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On Lattice Packings and Coverings of
Asymmetric Limited-Magnitude Balls

Hengjia Wei , Xin Wang , and Moshe Schwartz , Senior Member, IEEE

Abstract— We construct integer error-correcting codes and
covering codes for the limited-magnitude error channel with more
than one error. The codes are lattices that pack or cover the
space with the appropriate error ball. Some of the constructions
attain an asymptotic packing/covering density that is constant.
The results are obtained via various methods, including the use
of codes in the Hamming metric, modular Bt-sequences, 2-fold
Sidon sets, and sets avoiding arithmetic progression.

Index Terms— Integer coding, packing, covering, tiling, lattices,
limited-magnitude errors.

I. INTRODUCTION

SEVERAL applications use information that is encoded
as vectors of integers, either directly or indirectly. Fur-

thermore, these vectors are affected by noise that may
increase or decrease entries of the vectors by a limited amount.
We mention a few of these examples: In high-density magnetic
recording channels, information is stored in the lengths of runs
of 0’s. Various phenomena may cause the reading process to
shift the positions of 1’s (peak-shift error), thereby changing
the length of adjacent runs of 0’s by a limited amount
(e.g., see [19], [21]). In flash memories, information is stored
in the charge levels of cells in an array. However, reten-
tion (slow charge leakage), and inter-cell interference, may
cause charge levels to move, usually, by a limited amount
(e.g., see [6]). More recently, in some DNA-storage applica-
tions, information is stored in the lengths of homopolymer
runs. These however, may end up shorter or longer than
planned, usually by a limited amount, due to variability in
the molecule-synthesis process (see [14]).

In all of the applications mentioned above, an integer vector
v ∈ Z

n encodes information. If at most t of its entries suffer
an increase by as much as k+, or a decrease by as much
as k−, we can write the corrupted vector as v + e, where
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Fig. 1. A depiction of B(3, 2, 2, 1) where each point in B(3, 2, 2, 1) is
shown as a unit cube.

e resides within a shape we call the (n, t, k+, k−)-error-ball,
and is defined as

B(n, t, k+, k−) � {x = (x1, x2, . . . , xn) ∈ Z
n |

− k− � xi � k+ and wt(x) � t}, (1)

where wt(x) denotes the Hamming weight of x.
It now follows that an error-correcting code in this setting

is equivalent to a packing of Z
n by B(n, t, k+, k−), and a

perfect code is equivalent to a tiling of Z
n by B(n, t, k+, k−).

An example of B(3, 2, 2, 1) is shown in Fig. 1.
Covering Z

n by B(n, t, k+, k−) is also of interest. Such
coverings are useful in the context of non-volatile memories,
most prominently flash memories. They have been used for
rewriting scheme (e.g., see [15]), and write-once-memory
(WOM) codes (e.g., see [12] and [8, Chapter 17], as well as
the many references therein). As an example, the information
stored in an array of flash memory cells may be thought of as
a vector of integers. Due to an inherent asymmetry in these
cells, increasing entries of this vector is easy, while decreasing
is difficult and requires erasing the entire vector to an all-
zero vector. The latter operation is physically harmful, and
the lifetime of the memory is measured by it. Since cells have
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an upper limit on their value, erasing the cells is inevitable,
but WOM codes and rewriting schemes attempt to delay the
inevitable in the following way: Assume the current stored
vector is x. Given a lattice covering of Z

n by B(n, t, k+, 0),
the user information is coset-encoded by choosing an arbitrary
vector x� in the user-chosen lattice coset, such that x� is entry-
wise no less than than x. The covering property of the lattice
ensures x� increases at most t entries by at most k+ each,
in comparison with x. This slows the approach of the system
to the cells’ upper limit.

A significant amount of works has been devoted to lat-
tice tiling/packing/covering of Z

n by B(n, t, k+, k−), albeit,
almost exclusively for the case of t = 1. When packing
and tiling are concerned, the cross, B(n, 1, k, k), and semi-
cross, B(n, 1, k, 0) have been extensively researched, e.g., see
[11], [13], [17], [28], [30] and the many references therein.
This was extended to quasi-crosses, B(n, 1, k+, k−), in [25],
creating a flurry of activity on the subject [26], [36]–[40]. To
the best of our knowledge, [5], [17], [29], [35] are the only
works to consider t � 2. [5], [29] considered tiling a notched
cube (or a “chair”), which for certain parameters becomes
B(n, n−1, k, 0), while [17] considered packing the same ball
B(n, n−1, k, 0). Among others, [35] recently studied the tiling
problem in the most general case, i.e., tiling B(n, t, k+, k−)
for t � 2. Covering problems have also been studied, though
only when t = 1, [7], [16], [18].

The main goal of this paper is to study packing and covering
of Z

n by B(n, t, k+, k−) when t � 2. We would like to have
packings of high density and covering of low density, as they
imply error-correcting codes of large size and covering codes
of small size, respectively. We provide explicit constructions
for both packings and coverings, as well as some non-
constructive existence results. In particular, we demonstrate
the existence of packings with asymptotic packing density
Ω(1) (as n tends to infinity) for some sets of (t, k+, k−),
and the existence of coverings with density O(1) for any
given (t, k+, k−). Additionally, we generalize the concept of
packing to λ-packing, which works in conjunction with the
list-decoding framework and list size λ. We show the exis-
tence of λ-packings with density O(n−�) for any (t, k+, k−)
and arbitrarily small � > 0, while maintaining a list size
λ = O(�−t), which does not depend on n. Our results are
summarized at the end of this paper, in Table I.

The paper is organized as follows. We begin, in Section II,
by providing notation and basic known results used throughout
the paper. Section III is devoted to the study of packings.
This is generalized in Section IV to λ-packings. In Section V
we construct coverings. Finally, we conclude in Section VI
by giving a summary of the results as well as some open
problems.

II. PRELIMINARIES

For integers a � b we define [a, b] � {a, a+ 1, . . . , b} and
[a, b]∗ � [a, b]\{0}. We use Zm to denote the cyclic group of
integers with addition modulo m, and Fq to denote the finite
field of size q.

A lattice Λ ⊆ Z
n is an additive subgroup of Z

n (sometimes
called an integer lattice). A lattice Λ may be represented by

a matrix G(Λ) ∈ Z
n×n, the span of whose rows (with integer

coefficients) is Λ. From a geometric point of view, when
viewing Λ inside R

n, a fundamental region of Λ is defined as

Π(Λ) �
{

n∑
i=1

civi

∣∣∣∣∣ ci ∈ R, 0 � ci < 1

}
,

where vi is the i-th row of G(Λ). It is well known that the
volume of Π(Λ) is |det(G(Λ))|, and is independent of the
choice of G(Λ). We therefore denote

vol(Λ) � vol(Π(Λ)) = |det(G(Λ))|.
In addition, if vol(Λ) �= 0 then

vol(Λ) = |Zn/Λ|.
We say B ⊆ Z

n packs Z
n by T ⊆ Z

n, if the translates of B

by elements from T do not intersect, namely, for all v,v� ∈ T ,
v �= v�,

(v + B) ∩ (v� + B) = ∅.

We say B covers Z
n by T if⋃

v∈T

(v + B) = Z
n.

If B both packs and covers Z
n by T , then we say B tiles Z

n

by T . The packing density (or covering density, respectively)
of B by T is defined as

δ � lim
�→∞

|[−�, �]n ∩ T | · |B|
|[−�, �]n| .

