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On Optimal Locally Repairable Codes and
Generalized Sector-Disk Codes

Han Cai , Member, IEEE, and Moshe Schwartz , Senior Member, IEEE

Abstract— Optimal locally repairable codes with information
locality are considered. Optimal codes are constructed, whose
length is also order-optimal with respect to a new bound on the
code length derived in this article. The length of the constructed
codes is super-linear in the alphabet size, which improves upon
the well known pyramid codes, whose length is only linear in
the alphabet size. The recoverable erasure patterns are also
analyzed for the new codes. Based on the recoverable erasure
patterns, we construct generalized sector-disk (GSD) codes, which
can recover from disk erasures mixed with sector erasures
in a more general setting than known sector-disk (SD) codes.
Additionally, the number of sectors in the constructed GSD codes
is super-linear in the alphabet size, compared with known SD
codes, whose number of sectors is only linear in the alphabet size.

Index Terms— Distributed storage, locally repairable codes,
sector-disk codes, Goppa codes.

I. INTRODUCTION

IN the large distributed storage systems of today, disk fail-
ures are the norm rather than the exception. Thus, erasure-

coding techniques are employed to protect the data from
disk failures. An [n, k] storage code encodes k information
symbols to n symbols and stores them across n disks in a
storage system. Generally speaking, among all storage codes,
maximum distance separable (MDS) codes are preferred for
practical systems both in terms of redundancy and in terms
of reliability. However, as pointed in [40], MDS codes such
as Reed-Solomon codes suffer from a high repair cost. This
is mainly because, for an [n, k] MDS code, whenever one
wants to recover a symbol, one needs to contact k surviving
symbols, which is costly, especially in large-scale distributed
file systems.

To improve the repair efficiency, locally repairable codes,
such as pyramid codes [24], are deployed to reduce the number
of symbols contacted during the repair process. More pre-
cisely, the concept of r-locality for a code C was initially stud-
ied in [19] to ensure that a failed symbol can be recovered by
only accessing r � k other symbols which form a repair set.

In the past decade, the original definition has been
generalized in different aspects. Firstly, to guarantee that
the system can recover locally from multiple erasures,
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the notion of r-locality was generalized to (r, δ)-locality,
namely, each repair set is capable of recovering from δ − 1
erasures. Secondly, to let code symbols have good avail-
ability, the notion of locality has been generalized to (r, δ)-
availability [37] (or (r, δ)c-locality [46]), in which case a code
symbol has more than one repair set. Thus, each repair set
can be viewed as a backup for the target code symbol, hence
the code symbol can be accessed independently through each
repair set. Finally, to satisfy differing locality requirements,
the notion of locality has been generalized to the hierarchical
and the unequal locality cases. Upper bounds on the minimum
Hamming distance of locally repairable codes and construc-
tions for them have been reported in the literature for those
generalizations. For examples, the reader may refer to [4],
[6], [8], [11], [13], [24], [25], [30], [31], [33], [35], [36], [42],
[43], [45], [47] for (r, δ)-locality, [9], [10], [23], [37], [41],
[44], [46] for (r, δ)-availability, [39] for hierarchical locality,
and [28], [48] for unequal locality.

Based on the observation given in [18], locally repairable
codes may recover from some special erasure patterns beyond
their minimum Hamming distance. Thus, another research
branch for locally repairable codes is the study of their
recoverable erasure patterns. In this aspect, two special kinds
of codes have received most of the attention. One is the
(δ − 1, γ)-maximally recoverable code first introduced in [5],
[18], that can recover from erasure patterns that include any
δ − 1 erasures from each repair set, and any other γ erasures.
The (δ − 1, γ)-maximally recoverable codes are equivalent to
(δ−1, γ)-partial MDS codes a special kind of array codes that
was introduced to improve the storage efficiency of redundant
arrays of independent disks (RAIDs) [5]. The other is (δ − 1,
γ)-sector-disk (SD) codes [34] that can recover from erasure
patterns that include any δ − 1 erasures from each repair set
with consistent indices (i.e., whole disk erasures) and any other
γ erasures (i.e., sector erasures). For construction of SD codes
the reader may refer to [5], [7], [12], [17], [18], [33], [34] for
example. The main drawback of all of the reported construc-
tions for SD codes is the requirement for a large finite field.

In this article, we focus on both (r, δ)-locality and recov-
erable erasure patterns beyond the minimum Hamming dis-
tance. For (r, δ)-locality we propose constructions of locally
repairable codes whose information symbols have (r, δ)-
locality and their length is super-linear in the field size. The
codes generated by our constructions have new parameters
compared with known locally repairable codes. In partic-
ular, our codes have a smaller requirement on the field
size compared with the well-known pyramid codes [24] and
Tamo-Barg codes [43] for example. Additionally, we consider
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the following fundamental problem: how long can a locally
repairable codes be, whose information symbols have (r, δ)-
locality? We propose a new upper bound on the length
of optimal locally repairable codes. Based on this bound,
we prove that the codes generated by our construction may
have order-optimal length. We also analyze recoverable erasure
patterns beyond the minimum Hamming distance in the codes
we construct. Based on this analysis, we construct array codes
that can recover special erasure patterns which mix whole disk
erasures together with additional sector erasures that beyond
the minimum Hamming distance. These codes generalize SD
codes, and we therefore call them generalized sector-disk
(GSD) codes. Finally, the classic Goppa codes are modified
into locally repairable codes. In this way, the generated codes
not only share similar parameters with the ones in [11],
but also yield optimal locally repairable codes with new
parameters.

The remainder of this article is organized as follows.
Section II introduces some necessary notation and results.
Section III proposes a new construction of locally repairable
codes and a bound on code length. In Section IV we introduce
GSD codes, and in Section V we modify classical Goppa codes
into a class of locally repairable codes. Section VI concludes
this article with some remarks.

II. PRELIMINARIES

Throughout this article, the following notation are used:
• For a positive integer n, let [n] denote the set

{1, 2, · · · , n};
• For any prime power q, let Fq denote the finite field with

q elements;
• An [n, k]q linear code C over Fq is a k-dimensional

subspace of Fn
q with a k × n generator matrix G =

(g1,g2, · · · ,gn), where gi is a column vector of length
k for all 1 � i � n. Specifically, it is called an [n, k, d]q
linear code if the minimum Hamming distance is d;

• For a subset S ⊆ [n], let |S| denote the cardinality of S,
Span(S) be the linear space spanned by {gi : i ∈ S}
over Fq and Rank(S) be the dimension of Span(S).

A. Locally Repairable Codes
Let us recall some necessary definitions concerning locally

repairable codes. Throughout this article we assume that
C be an [n, k, d]q linear code with generator matrix G =
(g1,g2, · · · ,gn).

Definition 1 ( [24], [35]): The ith code symbol of an
[n, k, d]q linear code C, is said to have (r, δ)-locality if there
exists a subset Si ⊆ [n] (a repair set) such that

• i ∈ Si and |Si| � r + δ − 1; and
• The minimum Hamming distance of the punctured code

C|Si , obtained by deleting the code symbols cj for all
j ∈ [n] \ Si, is at least δ.

Furthermore, an [n, k, d]q linear code C is said to have infor-
mation (r, δ)-locality (denoted as (r, δ)i-locality) if there exists
a k-subset I ⊆ [n] with Rank(I) = k such that for each i ∈ I ,
the ith code symbol has (r, δ)-locality and all symbol (r, δ)-
locality (denoted as (r, δ)a-locality) if all the n code symbols
have (r, δ)-locality.

In [35] (also, [19] for δ = 2), an upper bound on the
minimum Hamming distance of linear codes with (r, δ)i-
locality was derived as follows.

Lemma 1 ([35]): The minimum distance of an [n, k, d]q
code C with (r, δ)i-locality is upper bounded by

d � n − k + 1 −
(⌈

k

r

⌉
− 1

)
(δ − 1). (1)

Definition 2: A linear code with (r, δ)i-locality is said to be
an optimal locally repairable code if its minimum Hamming
distance meets the Singleton-type bound of Lemma 1 with
equality.

According to (1), even for an optimal [n, k, d]q linear code
with (r, δ)i-locality (or (r, δ)a-locality), d < n − k + 1 under
the nontrivial case k > r. Thus, for a linear code with (r, δ)i-
locality, it is natural to ask if it is possible for an erasure pattern
E ⊂ [n] with size d � |E| � n − k to be recoverable [19].
Generally this problem is still open. However, two special
settings of this problem received special attention in previous
works.

Setting I: (e.g., [5], [34]) For a linear code with (r, δ)a-
locality, let (r + δ − 1)|n and |{Si : i ∈ [n]}| = n

r+δ−1 ,
i.e., all the n symbols are divided into n

r+δ−1 repair sets. Let
s = n

r+δ−1r − k and assume the elements of Si are denoted
by {si,1, si,2, . . . , si,r+δ−1}. An erasure pattern E is required
to be recoverable if there exists a (δ − 1)-subset of [r + δ −
1], {j1, j2, · · · , jδ−1}, and there exists a set E∗ ⊆ E ⊆ [n],
|E∗| � s, and

(E\E∗) ∩ Si ⊆ {si,j1 , si,j2 , . . . , si,jδ−1} for each i ∈ [n].

Setting II: (e.g., [18]) For a linear code with (r, δ)a-locality,
let (r + δ − 1)|n and |{Si : i ∈ [n]}| = n

r+δ−1 , i.e., all
the n symbols are divided into n

r+δ−1 repair sets. Let s =
n

r+δ−1r−k. An erasure pattern E is required to be recoverable
if there exists a set E∗ ⊆ E ⊆ [n], |E∗| � s and

|(E\E∗) ∩ Si| � δ − 1 for each 1 � i � n

r + δ − 1
.

Definition 3: An [n, k, d]q linear code that satisfies the
conditions of Setting I is said to be a sector-disk code
((δ − 1, s)-SD).

As an intuition, we make the following analogies between
a distributed storage system and Setting I. In this analogy,
we have a total of r + δ − 1 disks, each containing n

r+δ−1
sectors, with a total number of sectors in the system which
is n. The ith stripe, i.e., the set containing the ith sector from
each disk, is an (r, δ)-repair set, for each i. Finally, an SD code
is capable of correcting δ − 1 whole disk erasures, as well as
an extra s erased sectors.

Definition 4: An [n, k, d]q linear code that satisfies the
conditions of Setting II is said to be a maximally recoverable
code ((δ − 1, s)-MR code).

In this article we study codes from Setting I, whereas
Setting II is mentioned for completeness and for com-
parison. In Fig. 1, we list five different types of era-
sure patterns for (1, 2)-MR codes, where MR, SD, and
LRC denote (1, 2)-MR codes, (1, 2)-SD codes, and optimal
locally repairable codes (LRC) with parameters [12, 8, 3]q and
(3, 2)a-locality, respectively.
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Fig. 1. Different types of erasure patterns recoverable for LRC, SD, and MR codes.

MR codes are also known as partial MDS (PMDS)
codes [5], [7], [12]. It is easy to check that Setting I is a
special case of Setting II, thus, MR codes are also SD codes,
but not vice versa. For explicit constructions, the reader may
refer to [7], [34] for SD codes, and [5], [7], [12], [17], [33]
for MR codes. Finally, another example of a family of codes
that may recover special erasure patterns beyond the minimum
Hamming distance is STAIR codes [29].

B. Packings and Steiner Systems

We now turn to describe some definitions and known facts
concerning the combinatorial objects of packings and Steiner
systems.

Definition 5 ( [14], VI. 40): Let n � 2 and t, τ be positive
integers. A τ -(n, t, 1)-packing is a pair (X,B), where X is a
set of n elements (called points) and B ⊆ 2X is a collection
of t-subsets of X (called blocks), such that each τ -subset of
X is contained in at most one block of B. If τ = 2, it is
also denoted as an (n, t, 1)-packing. The packing is said to
be regular if each element of X appears in exactly w blocks,
denoted as a w-regular τ -(n, t, 1)-packing.

Definition 6 ([14], II. 5): Let n � 2 and t, τ be positive
integers. A (τ, t, n)-Steiner system is a pair (X,B), where X is
a set of n elements (called points) and B ⊆ 2X is a collection
of t-subsets of X (called blocks), such that each τ -subset of
X is contained in exactly one block of B.

Lemma 2 ([14], II. 5): A (τ, t, n)-Steiner system is a (n−1
τ−1)

(t−1
τ−1)

-

regular τ -(n, t, 1)-packing.
Remark 1: Given positive integers τ , t and n, the natural

necessary conditions for the existence of a (τ, t, n)-Steiner
system are that

(
t−i
τ−i

)|(n−i
τ−i

)
for all 0 � i � τ − 1. It was

shown in [27] that these conditions are also sufficient except
perhaps for finitely many cases.

III. CONSTRUCTIONS OF LOCALLY REPAIRABLE CODES

In this section, we introduce a general construction of
locally repairable codes with information locality. Let k =
r� + v with 0 < v � r, � = �k/r� − 1, and n = k + (� + 1)
(δ − 1) + h with h � 0, where all parameters are integers.
Herein, the parameter k will be used to denote the number of
information symbols, r corresponds to locality, � + 1 denotes
the number of pairwise disjoint repair sets, and δ means that
the punctured code over each repair set has Hamming distance
at lest δ.

Construction A: Let the k information symbols be
partitioned into � + 1 sets, say,

I(i) = (Ii,1, Ii,2, . . . , Ii,r), for i ∈ [�],

I(�+1) = (I�+1,1, I�+1,2, . . . , I�+1,v).

Let S be an h-subset of Fq and denote A � Fq\S. Let
A = {Ai : 1 � i � � + 1} be a family of subsets of A
with |Ai| = r + δ − 1 for 1 � i � � and |A�+1| = v + δ − 1.
Define

gi(x) =
∏

θ∈Ai

(x − θ) for 1 � i � � + 1

and
Δ(x) =

∏
1�i��+1

gi(x).

A linear code with length n can be generated by defining a
linear map from the information I = (I1,1, I1,2, . . . I1,r+δ−1,
I2,1 . . . , I�+1,1, . . . , I�+1,v) ∈ Fk

q to a codeword C(I) = (c1,1,
. . . , c�,r+δ−1, c�+1,1, . . . , c�+1,v+δ−1, c�+2,1, . . . , c�+2,h) ∈
Fn

q , thus the [n, k]q linear code is C = {C(I) : I ∈ Fk
q}.

