vi ∈ F ti
q such that viA

(1:ti)
i ωᵀ = hici, where for any positive 

integers r and s, the notation A
(s:r)
i stands for the submatrix of Ai which consists of 

rows s through r. Thus, we have a nonzero vector v � (v1|v2| . . . |vn) ∈ Fα
q that satisfies

v ·

⎛
⎜⎜⎜⎜⎝

A
(1:t1)
1

A
(1:t2)
2
...

A
(1:tn)
n

⎞
⎟⎟⎟⎟⎠ · ωᵀ =

∑
i∈[n]

viA
(1:ti)
i ωᵀ =

∑
i∈[n]

hici = 0. (A.2)

Now, since the entries of ω are a basis, and since the Ai’s and the vi’s are over Fq, the 
expression (

∑
i∈[n] viA

(1:t1)
i )ωᵀ = 0 implies that the vector

∑
i∈[n] viA

(1:t1)
i is the zero 

vector. However, this implies that there exists a nonzero vector v in the left kernel of a 
matrix which consists of upper rows of UDMs, a contradiction.

Conversely, assume that C is α-correcting, and define matrices A1, . . . , An ∈ Fα×α
q as 

follows. For every i ∈ [n], let Ai be the matrix such that A
(j)
i is the expansion of hiωj

over the basis ω, i.e., hiωj =
∑α

�=1(A
(j)
i )�ω�. Assuming to the contrary that A1, . . . , An

are not UDMs, we have an element t = (t1, . . . , tn) ∈ Nn
α and a nonzero vector v ∈ Fα

q

such that

v ·

⎛
⎜⎜⎜⎜⎝

A
(1:t1)
1

A
(1:t2)
2
...

A
(1:tn)
n

⎞
⎟⎟⎟⎟⎠ = 0.

Partition v to n consecutive parts v1, v2, . . . , vn of sizes t1, . . . , tn, respectively, let ci �
vi · (ω1, . . . , ωti)ᵀ for all i ∈ [n], and let c � (c1, . . . , cn). Notice that c ∈ C, since:
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(h1, . . . , hn)cᵀ =
n∑

i=1
hivi(ω1, . . . , ωti)ᵀ =

n∑
i=1

vi(hiω1, . . . , hiωti)ᵀ

=
n∑

i=1
vi

(
α∑

�=1

(A(1)
i )�ω�, . . . ,

α∑
�=1

(A(ti)
i )�ω�

)ᵀ

=
n∑

i=1
viA

(1:ti)
i ωᵀ

= v ·

⎛
⎜⎜⎜⎜⎝

A
(1:t1)
1

A
(1:t2)
2
...

A
(1:tn)
n

⎞
⎟⎟⎟⎟⎠ · ωᵀ = 0.

Moreover, since c ∈ X by definition, it follows that c is a nonzero codeword in C ∩Xt, a 
contradiction to C being an α-correcting code. �

Finally, we note that Theorem 2 can alternatively be proved by a direct application 
of Theorem 8, and the details are left to the curious reader.

Appendix B. An omitted proof

Proof of Corollary 1. . First, we ought to show that such UDMs exist. Indeed, accord-
ing to [11, Lemma 4], it follows that for any UDMs {Bi}ni=1 and any lower-triangular 
invertible matrices {Ci}ni=1, the matrices {Ai = CiBi}ni=1 are UDMs as well. The ex-
istence of suitable UDMs for our proof is then proved by letting {Ai}ni=1 be, say, the 
UDMs from Theorem 1 for the parameters at hand, letting Ci be an identity matrix for 
every i ∈ [n] \ {2}, and

C2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
−a1 −a0

. .
. . . .

−a1 −a0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Now, observe that μᵀ is an eigenvector for the eigenvalue 1 of A1, and an eigenvector 
for the eigenvalue b of A2 (see Appendix A for further implications of such mutual 
eigenvectors). Therefore, the square parity check matrix (Aᵀ

1μ
ᵀ| · · · |Aᵀ

nμ
ᵀ) has at least 

two dependent columns, which implies that dim C � 1. �
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