When T = Λ is some lattice, we call these lattice packings
and lattice coverings, respectively. The density then takes on
a simpler form

δ =
|B|

vol(Λ)
.

Throughout the paper, the object we pack and cover Z
n

with, is the error ball, B(n, t, k+, k−), defined in (1). We con-
veniently observe that for all integers n � 1, 0 � t � n,
0 � k− � k+, we have

|B(n, t, k+, k−)| =
t∑

i=0

(
n

i

)
(k+ + k−)i.

A. Lattice Packing/Covering/Tiling and Group Splitting

Lattice packing, covering, and tiling of Z
n with

B(n, t, k+, k−), in connection with group splitting, has a long
history when t = 1 (e.g., see [27]), called lattice tiling by
crosses if k+ = k− (e.g., [28]), semi-crosses when k− = 0
(e.g., [11], [13], [28]), and quasi-crosses when k+ � k− �
0 (e.g., [25], [26]). For an excellent treatment and history,
the reader is referred to [30] and the many references therein.
Other variations, keeping t = 1 include [31], [32]. More recent
results may be found in [37] and the references therein.

For t � 2, an extended definition of group splitting in
connection with lattice tiling is provided in [35]. In the
following, we modify this definition to distinguish between
lattice packings, coverings, and tilings.
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Definition 1: Let G be a finite Abelian group, where +
denotes the group operation. For m ∈ Z and g ∈ G, let mg
denote g+g+· · ·+g (with m copies of g) when m > 0, which
is extended in the natural way to m � 0. Let M ⊆ Z \ {0}
be a finite set, and S = {s1, s2, . . . , sn} ⊆ G.

1) If the elements e · (s1, . . . , sn), where e ∈ (M ∪ {0})n

and 1 � wt(e) � t, are all distinct and non-zero in G,
we say the set M partially t-splits G with splitter set S,
denoted

G � M �t S.
2) If for every g ∈ G there exists a vector e ∈ (M ∪{0})n,

wt(e) � t, such that g = e · (s1, . . . , sn), we say
the set M completely t-splits G with splitter set S,
denoted

G � M �t S.
3) If G � M �t S and G � M �t S we say M t-splits G

with splitter set S, and write

G = M �t S.
In our context, since we are interested in packing and

covering with B(n, t, k+, k−), then in the previous definition,
we need to take M � [−k−, k+]∗. Thus, the following
two theorems show the equivalence of partial t-splittings
with M and lattice packings of B(n, t, k+, k−), summarizing
Lemma 3 and Lemma 4 in [5], and similarly for complete
t-splittings and lattice coverings.

Theorem 2: Let G be a finite Abelian group, M �
[−k−, k+]∗, and S = {s1, . . . , sn} ⊆ G. Define φ : Z

n →
G as φ(x) � x · (s1, . . . , sn) and let Λ � kerφ be a
lattice.

1) If G � M �t S, then B(n, t, k+, k−) packs Z
n by Λ.

2) If G � M �t S, then B(n, t, k+, k−) covers Z
n by Λ.

Proof: For packing, see Lemma 4 in [5]. For covering,
denote B � B(n, t, k+, k−). Assume x ∈ Z

n. Since G �
M �t S, there exists a vector e ∈ B such that φ(x) = φ(e).
Then v � x− e ∈ Λ, and x ∈ v + B.

In the theorem above, for G � M �t S, since the quotient
group Z

n/Λ is isomorphic to the image of φ, which is a
subgroup of G, we have vol(Λ) � |G|. Then the packing
density of Λ is

δ =
|B(n, t, k+, k−)|

vol(Λ)
� |B(n, t, k+, k−)|

|G| .

For G � M �t S, vol(Λ) = |G|, and the covering density of
Λ is

δ =
|B(n, t, k+, k−)|

vol(Λ)
=
|B(n, t, k+, k−)|

|G| .

It is known that a lattice packing implies a partial splitting.
While not of immediate use to us in this paper, we do mention
that an analogous claim is also true for lattice coverings, as the
following theorem shows.

Theorem 3: Let Λ ⊆ Z
n be a lattice. Define G � Z

n/Λ.
Let φ : Z

n → G be the natural homomorphism, namely the
one that maps any x ∈ Z

n to the coset of Λ in which it resides,
and then Λ = kerφ. Finally, let ei be the i-th unit vector in Z

n

and set si � φ(ei) for all 1 � i � n and S � {s1, s2, . . . , sn}.
1) If B(n, t, k+, k−) packs Z

n by Λ, then G � M �t S;

2) if B(n, t, k+, k−) covers Z
n by Λ, then G � M �t S,

where M � [−k−, k+]∗.
Proof: For the packing case, see Lemma 3 in [5]. Now we

prove the claim for covering. Let Λ + x ∈ G be any element
of G. Since B(n, t, k+, k−) covers Z

n by Λ, there exist v ∈ Λ
and e ∈ B(n, t, k+, k−) such that x = v + e. This means

Λ + x = φ(x) = φ(v) + φ(e) = φ(e) = e · (s1, . . . , sn),
which completes the proof.

Finally, a connection between perfect codes in the Hamming
metric, and lattice tilings with B(n, t, k+, k−) was observed
in [35]. We repeat a theorem that we shall generalize later.

Theorem 4 (Theorem 3 in [35]): In the Hamming metric
space, let C be a perfect linear [n, k, 2t + 1] code over Fp,
with p a prime. If k+ + k− + 1 = p, then

Λ � {x ∈ Z
n | (x mod p) ∈ C}

is a lattice, and B(n, t, k+, k−) tiles Z
n by Λ.

III. CONSTRUCTIONS OF LATTICE PACKINGS

In this section we describe several constructions for pack-
ings of B(n, t, k+, k−). We begin by showing how to trans-
late codes in the Hamming metric into lattices that pack
B(n, t, k+, k−). Apart from a single case, these have van-
ishing density. The motivation for showing these “off-the-
shelf” constructions is to create a baseline against which we
measure our tailor-made constructions that appear later. These
use Bt[N ; 1] sets (see Subsection III-B), or take inspiration
from constructions of sets with no arithmetic progression,
to construct codes that improve upon the baseline.

A. Constructions Based on Error-Correcting Codes

Theorem 4 can be easily modified to yield the following
construction, the proof of which is the same as that of
[35, Theorem 3] and we omit here to avoid unnecessary
repetition.

Theorem 5: In the Hamming metric space, let C be a linear
[n, k, 2t+1] code over Fp, with p a prime. If 0 � k++k− < p
are integers, then

Λ � {x ∈ Z
n | (x mod p) ∈ C}

is a lattice, and B(n, t, k+, k−) packs Z
n by Λ.

Since B(n, t, k+, k−) packs Z
n by Λ, the lattice Λ is

an error-correcting code over Z for asymmetric limited-
magnitude errors. We note that a similar construction of error-
correcting codes over a finite alphabet for asymmetric limited-
magnitude errors was presented in [6] and the decoding
scheme therein can be adapted here as follows. Let x ∈ Λ be a
codeword, and y ∈ x+B(n, t, k+, k−) be the channel output.
Denote ψ = y (mod p). Run the decoding algorithm of the
linear [n, k, 2t+1] code on ψ and denote the output as φ. Then
φ is a codeword of the linear code over Fp and it is easy to see
that φ = x (mod p). Thus y− x ≡ ψ−φ (mod p). Denote
ε = ψ − φ (mod p) and let e = (e1, e2, . . . , en) where

ei �
{
�i, if 0 � �i � k+;
�i − p, otherwise.