This mapping is performed by the following two steps:
a) Step 1: For 1 � j � �+1, by polynomial interpolation,

there exists a unique fj(x) ∈ Fq[x] with deg(fj) < |Aj | −
δ + 1 � r for 1 � j � � and deg(fj) < |Aj | − δ + 1 � v for
j = � + 1 such that fj(θj,t) = Ij,t for 1 � t � |Aj | − δ + 1,
where Aj = {θj,t : 1 � t � |Aj |}. For 1 � j � � + 1 and
1 � t � |Aj |, set cj,t = fj(θj,t).

b) Step 2: Let

fI(x) = Δ(x)
∑

1�i��+1

fi(x)
gi(x)

. (2)

Set c�+2,i = fI(si) for 1 � i � h, where S = {si : 1 �
i � h}. Note that

∑�+1
i=1 |Ai| = n−h, which means we finally

obtain a code with length n.
Example 1: Let n = 10, k = 6, r = 2, δ = 2, q = 8,

F8 = {αi : 0 � i � 7}, S = {α7}, and

A = {A1 = {θ1,1 = α0, θ1,2 = α3, θ1,3 = α2},
A2 = {θ2,1 = α1, θ2,2 = α4, θ2,3 = α3},
A3 = {θ3,1 = α3, θ3,2 = α6, θ3,3 = α5}}.

By Construction A, we can generate a [10, 6, 3]8 linear code
with information (2, 2)-locality. In Fig. 2, we depict the under-
lying idea of our construction for this case, where, we use a
line to denote a repair set, use dots to denote code symbols, use
a curve to denote the polynomial fI determining global parity
checks and ai,j , 1 � i, j � 3 denotes a predetermined constant
given by ai,j � Δ(x)/gi(x)|x=θi,j with Ai = {θi,1, θi,2, θi,3}
for 1 � i � 3 and 1 � j � 3.

Lemma 3: The code C generated by Construction A is an
[n, k]q linear code with (r, δ)i-locality.

Proof: In Construction A, since Δ(x)/gi(x) for 1 � i �
�+1 is independent with the information I , it is easy to verify
that C is an [n, k]q linear code. By Construction A, Step 1,
for any C ∈ C and 1 � i � � + 1, (ci,1, ci,1, . . . , ci,|Ai|) is
the evaluation of a polynomial with degree at most |Ai| − δ,
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Fig. 2. A [10, 6, 3]8 linear code with information (2, 2)-locality constructed by Construction A.

which means any |Ai|− δ +1 � r components are capable of
recovering the remaining components. Thus, the code C has
(r, δ)i-locality.

For ease of presentation, we use the evaluation points
(instead of the indices of code symbols) to denote erasure
patterns. Additionally, we shall group the erased positions by
the index of the repair set they hit. Namely, we shall use
E = {E1, . . . , E�+2} to denote an erasure pattern, where
Ej ⊆ Aj is the set of erasure points in Aj , 1 � j � � + 1,
and E�+2 ⊆ S is the set of erasure points in S.

Theorem 1: Let C be the linear code generated by Con-
struction A. Assume E = {Ei : 1 � i � � + 2} is an erasure
pattern, with Ei ⊆ Ai for 1 � t � � + 1 and E�+2 ⊆ S.
Suppose |Ei| � δ for i ∈ {it : 1 � t � w} ⊆ [� + 1] and
|Ei| � δ − 1 otherwise. If the erasure pattern E satisfies∣∣∣∣∣∣

⋃
1�t�w

Eit

∣∣∣∣∣∣ + |E�+2| � h + δ − 1, (3)

and for any 1 � j � w∣∣∣∣∣∣Aij ∩
⎛
⎝ ⋃

j �=t∈[w]

Ait

⎞
⎠
∣∣∣∣∣∣ � δ − 1, (4)

then the erasure pattern E can be recovered.
Remark 2: Before proving Theorem 1, we want to high-

light that the size
∣∣∣(⋃1�t�w Eit) ∪ E�+2

∣∣∣ dictates whether an
erasure pattern is recoverable, and not the number of erased
coordinates, i.e.,

∑
1�t�w |Eit |+|E�+2|. This is to say, if there

are erasures that share the same evaluation point (even in

different coordinates), then those erasures as a whole will only
increase the discriminant value by one. In such a case we
may recover more than h + δ− 1 erasures that are guaranteed
to be recoverable by the value of the Singleton-type bound,
i.e., h + δ.

Proof: Since the linear code generated by Construction A
has (r, δ)i-locality, the locality is capable of recovering all
the erasures for the case Ei ∈ E with |Ei| � δ − 1 and
1 � i � � + 1 independently. Thus, in this proof we only
need to consider the case Ei ∈ E with |Ei| � δ and 1 �
i � � + 1, i.e., Eit for 1 � t � w. To recover the erasures,
by Construction A, it is sufficient to recover fI(x) and fit(x)
for 1 � t � w. By (2), fI(x) is determined by fj(x) for
1 � j � � + 1. However, we only know a part of them,
i.e., fj(x) for j ∈ [�+1] \ {it : 1 � t � w}. Thus, we rewrite
fI(x) and extract the unknown part denoted as fE(x).

Let

Φ(x)� gcd
(

Δ(x)
gi1(x)

,
Δ(x)
gi2(x)

, · · · ,
Δ(x)
giw(x)

)

=
Δ(x)

lcm (gi1(x), gi2(x), . . . , giw(x))

=
Δ(x)∏

θ∈U (x − θ)
,

where U �
⋃

1�t�w Ait . Considering fI(x) in Construc-
tion A, it can be rewritten as

fI(x) = Δ(x)
∑

1�i��+1

fi(x)
gi(x)
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=Δ(x)
∑

i∈{it : 1�t�w}

fi(x)
gi(x)

+ Δ(x)
∑

i∈[�+1]\{it : 1�t�w}

fi(x)
gi(x)

=Φ(x)
∑

1�t�w

f∗
it
(x) + g(x)

=Φ(x)fE(x) + g(x), (5)

where

g(x) = Δ(x)
∑

j∈[�+1]\{it : 1�t�w}

fj(x)
gj(x)

is a known polynomial determined by the known code symbols
by Construction A,

f∗
it
(x) =

Δ(x)fit(x)
Φ(x)git(x)

=
fit(x)

∏
θ∈U (x − θ)

git(x)
, (6)

and
deg(f∗

it
(x)) = |U | − |Ait | + deg(fit(x)) (7)

for 1 � t � w. Now the remaining part of the proof is mainly
two steps, first, we need to show fE(x) can be recoverable,
which means fI(x) is recoverable, and then fit(x) for 1 �
t � w is recoverable, i.e., I is recoverable.

Recall that (4) means that for 1 � t � w there exists a set
A∗

it
� Ait \

(⋃
τ �=t,1�τ�w Aiτ

)
such that |A∗

it
| � r. Let

eit,j �
∏

θ∈U(x − θ)
git(x)

∣∣∣∣
x=θit,j

(8)

for 1 � t � w and θit,j ∈ Ait . Then, for θit,j ∈ A∗
it

, we have

eit,jcit,j = eit,jfit(θit,j) = f∗
it
(θit,j) = fE(θit,j), (9)

where the last equality holds by the fact that f∗
iτ

(θit,j) = 0 for
1 � τ � w, τ 
= t, and θiτ ,j ∈ A∗

it
. Let U∗ =

⋃
1�t�w A∗

it
.

Note that for θ ∈ U \ U∗ and 1 � t � w, f∗
it
(θ) = 0 if

θ 
∈ Ait . For θ ∈ U \ U∗, by (6) we have∑
θit,j=θ∈Ait ,

1�t�w

eit,jcit,j =
∑

θit,j=θ∈Ait ,
1�t�w

eit,jfit(θit,j)

=
∑

θit,j=θ∈Ai,
1�t�w

f∗
i (θit,j)

=fE(θ),

where eit,j is defined by (8). The last equation implies that
if we know all the code symbols in Ait for 1 � t � w
corresponding to the same element θ ∈ U \U∗ then we know
the value of fE(θ). In other words, we know all the values

fE(θ) for θ ∈ (U \ U∗) \
(⋃

1�t�w Eit

)
.

Furthermore, for θ = θ�+2,t ∈ S \ E�+2, we have c�+2,t =
fI(θ) = Φ(θ)fE(θ) + g(θ), i.e., fE(θ) = c�+2,t−g(θ)

Φ(θ) , where
g(x) can be regarded as a known polynomial. Thus, under the
erasure pattern E , we know∣∣∣∣∣∣U∗ \

⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣ +

∣∣∣∣∣∣(U \ U∗) \
⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣

+|S| − |E�+2|

=

∣∣∣∣∣∣U∗ \
⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣ +

∣∣∣∣∣∣(U \ U∗) \
⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣

+h − |E�+2|

�

∣∣∣∣∣∣U∗ \
⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣ +

∣∣∣∣∣∣(U \ U∗) \
⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣

+

∣∣∣∣∣∣
⎛
⎝ ⋃

1�t�w

Eit

⎞
⎠
∣∣∣∣∣∣− δ + 1

=|U | − δ + 1
>|U | − |Ai| + deg(fit(x)) = deg(f∗

it
(x))

evaluation points and the corresponding value for fE(x),
where the two inequalities hold by (3) and (7), respectively.
This is to say that we can recover fE(x) since deg(fE(x)) �
max1�t�w deg(f∗

it
(x)). By (5), the fact that g(x) and Φ(x)

are known polynomials means that we can recover fI(x) and
thus also the code symbols in E�+2. Recall that for θit,j ∈ A∗

it

1 � t � w, (9) means that fit(θit,j) = fE(θit,j)

eit,j
, where we

apply the fact that eit,j 
= 0 for θit,j ∈ A∗
it

according to (8).
Thus, we know the value of fit(θ) for θ ∈ A∗

it
and 1 � t � w.

Now the fact that∣∣∣∣∣∣Ait ∩
⎛
⎝ ⋃

1�j�w,j �=t

Aij

⎞
⎠
∣∣∣∣∣∣ � δ − 1,

means |A∗
it
| � |Ait | − δ + 1 > deg(fit(x)) by Step 1 of

Construction A. This is to say that we can also recover fit(x)
for 1 � t � w and all the code symbols in Ait for 1 � t � w,
which completes the proof.

Corollary 1: If the set system A of Construction A satisfies
that for any μ-subset D of [� + 1]∣∣∣∣∣∣Ai ∩

⎛
⎝ ⋃

j �=i,j∈D

Aj

⎞
⎠
∣∣∣∣∣∣ � δ − 1 for i ∈ D, (10)

then the code C generated by Construction A is an [n, k, d]q
linear code with (r, δ)i locality and d � min{(μ+1)δ, h+δ}.
Furthermore, if h + δ � (μ + 1)δ, then the code C is optimal
with respect to the bound in Lemma 1.

Proof: By Lemma 3, we only need to prove d �
min{(μ + 1)δ, h + δ}. To bound the minimum Hamming
distance of C, we consider the following two cases:

For the case (μ + 1)δ > h + δ, we are going to prove
that the code C is capable of recovering any erasure pattern
E = {Ei : 1 � i � � + 2} with

∑
1�i��+2 |Ei| � h + δ − 1,

where Ei ⊆ Ai for 1 � i � � + 1 and E�+2 ⊆ S. Note that
the (r, δ)i-locality means that we only need to consider the
case that |Eit | � δ for 1 � it � � + 1 and 1 � t � w. Again
by Theorem 1, (10), and the fact that

|E�+2| +
∑

1�t�w

|Eit | �
∑

1�i��+2

|Ei| � h + δ − 1,

we have that E is recoverable.
For the case h + δ � (μ + 1)δ, similarly, we prove that

the code C is capable of recovering any erasure pattern E =
{Ei : 1 � i � � + 2} with

∑
1�i��+1 |Ei| + |E�+2| �
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(μ+1)δ−1, where Ei ⊆ Ai for 1 � i � �+1 and E�+2 ⊆ S.
Similarly, we conclude that there are at most w � μ sets
Ei1 , Ei2 , · · · , Eiw with |Eil

| � δ and 1 � it � � + 1 for
1 � t � w. Note that

∑
1�i��+1 |Ei|+ |E�+2| � (μ+1)δ− 1

implies that w � μ. By (10), we may conclude that∣∣∣∣∣∣Ait ∩
⎛
⎝ ⋃

t�=j∈[w]

Aij

⎞
⎠
∣∣∣∣∣∣ � δ − 1.

Now the fact that
∑

1�t�w |Eit |+ |E�+2| �
∑

1�i��+1 |Ei|+
|E�+2| � (μ+1)δ−1 � h+δ−1 implies that E is recoverable
by Theorem 1.

Finally, the optimality of C follows directly from Lemma 1
and the fact that h + δ � (μ + 1)δ.

A. Optimal Locally Repairable Codes With (r, δ)i-Locality
Based on Packings or Steiner Systems

Based on Corollary 1, to construct optimal locally repairable
codes we only need to find A such that (10) holds. In this
section, we consider the case that A forms a combinatorial
structure which satisfies the condition given by (10). We first
consider a condition on the intersection of any pair of sets in
A rather than μ sets as in (10).

Theorem 2: Assume the setting of Construction A. Let A
be a set system formed by subsets of Fq \ S, where S is an
h-subset of Fq. If there exists a positive integer a such that
|Ai ∩ Aj | � a for all i 
= j, then the code C generated by
Construction A is an [n, k, d � min{h + δ, (� δ

a� + 1)δ}]q
linear code with (r, δ)i-locality. If additionally, h � � δ

a�δ,
then the code C generated by Construction A is an optimal
[n, k, d = h + δ]q linear code with (r, δ)i-locality.

Proof: Let μ = � δ
a�. Then for any μ-subset, R ⊆ A, and

for any A′ ∈ R, we have∣∣∣∣∣∣A′ ∩
⎛
⎝ ⋃

A∈R\{A′}
A

⎞
⎠
∣∣∣∣∣∣ � (μ− 1)a =

(⌈
δ

a

⌉
− 1

)
a � δ − 1,

since |Ai ∩Aj | � a. The first claim follows from Corollary 1.
Note that μδ � � δ

a�δ � h means that (μ+1)δ � h+ δ. Again
by Corollary 1 we have the desired result follows.

Based on Theorem 2, we can use combinatorial designs to
generate optimal locally repairable codes via Construction A.
The following corollaries follow directly from Theorem 2.

Corollary 2: Let S be an h-subset of Fq . If there exists
a (τ + 1)-(q − h, r + δ − 1, 1)-packing (Fq \ S,B) and 0 �
h � � δ

τ �δ, then there exists an optimal [n, k, d]q linear code
with (r, δ)i-locality, where n = |B|(r + δ − 1) + h − r + v,
k = (|B| − 1)r + v, 0 < v � r, and d = h + δ.

Corollary 3: If there exists a (τ + 1, r + δ − 1, q − h)-
Steiner system and 0 � h � � δ

τ �δ, then there exists an optimal
[n, k, d]q linear code with (r, δ)i-locality, where

n =

(
q−h
τ+1

)
(r + δ − 1)(
r+δ−1

τ+1

) + h + v − r,

k =

( (
q−h
τ+1

)
(
r+δ−1

τ+1

) − 1

)
r + v,

0 < v � r, and d = h + δ.