Then x can be decoded as x = y − e.
Now let us look at the packing density.
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Corollary 6: Let Λ be the lattice constructed in Theorem 5.
Then vol(Λ) = pn−k and the packing density is

δ =
∑t

i=0

(
n
i

)
(k+ + k−)i

pn−k
.

Proof: In Theorem 5, the quotient group Z
n/Λ is iso-

morphic to the group Z
n−k
p (see Example 3 and Example 4

in [35]). The claim is then immediate.
When t is small, we may use BCH codes as the input to

construct the lattice packing.
Theorem 7 (Primitive Narrow-Sense BCH Codes

[1, Theorem 10]): Let p be a prime. Fix m � 1 and
2 � d � p�m/2� − 1. Set n = pm − 1. Then there exists an
[n, k, d]-code over Fp with

k = n− 
(d− 1)(1− 1/p)�m.
Corollary 8: Let ψ(x) be the smallest prime not smaller

than x 1 and denote p � ψ(k+ + k− + 1). Let m, t be
positive integers such that 2t � p�m/2� − 2, and set n =
pm−1. Then Z

n can be lattice packed by B(n, t, k+, k−) with
density

δ =
∑t

i=0

(
n
i

)
(k+ + k−)i

(n+ 1)�2t(1−1/p)� .

Proof: Simply combine Theorem 7 with Corollary 6.
Note that if k+ = 1 and k− = 0, then the packing density in

Corollary 8 is δ =
�t

i=0 (n
i)

(n+1)t = 1
t! + o(1) (when t is fixed and

n tends to infinity). However, for all the other values of k+

and k−, namely p � 3, the density always vanishes when n
tends to infinity, i.e., δ = Θ(nt−�2t(1−1/p)�). In the remainder
of this section, we will present some constructions to provide
lattice packings of higher density.

Perfect codes were used in [35] obtain lattice tilings, i.e.,
lattice packings with density 1. Similarly, it is possible to use
quasi-perfect linear codes to obtain lattice packings with high
densities.

Corollary 9: Assume that 1 � k+ + k− � 2 are non-
negative integers.

1) Let m be a positive integer and n = (3m + 1)/2. Then
Z

n can be lattice-packed by B(n, 2, k+, k−) with density

δ =

(
n
2

)
(k+ + k−)2 + n(k+ + k−) + 1

(2n− 1)2
.

2) Let m � 3 be an odd integer and n = (3m − 1)/2. Then
Z

n can be lattice-packed by B(n, 2, k+, k−) with density

δ =

(
n
2

)
(k+ + k−)2 + n(k+ + k−) + 1

(2n+ 1)2
.

Proof: For the first case, we take a [(3m + 1)/2, (3m +
1)/2 − 2m, 5]3 code from [10] as the input of Theorem 5
to obtain the lattice packing, while for the second, we take
a [(3m − 1)/2, (3m − 1)/2 − 2m, 5]3 code from [9] as the
input.

We note that [22] presented some binary quasi-perfect
linear codes with minimum distance 5, which can give rise

1It is known that ψ(x) � x + x21/40 [2], and conjectured that ψ(x) =
x+ O(log x).

to packings of B(n, 2, 1, 0). It has been checked out that the
corresponding densities are asymptotically the same as that in
Corollary 8, i.e., 1

2 +o(1). [22] also studied p-ary quasi-perfect
linear codes with p � 3. However, the minimum distances of
those codes are no more that 4. So they cannot be used to
obtain packings of B(n, t, k+, k−) with t � 2.

The following theorem uses non-linear codes to construct
non-lattice packing, the proof of which is the same as that
of [6, Theorem 5] and we omit here to avoid unnecessary
repetition.

Theorem 10: In the Hamming metric space, let C be a q-ary
(n,M, 2t+ 1) code. Denote

V � {v ∈ Z
n | (v mod q) ∈ C}.

If k+ + k− < q, then for any distinct v,v� ∈ V , we have
(v + B(n, t, k+, k−)) ∩ (v� + B(n, t, k+, k−)) = ∅, namely,
B(n, t, k+, k−) can pack Z

n by V .
Corollary 11: The density of the packing of Z

n constructed
in Theorem 10 is

δ =
M ·∑t

i=0

(
n
i

)
(k+ + k−)i

qn
.

Proof: Note that the set V constructed in Theorem 10
has period q in each coordinate. Thus, the packing density
of Z

n is equal to the packing density of Z
n
q , which is

M
qn

∑t
i=0

(
n
i

)
(k+ + k−)i.

Corollary 12: Let m � 4 be an even integer and let n =
2m− 1. Then Z

n can be packed by B(n, 2, 1, 0) with density

δ =

(
n
2

)
+ n+ 1

(n+ 1)2/2
= 1− n− 1

(n+ 1)2
.

Proof: We take a binary (2m − 1, 22m−2m, 5) Preparata
code [23] as the input of Theorem 10 to obtain the packing.

B. Construction Based on Bt[N ; 1] Sets for
(k+, k−) = (1, 0) or (1, 1)

A subset A ⊆ Z is called a Bt[g] set if every integer can be
written in at most g different ways as a sum of t (not necessary
distinct) elements of A (e.g., see [33, Section 4.5] and the
many references therein). In this section, however, we require
Bt[1] sets with a somewhat stronger property. Specifically,
a subset A of ZN is called a Bt[N ; 1] set if the sums of
any t (not necessary distinct) elements of A are all different
modulo N . Bose and Chowla [4] presented two classes of
Bt[N ; 1] sets.

Theorem 13 ([4, Theorem 1 and Theorem 2]): Let q be
a prime power and t be a positive integer. Let α0 =
0, α1, α2, . . . , αq−1 be all the different elements of Fq .

1) Let ξ be a primitive element of the extended field Fqt .
For each 0 � i � q − 1, let di ∈ Zqt−1 be such that

ξdi = ξ + αi.

Then the set S1 � {di | 0 � i � q − 1} is a Bt[qt − 1; 1]
set of size q.

2) Let η be a primitive element of the extended field
Fqt+1 . For each 0 � i � q − 1, let βi ∈ Fq and
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si ∈ Z(qt+1−1)/(q−1) such that

βiη
si = η + αi.

Then the set S2 � {si | 0 � i � q − 1} ∪ {0} is a
Bt[(qt+1 − 1)/(q − 1); 1] set of size q + 1.

Theorem 14: Let A be a Bt[N ; 1] set which contains 0.
Denote S � A \ {0}. Then ZN � {1} �t S.

Proof: Suppose to the contrary that {si1 , si2 , . . . , si�
} and

{sj1 , sj2 , . . . , sjr} are two distinct subsets of S such that

si1 + si2 + . . .+ si�
≡ sj1 + sj2 + . . .+ sjr (mod N),

where �, r � t. Then we have

0 + 0 + · · ·+ 0︸ ︷︷ ︸
t−�

+si1 + si2 + . . .+ si�

≡ 0 + 0 + · · ·+ 0︸ ︷︷ ︸
t−r

+sj1 + sj2 + . . .+ sjr (mod N),

which contradicts that S ∪ {0} is a Bt[N ; 1] set.
The following result slightly improves upon the density

obtained in Corollary 8 for lattice packings of B(n, t, 1, 0).
Corollary 15: 1) Let t � 2 be a fixed integer. Assume

that n + 1 is a prime power tending to infinity, then
there is a lattice packing of Z

n by B(n, t, 1, 0) with
density

δ =
∑t

i=0

(
n
i

)
(n+ 1)t − 1

=
1
t!

+ o(1).

2) Let t � 2 be a fixed integer. Assume that n is a prime
power tending to infinity, then for any 2 � t � n, there
is a lattice packing of Z

n by B(n, t, 1, 0) with density

δ =
∑t

i=0

(
n
i

)
(nt+1 − 1)/(n− 1)

=
1
t!

+ o(1).

Proof: Note that if {s1, s2, . . . , sn} is a Bt[N ; 1] set,
then {0, s2 − s1, s3 − s1, . . . , sn − s1} is also a Bt[N ; 1] set,
which contains 0. Hence, combining Theorem 13 and Theo-
rem 14, together with Theorem 2, we prove the claim.

In general, we do not have an efficient decoding scheme
for the lattice code obtained from Theorem 14. However, for
the lattice code ΛS2\{0} obtained from the Bt[(qt+1 − 1)/
(q−1); 1] set S2 in Theorem 13, we have the following decod-
ing algorithm (summarized in Algorithm 1). Let n = q and
let S2 \ {0} = {s0, . . . , sn−1} be defined as in Theorem 13.
Let x ∈ ΛS2\{0} be a codeword and y ∈ x + B(n, t, 1, 0)
be the channel output. Then x · (s0, s1, . . . , sn−1) = 0, and
y − x is a binary vector over {0, 1} of weight at most t.
Let i1, i2, . . . , ir be the indices of the nonzero bits of y − x,
and denote s = y · (s0, s1, . . . , sn−1). We aim to recover
i1, i2, . . . , ir from s. Since

s = y · (s0, s1, . . . , sn−1) = y · (s0, s1, . . . , sn−1)− 0
= y · (s0, s1, . . . , sn−1)− x · (s0, s1, . . . , sn−1)

= (y − x) · (s0, s1, . . . , sn−1) =
r∑

�=1

si�
,

we have that(
r∏

�=1

βi�

)
ηs =

r∏
�=1

(βi�
ηsi� ) =

r∏
�=1

(η + αi�
). (2)

Let p(x) be the primitive polynomial of η and r(x) = xs mod
p(x). Then r(η) = ηs, and we substitute this in (2) to obtain(

r∏
�=1

β�

)
r(η) =

r∏
�=1

(η + αi�
).

Since both the polynomials (
∏r

�=1 βi�
)r(x) and

∏r
�=1

(x+αi�
) are over Fq and have degrees at most t, they should

be the same; otherwise, η is a root of a nonzero polynomial of
degree at most t, which contradicts the fact that η is a primitive
element of Fqt+1 . Thus, we may solve (

∏r
�=1 β�)r(x) to find

out αi1 , αi1 , . . . , αir . Finally, we can subtract
∑r

�=1 ei�
from

y to obtain x.

Algorithm 1 Decoding Algorithm for ΛS2\{0} From
Theorem 13

Input: received vector y ∈ Z
n suffering at most t errors

S2 \ {0} = {s0, . . . , sn−1} from Theorem 13
where η is a root of a primitive polynomial p(x) of

degree t+ 1
and where Fq \ {0} = {α1, . . . , αq−1}.

Output: codeword x ∈ ΛS2\{0} such that y ∈ x +
B(n, t, 1, 0)

1: s← y · (s0, s1, . . . , sn−1)
2: r(x)← xs mod p(x)
3: for 1 � i � q − 1 do
4: if r(αi) = 0 then
5: y← y − ei

6: end if
7: end for
8: return y

Let us analyze the time complexity of Algorithm 1, where
we count the number of field operations in Fq. The inner
product in Step 1 takes O(n) operations. Step 2 is possible to
compute in O(t2 log s) field operations (by using successive
squaring and multiplication by x as necessary, taking a modulo
p(x) after each iteration). Since s ∈ Z(qt+1−1)/(q−1) and
n = q, it is O(t3 logn). Finally, the root search loop starting
in Step 3 takes O(tn) operations. Thus, in total, the time
complexity O(tn+ t3 logn) field operations. If t is constant,
then this is linear in the code length. As a final comment, we
point out that q = O(n), and thus the basic field operations of
addition and multiplication may be realized in O(polylog(n))
time.

We now move from packing B(n, t, 1, 0) to packing
B(n, t, 1, 1). In general, we note that one can use a Bh[N ; 1]
set with h = t(k+ + k−) to obtain a lattice packing of
B(n, t, k+, k−) in Zn for k+ + k− � 2. However, in this
case, the density is O(nt(1−k++k−)), which vanishes when n
tends to infinity. Similarly, the lattice packing from Corollary 8
also has vanishing densityO(nt−�2t(1−1/p)�). In the following,
we give a modified construction which uses a Bt[N ; 1] set to
obtain a lattice packing of B(n, t, 1, 1) with density Ω(1).

Theorem 16: Let A = {a1, a2, . . . , an} be a Bt[N ; 1] set.
In the group ZN × Z2t+1, construct a set

S � {(ai, 1) | ai ∈ A}.
Then ZN × Z2t+1 � {−1, 1} �t S.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on July 17,2021 at 10:22:57 UTC from IEEE Xplore.  Restrictions apply. 



WEI et al.: ON LATTICE PACKINGS AND COVERINGS OF ASYMMETRIC LIMITED-MAGNITUDE BALLS 5109

Proof: Suppose to the contrary that there are
(ai1 , 1), (ai1 , 1), . . . , (ai�

, 1) and (aj1 , 1), (aj2 , 1), . . . , (ajr , 1)
in S such that

�′∑
m=1

(aim , 1)−
�∑

m=�′+1

(aim , 1)=
r′∑

m=1

(ajm , 1)−
r∑

m=r′+1

(ajm , 1),

(3)

where 0 � �� � � � t and 0 � r� � r � t, and the addition is
over the group ZN × Z2t+1.

The second coordinate of the equation above implies that

�− 2�� ≡ r − 2r� (mod 2t+ 1).

Since 0 � �� � � � t and 0 � r� � r � t, we have � − 2��,
r − 2r� ∈ [−t, t]. It follows that � − 2�� = r − 2r�, and so,
�� + r − r� = r� + �− ��. Let τ � �� + r − r�. Then

τ =
�� + r − r� + r� + �− ��

2
=
�+ r

2
� t.

Rearranging the terms in the first coordinate of the equa-
tion (3), we have

ai1 + ai2 + · · ·+ ai�′ + ajr′+1
+ · · ·+ ajr

≡aj1 + aj2 + · · ·+ ajr′ + ai�′+1
+ · · ·+ ai�

(mod N).

On both side of the equation above, there are τ terms. This
contradicts the fact that A is a Bt[N ; 1] (and hence a Bτ [N ; 1]
set for any τ � t).

Combining Theorem 13 and Theorem 16, together with
Theorem 2, we have the following result.

Corollary 17: Let t � 2 be a fixed integer. If n is a prime
power tending to infinity, then there is a lattice packing of Z

n

by B(n, t, 1, 1) with density

δ =
∑t

i=0

(
n
i

)
2i

(2t+ 1)(nt − 1)
=

2t

t!(2t+ 1)
+ o(1).