B. Optimal Locally Repairable Codes With Order-Optimal
Length: (r, δ)i-Locality

From a practical viewpoint, codes over small fields are
preferred. This is due to the fact that smaller fields have much
cheaper and faster implementations both in hardware and in
software. Therefore, in coding theory, a common question is,
given a desirable code length, what is the minimal required
field size? Equivalently, we ask, given a field size, what is
the maximal code length? In particular, for locally repairable
codes, finding the maximal length of optimal locally repairable
codes with (r, δ)a-locality was the subject of [22] and [11], for
the cases of δ = 2 and δ � 2, respectively. Both constructions
and bounds are proposed there. It is therefore natural to further
ask how long can optimal locally repairable codes with (r, δ)i-
locality be. This question is also important to us in order to
analyze the performance of Construction A.

Theorem 3: Let n = k + �(δ − 1) + h, δ � 2, k = �r.
Assume there exists an optimal [n, k, d]q linear code C with
(r, δ)i-locality. For any given integer 0 � a � h define T (a) =
�(d − a − 1)/δ�. If T (a) � 2, then

n �

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

r+δ−1
r

(
T (a)−1
2(q−1) q

2(h−a−1)
T (a)−1 + a + 1

)
− h(δ−1)

r ,

if T (a) is odd,
r+δ−1

r

(
T (a)

2(q−1)q
2(h−a)

T(a) + a
)
− h(δ−1)

r ,

if T (a) is even,

where h can be rewritten as h = d − δ.
The technical proof and its supporting lemmas are included

in Appendix A.
Throughout the paper we shall look at the asymptotics

of families of codes with locality. In the terminology of
Theorem 3 we assume r, δ, h, d (and therefore a) are all
constants. If the codes we study are optimal (with respect to
the bound of Lemma 1), then k may be derived from n. Thus,
we are left with the asymptotics of n as a function of the
field size q. Therefore, we shall say the family of codes is
order optimal if, up to a constant factor, it attains the bound
of Theorem 3, namely,

n =

⎧⎨
⎩

Θ
(
q

2(h−a−1)
T (a)−1 −1

)
if T (a) is odd,

Θ
(
q

2(h−a)
T (a) −1

)
if T (a) is even.

Now, based on Theorem 3, we can analyze the performance
of Construction A. The number of blocks of a packing is upper
bounded by the following Johnson bound [26]:

Lemma 4 ([26]): The maximum possible number of blocks
of a (τ + 1)-(n1, r + δ − 1, 1)-packing (X,B) is bounded by

|B| �
⌊

n1

r + δ − 1

⌊
n1 − 1

r + δ − 2

⌊
. . .

⌊
n1 − τ

r + δ − 1 − τ

⌋
. . .

⌋⌋⌋
.

Thus, the number of blocks for a (τ +1)-(n1, r + δ− 1, 1)-
packing can be as large as O(nτ+1

1 ), when τ , r, and δ are
regarded as constants.

Corollary 4: Let n1 = q − h. If there exists a (τ + 1)-
(n1, r + δ− 1, 1)-packing with blocks B, |B| = Ω(nτ+1

1 ), and
0 � h � � δ

τ �δ, then there exists an optimal [n, k, d]q linear
code with (r, δ)i-locality, where n = |B|(r+δ−1)+h+v−r =
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Ω(qτ+1), k = (|B| − 1)r + v and d = h + δ. Furthermore,
if h � δ + 1, v = r, and τ = δ − 1 the code based on the
(τ + 1)-(n1, r + δ − 1, 1)-packing has order-optimal length,
where r, h, and δ are regarded as constants.

Proof: By Corollary 2, we have n = |B|(r+ δ−1)+h+
v−r = Ω(qτ+1) for the code generated by Construction A. In
Theorem 3, setting a = h−δ−1, we have T (a) = �d−1−a

δ � =
�h+δ−a−1

δ � = 2. Therefore, for the case v = r, by Theorem 3
again

n � r + δ − 1
r

(
T (a)

2(q − 1)
q

2(h−a)
T (a) + a

)
− h(δ − 1)

r

=
r + δ − 1

r

(
1

q − 1
qδ+1 + a

)
− h(δ − 1)

r
= O(qδ).

Thus, for the case τ = δ−1 and v = r, the code C has length
n = Ω(qτ+1) = Ω(qδ), which is order optimal with respect
to the bound in Theorem 3, when h, r, and δ are regarded as
constants.

Corollary 5: Let n1 = q − h. If there exists a (τ + 1, r +
δ−1, n1)-Steiner system and 0 � h � � δ

τ �δ, then there exists
an optimal [n, k, d]q linear code with (r, δ)i-locality, where

n =

(
q−h
τ+1

)
(r + δ − 1)(
r+δ−1

τ+1

) + h,

k =

( (
q−h
τ+1

)
(
r+δ−1

τ+1

) − 1

)
r,

and d = h + δ. In particular, for the case h � δ + 1 and τ =
δ−1, the code based on the (δ, r+δ−1, q−h)-Steiner system
has order-optimal length, where h, r, and δ are regarded as
constants.

Proof: The first part of the corollary follows directly from
Corollary 3 and Definition 6. For the second part, the fact
h � δ + 1 means that we can set a = h − δ − 1 and T (a) =
�d−1−a

δ � = �h+δ−a−1
δ � = 2 in Theorem 3, which also means

the code C has length

n � r + δ − 1
r

(
T (a)

2(q − 1)
q

2(h−a)
T (a) + a

)
− h(δ − 1)

r

=
r + δ − 1

r

(
1

q − 1
qδ+1 + a

)
− h(δ − 1)

r
= O(qδ),

for v = r. Now the conclusion comes from the fact that the
upper bound is O(qδ) and the constructed code has length

n = ( n1
τ+1)(r+δ−1)

(r+δ−1
τ+1 ) + h = Ω(qδ), where we assume h, r, and

δ are constants.
Remark 3: For the existence of packings in general the

reader may refer to [38] and the survey in [14, VI.40].
Remark 4: Given positive integers τ , r and δ > 2, the nat-

ural necessary conditions for the existence of a (τ +1, r+ δ−
1, t− r + v)-Steiner system are that

(
r+δ−1−i

τ+1−i

)|(t−r+v−i
τ+1−i

)
for

all 0 � i � τ . It was shown in [27] that these conditions are
also sufficient except perhaps for finitely many cases. While
q might not be a prime power, any prime power q � q will
suffice for our needs. It is known, for example, that there is
always a prime in the interval [q, q + q21/40] (see [1]). Thus,
by Corollary 5, for all large enough t, there exists an optimal

[n, k, d]q locally repairable code, with (r, δ)i-locality, where q
is a prime power with t � q � t + t21/40 and

n = (r + δ − 1) ·
(
t−r+v
τ+1

)
(
r+δ−1

τ+1

) + h = Ω(tτ+1) = Ω(qτ+1),

k =
r
(

t−r+v
τ+1

)
(
r+δ−1

τ+1

) ,

d = h + δ.

Remark 5: One well known construction for optimal locally
repairable codes with (r, δ)i-locality is that of pyramid codes.
The pyramid code is based on an MDS code whose length is
upper bounded by q + d− 2 (and by the MDS conjecture this
may be reduced to q + 1 for q odd [2]). Thus, the length
of pyramid code is upper bounded by q + d − 1 − δ +
�k

r �(δ − 1) � q + d − 1 − δ + � q−1
r �(δ − 1) (we note that

q+2−δ+�k
r �(δ−1) � q+2−δ+� q−d+2

r �(δ−1) according
to MDS conjecture for the case of q odd), where d � δ.
According to our construction and bound (in Theorem 3),
it follows that the pyramid code is sub-optimal in terms of
asymptotic length, since we construct locally repairable codes
with (r, δ)i-locality and length n = Ω(qδ). In [43], also based
on polynomial evaluations, locally repairable codes known as
Tamo-Barg codes with (r, δ)a-locality and length n = Ω(q)
are constructed. Compared with Tamo-Barg codes, our codes
may have super-linear length in the field size, but only have
(r, δ)i-locality.

Example 2: Set n = 24, k = 14, δ = 2, r = 2, and
h = 3. Let A = {Ai : Ai � {3, 6, 5} + i (mod 7), i ∈
{0, 1, · · · , 6}}. According to Construction A, we can construct
a linear code C with (2, 2)i-locality over F11, whose parity
check matrix can be given as (transposed form):

Hᵀ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7 0 0 0 0 0 0 5 1 2
5 0 0 0 0 0 0 10 4 6
0 7 0 0 0 0 0 2 8 10
0 5 0 0 0 0 0 7 5 7
0 0 7 0 0 0 0 7 1 3
0 0 5 0 0 0 0 1 9 6
0 0 0 3 0 0 0 1 3 7
0 0 0 9 0 0 0 6 3 3
0 0 0 0 3 0 0 3 6 8
0 0 0 0 9 0 0 5 3 8
0 0 0 0 0 9 0 1 4 7
0 0 0 0 0 3 0 3 2 2
0 0 0 0 0 0 7 2 9 4
0 0 0 0 0 0 5 8 5 2
10 0 0 0 0 0 0 0 0 0
0 10 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0
0 0 0 10 0 0 0 0 0 0
0 0 0 0 10 0 0 0 0 0
0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 10 0 0 0
0 0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Verified by a computer program, the minimum Hamming
distance of C is 5. Thus, in this setting, Construction A
generates a [24, 14, 5]11 optimal linear code with (2, 2)i-
locality, consistent with the result in Theorem 2. Note that, to
construct a code sharing the same parameters via the pyramid
code, we need an MDS code with parameters [18, 14, 5]q.
However, according to the MDS conjecture this MDS code
exists only under the condition that q � 17. Without the help of
MDS conjecture, based on the result proposed in [2], we have
q � 16 for this special setting.

Remark 6: For the case δ = 2 and d = 5, optimal
linear codes with all symbol (r, 2)-locality and order-optimal
length Θ(q2) have been introduced in [3], [22], [25]. The
constructions in [3], [25] are given by parity-check matrices
with 3 or 4 global parity checks, which means they only work
for the cases d = 5, 6. One can verify that our construction
still works for more general cases even if we restrict to the
case δ = 2.

Remark 7: For the case δ � 2 and d = 2δ+1, optimal linear
codes with all symbol (r, 2)-locality and order-optimal length
Θ(qδ) have been introduced in [11]. However, the construction
in [11] should satisfy the condition h � r + δ − 1, which is
not needed for Construction A.

IV. GENERALIZED SECTOR-DISK CODES

By Theorem 1, we may have extra benefits if∣∣∣⋃|Ei|�δ,i∈[�+1] Ei

∣∣∣ <
∑

|Ei|�δ,i∈[�+1] |Ei|. In this section,
we are going to use this property to construct array codes that
can recover from special erasure patterns beyond the minimum
Hamming distance. The basic idea of those constructions is
to let all the code symbols share the same evaluation point
in step 1 of Construction A in the same column of an array
code. Then for this array code, one erased column may only
increase the value

∣∣∣⋃|Ei|�δ,i∈[�+1] Ei

∣∣∣ by one. Hence, when
we consider sector-disk-like erasure patterns, we may get
some extra benefit beyond the minimum Hamming distance.
We begin with some definitions.

Definition 7: Let C be an optimal [n, k, d]q linear code
with (r, δ)i-locality. Then the code C is said to be an (γ, s)-
generalized sector-disk code (GSD code) if the codewords can
be arranged into an array

C =

⎛
⎜⎜⎜⎜⎜⎜⎝

c1,1 c1,2 · · · c1,a

c2,1 c2,2 · · · c2,a

...
...

. . .
...

cb,1 cb,2 · · · cb,a

⎞
⎟⎟⎟⎟⎟⎟⎠

such that:
(I) all the erasure patterns that contain any γ columns and

additional s sectors can be recovered; and
(II) γb + s > d − 1.

Remark 8: In the definition of GSD codes, the condition
γb + s > d − 1 (Condition II) means that we are considering
codes that can repair more (sector) erasures than the minimum
distance-based threshold.

Remark 9: If the code C has (r, δ)a-locality, the repair
sets are exactly the rows, and then the (δ − 1, d − δ)-GSD
code is exactly the (δ − 1, d − δ)-SD code [34], where we
use the fact that a (δ − 1, s)-SD code is always an optimal
locally repairable code with d = s + δ. Compared with SD
codes, GSD codes relax the conditions in the following three
aspects:

• GSD codes only require (r, δ)i-locality, whereas SD
codes require (r, δ)a-locality;

• A row in an array codeword of a GSD code is not
necessary a repair set;

• The number of column erasures is not restricted to δ− 1
as in SD codes.

In the following construction, we use Construction A to
generate GSD codes.

Construction B: Let S be an h-subset of Fq and let
(X = Fq \ S,A = {Ai : 1 � i � � + 1}) be a t-regular
(m = q − h, r + δ − 1, 1)-packing, where Ai = {θi,j : 1 �
j � r + δ − 1} for 1 � i � � + 1. Based on A and
S, we can generate a locally repairable code C according
to Construction A. Define column vectors Vτ ∈ Ft

q for
τ ∈ X as

V ᵀ
τ = (ciτ,1,jτ,1 , ciτ,2,jτ,2 , . . . , ciτ,t,jτ,t),

where
θiτ,b,jτ,b

= τ, for 1 � b � t.

Herein, we highlight that we have m columns of a codeword
that are given by V ᵀ

τ ∈ Ft
q for τ ∈ X . Arrange the h global

parity symbols as the last �h
t � columns. If there are empty

sectors in the array, then we fill them with 0.
Theorem 4: Let C be the t×(m+�h

t �) array code generated
by Construction B. Then each element of the first m columns
has (r, δ)-locality. If h � δ2, then the code can recover from
any h + δ − 1 erasures. Furthermore:

(I) The code C can recover from any erasure pattern of
y � 2 columns from the first m columns and any other
h − y − 1 erasures.

(II) If
(
y
2

)
� δ, then the code C can recover from any erasure

pattern of y columns from the first m columns and any
other h − 2 − (

y
2

)
erasures.

(III) The code C can recover from any erasure pattern of
y < (δ+1)δ

2 − 1 columns from the first m columns
and any other min{ (δ+1)δ

2 − y − 1, h + δ − 1 − y}
erasures.

Proof: By Lemma 3 and Theorem 1, we only need to
prove that the desired erasure patterns satisfy (3) and (4). Since
A forms a t-regular (m, r+δ−1, 1)-packing, for the condition
given by (4) we consider a sufficient condition that is the
erasure pattern contains at most δ repair sets with each of
them containing more than δ erasures.