If n − 1 is a prime power tending to infinity, then there is a
lattice packing of Z

n by B(n, t, 1, 1) with density

δ =
∑t

i=0

(
n
i

)
2i

(2t+ 1)((n− 1)t+1 − 1)/(n− 2)
=

2t

t!(2t+ 1)
+ o(1).

C. Constructions for t = 2

Whereas in the previous section we considered uncon-
strained t but only small values of k+, k−, in this section we
focus on the case of t = 2 but unconstrained k+, k−.

We first present a construction based on k-fold Sidon sets.
Such sets were first defined in [20] as a generalization of Sidon
sets. We repeat the definition here. Let k be a positive integer
and let N be relatively prime to all elements of [1, k], i.e.,
gcd(N, k!) = 1. Fix integers c1, c2, c3, c4 ∈ [−k, k] such that
c1 + c2 + c3 + c4 = 0, and let S be the collection of sets
S ⊆ {1, 2, 3, 4} such that

∑
i∈S ci = 0 and ci �= 0 for i ∈ S.

We note that S always contains the empty set. Consider the
following equation over x1, x2, x3, x4 ∈ ZN :

c1x1 + c2x2 + c3x3 + c4x4 ≡ 0 (mod N). (4)

A solution of (4) is trivial if there exists a partition of the
set {i | ci �= 0} into sets S, T ∈ S such that xi = xj for all
i, j ∈ S and all i, j ∈ T . We now define a k-fold Sidon set
to be a set A ⊆ ZN such that for any c1, c2, c3, c4 ∈ [−k, k]
with c1 + c2 + c3 + c4 = 0, equation (4) has only trivial
solutions in A. In the special case of k = 1, a 1-fold Sidon
set coincides with the usual definition of a Sidon set, which
is also a B2[N ; 1] set.

Theorem 18: Let A ⊆ ZN be a k-fold Sidon set. Assume
that 0 � k− � k+ � k and k+ + k− � 1. In the group
G � Z2(k++k−)+1 × ZN , construct a set

S � {(1, x) |x ∈ A}.
Then G � [−k−, k+]∗ �2 S.

Proof: Suppose to the contrary that G is not partially
2-split by S. Then there are x1, x2, x3, x4 ∈ A and
c1, c2, c3, c4 ∈ [−k−, k+] such that

c1 + c2 ≡ c3 + c4 (mod 2(k+ + k−) + 1),

and
c1x1 + c2x2 ≡ c3x3 + c4x4 (mod N), (5)

where all the following hold:

1) x1 �= x2

2) x3 �= x4

3) x1 �= x3 if c1 = c3 and c2 = c4 = 0
4) x2 �= x4 if c2 = c4 and c1 = c3 = 0
5) (x1, x2) �= (x3, x4) if (c1, c2) = (c3, c4).
6) (x1, x2) �= (x4, x3) if (c1, c2) = (c4, c3).

Since −(k+ + k−) � a+ b, c+ d � k+ + k−, it follows that
c1 + c2 = c3 + c4, or equivalently, c1 + c2 − c3 − c4 = 0. To
avoid contradicting the assumption thatA is a k-fold Sidon set,
(x1, x2, x3, x4) should be a trivial solution of (5). We consider
the following cases:

Case 1. If none of c1, c2, c3, c4 are 0, we consider the pos-
sible partitions of {1, 2, 3, 4}. Since x1 �= x2 and x3 �= x4, 1
and 2, respectively 3 and 4, cannot be placed in the same set in
the partition. Then the possible partitions are {{1, 3}, {2, 4}},
and {{1, 4}, {2, 3}}. If the partition is {{1, 3}, {2, 4}}, then
c1 − c3 = 0 and c2 − c4 = 0. It follows that x1 = x3 and
x2 = x4, which contradicts that (x1, x2) �= (x3, x4) when
(c1, c2) = (c3, c4). The case of {{1, 4}, {2, 3}} is proved
symmetrically.

Case 2. If there is exactly one element of c1, c2, c3, c4 that is
equal to 0, say w.l.o.g., c1 = 0, then the only possible partition
of {2, 3, 4} is {∅, {2, 3, 4}}, which contradicts x3 �= x4.

Case 3. If there are exactly two elements of c1, c2, c3, c4
that are equal to 0, w.l.o.g., we may consider the two cases
where c1 = c2 = 0, and c1 = c3 = 0. If c1 = c2 = 0, the only
possible partition of {3, 4} is {∅, {3, 4}}, which contradicts
x3 �= x4. If c1 = c3 = 0, the only possible partition of {2, 4}
is {∅, {2, 4}}. Then we have x2 = x4. Note that c1 = c3 = 0
and c2 = c4, and we get a contradiction.

Case 4. If there are exactly three elements of c1, c2, c3, c4
that are equal to 0, assume w.l.o.g., that c2 = c3 = c4 = 0
and c1 �= 0. Then we need to partition {1}. However, such
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a partition does not exist as c1 �= 0. Thus, there is no solution
to (5).

When k = 2, a family of 2-fold Sidon sets is constructed
in [20] by removing some elements from Singer difference
sets with multiplier 2.

Theorem 19 (Theorem 2.5 in [20]): Let m be a positive
integer and N = 22m+1

+ 22m

+ 1. Then there exists a 2-fold
Sidon set A ⊆ ZN such that

|A| � 1
2
N1/2 − 3.

We immediately get the following corollary.
Corollary 20: Let 0 � k− � k+ � 2 be integers with

k+ + k− � 1. There is an infinite family of integers n such
that Z

n can be lattice packed by B(n, 2, k+, k−) with density

δ =

(
n
2

)
(k+ + k−)2 + n(k+ + k−) + 1
(2(k+ + k−) + 1)(2n+ 6)2

=
1

8(2(k+ + k−) + 1)
+ o(1).

Proof: Simply combine Theorem 18 and Theorem 19.
Now, we present a construction for t = 2 and 0 � k− �

k+ � 3, which combines Behrend’s method [3] and Ruzsa’s
method [24] to forbid some specified linear equations.

Theorem 21: Let 0 � k− � k+ � 3 be integers such
that k+ + k− � 1. Set α � max{2k2

+, 3}. Let D � 2 and
K � 1 be integers, and p ≡ ±5 (mod 12) be a prime such
that (αK + 1)D � p. For each 0 � m < DK2, define

Cm �
{
x =

D−1∑
i=0

xi(αK + 1)i

∣∣∣∣∣ 0 � xi � K,
D−1∑
i=0

x2
i = m

}
.

Let G � Z3k++2k−+1 × Zp × Zp, and construct a subset

Sm � {sx |x ∈ Cm}, where sx � (1, x, x2) ∈ G.
If k+ � 3, then G � M �2 Sm for every 0 � m < DK2, and
where M � [−k−, k+]∗.

Proof: Suppose to the contrary that G is not partially
2-split by Sm. We consider the following cases.

Case 1. asx = 0 for some a ∈ M and x ∈ Cm. The first
coordinate of this equation is a ≡ 0 (mod 3k+ + 2k− + 1).
Since −k− � a � k+, necessarily a = 0, a contradiction.

Case 2. asx = bsy for some a, b ∈ M , x, y ∈ Cm and
(a, x) �= (b, y). Similarly to Case 1, the first coordinate implies
that a = b. From the second coordinate, we have ax ≡ by
(mod p), and so, x ≡ y (mod p). It follows that x = y as
0 � x, y < p, which contradicts (a, x) �= (b, y).

Case 3. asx + bsy = 0 for some a, b ∈M , x, y ∈ Cm and
x �= y. The first coordinate implies a + b = 0 as −2k− �
a+b � 2k+. W.l.o.g., we assume a > 0. Then asx = (−b)sy,
where 0 < a,−b � k−, which was ruled out in Case 2.

Case 4. asx+bsy = csu for some a, b, c ∈M and x, y, u ∈
Cm with x �= y. From the first coordinate, we have a+b = c as
−2k− � a+b � 2k+ and −k− � c � k+. If x = u or y = u,
then bsy = bsu or asx = asu, respectively, both of which
were ruled out in Case 2. Thus, in the following, we assume
x, y, u are pairwise distinct. Furthermore, using the condition
a + b = c and rearranging the terms, we may assume that
a, b, c > 0.

From the second coordinate, we have that ax + by ≡ cu
(mod p), or equivalently,

D−1∑
i=0

(axi + byi)(αK + 1)i ≡
D−1∑
i=0

cui(αK + 1)i (mod p).

Note that 0 � axi + byi, cui � 2k+K < αK + 1 and p �
(αK + 1)D. It follows that axi + byi = cui for all 0 �
i � D− 1. Thus, the three distinct points (x0, x1, . . . , xD−1),
(y0, y1, . . . , yD−1), and (u0, u1, . . . , uD−1), are collinear in
Z

D where D � 2, which contradicts the fact that they are on
the same sphere, i.e.,

∑
i x

2
i =

∑
i y

2
i =

∑
i u

2
i = m.

Case 5. asx + bsy = csu + dsv for some a, b, c, d ∈ M ,
x, y, u, v ∈ Cm, x �= y and u �= v, where abcd is negative.
By rearranging the terms, we may assume w.l.o.g. that

asx + bsy + csz = dsu

for some 0 < a, b, c, d � k+ and x, y, z, u ∈ Cm where
x, y, z, u are not all the same.

Note that 0 < a+ b+ c � 3k+ and 0 < d � k+. From the
first coordinate of the equation above we have a+ b+ c = d.
The second coordinate of the equation implies that

D−1∑
i=0

(axi+byi+czi)(αK+1)i ≡
D−1∑
i=0

dui(αK+1)i (mod p).

Since 0 � axi + byi + czi � 3k+K < αK+1 and 0 � dui �
k+K < αK + 1, necessarily axi + byi + czi = dui for all
0 � i � D − 1. Then

ax2
i + by2

i + cz2
i

= a(xi − ui + ui)2 + b(yi − ui + ui)2 + c(zi − ui + ui)2

= a(xi − ui)2 + 2a(xi − ui)ui + au2
i + b(yi − ui)2

+ 2b(yi − ui)ui + bu2
i + c(zi − ui)2 + 2c(zi − ui)ui+cu2

i

= a(xi − ui)2 + b(yi − ui)2 + c(zi − ui)2

+ 2(axi + byi + czi)ui − (a+ b+ c)u2
i

= a(xi − ui)2 + b(yi − ui)2 + c(zi − ui)2 + (a+ b+ c)u2
i .

Note that x, y, z, u ∈ Cm, i.e.,
∑D−1

i=0 x2
i =

∑D−1
i=0 y2

i =∑D−1
i=0 z2

i =
∑D−1

i=0 u2
i . It follows that

(a+ b+ c)
D−1∑
i=0

u2
i

= a

D−1∑
i=0

x2
i + b

D−1∑
i=0

y2
i + c

D−1∑
i=0

z2
i

= a

D−1∑
i=0

(xi − ui)2 + b

D−1∑
i=0

(yi − ui)2

+ c

D−1∑
i=0

(zi − ui)2 + (a+ b+ c)
D−1∑
i=0

u2
i ,

which in turn implies that xi = yi = zi = ui for all 0 � i �
D − 1, and so, x = y = z = u, a contradiction.

Case 6. asx + bsy = csu + dsv for some a, b, c, d ∈ M ,
x, y, u, v ∈ Cm, x �= y and u �= v, where abcd is positive.
Note that from the first coordinate, we have a + b = c + d.
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By rearranging the terms, we may assume that

asx + bsy = csu + dsv

for some 0 < a, b, c, d � k+, a + b = c + d, x, y, u, v ∈ Cm

and x, y, u, v are not all the same. The second coordinate and
the third coordinate of the equation above imply that

ax+ by ≡ cu+ dv (mod p) (6)

and
ax2 + by2 ≡ cu2 + dv2 (mod p). (7)

We multiply (7) by a+ b, and then subtract the square of (6).
Noting that a+ b = c+ d, the result is

ab(x− y)2 ≡ cd(u − v)2 (mod p). (8)

If x = y, using (6) and (8), it is easy to see that x, y, u, v are
all the same, a contradiction; if x = u, then (6) was ruled out
in Case 4. Thus, we may assume that x, y, u, v are pairwise
distinct, and so,

abcd ≡ c2d2(u− v)2/(x− y)2 (mod p), (9)

i.e., abcd should be a quadratic residue modulo p.
Check all the possible abcd, where 0 < a, b, c, d � k+ � 3

and a+b = c+d. We have abcd ∈ {1, 22, 32, 42, 62, 92, 3 · 22}.
Since p ≡ ±5 (mod 12), 3 is not a quadratic residue modulo
p, and so, abcd ∈ {1, 22, 32, 42, 62, 92}. In all of these cases,
abcd is a square in Z. Denote t =

√
abcd. Since 0 <

a, b, c, d � k+, we have 0 < t � k2
+. Substituting abcd = t2

in (9) yields

±t(x− y) ≡ cd(u− v) (mod p). (10)

Solving the system of equations (6) and (10), we get

(c2 + cd)u ≡ (±t+ ac)x+ (bc∓ t)y (mod p).

Note that a+ b = c+ d. Hence,

D−1∑
i=0

(ac+ bc)ui(αK + 1)i

≡
D−1∑
i=0

((±t+ ac)xi + (bc∓ t)yi)(αK + 1)i (mod p).

(11)

Since (±t + ac) + (bc ∓ t) = ac + bc > 0, at least one of
±t + ac and bc ∓ t is positive. We proceed in the following
subcases.

1) If ±t+ ac = 0, we have t = ac, and so,

D−1∑
i=0

(ac+ bc)ui(αK + 1)i

≡
D−1∑
i=0

(bc+ ac)yi(αK + 1)i (mod p),

which in turn implies u = y, a contradiction.
Similarly, if bc ∓ t = 0, we can get u = x, again,
a contradiction.

2) If both ±t+ ac and bc∓ t are positive, then 0 � (±t+
ac)xi +(bc∓t)yi � (ac+bc)K � 2k2

+ K � αK . On the

other hand, 0 � (ac + bc)ui � 2k2
+ K � αK . Thus it

follows from (11) that

(ac+bc)ui = (±t+ac)xi+(bc∓t)yi for all 0� i�D−1.

That is, the three distinct points (x0, x1, . . . , xD−1),
(y0, y1, . . . , yD−1) and (u0, u1, . . . , uD−1) of F

D
p are

collinear, which contradicts the fact that they are on the
same sphere.