For case (I) and y = 2, say the erased columns are marked
by θ1 and θ2. We focus on the repair sets with more than
δ erasures. In those repair sets, there is at most one repair
set that contains θ1 and θ2, while the remaining repair sets
contain at most one of them. For this case, we need at least
δ−2+(δ−1)(δ−1)+δ−2 = δ2−3 � h−3 erasures before

Authorized licensed use limited to: Moshe Schwartz. Downloaded on January 22,2021 at 21:33:50 UTC from IEEE Xplore.  Restrictions apply. 



694 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

we achieve δ + 1 repair sets with each of them containing
more than δ erasures. Thus, the code C can recover from any
erasure pattern of y = 2 columns from the first m columns
and any other h − 3 erasures. The same analysis proves the
case y = 1.

For the case (II), we assume that the erased columns are
marked by elements in Θ = {θ1, θ2, · · · , θy}. Note that A is
an (m, r + δ − 1, 1)-packing, which means that each 2-subset
of Θ appears in at most one repair set. This is to say, for any
δ repair sets Aj1 , Aj2 , · · · , Ajδ

we have

∑
1�i�δ

|Θ ∩ Aji | � 2
(

y

2

)
+ δ −

(
y

2

)
=

(
y

2

)
+ δ,

which means for any Eji ⊆ Aji

∑
1�i�δ

|Θ ∩ Eji | � 2
(

y

2

)
+ δ −

(
y

2

)
=
(

y

2

)
+ δ.

Therefore, for this case, we need at least δ2 + δ − 2 − (
y
2

)−
δ � h − 2 − (

y
2

)
erasures before we achieve δ + 1 repair

sets each of which contains more than δ erasures. In other
words, the code C can recover from any erasure pattern of y
columns from the first m columns and any other h− 2− (

y
2

)
erasures.

For the case (III), we assume that the erased columns are
marked by elements in Θ = {θ1, θ2, · · · , θy}. Note that A
is an (m, w, 1)-packing, which means that Ai ∩ Aj � 1
for 1 � i, j � m with i 
= j. For any δ + 1 repair sets
Aj1 , Aj2 , · · · , Ajδ+1 we have

∣∣∣∣∣∣
⎛
⎝ ⋃

1�i�δ+1

Aji

⎞
⎠
∣∣∣∣∣∣ �

∑
1�i�δ+1

|Aji | −
(

δ + 1
2

)
.

Thus, for any Eji ⊆ Aji with |Eji | � δ for 1 � i � δ + 1,
we have

∣∣∣∣∣∣
⎛
⎝ ⋃

1�i�δ+1

Eji

⎞
⎠
∣∣∣∣∣∣ �

∑
1�i�δ+1

|Eji | −
(

δ + 1
2

)

� (δ + 1)δ −
(

δ + 1
2

)
,

which means that we need at least
(
δ+1
2

) − y − 1 erasures
before we achieve δ + 1 repair sets each of which contains
more than δ + 1 erasures. Thus, the code C can recover from
any erasure pattern of y columns from the first m columns and
any other

(
δ+1
2

)− y − 1 erasures if h + δ − 1 − y �
(
δ+1
2

)−
y − 1 > 0.

Example 3: Set n = 24, k = 14, δ = 2, r = 2, and h = 3.
Let A = {Ai : Ai � {3, 6, 5}+ i ⊆ Z7, i ∈ Z7}. According
to Construction B, we can modify the code in Example 2 into
a 3 × 8 array code, whose parity-check matrix can be given

as (transposed form):

Hᵀ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 9 0 0 0 6 3 3
0 0 0 0 0 9 0 1 4 7
0 0 0 0 0 0 10 0 0 0
10 0 0 0 0 0 0 0 0 0
0 0 0 0 9 0 0 5 3 8
0 0 0 0 0 0 7 2 9 4
7 0 0 0 0 0 0 5 1 2
0 10 0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 3 2 2
0 7 0 0 0 0 0 2 8 10
0 0 10 0 0 0 0 0 0 0
0 0 0 0 0 0 5 8 5 2
5 0 0 0 0 0 0 10 4 6
0 0 7 0 0 0 0 7 1 3
0 0 0 10 0 0 0 0 0 0
0 5 0 0 0 0 0 7 5 7
0 0 0 3 0 0 0 1 3 7
0 0 0 0 10 0 0 0 0 0
0 0 5 0 0 0 0 1 9 6
0 0 0 0 3 0 0 3 6 8
0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 10 0 0
0 0 0 0 0 0 0 0 10 0
0 0 0 0 0 0 0 0 0 10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Verified by a computer program, the array code can recover
from any 2 column erasures from the first 7 columns, which
is consistent with the result in Theorem 4. Note that this kind
of erasure pattern is beyond the minimum Hamming distance
d = 5 as shown in Example 2.

By Construction B, we can generate codes that may recover
from some special erasure patterns beyond the minimum
Hamming distance. However, all those erasure patterns do not
treat columns equally, and distinguish between two types of
columns. If this is an unwanted feature, we may arrange the
global parity checks across columns, as done in the following
construction.

Construction C: Let S be a h-subset of Fq and let (X ⊆
Fq \ S,A = {Ai : 1 � i � � + 1}) be a t-regular (m, r +
δ−1, 1)-packing, where Ai = {θi,j : 1 � j � r + δ−1} for
1 � i � �+1. Let n = v|X | = vρ with v � t, then based on A
and S, we can generate a locally repairable code C according
to Construction A. List the elements of X as (x1, x2, · · · , xρ).
Define column vectors Vxa ∈ Fv

q for a ∈ [ρ] as

V ᵀ
xa

=(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t,jxa,t , c�+2,(a−1)h/ρ+1,

c�+2,(a−1)h/ρ+2, · · · , c�+2,ah/ρ),

where
θixa,b,jxa,b

= xa, for 1 � b � t. (11)

Remark 10: In Construction C, the fact that (X ⊆ Fq \
S,A = {Ai : 1 � i � �+1}) is a regular packing means that
n−h = tρ. Thus, by n = vρ, we have ρ | h and v = t+h/ρ.
This is to say the array given by (11) is well defined.

Corollary 6: Let C be the v × ρ array code generated by
Construction C. Then C has (r, δ)i-locality. If h � δ2, then the
code can recover from any h + δ − 1 erasures. Furthermore:
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(I) The code C can recover from any erasure pattern of
y � 2 columns and any other h − y(v − t + 1) − 1
erasures.

(II) If
(
y
2

)
� δ, then the code C can recover from any erasure

pattern of y columns and any other h−2−(
y
2

)−y(v−t)
erasures.

(III) The code C can recover from any erasure pattern of
y < (δ+1)δ

2 − 1 columns and any other min{ (δ+1)δ
2 −

y(v − t + 1) − 1, h + δ − 1 − y(v − t + 1)} erasures.

Proof: Note that any y columns of C can be regarded as y
columns from the first m columns and y(v− t) erasures (sec-
tors) from the global check symbols, for the code generated
by Construction B. Thus, the desired results follows directly
from Theorem 4, respectively.

For the case r � k and h = r − v, we may modify
Construction C as follows.

Construction D: Let S be an (r − v)-subset of Fq and let
(X ⊆ Fq \ S,B = {Bi : 1 � i � � + 1}) be a t-regular
(m, r + δ − 1, 1)-packing. Let Ai = Bi for 1 � i � � and
A�+1 ⊆ B�+1. Let n = t|X | = tρ and k = �r + v, then
based on A and S, we can generate a locally repairable code
C according to Construction A. List the elements of B�+1 \
A�+1 as (x1, x2, . . . , xr−v) and X as (x1, x2, · · · , xρ). Define
column vectors Vxa ∈ Fv

q for a ∈ [ρ] as

V ᵀ
xa

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t−1,jxa,t−1 , c�+2,a),
if 1 � a � r − v,

(cixa,1,jxa,1 , cixa,2,jxa,2 , . . . , cixa,t,jxa,t),
otherwise,

where θixa,b,jxa,b
= xa, 1 � b � t− 1 for 1 � a � r − v and

1 � b � t for r − v + 1 � a � ρ.
Corollary 7: Let C be the t × ρ array code generated by

Construction D. Then C has (r, δ)i-locality. If h � δ2, then
the code can recover any h + δ − 1 erasures. Furthermore:

(I) The code C can recover from any erasure pattern of
y � 2 columns and any other h − 2y − 1 erasures.

(II) If
(
y
2

)
� δ, then the code C can recover from any erasure

pattern of y columns and any other h − 2 − (
y
2

) − y
erasures.

(III) The code C can recover from any erasure pattern of
y < (δ+1)δ

2 − 1 columns and any other min{ (δ+1)δ
2 −

2y − 1, h + δ − 1 − 2y} erasures.

Proof: Note that any y columns of C can be regarded
as y columns from the first m columns and at most y
erasures (sectors) from the global check symbols, for the code
generated by Construction B. Thus, the desired results follows
directly from Theorem 4, respectively.

Based on known results about regular packings, we derive
some parameters of GSD codes resulting from our con-
structions. In particular, we use two well known classes of
Steiner systems that are the affine geometries and projective
geometries.

Lemma 5 ( [14]): Let β � 2 be an integer and q1 a prime
power, then there exists a (2, q1, q

β
1 )-Steiner system.

Based on affine geometries and Construction D, we have
the following conclusion for GSD codes.

Corollary 8: Let β � 2 be an integer and q1 a prime power.

Set q1 = r + δ − 1, n = qβ
1 (qβ

1 −1)

q1−1 , δ � 2, k = ( qβ−1
1 (qβ

1 −1)

q1−1 −
1)r+v with 1 � v � r−1, and h = r−v = q1−δ−v+1. Let

C be the qβ
1 −1

q1−1 × qβ
1 array code generated by Construction D

using a (2, q1, q
β
1 )-Steiner system from Lemma 5. If h � δ2,

then the code C is an [n, k, h + δ − 1]q optimal locally
repairable code with (r, δ)i-locality, where q � qβ

1 + h.
Furthermore:

(I) If y � 2 and y( qβ
1 −1

q1−1 − 2) > δ, then the code C is a
(y, h − 2y − 1)-GSD code.

(II) If
(
y
2

)
� δ and y

qβ
1 −1

q1−1 − 1− (
y
2

)− y > δ, then the code
C is a (y, h − 2 − (

y
2

)− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y

qβ
1 −1

q1−1 + s > h + δ − 1, then the

code C is a (y, s)-GSD code, where s = min{ (δ+1)δ
2 −

2y − 1, h + δ − 1 − 2y} erasures.
Herein, we highlight that the second restriction of each item
comes from the requirement in Definition 7-(II).

Proof: The proof follows directly from Corollary 7,
Lemma 5, and Definition 7.

Lemma 6 ([14]): Let β � 2 be an integer and q1 a prime

power, then there exists a (2, q1 + 1,
qβ+1
1 −1
q1−1 )-Steiner system.

Based on projective geometries and Construction D,
we have the following conclusion for GSD codes.

Corollary 9: Let β � 2 be an integer and q1 a prime

power. Set q1 + 1 = r + δ − 1, n = (qβ+1
1 −1)(qβ

1 −1)

(q1−1)2 , δ � 2,

k = ( (qβ+1
1 −1)(qβ

1 −1)

(q1−1)(q2
1−1)

− 1)r + v with 1 � v � r − 1, and

h = r−v = q1− δ−v+2. Let C be the qβ
1 −1

q1−1 × qβ+1
1 −1
q1−1 array

code generated by Construction D using a (2, q1 +1,
qβ+1
1 −1

q1−1 )-
Steiner system from Lemma 5. If h � δ2, then the code C
is an [n, k, h + δ − 1]q optimal locally repairable code with

(r, δ)i-locality, where q � qβ+1
1 −1
q1−1 + h is a prime power.

Furthermore:
(I) If y � 2 and y( qβ

1 −1
q1−1 − 2) > δ, then the code C is a

(y, h − 2y − 1)-GSD code.

(II) If
(
y
2

)
� δ and y

qβ
1 −1

q1−1 − 1− (
y
2

)− y > δ, then the code
C is a (y, h − 2 − (

y
2

)− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y

qβ
1 −1

q1−1 + s > h + δ − 1, then the

code C is a (y, s)-GSD code, where s = min{ (δ+1)δ
2 −

2y − 1, h + δ − 1 − 2y} erasures.
Proof: The proof follows directly from Corollary 7,

Lemma 6, and Definition 7.
Lemma 7 ([14]): For any β � 2 and prime power q1, there

exists a (3, q1 + 1, qβ
1 + 1)-Steiner system.

Similarly, based on Steiner systems from spherical geome-
tries and Construction D, we have the following conclusion
for GSD codes.

Corollary 10: Let β � 2 be an integer and q1 a prime

power. Set q1 + 1 = r + δ − 1, n = (qβ
1 + 1)(q

β
1
2 )

(q1
2 ) , δ � 2,

k = (
(qβ

1 +1)(q
β
1
2 )

(q1+1)(q1
2 ) − 1)r + v with 1 � v � r − 1, and h =

r − v = q1 − δ − v + 2. Let C be the
(q

β
1
2 )

(q1
2 ) × (qβ

1 + 1) array
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TABLE I

A COMPARISON OF MR-CODES, SD-CODES, AND GSD-CODES

code generated by Construction D using a (2, q1 +1,
qβ+1
1 −1
q1−1 )-

Steiner system from Lemma 5. If h � δ2, then the code C is an
[n, k, h + δ − 1]q optimal locally repairable code with (r, δ)i-
locality, where q � qβ

1 +1+h is a prime power. Furthermore:

(I) If y � 2 and y( (q
β
1
2 )

(q1
2 ) − 2) > δ, then the code C is a

(y, h − 2y − 1)-GSD code.

(II) If
(
y
2

)
� δ and y

(q
β
1
2 )

(q1
2 ) − 1 − (

y
2

)− y > δ, then the code

C is a (y, h − 2 − (
y
2

)− y)-GSD code.

(III) If y < (δ+1)δ
2 − 1 and y

(q
β
1
2 )

(q1
2 ) + s > h + δ − 1, then the

code C is a (y, s)-GSD code, where s = min{ (δ+1)δ
2 −

2y − 1, h + δ − 1 − 2y} erasures.

Proof: The proof follows directly from Corollary 7,
Lemma 7, and Definition 7.

For regular packings, we have the following lemma due to a
recursive construction from [26]. A direct construction is also
supplied for the reader’s convenience in Appendix B.

Lemma 8 ([26]): Let n2 = pm1
1 pm2

2 · · · pmu
u , where pi are

distinct primes, and mi > 0, for all i. If e| gcd(pm1
1 −1, pm2

2 −
1, · · · , pmu

u − 1), then there exists a 1
eu

∏
1�i�u(pmi

1 − 1)-
regular (en2, e, 1)-packing.

Based on regular packings we can also generate GSD codes
as follows.