3) If ±t+ac is negative, then bc∓ t is positive. Rearranging
the terms in (11), we have that

D−1∑
i=0

((ac+ bc)ui − (±t+ ac)xi)(αK + 1)i

≡
D−1∑
i=0

(bc∓ t)yi(αK + 1)i (mod p).

Since

0 � (ac+ bc)ui − (±t+ ac)xi

= (ac+ bc)ui + (∓t− ac)xi

� (ac+ bc)K + (∓t− ac)K
= (bc∓ t)K � 2k2

+ K � αK,

then
(ac+ bc)ui − (±t+ ac)xi = (bc∓ t)yi

for all 0 � i � D− 1. Again we get three distinct points
on the same sphere which are collinear, a contradiction.

4) If bc∓ t is negative, then ±t+ ac is positive. Using the
same argument as above, we can get the contradiction.

Thus we complete our proof.
Remark: In the proof above, the product abcd is required to

be either a square of Z or a non quadratic residue modulo p.
This requirement comes from Ruzsa’s method, in the proof
of Theorem of 7.3 of [24]. However, for k+ � 4, this
requirement cannot be satisfied: we may choose (a, b, c, d)
to be (1, 4, 2, 3), (1, 3, 2, 2) or (2, 4, 3, 3), the products 24, 12
and 72 are not squares and they cannot simultaneously be non
quadratic residues modulo p for any prime p as, using the
Legendre symbol, (

6
p

)
=
(

2
p

)(
3
p

)
.

Corollary 22: Let t = 2 and 0�k−�k+ � 3, k++k−�1.
There is an infinite family of n such that Z

n can be lattice
packed by B(n, t, k+, k−) with density δ = Ω(c−

√
ln n) for

some real number c > 0.
Proof: Let p ≡ ±5 (mod 12) be a sufficiently large

prime. Set D � �√ln p� and K � �(eD − 1)/α�. Then we
have (αK + 1)D � p. Consider the group G and the splitting
sets Sm, m ∈ [0, DK2 − 1], in Theorem 21. According
to the pigeonhole principle, there exists one set Sm of size
� (K+1)D

DK2 . Then

n � (K + 1)D

DK2
=

(⌊
eD−1

α

⌋
+ 1
)D

D
⌊

eD−1
α

⌋2 �

(
eD−α

α + 1
)D

D
(

eD−1
α

)2

� α2 eD2

αDDe2D
� α2 e�

√
ln p�2

α
√

ln p
√

ln pe2
√

ln p
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� α2 e(
√

ln p−1)2

α
√

ln p
√

ln pe2
√

ln p
=

eα2 p

α
√

ln p
√

ln pe4
√

ln p

� p

c
√

ln p
1

,

for some real number c1 > 0. Taking logarithm of both side,
we have lnn � ln p−√ln p ln c1, or equivalently,

ln p− ln c1
√

ln p− lnn � 0.

Solving for
√

ln p, we get√
ln p � ln c1 +

√
(ln c1)2 + 4 lnn

2
,

and so

ln p � 4 lnn+ 2(ln c1)2 + 2 ln c1
√

(ln c1)2 + 4 lnn
4

� lnn+ c2
√

lnn,

for some real number c2 > 0. It follows that

n � p

ec2
√

ln n
,

and

δ �
(
n
2

)
(k+ + k−)2 + n(k+ + k−) + 1

|G| = Ω(c−
√

ln n),

for some real number c > 0.

IV. GENERALIZED PACKINGS

It is a common practice in coding theory to also consider
list decoding instead of unique decoding. In such scenarios,
the channel output is decoded to produce a list of up to λ
possible distinct codewords, where the channel output is within
the error balls centered at each of these codewords. In this
section, we therefore generalize the concept of packing to work
in conjunction with list decoding. The trade-off we present
here is that at the price of a constant-sized list, λ, we can find
lattice arrangements of B(n, t, k+, k−) with density almost
constant, Ω(n−�), for any � > 0. The proof method, however,
is non-constructive, and relies on the probabilistic method.
We note that for sufficiently small k�+ � k+ and k�− � k−, any
lattice arrangement of B(n, t, k+, k−) that induces a list size
of λ, is also a lattice packing of B(n, t, k�+, k

�
−) (namely, with

unique decoding, or list size λ = 1). Thus, we may think of list
decoding as allowing us to “decode beyond half the minimum
distance”, as it does in the Hamming metric. Unfortunately,
since our result is based on the probabilistic method, it is hard
to determine the best k�+ and k�−. Nevertheless, this approach,
with almost constant density Ω(n−�) for any � > 0, improves
upon the general construction with unique decoding that was
presented in Corollary 8, whose density approaches 0 faster.

Given a shape B ⊆ Z
n and a lattice Λ ⊆ Z

n, we say
B λ-packs Z

n by Λ if for every element z ∈ Z
n, there are

at most λ distinct elements vi ∈ Λ such that z ∈ vi + B.
Obviously, if λ = 1, this definition coincides with the packing
defined in Section II.

Let G be a finite Abelian group, M � [−k−, k+]∗, and
S ⊆ G. If each element of G can be written in at most λ ways

as a linear combination of t elements of S with coefficients

from M ∪ {0}, then we say G
λ
� M �t S.

The following result is an analogue of Theorem 2, which
relates lattice packings to Abelian groups. The proof is exactly
analogous, and we omit it.

Theorem 23: Let G be a finite Abelian group and
M � [−k−, k+]∗. Suppose that there is a subset S =

{s1, s2, . . . , sn} ⊆ G such that G
λ
� M �t S. Define φ :

Z
n → G as φ(x) � x · (s1, . . . , sn) and let Λ � kerφ be a

lattice. Then B(n, t, k+, k−) λ-packs Z
n by Λ.

We use the probabilistic approach detailed in [34], and fol-
low some of the notation there. Let x1, x2, . . . , xN be indepen-
dent {0, 1} random variables. Let Y = Y (x1, x2, . . . , xN ) be
a polynomial of x1, x2, . . . , xN . Y is normal if its coefficients
are between 0 and 1. A polynomial Y is simplified if every
monomial is a product of different variables. Since we are
dealing with {0, 1} random variables, every Y has a unique
simplification. Given a set A, let ∂A(Y ) denote the partial
derivative of Y with respect to A, and let ∂∗A be the polynomial
obtained from the partial derivative ∂A(Y ) by subtracting its
constant coefficient. Define E

∗
j (Y ) � max|A|�j E(∂∗AY ).

Theorem 24 ([34, Corollary 4.9]): For any positive con-
stants α and β and a positive integer d, there is a positive
constant C = C(d, α, β) such that if Y is a simplified normal
polynomial of degree at most d and E

∗
0(Y ) � N−α, then

Pr(Y � C) � N−β .
We now use Theorem 24 to show the existence of general-

ized lattice packings with the desired parameters.
Theorem 25: Let 0 � k− � k+ with k+ + k− � 1, and

t > 0, be integers. Let N be a sufficiently large integer such
that gcd(N, k+!) = 1, and fix G � ZN . Then for any 0 <
� < 1/t, there is a number λ which only depends on t and �,
and a subset S = {s1, s2, . . . , sn} ⊆ G with 1

2N
1/t−� � n �

3
2N

1/t−�, such that G
λ
� M �t S, where M � [−k−, k+]∗.

Proof: Set α = �t, β = 2, and d = t. Denote

p � N
1
t −1−�.