Corollary 11: Let n2 = pm1
1 pm2

2 · · · pmu
u and e| gcd(pm1

1 −
1, pm2

2 − 1, · · · , pmu
u − 1), where pi are distinct primes, and

mi > 0, for all i. Define p =
∏

1�i�u(pmi
1 − 1). Set e =

r + δ − 1, n = n2p/eu−1, δ � 2, k = (n2p/eu − 1)r + v
with 1 � v � r − 1, and h = r − v = e − δ + 1 − v. Let C
be the p/eu × en2 array code generated by Construction D.
If h � δ2, then the code C is an [n, k, h + δ − 1]q optimal
locally repairable code with (r, δ)i-locality, where q � en2+h
is a prime power. Furthermore:

(I) If y � 2 and y(p/eu−1 − 2) > δ, then the code C is a
(y, h − 2y − 1)-GSD code.

(II) If
(
y
2

)
� δ and yp/eu−1 − 1 − (

y
2

) − y > δ, then the
code C is a (y, h − 2 − (

y
2

)− y)-GSD code.

(III) If y < (δ+1)δ
2 −1 and yp/eu−1 +s > h+δ−1, then the

code C is a (y, s)-GSD code, where s = min{ (δ+1)δ
2 −

2y − 1, h + δ − 1 − 2y} erasures.
Table I lists some known results about SD codes and MR

code (PMDS codes) as a comparison with the GSD codes
we have constructed. The main point of comparison is the
asymptotics of the length of the code with respect to the field
size. For this table, n = m(r + δ − 1) is the total number
of sectors for a codeword, k is the number of sectors for
information symbols, r+ δ−1 is the number of columns (i.e.,
the code has (r, δ)a-locality), and q is the field size. For a fair
comparison with our results in Corollaries 8–11, we consider
r, δ, and γ, as constants when we consider the relationship
between n and q. We further make the following remarks:

Remark 11: By Corollaries 8 and 9, there exist GSD codes
with n = Θ(q2), where h, r, and δ are regarded as constants,
i.e., q1 is a constant, as already written in Table I. Note that
if we regard β � 2 as a constant then n = Θ(q

2β−1
β ) with

q = Θ(qβ
1 ). In addition, for general cases by using Steiner

systems with parameters (τ, r+δ−1, n1), Steiner systems are
capable of yielding optimal locally repairable codes (similarly,
GSD codes) with length n = Θ(qτ ) as shown in Corollary 5
and Remark 5. Here we apply the fact that Steiner systems
are regular packings, which means that the locally repairable
codes in Corollary 5 and Remark 5 can yield GSD codes by
Construction D and Corollary 7. For example, in Corollary 10,
we have n = Θ(q3) for the case τ = 3, where q1 + 1 =
r + δ − 1 is regarded as a constant. However, the problem
of constructing Steiner systems in general is widely open in
combinatorics. For a summary of combinatorial designs and
linear codes, the reader may refer to [15] for example.

Remark 12: According to Corollary 11, there exist GSD

codes with n =
�

1�i�u(p
mi
i (p

mi
i −1))

eu = Θ(q2), where q �
e
∏

1�i�u pmi

i + h and we consider e = r + δ − 1, u, and h
as constants. In particular, for the case δ = 2, this code has
order-optimal length with respect to the bound in Theorem 3.
Similarly, for τ > 2, to generate codes with length n = Θ(qτ )
we need regular τ -(n1, r + δ− 1, 1)-packings with τ > 2 (see
Definition 5), where we also need to apply Construction D to
rearrange the locally repairable codes into GSD codes.
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Example 4: Set n = 9 × 73 = 657, k = 7 × 72 + 1 = 505,
δ = 3, r = 7, and h = 6. Let A = {Ai : i ∈ [73]}
be a (2, 9, 73)-Steiner system. According to Construction D,
we can generate a 9 × 73 array code, which forms a (2, 1)-
GSD code (or a (1, 3)-GSD code). This code is an optimal
[657, 505, 9]q�79 locally repairable code with (7, 3)i-locality
when viewed as a one dimensional linear code.

V. LOCALLY REPAIRABLE CODES VIA

CLASSICAL GOPPA CODES

In this section, inspired by the classical Goppa code [21],
we apply a similar method to construct locally repairable
codes.

Construction E: Let G1(x) and G2(x) be two polynomials
over Fqm with degree δ − 1 and h, respectively. Let S =
(γ1, γ2, · · · , γn) be a sequence of length n over Fqm . Also,
let S1, . . . , S�+1 ⊆ Fqm be subsets such that |Si| = r + δ − 1
for 1 � i � �, |S�+1| � h, as well as,⋃

1�i��+1

Si = {γi : 1 � i � n}.

and
G1(γi)G2(γi) 
= 0 for 1 � i � n.

Define the code Γqm(S = {S, S1, . . . , S�},G = {G1, G2}) as
a set of vectors V = (v1, v2, . . . , vn) ∈ Fn

qm such that∑
1�j�r+δ−1

vi,j

x − γi,j
≡ 0 (mod G1(x)) for 1 � i � �

and ∑
1�j�n

vj

x − γj
≡ 0 (mod G2(x)),

where for 1 � i � � and 1 � j � r + δ − 1, we denote
v(i−1)(r+δ−1)+j as vi,j , and γ(i−1)(r+δ−1)+j as γi,j , and Si =
{γi,j : 1 � j � r + δ − 1}.

Lemma 9: The code Γqm(S,G) generated by Construction E
is an [n, k]qm linear code with k � n − �(δ − 1) − h, whose
code symbol vi,j has (r, δ)-locality for 1 � i � � and 1 �
j � r + δ − 1.

Proof: By the properties of classical Goppa codes (refer
to [32] Chapter 12.3 for more details), the parity-check matrix
of Γqm(S,G) may be written as

P =

⎛
⎜⎜⎜⎜⎜⎝

P1,1 0 · · · 0 0
0 P1,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P1,� 0
P2,1 P2,2 · · · P2,� P2,�+1

⎞
⎟⎟⎟⎟⎟⎠ ,

where

P1,i =⎛
⎜⎜⎜⎜⎜⎝

G−1
1 (γi,1) · · · G−1

1 (γi,r+δ−1)
G−1

1 (γi,1)γi,1 · · · G−1
1 (γi,r+δ−1)γi,r+δ−1

...
...

G−1
1 (γi,1)γδ−3

i,1 · · · G−1
1 (γi,r+δ−1)γδ−3

i,r+δ−1

G−1
1 (γi,1)γδ−2

i,1 · · · G−1
1 (γi,r+δ−1)γδ−2

i,r+δ−1

⎞
⎟⎟⎟⎟⎟⎠

for 1 � i � �, and(
P2,1 P2,2 P2,3 · · · P2,� P2,�+1

)

=

⎛
⎜⎜⎜⎜⎜⎝

G−1
2 (γ1) G−1

2 (γ2) · · · G−1
2 (γn)

G−1
2 (γ1)γ1 G−1

2 (γ2)γ2 · · · G−1
2 (γn)γn

...
...

...
G−1

2 (γ1)γh−2
1 G−1

2 (γ2)γh−2
2 · · · G−1

2 (γn)γh−2
n

G−1
2 (γ1)γh−1

1 G−1
2 (γ2)γh−1

2 · · · G−1
2 (γn)γh−1

n

⎞
⎟⎟⎟⎟⎟⎠

and in particular,

P2,i =⎛
⎜⎜⎜⎜⎜⎝

G−1
2 (γi,1) · · · G−1

2 (γi,r+δ−1)
G−1

2 (γi,1)γi,1 · · · G−1
2 (γi,r+δ−1)γi,r+δ−1

...
...

G2−1(γi,1)γδ−3
i,1 · · · G−1

2 (γi,r+δ−1)γδ−3
i,r+δ−1

G−1
2 (γi,1)γδ−2

i,1 · · · G−1
2 (γi,r+δ−1)γδ−2

i,r+δ−1

⎞
⎟⎟⎟⎟⎟⎠

for 1 � i � �. Thus, by the fact G1(γi,j) 
= 0 for 1 � i � �
and 1 � j � r + δ − 1, we have the code symbol vi,j has
(r, δ)-locality, i.e., the matrix P1,i is a parity-check matrix of
a code with minimum Hamming distance at least δ. Now the
desired result follows from the fact that the code determined
by P has parameters [n, k � n − h − �(δ − 1)]qm .

To bound the Hamming distance of Γqm(S,G), we define
an auxiliary code over the splitting field of G1(x)G2(x). Let
Fqm1 be the splitting field of G1(x)G2(x) and let B1 =
{b1,1, b1,2, . . . , b1,δ−1} and B2 = {b2,1, b2,2, . . . , b2,h} be the
roots of G1(x) and G2(x) over Fqm1 , respectively. Define the
code Γqm1 (S,G) as a set of vectors V ∗ = (v∗1 , v∗2 , . . . , v∗n) ∈
Fn

qm1 such that

∑
1�j�r+δ−1

v∗i,j
x − γi,j

≡ 0 (mod G1(x)) (12)

and ∑
1�j�n

v∗j
x − γj

≡ 0 (mod G2(x)), (13)

where for 1 � i � � and 1 � j � r + δ − 1, we denote
v∗(i−1)(r+δ−1)+j as v∗i,j .

Lemma 10: For the code Γqm1 (S,G), if G1(x)G2(x) has
δ−1+h distinct roots over Fqm1 , then its parity-check matrix
can be written as

P ∗ =

⎛
⎜⎜⎜⎜⎜⎝

P ∗
1,1 0 · · · 0 0
0 P ∗

1,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P ∗
1,� 0

P ∗
2,1 P ∗

2,2 · · · P ∗
2,� P ∗

2,�+1

⎞
⎟⎟⎟⎟⎟⎠ ,

where for 1 � i � � P ∗
1,i = (p(i)

t,j) is a (δ − 1) × (r + δ − 1)
Cauchy matrix with p

(i)
t,j = 1

b1,t−γi,j
for 1 � t � δ − 1 and

1 � j � r + δ − 1 and (P ∗
2,1, P

∗
2,2, . . . , P

∗
2,�+1) = (pt,j) is an

h × n Cauchy matrix with pt,j = 1
b2,t−γj

for 1 � t � h and

1 � j � n. In particular, P ∗
2,i = (p(i)

t,j) is a (δ−1)×(r+δ−1)
Cauchy matrix with p

(i)
t,j = 1

b2,t−γi,j
for 1 � i � �, 1 � t �

δ − 1 and 1 � j � r + δ − 1.
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Proof: Obviously, if V ∗ ∈ Γqm1 (S,G) is a codeword,
then (12) and (13) imply that P ∗V ∗ = 0. For any vector
V ′ ∈ Fn

qm1 with P ∗V ′ = 0, we have∑
1�j�r+δ−1

v′i,j
x − γi,j

≡ 0 (mod x − b1,i)

for 1 � i � δ − 1 and∑
1�j�n

v′j
x − γj

≡ 0 (mod x − b2,j),

for 1 � j � h. Now the fact that G1(x)G2(x) has h + δ − 1
distinct roots means that∑
1�j�r+δ−1

v′i,j
x − γi,j

≡ 0 (mod G1(x) =
∏

1�i�δ−1

(x − b1,i))

and ∑
1�j�n

v′j
x − γj

≡ 0 (mod G2(x) =
∏

1�i�h

(x − b2,i)),

i.e., V ′ ∈ Γqm1 (S,G). This completes the proof.
Theorem 5: Assume G1(x)G2(x) has δ − 1 + h distinct

roots over Fqm1 . For any t + 1-subset D of [�], if∣∣∣∣∣∣Si ∩
⎛
⎝ ⋃

j �=i,j∈D

Sj

⎞
⎠
∣∣∣∣∣∣ � δ − 1 for i ∈ D (14)

and
S�+1 ∩ Si = ∅ for 1 � i � �, (15)

then the code Γqm1 (S,G) has minimum Hamming distance
d � min{(t + 1)δ, h + δ}.

However, before proving the theorem, we first prove two
technical lemmas which will be used in the proof.

Lemma 11: Let E = {E1, E2, . . . , Eτ} be a set of subsets of
Fqm1 , and let Θ = {θi : 1 � i � h1} ⊆ Fqm1 \(⋃1�j�τ Ej).
Define an h1 × τ matrix, M(E , Θ), whose (i, j) entry is

M(E , Θ)i,j =
1

fEi(θj)
, (16)

where
fEi(x) =

∏
θ∈Ei

(x − θ) for 1 � i � τ.

If, for any t − 1 sets Ei1 , Ei2 , · · · , Eit−1 ∈ E ,
|⋃1�j�t−1 Eij | < h1, and any Ei ∈ E cannot be covered
by t � τ − 1 other elements of E , i.e.,

Ei 
⊆
⋃

1�j�t,ij �=i

Eij for any {ij : 1 � j � t} ⊆ [τ ]\{i},
(17)

then any t columns of M(E , Θ) are linearly independent
over Fqm1 .

Proof: We assume to the contrary that there exist t
columns of M(E , Θ) that are linearly dependent over Fqm1 ,
which form a sub-matrix of M(E , θ) given by

M ′ �

⎛
⎜⎜⎜⎜⎜⎝

1
fEi1

(θ1)
1

fEi2
(θ1)

· · · 1
fEit

(θ1)
1

fEi1
(θ2)

1
fEi2

(θ2)
· · · 1

fEit
(θ2)

...
...

...
1

fEi1
(θh1)

1
fEi2

(θh1) · · · 1
fEit

(θh1 )

⎞
⎟⎟⎟⎟⎟⎠ ,

where Θ ⊆ Fqm1 \(⋃1�j�τ Ej) means that M ′ is well
defined. Since Rank(M ′) < t, there exists a function f(x) =∑

1�j�t ei
1

fEij
(x) where θ1, . . . , θh1 are roots of f(x) = 0,

and where (e1, e2, . . . , et) 
= 0. Denote E =
⋃

1�j�t Eij . It
follows that

f∗(x) � fE(x)

⎛
⎝ ∑

1�j�t

ej

fEij
(x)

⎞
⎠ = 0

with degree at most max{|⋃1�j �=s1�t Eij | : 1 � s1 � t} <
h1 has h1 roots over Fqm1 , which means f∗(x) = 0. However,
by (17), for any given 1 � s1 � t there exists a θ ∈ Θ such
that

fE\Eis1
(θ) 
= 0

and
fE\Eis2

(θ) = 0 for all 1 � s2 
= s1 � t.

Thus, fE\Eij
(θ) for 1 � j � t are linearly independent over

Fqm1 , which is a contradiction with (e1, e2, . . . , et1) 
= 0.
Remark 13: When δ = 1, M(E , Θ) is exactly the

well-known Cauchy matrix and the result in Lemma 11 is
just the known property of Cauchy matrices.

Lemma 12: Let W = (α1, α2, · · · , αn) ∈ Fn
qm1 and let

W ∗ = {αi : 1 � i � n}. Denote Wi = {αi,j �
α(i−1)(τ)+j : 1 � j � τ } for 1 � i � n

τ , where τ is
an integer factor of n. Let δ be an integer with δ � m1,
Θ1 = {θ1,i : 1 � i � δ−1} ⊆ Fqm1 \W ∗, Θ2 = {θ2,i : 1 �
i � h} ⊆ Fqm1 \(W ∗ ∪Θ1), and let M be a matrix satisfying

M =

⎛
⎜⎜⎜⎜⎜⎝

M1,1 0 · · · 0
0 M1,2 · · · 0
...

...
. . .

...
0 0 · · · M1, n

τ

M2,1 M2,2 · · · M2, n
τ

⎞
⎟⎟⎟⎟⎟⎠ ,

where for 1 � i � n
τ M1,i = (m(i)

t,j) is a (δ − 1) × τ Cauchy

matrix with m
(i)
t,j = 1

θ1,t−αi,j
for 1 � t � δ−1 and 1 � j � τ

and (M2,1, M2,2, . . . , M2, n
τ
) = (mt,j) is an h × n Cauchy

matrix with mt,j = 1
θ2,t−αj

for 1 � t � h and 1 � j � n.
If |Θ1 ∪ Θ2| = h + δ − 1 and |Wi| = τ , then the matrix M
can be rewritten as

M = LM∗R =⎛
⎜⎜⎜⎜⎜⎝

L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
. . .

...
...

0 0 · · · L n
τ

0
0 0 · · · 0 Ih

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

M∗
1,1 0 · · · 0
0 M∗

1,2 · · · 0
...

...
. . .

...
0 0 · · · M∗

1, n
τ

M∗
2,1 M∗

2,2 · · · M∗
2, n

τ

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rn

τ

⎞
⎟⎟⎟⎠ ,

where, for 1 � i � n
τ , |Ai| 
= 0, M∗

1,i =
(Iδ−1, 0(δ−1)×(τ−δ+1)) and M∗

2,i = (Mi, M(Ei, Θ2)) with

Ei = {Ei,j = {αi,1, . . . , αi,δ−1, αi,j} : δ � j � τ}
and M(Ei, Θ2) defined in Lemma 11 by (16).
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Proof: We prove this lemma by induction on δ. For the

base case we consider the case δ = 2. Note that

(
M1,i

M2,i

)
is

a Cauchy matrix for 1 � i � n
τ . This, together with the facts

|Θ1 ∪Θ2| = h + δ − 1, |Wi| = τ , and Θ1 ∪Θ2 ⊆ Fqm1 \W ∗,

means that

(
M1,i

M2,i

)
can be rewritten as

(
M1,i

M2,i

)
=

(
L

(2)
i 0
0 Ih

)(
M

(2)
1,i

M
(2)
2,i

)
R

(1)
i for 1 � i � n

τ
,

where

M
(2)
1,i =

(
1 0 0 . . . 0

)
1×τ

and

M
(2)
2,i =

⎛
⎜⎜⎜⎜⎜⎝

1
θ2,1−αi,1

1
(θ2,1−αi,1)(θ2,1−αi,2) . . . 1

(θ2,1−αi,1)(θ2,1−αi,τ )
1

θ2,2−αi,1

1
(θ2,2−αi,1)(θ2,2−αi,2) . . . 1

(θ2,2−αi,1)(θ2,2−αi,τ )

...
...

...
1

θ2,h−αi,1

1
(θ2,h−αi,1)(θ2,h−αi,2) . . . 1

(θ2,h−αi,1)(θ2,h−αi,τ )

⎞
⎟⎟⎟⎟⎟⎠

and the lemma follows for this case.
For the induction hypothesis we assume that the desired

results hold for 2 � δ � u. For the induction step, namely,
the case δ = u + 1, similarly, Θ1 ∪ Θ2 ⊆ Fqm1 \W ∗ means

that

(
M1,i

M2,i

)
can be rewritten as

(
M1,i

M2,i

)
=

(
L

(u+1)
i 0
0 Ih

)(
M

(u+1)
1,i

M
(u+1)
2,i

)
R

(u)
i for 1 � i � n

τ
,

(18)

where

M
(u+1)
1,i =

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0

0 1
θ1,2−αi,2

1
θ1,2−αi,3

. . . 1
θ1,2−αi,τ

...
...

...
...

0 1
θ1,δ−1−αi,2

1
θ1,δ−1−αi,3

. . . 1
θ1,δ−1−αi,τ

⎞
⎟⎟⎟⎟⎟⎠

=

(
1 0

0 M
(u)
1,i

)

and

M
(u+1)
2,i =⎛

⎜⎜⎜⎜⎜⎝

1
θ2,1−αi,1

1
(θ2,1−αi,1)(θ2,1−αi,2) . . . 1

(θ2,1−αi,1)(θ2,1−αi,τ )
1

θ2,2−αi,1

1
(θ2,2−αi,1)(θ2,2−αi,2) . . . 1

(θ2,2−αi,1)(θ2,2−αi,τ )

...
...

...
1

θ2,h−αi,1

1
(θ2,h−αi,1)(θ2,h−αi,2) . . . 1

(θ2,h−αi,1)(θ2,h−αi,τ )

⎞
⎟⎟⎟⎟⎟⎠

= T
(u)
i

(
1 M

(u)
2,i

)

with T
(u)
i = diag( 1

θ2,1−αi,1
, 1

θ2,2−αi,1
, . . . , 1

θ2,h−αi,1
). By the

induction hypothesis,

M (u) =⎛
⎜⎜⎜⎜⎜⎜⎜⎝

M
(u)
1,1 0 · · · 0
0 M

(u)
1,2 · · · 0

...
...

. . .
...

0 0 · · · M
(u)
1, n

τ

M
(u)
2,1 M

(u)
2,2 · · · M

(u)
2, n

τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

L′
1 0 · · · 0 0

0 L′
2 · · · 0 0

...
...

. . .
...

...
0 0 · · · L′

n
τ

0
0 0 · · · 0 Ih

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

M ′
1,1 0 · · · 0
0 M ′

1,2 · · · 0
...

...
. . .

...
0 0 · · · M ′

1, n
τ

M ′
2,1 M ′

2,2 · · · M ′
2, n

τ

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

R′
1 0 · · · 0

0 R′
2 · · · 0

...
...

. . .
...

0 0 · · · R′
n
τ

⎞
⎟⎟⎟⎠ (19)

where for 1 � i � n
τ , M ′

1,i = (Iu, 0u×(τ−δ+1)) and M ′
2,i =

(M ′
i , M(E ′

i, Θ2)) with

E ′
i = {E′

i,j = {αi,2, . . . , αi,δ−1, αi,j} : u + 1 � j � τ}.
Combining (18) and (19), we have

M =⎛
⎜⎜⎜⎜⎜⎝

M1,1 0 · · · 0
0 M1,2 · · · 0
...

...
. . .

...
0 0 · · · M1, n

τ

M2,1 M2,2 · · · M2, n
τ

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

L1 0 · · · 0 0
0 L2 · · · 0 0
...

...
. . .

...
...

0 0 · · · L n
τ

0
0 0 · · · 0 Ih

⎞
⎟⎟⎟⎟⎟⎠ ·

⎛
⎜⎜⎜⎜⎜⎝

M∗
1,1 0 · · · 0
0 M∗

1,2 · · · 0
...

...
. . .

...
0 0 · · · M∗

1, n
τ

M∗
2,1 M∗

2,2 · · · M∗
2, n

τ

⎞
⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎝

R1 0 · · · 0
0 R2 · · · 0
...

...
. . .

...
0 0 · · · Rn

τ

⎞
⎟⎟⎟⎠ .

Here, for 1 � i � n
τ , Ri = R′

iR
(u)
i , Li = L

(u)
i

(
1 0
0 L′

i

)
,

M∗
1,i =

(
1 0
0 M ′

1,i

)
and

M∗
2,i = T

(u)
i

(
1, M ′

2,i

)
=
(
T

(u)
i 1, T

(u)
i M ′

i , T
(u)
i M(E ′

i , Θ2)
)

= (Mi, M(Ei, Θ2))

with Mi = (T (u)
i 1, T

(u)
i M ′

i) and

Ei = {Ei,j = {αi,1, . . . , αi,δ−1, αi,j} : u + 1 � j � τ}.
By induction, this completes the proof.
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Proof of Theorem 5: By Lemma 10 the parity-check
matrix can be given as

P ∗ =

⎛
⎜⎜⎜⎜⎜⎝

P ∗
1,1 0 · · · 0 0
0 P ∗

1,2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P ∗
1,� 0

P ∗
2,1 P ∗

2,2 · · · P ∗
2,� P ∗

2,�+1

⎞
⎟⎟⎟⎟⎟⎠ ,

where for 1 � i � � P ∗
1,i = (p(i)

u,j) is a (δ − 1) × (r + δ − 1)
Cauchy matrix with p

(i)
u,j = 1

b1,u−γi,j
for 1 � u � δ − 1 and

1 � j � r + δ − 1 and (P ∗
2,1, P

∗
2,2, . . . , P

∗
2,�+1) = (pu,j) is an

h × n Cauchy matrix with pu,j = 1
b2,u−γj

for 1 � u � h and
1 � j � n.

We consider the case that there are at most e �
min{(t + 1)δ − 1, h + δ − 1} erasures in total, i.e., e =∑

1�i��+1 |Ei| � min{tδ, h+δ−1}. To bound the Hamming
distance we only need to consider erasure patterns such
that Ei ⊆ Si for 1 � i � � + 1 and |Ei| � δ for
1 � i � �. Let P ∗(E) be the sub-matrix formed by the
columns corresponding to Ei 1 � i � � + 1, that is the
column (0, . . . , 0, 1

b1,1−γi,j
, . . . , 1

b1,δ−1−γi,j
, 0 . . . , 0, 1

b2,1−γi,j
,

. . . , 1
b2,h−γi,j

)ᵀ is chosen if γi,j ∈ Ei ⊆ Si. It is easy to
check that P ∗(E) can be written as

P ∗(E) =

⎛
⎜⎜⎜⎜⎜⎝

P E
1,i1 0 · · · 0 0
0 P E

1,i2
· · · 0 0

...
...

. . .
...

...
0 0 · · · P E

1,it1
0

P E
2,i1 P E

2,i2 · · · P E
2,it1

P E
2,�+1

⎞
⎟⎟⎟⎟⎟⎠ ,

by deleting the all zero rows. For the case t1 = 0,
Rank(P ∗(E)) = Rank(P E

2,�+1) = |E�+1| the erasure pat-
tern can be recovered. For the case t1 � 1, the fact that
(P ∗

2,1, P
∗
2,2, . . . , P

∗
2,�+1) = (pu,j) is an h × n Cauchy matrix

with pu,j = 1
b2,u−γj

for 1 � u � h and 1 � j � n means that

Rank(P ∗(E))

=Rank

⎛
⎜⎜⎜⎜⎜⎝

P E
1,i1

0 · · · 0 0
0 P E

1,i2 · · · 0 0
...

...
. . .

...
...

0 0 · · · P E
1,it1

0
P E

2,i1
P E

2,i2
· · · P E

2,it1
P E

2,�+1

⎞
⎟⎟⎟⎟⎟⎠

�Rank

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

P E
1,i1 0 · · · 0 0
0 P E

1,i2
· · · 0 0

...
...

. . .
...

...
0 0 · · · P E

1,it1
0

P E,h1
2,i1

P E,h1
2,i2

· · · P E,h1
2,it1

0
0 0 · · · 0 I|E�+1|

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where h1 = h − |E�+1| and P E,h1
2,ij

is the sub-matrix formed
by the first h1 rows of P E

2,ij
for 1 � j � t1.

Recall that e =
∑

E∈E |E| � min{(t + 1)δ − 1, h + δ − 1},
which means

t1 �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⌊
(t+1)δ−1−|E�+1|

δ

⌋
� t,

if h1 + δ − 1 � (t + 1)δ − 1 − |E�+1|,⌊
h1+δ−1

δ

⌋
< t,

if h1 + δ − 1 < (t + 1)δ − 1 − |E�+1|.

(20)

According to (14), for i ∈ {ij : 1 � j � t1}∣∣∣∣∣∣∣∣
Ei ∩

⎛
⎜⎜⎝ ⋃

1�j�t1
ij �=i

Eij

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
�

∣∣∣∣∣∣∣∣
Si ∩

⎛
⎜⎜⎝ ⋃

1�j�t1
ij �=i

Sij

⎞
⎟⎟⎠
∣∣∣∣∣∣∣∣
� δ − 1,

which means that the elements of each Ei may be indexed
Ei = {αi,u : 1 � u � τi} such that

{αi,t : δ � t � τi} ∩ Eij = ∅ for 1 � j � t1, ij 
= i.

For 1 � j � t1, let Eij = {{αij ,1, . . . , αij ,δ−1, αij ,u} : δ �
u � τij} and E∗ =

⋃
1�j�t1

Eij . By Lemma 12,

Rank(P ∗(E)) � t1(δ − 1) + |E�+1| + Rank(M(E∗, Θ3)),

where Θ3 = {γ2,i : 1 � i � h1}. Thus, by Lemma 11, (14),
(15), and (20), M(E∗, Θ3) has full rank, i.e., Rank(P ∗(E)) �
|E�+1|+

∑
1�j�t1

|Eij |. This is to say, the erasure pattern can
be recovered, which means d � min{(t + 1)δ, h + δ}.

Corollary 12: Assume G1(x)G2(x) has δ − 1 + h distinct
roots over Fqm1 . Let S be a set system of Fqm such that for
any t + 1-subset D of [�]∣∣∣∣∣∣Si ∩

⎛
⎝ ⋃

j �=i,j∈D

Sj

⎞
⎠
∣∣∣∣∣∣ � δ − 1 for i ∈ D

and
S�+1 ∩ Si = ∅ for 1 � i � �.

If h+δ � (t+1)δ and S�+1 
= ∅, then the code Γqm(S,G) is
an optimal [n, k, d = h+δ]qm linear code with (r, δ)i-locality.

Proof: By Theorem 5, the facts Γqm(S,G) ⊆ Γqm1 (S,G)
and h+δ � (t+1)δ show that Γqm(S,G) has minimum Ham-
ming distance at least h + δ. Thus, by Lemma 9, Γqm(S,G)
is an [n, k, d � h + δ]qm with k � n − �(δ − 1) − h and
those symbols with (r, δ)-locality have rank at least k1 =
n − �(δ − 1) − h = �r. By Lemma 1,

d �n − k + 1 −
(⌈

k1

r

⌉
− 1

)
(δ − 1)

� n − k + 1 − (� − 1)(δ − 1) � h + δ,

which together with the fact d � h + δ show that d = h + δ
and k = k1. This is also to say that Γqm(S,G) is an optimal
linear code with (r, δ)i-locality with respect to the bound in
Lemma 1.

For the case S�+1 = ∅, the following corollary follows
directly from Theorem 5 and Lemma 9.

Corollary 13: Let n = �(r+δ−1) and 0 < h � r. Assume
G1(x)G2(x) has δ− 1+ h distinct roots over Fqm1 . Let S be
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a set system of Fqm such that for any t + 1-subset D of [�]∣∣∣∣∣∣Si ∩
⎛
⎝ ⋃

j �=i,j∈D

Sj

⎞
⎠
∣∣∣∣∣∣ � δ − 1 for i ∈ D

If h+δ � (t+1)δ and S�+1 = ∅, then the code Γqm(S,G) is
an [n = �(r+δ−1), k, d � h+δ]qm code with (r, δ)a-locality,
where

n − �(δ − 1) = �r � k � �r − h.

Furthermore, if k = �r − h, then Γqm(S,G) is an [n, k, d =
h + δ] optimal locally repairable code with (r, δ)a-locality.

Remark 14: For the case k = �r − h and h � r,
i.e., S�+1 = ∅, the codes generated by Construction E share
similar parameters with those constructed in [11]. However,
Construction E may also work for the case of S�+1 
= ∅ in
which we may construct optimal locally repairable codes with
new parameters as shown in Corollary 12.

VI. CONCLUSION

In this article, we first introduced a construction of locally
repairable codes with (r, δ)i-locality. To analyze the perfor-
mance of our construction, an upper bound was derived for the
length of optimal locally repairable codes with (r, δ)i-locality.
Our main goal, with this bound, is to find a connection
between the length of the code and the field size over which
the code is constructed. Using combinatorial structures (pack-
ings in general, and Steiner systems in particular) we arrive
at the conclusion that, in some cases, the optimal locally-
repairable codes we constructed have order-optimal length,
which is super-linear in the field size. We also suggested
another construction for optimal locally repairable codes, this
time, taking inspiration from Goppa codes. The construction
share a similarity in the combinatorial structures they require.
Finally, we defined generalized sector-disk codes. We showed
that the locally repairable codes of our constructions are
capable of yielding GSD codes, and compared their parameters
with sector-disk (SD) codes, and maximally recoverable (MR)
codes.

In general, it seems that constructions of locally repairable
codes have focused mainly on (r, δ)a-locality, perhaps due
to their symmetry. We believe our constructions and bound
show that codes with (r, δ)i-locality are also of theoretical and
applicative interest. Several open questions remain, including
finding SD/MR/GSD codes for all possible parameters, and
finding more codes that are capable of correcting special era-
sure patterns beyond what is guaranteed due to their Hamming
distance.

APPENDIX A
PROOF OF THEOREM 3

Lemma 13: Let C be an [n, k]q linear code with
(r, δ)i-locality and r|k. Let A be the set of all the repair sets of
information symbols, where we highlight that there may exist
some information symbols that share the same repair set. For

any 1 � j � k
r , if there exists a j-subset V ⊆ A and Δ > 0

is an integer such that for any A ∈ V∣∣∣∣∣∣A ∩
⎛
⎝ ⋃

A′∈V\{A}
A′

⎞
⎠
∣∣∣∣∣∣ � |A| − δ + 1 (21)

and

|V|(r + δ − 1) −
∣∣∣∣∣
⋃

A∈V
A

∣∣∣∣∣ � Δ > 0,

then there exists a set S ⊆ [n] with Rank(S) = k − 1 and

|S| � k − 1 +
k

r
(δ − 1).

Proof: Let V = {Ai1 , Ai2 , . . . , Aij} and

A∗
it
⊆ Ait \

⎛
⎝ ⋃

A′∈V\{Ait}
A′

⎞
⎠ (22)

with |A∗
it
| = δ − 1 for 1 � t � j, which is possible in light

of (21). Define a (|Ait | − δ + 1)-subset A′
it

� Ait \ A∗
it

for
1 � t � j. By definition 1, we have Rank(A′

it
) = Rank(Ait)

for 1 � t � j. Note that (22) implies that A∗
it

for 1 � t � j
are pairwise disjoint, which also means that

Rank

⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠= Rank

⎛
⎝ ⋃

1�t�j

(Ait \ A∗
it

)

⎞
⎠

�

∣∣∣∣∣∣
⋃

1�t�j

Ait \ A∗
it

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

1�t�j

Ait

∣∣∣∣∣∣−
∣∣∣∣∣∣
⋃

1�t�j

A∗
it

∣∣∣∣∣∣
=

∣∣∣∣∣∣
⋃

1�t�j

Ait

∣∣∣∣∣∣− j(δ − 1), (23)

where the second equality holds by (22). This is to say that

jr−Rank

⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠�j(r + δ − 1) −

∣∣∣∣∣∣
⋃

1�t�j

Ait

∣∣∣∣∣∣=Δ > 0,

i.e., Rank
(⋃

1�t�j Ait

)
� jr − 1.

For the case j < k
r , the fact that C has (r, δ)i-locality, i.e.,

Rank
(⋃

A∈A A
)

= k means that there exists an Aij+1 such

that Rank
(⋃

1�t�j+1 Ait

)
> Rank

(⋃
1�t�j+1 Ait

)
. This

is to say
∣∣∣Aj+1 ∩

(⋃
1�t�j+1 Ait

)∣∣∣ � |Aj+1| − δ + 1. Let

A∗
ij+1

⊆ Aij+1 \
(⋃

1�t�j+1 Ait

)
with |A∗

ij+1
| = δ − 1 and

A′
ij+1

= Aij+1 \ A∗
ij+1

. Note that Aij+1 is a repair set of C.
Thus, Rank(A′

ij+1
) = Rank(Aij+1 ) by Definition 1 and

Rank

⎛
⎝ ⋃

1�t�j+1

Ait

⎞
⎠

=Rank

⎛
⎝A′

ij+1
∪
⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠
⎞
⎠
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�Rank

⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠ +

∣∣∣∣∣∣A′
ij+1

\
⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠
∣∣∣∣∣∣

�Rank

⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠ +

∣∣∣∣∣∣Aij+1 \
⎛
⎝ ⋃

1�t�j

Ait

⎞
⎠
∣∣∣∣∣∣− δ + 1

=

∣∣∣∣∣∣
⋃

1�t�j+1

Ait

∣∣∣∣∣∣− (j + 1)(δ − 1),

where the last equality holds by (23). Recall
that Rank(

⋃
1�t�j Ait) < jr which means that

Rank(
⋃

1�t�j+1 Ait) < (j + 1)r.
Repeat the preceding analysis k

r − j times, then we can find
Ait with 1 � t � k

r such that∣∣∣∣∣∣
⋃

1�t k
r

Ait

∣∣∣∣∣∣− Rank

⎛
⎝ ⋃

1�t k
r

Ait

⎞
⎠ � k

r
(δ − 1)

and Rank
(⋃

1�t k
r

Ait

)
< k. Thus, we can extend the set⋃

1�t� k
r

Ait to be a set S with Rank(S) = k − 1 and

|S| − Rank(S) = |S| − k + 1

�

∣∣∣∣∣∣
⋃

1�t� k
r

Ait

∣∣∣∣∣∣− Rank

⎛
⎝ ⋃

1�t� k
r

Ait

⎞
⎠ � k

r
(δ − 1),

which means the desired result follows.
Theorem 6: Let C be an optimal [n, k, d]q linear code with

(r, δ)i-locality. If r|k and r < k, then there exist k
r repair sets

V = {Ai1 , Ai2 , . . . , Ai k
r

}, such that |Ait | = r+ δ−1, Ait for

1 � t � k
r are pairwise disjoint and Rank(

⋃
1�t� k

r
Ait) = k.

Furthermore, the punctured code C|Ait
for 1 � t � k

r is an
[r + δ − 1, r, δ]q MDS code.

Proof: Since the code C has (r, δ)i-locality, we have
Rank(

⋃
A∈A A) = k, where A denotes the set of all repair sets

of information symbols. Note that for each repair set A ∈ A,
by Definition 1, we have Rank(A) � r. This means that we

can find Ait for 1 � t � k
r such that Rank

(⋃
1�t�j Ait

)
>

Rank
(⋃

1�t�j−1 Ait

)
for 2 � j � k

r . We claim that those k
r

repair sets are pairwise disjoint and |Ait | = r + δ− 1 for 1 �
t � k

r . Note that for j > t we have |Ait ∩Aij | � |Aj |−δ +1,

since Rank
(⋃

1�t�j Ait

)
> Rank

(⋃
1�t�j−1 Ait

)
. Now

by Lemma 13, if 2(r + δ − 1) − |Ait ∪ Aij | > 0 then we
have a set S with rank k − 1 and |S| = k − 1 + k

r (δ − 1),
which contradicts with the fact that C is optimal, i.e., d =
n− k + 1− (k

r − 1)(δ − 1). Thus, for j > t and 1 � j, t � k
r ,

we have 2(r + δ − 1) − |Ait ∪ Aij | = 0, i.e., Ait ∩ Aij = ∅
and |Ait | = |Aij | = r + δ − 1, since |Ait | � r + δ − 1 and
|Aij | � r + δ − 1.

Now, we only need to prove that Rank
(⋃

1�t� k
r

Ait

)
= k.

If that is not the case, then we have Rank
(⋃

1�t� k
r

Ait

)
�

k−1. Note that
∣∣∣⋃1�t� k

r
Ait

∣∣∣ = k+ k
r (δ−1), which is also a

contradiction with d = n− k + 1− (k
r − 1)(δ− 1). Therefore,

the desired result follows. Finally, for 1 � t � k
r , the fact that

Rank(Ait) = r, |Ait | = r + δ − 1, and d(C|Ait
) � δ, shows

that C|Ait
is an [r + δ − 1, r, δ]q MDS code.

We are now in a position to prove Theorem 3.
Proof: By Theorem 6, and up to a rearrangement of the

code coordinates, the parity-check matrix P of code C can be
arranged in the following form,

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

L(1) 0 0 . . . 0 0
0 L(2) 0 . . . 0 0
0 0 L(3) . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . L(�) 0

H1 H2 H3 . . . H� H�+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where L(i) = (Iδ−1, Pi) is a (δ − 1)× (r + δ − 1) matrix for
all 1 � i � w and we do row linear transformations to make
sure each L(i) has canonical form. Define

M1 �

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Iδ−1 0 0 0 . . . 0 0 0
0 0 Iδ−1 0 . . . 0 0 0
0 0 0 0 . . . 0 0 0
...

...
...

...
...

...
...

0 0 0 0 . . . Iδ−1 0 0
0 H

(1)
1 0 H

(1)
2 . . . 0 H

(1)
� H�+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(24)

where Iδ−1 denotes the (δ − 1)× (δ − 1) identity matrix and
H

(1)
i = Hi,2 − Hi,1Pi with Hi = (Hi,1, Hi,2) and 1 � i � �.

For any integer 0 � a � h, let

M2,a =
(
H

(1)
1 H

(1)
2 H

(1)
3 . . . H

(1)
� H

(a)
�+1

)
,

where H
(a)
�+1 denotes the matrix generated by deleting any a

columns from H�+1.
Now, for any 0 � a � h, the fact that any d − 1 columns

of P are linearly independent over Fq means that any T (a) =
�d−a−1

δ � columns of M2 are linearly independent over Fq.
This is because any T (a) columns of M2,a correspond to at
most T (a)δ columns of P by adding the first δ − 1 columns
in related blocks, and by (24) they have full column rank.
Therefore, M2,a is the parity-check matrix of a linear code
C1,a, with parameters [�r+h−a, k′ � k = �r, d2 � T (a)+1]q.

In what follows, we distinguish between two cases, depend-
ing on the parity of T (a).

Case 1: T (a) is odd. In this case, we consider the shortened
code C2,a of C1,a with parameters [�r+h−a−1, k′ � �r, d2 �
t]q. By the Hamming bound [32] we have

q�r � q�r+h−a−1∑
0�i� T (a)−1

2

(
�r+h−a−1

i

)
(q − 1)i

� q�r+h−a−1(�r+h−1
T(a)−1

2

)
(q − 1)

T (a)−1
2

� q�r+h−a−1(
�r+h−a−1

T(a)−1
2

)T (a)−1
2

(q − 1)
T (a)−1

2

,

which means

�r + h − a − 1 � T (a) − 1
2(q − 1)

q
2(h−a−1)

T (a)−1 .
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This is to say,

n� r + δ − 1
r

(
T (a) − 1
2(q − 1)

q
2(h−a−1)

T (a)−1 − h + a + 1
)

+ h

=
r + δ − 1

r

(
T (a) − 1
2(q − 1)

q
2(h−a−1)

T (a)−1 + a + 1
)
− h(δ − 1)

r
.

Case 2: T (a) is even. Similarly, by the Hamming bound,
we have

q�r � q�r+h−a∑
1�i� T (a)

2

(
�r+h−a

i

)
(q − 1)i

� q�r+h−a(�r+h−a
T (a)

2

)
(q − 1)

T (a)
2

� q�r+h−a(
�r+h−a

T (a)
2

)T(a)
2

(q − 1)
T (a)

2

,

which means

n =�(r + δ − 1) + h

�r + δ − 1
r

(
T (a)

2(q − 1)
q

2(h−a)
T (a) + a

)
− h(δ − 1)

r
.

Finally, recall that by Lemma 1, C is optimal means that
h = d − δ. This completes the proof.

APPENDIX B
REGULAR PACKINGS

We present a direct construction of regular packings based
on a kind of cyclotomy. The generated regular packings are
not new, and may obtained recursively via [26], and via
generalized cyclotomy [16], [49]. Thus, the construction and
proof herein are brought for the reader’s convenience only.

According to the unique factorization theorem, a positive
integer n has the following unique decomposition

n = pm1
1 pm2

2 · · · pmu
u ,

where p1 < p2 < · · · < pu are primes and m1, m2, . . . , mu

are positive integers. For 1 � i � u, let Fp
mi
i

be the finite
field with size pmi

i and αi be one of its primitive elements.
Let e be a positive integer with

e | gcd(pm1
1 − 1, pm2

2 − 1, · · · , pmu
u − 1).

For e > 1, define

βe � (α
pm1−1

e
1 , α

pm2−2
e

2 , . . . , α
pmu−1

e
u ) ∈ T,

where
T � Fp

m1
1

× Fp
m2
2

× · · · × Fpmu
u

.

It is easy to verify that D0 = �βe� = {β0
e, β

1
e, · · · , βe−1

e } ⊆
T ∗ � F∗

p
m1
1

×F∗
p

m2
2

×· · ·×F∗
pmu

u
is a subgroup of (T ∗, ·) with

order e, where

βi
e � (αi pm1−1

e
1 , α

i pm2−2
e

2 , . . . , α
i pmu −1

e
u ) ∈ T.

For J ∈ A � Z pm1−1
e

× Z pm1−1
e

× . . .Z pmu −1
e

, define
BJ ⊆ Ze × T as

BJ � {(0, αJβ0
e), (1, αJβ1

e), . . . , (e − 1, αJβe−1
e )}, (25)

where α � (α1, α2, . . . , αu) and αJ � (αj1
1 , αj2

2 , . . . , αju
u )

for J = (j1, j2, . . . , ju). Based on BJs, we can generate a set
system as:

Construction F: Let X = Ze × T , then we may construct
a set

B = {BJ,
 = BJ + (0, 
) : J ∈ A, 
 ∈ T }. (26)

Theorem 7: The set system (X,B) generated by Construc-

tion F is a
�

1�i�u(p
mi
1 −1)

eu -regular packing with parameters
(en, e, 1).

Proof: By Construction F, it is sufficient to prove that
any pair of elements of X appears in at most one of the
blocks in B. Assume to the contrary that there exists a pair
{x1 = (i1, γ1), x2 = (i2, γ2)} ⊆ X that appears in two
blocks, i.e., {x1, x2} ⊆ BJ1,
1 and {x1, x2} ⊆ BJ2,
2 , where
i1, i2 ∈ Ze and γ1, γ2 ∈ T. By (25) and (26), there exist four
elements t1,1, t1,2, t2,1, t2,2 ∈ Ze such that

(0, 
1) + (t1,1, α
J1βt1,1

e ) =(i1, γ1)
=(0, 
2) + (t2,1, α

J2βt2,1
e ) (27)

and

(0, 
1) + (t1,2, α
J1βt1,2

e ) =(i2, γ2)
=(0, 
2) + (t2,2, α

J2βt2,2
e ). (28)

These equalities imply that t1,1 = t2,1, t1,2 = t2,2 and

αJ1βt1,2−t1,1
e = αJ2βt2,2−t2,1

e ,

i.e.,
αJ1 = αJ2 . (29)

Note that J1, J2 ∈ A = Z pm1−1
e

× Z pm1−1
e

× . . .Z pmu −u
e

and α = (α1, α2, · · · , αu), where αi is a primitive element
of Fp

mi
i

. Thus, by (29), we have J1 = J2. Again by (27)
and (28), we have 
1 = 
2, a contradiction. Thus, the desired
result follows.

ACKNOWLEDGMENT

The authors would like to thank the Associate Editor,
Prof. Arya Mazumdar, and the anonymous reviewers, whose
comments and suggestions improved the presentation of this
article.

REFERENCES

[1] R. C. Baker, G. Harman, and J. Pintz, “The difference between consec-
utive primes, II,” Proc. London Math. Soc., vol. 83, no. 3, pp. 532–562,
Nov. 2001.

[2] S. Ball, “On sets of vectors of a finite vector space in which every subset
of basis size is a basis,” J. Eur. Math. Soc., pp. 733–748, 2012.

[3] A. Beemer, R. Coatney, V. Guruswami, H. H. López, and F. Piñero,
“Explicit optimal-length locally repairable codes of distance 5,” 2018,
arXiv:1810.03980. [Online]. Available: http://arxiv.org/abs/1810.03980

[4] M. Blaum, “Extended integrated interleaved codes over any field with
applications to locally recoverable codes,” IEEE Trans. Inf. Theory,
vol. 66, no. 2, pp. 936–956, Feb. 2020.

[5] M. Blaum, J. L. Hafner, and S. Hetzler, “Partial-MDS codes and their
application to RAID type of architectures,” IEEE Trans. Inf. Theory,
vol. 59, no. 7, pp. 4510–4519, Jul. 2013.

[6] M. Blaum and S. R. Hetzler, “Array codes with local properties,” IEEE
Trans. Inf. Theory, vol. 66, no. 6, pp. 3675–3690, Jun. 2020.

[7] M. Blaum, J. Plank, M. Schwartz, and E. Yaakobi, “Construction of
partial MDS and sector-disk codes with two global parity symbols,”
IEEE Trans. Inf. Theory, vol. 62, no. 5, pp. 2673–2681, May 2016.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on January 22,2021 at 21:33:50 UTC from IEEE Xplore.  Restrictions apply. 



704 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 2, FEBRUARY 2021

[8] V. R. Cadambe and A. Mazumdar, “Bounds on the size of locally recov-
erable codes,” IEEE Trans. Inf. Theory, vol. 61, no. 11, pp. 5787–5794,
Nov. 2015.

[9] H. Cai, M. Cheng, C. Fan, and X. Tang, “Optimal locally repairable
systematic codes based on packings,” IEEE Trans. Commun., vol. 67,
no. 1, pp. 39–49, Jan. 2019.

[10] H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally
repairable codes with multiple disjoint repair sets,” IEEE Trans. Inf.
Theory, vol. 66, no. 4, pp. 2402–2416, Apr. 2020.

[11] H. Cai, Y. Miao, M. Schwartz, and X. Tang, “On optimal locally
repairable codes with super-linear length,” IEEE Trans. Inf. Theory,
vol. 66, no. 8, pp. 4853–4868, Aug. 2020.

[12] G. Calis and O. O. Koyluoglu, “A general construction for PMDS codes,”
IEEE Commun. Lett., vol. 21, no. 3, pp. 452–455, Mar. 2017.

[13] B. Chen, S.-T. Xia, J. Hao, and F.-W. Fu, “Constructions of optimal
cyclic (r,δ) locally repairable codes,” IEEE Trans. Inf. Theory, vol. 64,
no. 4, pp. 2499–2511, Apr. 2017.

[14] C. J. Colbourn and J. H. Dinitz, Handbook of Combinatorial Designs,
vol. 42. Boca Raton, FL, USA: CRC Press, 2006.

[15] C. Ding, Designs from Linear Codes. Singapore: World Scientific, 2018.
[16] C. Ding, Q. Wang, and M. Xiong, “Three new families of zero-difference

balanced functions with applications,” IEEE Trans. Inf. Theory, vol. 60,
no. 4, pp. 2407–2413, Apr. 2014.

[17] R. Gabrys, E. Yaakobi, M. Blaum, and P. H. Siegel, “Constructions of
partial MDS codes over small fields,” in Proc. IEEE Int. Symp. Inf.
Theory (ISIT), Jun. 2017, pp. 1–5.

[18] P. Gopalan, C. Huang, B. Jenkins, and S. Yekhanin, “Explicit maximally
recoverable codes with locality,” IEEE Trans. Inf. Theory, vol. 60, no. 9,
pp. 5245–5256, Sep. 2014.

[19] P. Gopalan, C. Huang, H. Simitci, and S. Yekhanin, “On the locality
of codeword symbols,” IEEE Trans. Inf. Theory, vol. 58, no. 11,
pp. 6925–6934, Nov. 2012.

[20] S. Gopi, V. Guruswami, and S. Yekhanin, “Maximally recoverable
LRCs: A field size lower bound and constructions for few heavy
parities,” IEEE Trans. Inf. Theory, vol. 66, no. 10, pp. 6066–6083,
Oct. 2020.

[21] V. D. Goppa, “A new class of linear correcting codes,” Problems Inform.
Trans., vol. 6, no. 3, pp. 207–212, 1970.

[22] V. Guruswami, C. Xing, and C. Yuan, “How long can optimal
locally repairable codes be?” IEEE Trans. Inf. Theory, vol. 65, no. 6,
pp. 3662–3670, Jun. 2019.

[23] J. Hao and S.-T. Xia, “Constructions of optimal binary locally repairable
codes with multiple repair groups,” IEEE Commun. Lett., vol. 20, no. 6,
pp. 1060–1063, Jun. 2016.

[24] C. Huang, M. Chen, and J. Li, “Pyramid codes: Flexible schemes to trade
space for access efficiency in reliable data storage systems,” in Proc. 6th
IEEE Int. Symp. Netw. Comput. Appl. (NCA), Jul. 2007, pp. 79–86.

[25] L. Jin, “Explicit construction of optimal locally recoverable codes of
distance 5 and 6 via binary constant weight codes,” IEEE Trans. Inf.
Theory, vol. 65, no. 8, pp. 4658–4663, Aug. 2019.

[26] D. Jungnickel, “Composition theorems for difference families and reg-
ular planes,” Discrete Math., vol. 23, no. 2, pp. 151–158, 1978.

[27] P. Keevash, “The existence of designs,” 2014, arXiv:1401.3665.
[Online]. Available: http://arxiv.org/abs/1401.3665

[28] G. Kim and J. Lee, “Locally repairable codes with unequal locality
requirements,” IEEE Trans. Inf. Theory, vol. 64, no. 11, pp. 7137–7152,
Nov. 2018.

[29] M. Li and P. P. C. Lee, “STAIR codes: A general family of erasure codes
for tolerating device and sector failures,” ACM Trans. Storage, vol. 10,
no. 4, p. 14, 2014.

[30] X. Li, L. Ma, and C. Xing, “Optimal locally repairable codes via elliptic
curves,” IEEE Trans. Inf. Theory, vol. 65, no. 1, pp. 108–117, Jan. 2019.

[31] J. Liu, S. Mesnager, and L. Chen, “New constructions of optimal locally
recoverable codes via good polynomials,” IEEE Trans. Inf. Theory,
vol. 64, no. 2, pp. 889–899, Feb. 2018.

[32] F. J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting
Codes. Amsterdam, The Netherlands: North Holland, 1977.

[33] U. Martinez-Penas and F. R. Kschischang, “Universal and dynamic
locally repairable codes with maximal recoverability via sum-rank
codes,” IEEE Trans. Inf. Theory, vol. 65, no. 12, pp. 7790–7805,
Dec. 2019.

[34] J. S. Plank and M. Blaum, “Sector-disk (SD) erasure codes for mixed
failure modes in RAID systems,” ACM Trans. Storage, vol. 10, no. 1,
pp. 1–17, Jan. 2014.

[35] N. Prakash, G. M. Kamath, V. Lalitha, and P. V. Kumar, “Optimal linear
codes with a local-error-correction property,” in Proc. IEEE Int. Symp.
Inf. Theory Proc., Jul. 2012, pp. 2776–2780.

[36] A. S. Rawat, O. O. Koyluoglu, N. Silberstein, and S. Vishwanath, “Opti-
mal locally repairable and secure codes for distributed storage systems,”
IEEE Trans. Inf. Theory, vol. 60, no. 1, pp. 212–236, Jan. 2014.

[37] A. S. Rawat, D. S. Papailiopoulos, A. G. Dimakis, and S. Vishwanath,
“Locality and availability in distributed storage,” IEEE Trans. Inf.
Theory, vol. 62, no. 8, pp. 4481–4493, Aug. 2016.

[38] V. Rödl, “On a packing and covering problem,” Eur. J. Combinatorics,
vol. 6, no. 1, pp. 69–78, Mar. 1985.

[39] B. Sasidharan, G. K. Agarwal, and P. V. Kumar, “Codes with hierarchical
locality,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2015,
pp. 1257–1261.

[40] M. Sathiamoorthy, M. Asteris, D. Papailiopoulos, A. G. R. Dimakis
Vadali, S. Chen, and D. Borthakur, “Xoring elephants: Novel erasure
codes for big data,” Proc. VLDB Endowment, vol. 6, no. 5, pp. 325–336,
2013.

[41] N. Silberstein, T. Etzion, and M. Schwartz, “Locality and availability
of array codes constructed from subspaces,” IEEE Trans. Inf. Theory,
vol. 65, no. 5, pp. 2648–2660, May 2019.

[42] W. Song, S. H. Dau, C. Yuen, and T. J. Li, “Optimal locally
repairable linear codes,” IEEE J. Sel. Areas Commun., vol. 32, no. 5,
pp. 1019–1036, May 2014.

[43] I. Tamo and A. Barg, “A family of optimal locally recoverable codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 8, pp. 4661–4676, Aug. 2014.

[44] I. Tamo, A. Barg, and A. Frolov, “Bounds on the parameters of
locally recoverable codes,” IEEE Trans. Inf. Theory, vol. 62, no. 6,
pp. 3070–3083, Jun. 2016.

[45] I. Tamo, D. S. Papailiopoulos, and A. G. Dimakis, “Optimal locally
repairable codes and connections to matroid theory,” IEEE Trans. Inf.
Theory, vol. 62, no. 12, pp. 6661–6671, Dec. 2016.

[46] A. Wang and Z. Zhang, “Repair locality with multiple erasure tolerance,”
IEEE Trans. Inf. Theory, vol. 60, no. 11, pp. 6979–6987, Nov. 2014.

[47] T. Westerbäck, R. Freij-Hollanti, T. Ernvall, and C. Hollanti, “On the
combinatorics of locally repairable codes via matroid theory,” IEEE
Trans. Inf. Theory, vol. 62, no. 10, pp. 5296–5315, Oct. 2016.

[48] A. Zeh and E. Yaakobi, “Bounds and constructions of codes with mul-
tiple localities,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2016,
pp. 640–644.

[49] X. Zeng, H. Cai, X. Tang, and Y. Yang, “Optimal frequency hopping
sequences of odd length,” IEEE Trans. Inf. Theory, vol. 59, no. 5,
pp. 3237–3248, May 2013.

Han Cai (Member, IEEE) received the B.S. and M.S. degrees in mathematics
from Hubei University, Wuhan, China, in 2009 and 2013, respectively, and the
Ph.D. degree from the Department of Communication Engineering, Southwest
Jiaotong University, Chengdu, China, in 2017. From October 2015 to Octo-
ber 2017, he was a Visiting Ph.D. Student with the Faculty of Engineering,
Information and Systems, University of Tsukuba, Japan. He is currently a
Post-Doctoral Fellow with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Israel. His research interests include
coding theory and sequence design.

Moshe Schwartz (Senior Member, IEEE) received the B.A. (summa cum
laude), M.Sc., and Ph.D. degrees from the Computer Science Department,
Technion–Israel Institute of Technology, Haifa, Israel, in 1997, 1998, and
2004, respectively.

He was a Fulbright Post-Doctoral Researcher with the Department of
Electrical and Computer Engineering, University of California at San Diego,
and a Post-Doctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012–2014, he was a
Visiting Scientist at the Massachusetts Institute of Technology (MIT). He is
currently a Professor with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Israel. His research interests include
algebraic coding, combinatorial structures, and digital sequences.

Dr. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage, and the
2020 NVMW Persistent Impact Prize. He has been serving as an Asso-
ciate Editor for Coding Techniques for the IEEE TRANSACTIONS ON

INFORMATION THEORY since 2014.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on January 22,2021 at 21:33:50 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