We construct S randomly. For each 0 � i < N , let the
event i ∈ S be independent with probability p. Let xi be the
indicator variable of the event i ∈ S. Then |S| = ∑N−1

i=0 xi,
and

E(|S|) = Np = N
1
t −�.

Using Chernoff’s inequality, one can show that

Pr
(

1
2

E(|S|) � |S| � 3
2

E(|S|)
)

� 1− 2e−E(|S|)/16. (12)

For every g ∈ G and 0 � i1 < i1 < · · · < i� < N , denote

c(g; i1, i2, . . . , i�)

� |{(a1, a2, . . . , a�) ∈M � | g = a1i1 + a2i2 + · · ·a�i�
}|,

where addition and multiplication are in G = ZN . Consider
the following random variables (which are polynomials in the
indicator random variables x0, . . . , xN−1),

Yg �
∑

0�i1<···<it<N

c(g; i1, i2, . . . , it)
(k+ + k−)t

xi1xi2 · · ·xit ,
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and

Zg �
∑

1���t−1
0�i1<···<i�<N

c(g; i1, i2, . . . , i�)
(k+ + k−)t−1

xi1xi2 · · ·xi�
.

Both of them are positive, and as polynomials, they are

simplified, and normal. To show that G
λ
� M �t S, it suffices

to show that (k+ + k−)tYg + (k+ + k−)t−1Zg � λ − 1 for
every g ∈ G.

We first look at Yg . Since gcd(N, k+!) = 1, if we fix
a1, a2, . . . , at ∈M t and i1, i2, . . . , it−1, then there is a unique
it ∈ [0, N − 1] such that a1i1 + a2i2 + · · ·+ atit = g. Hence,

E(Yg) � ((k+ + k−)tN t−1pt)/(k+ + k−)t = N−�t = N−α.

For the partial derivative ∂A(Yg) with A = {j1, j2, . . . , jk} ⊆
[0, N − 1] and k � t− 1,

∂A(Yg) =
∑

0�i1<···<it−k<N
{i1,...,it−k}∩A=∅

cA(g; i1, . . . , it−k)
(k+ + k−)t

xi1 · · ·xit−k
,

where

cA(g; i1, . . . , it−k)

=
∑

c1,c2,...,ck∈M

c(g − c1j1 − · · · − ckjk; i1, . . . , it−k).

Hence,

E(∂A(Yg)) � (k+ + k−)k (k+ + k−)t−kN t−k−1pt−k

(k+ + k−)t

= N−�t+k�−k/t < N−α.

Applying Theorem 24, there is a number C, depending on t
and �, such that

Pr(Yg � C) � N−2. (13)

As for Zg, a similar computation to the above shows that

E(∂∗A(Zg)) = O(N t−1−k−1pt−1−k).

Since

N t−1−k−1pt−1−k = N−�t−( 1
t −�)(k+1) < N−α,

we have E(∂∗A(Zg)) < N−α when N is sufficiently large.
Applying Theorem 24 again, there is a C� such that

Pr(Zg � C�) � N−2. (14)

Denote λ = C(k++k−)t+C�(k++k−)t−1+1. Then (13) and
(14) imply, via a union bound, that the probability that there
exists g ∈ G such that (k++k−)tYg+(k++k−)t−1Zg > λ−1
is at most 2N−1. From this, together with (12), we can see
that the random set S satisfies the conditions with probability
at least 1 − 2N−1 − 2e−E(|S|)/16, which is positive for large
enough N . Thus, such a set exists.

Corollary 26: Let 0 � k− � k+ with k+ + k− � 1, and
t > 0, be integers. Then for any real number � > 0, there is an
integer λ and infinitely many values of n such that Z

n can be
λ-lattice-packed by B(n, t, k+, k−) with density δ = Ω(n−�).

Proof: Fix �� � �
�t+t2 , and observe that �� < 1/t. Use

Theorem 25 with ��, noting that N = Θ(n�+t), to obtain

a lattice λ-packing of B(n, t, k+, k−) with density

δ � |B(n, t, k+, k−)|
|G| =

∑t
i=0

(
n
i

)
(k+ + k−)i

N
= Ω(n−�).

As a final comment on the matter, we observe that a tedious
calculation shows that in the above corollary λ = O(�−t) – a
calculation which we omit.

V. CONSTRUCTIONS OF LATTICE COVERINGS

We switch gears in this section, and focus on covering
instead of packing. We first argue that using known techniques
from the theory of covering codes in the Hamming metric,
we can show the existence of non-lattice coverings of Z

n by
B(n, t, k+, k−). However, these have a high density of Ω(n).
We then provide a product construction to obtain a lattice
covering by B(n, t, k+, k−) with density O(1).

Fixing an integer � ∈ N, we use the same argument as the
one given in [8, Section 12.1] to construct a covering code
C ⊆ Z

n
� , of size

|C| =
⌈

n�n ln �
|B(n, t, k+, k−)|

⌉
.

We can then translate this covering of Z
n
� by B(n, t, k+, k−)

to a covering of Z
n by using the same idea as Theorem 5,

and defining C� � {x ∈ Z
n | (x mod �) ∈ C}. However, the

density of the resulting covering is

δ =
|C| · |B(n, t, k+, k−)|

�n
= Ω(n).

We therefore proceed to consider more efficient coverings
using the product construction whose details follow.

Theorem 27: Suppose that there exist a finite Abelian group
G and a subset S ⊆ G such that G � M �1 S. Let t > 0 be
an integer, and denote

S(t) � {(s, 0, 0, . . . , 0) | s ∈ S} ∪ {(0, s, 0, . . . , 0) | s ∈ S}
∪ · · · ∪ {(0, 0, 0, . . . , s) | s ∈ S}.

Then Gt � M �t S(t).
Proof: For any element g = (g1, g2, . . . , gt) ∈ Gt, since

G � M �1 S, for each 1 � i � t, there are si ∈ S and
ci ∈M ∪ {0} such that gi = ci · si. Hence,

g = c1(s1, 0, 0, . . . , 0) + c2(0, s2, 0, . . . , 0)
+ · · ·+ ct(0, 0, 0, . . . , st).

That is, g can be written as a linear combination of t
elements of S with coefficients from M ∪ {0}, and so,
Gt � M �t S(t).

We can now construct a lattice covering, using the previous
theorem.

Corollary 28: Let ψ(x) be the largest prime not larger than
x, and denote p � ψ(k+ + k− + 1). Let 0 � k− � k+, with
k++k− � 1, and t > 0, be integers. Define M � [−k−, k+]∗.
Then for any integer m > 0, there exists S ⊆ (Zpm)t, |S| =
t · pm−1

p−1 , such that (Zpm)t � M �t S, and thereby, a lattice
covering of Z

n, n = |S|, with density

δ =
∑t

i=0

(
n
i

)
(k+ + k−)i

(n(p− 1)/t+ 1)t
=

(t(k+ + k−))t

t!(p− 1)t
+ o(1).
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TABLE I

A SUMMARY OF THE RESULTS

Proof: According to [25, Construction 1], there is a subset
A ⊆ Zpm of size pm−1

p−1 such that Zpm = [−k−, p − 1 −
k−]∗ �1 A. We may apply Theorem 27 to obtain a subset
S = A(t) ⊆ (Zpm )t of size t·pm−1

p−1 such that (Zpm )t � M�tS.
The calculation of the density of the resulting lattice covering
is straightforward.

VI. CONCLUSION

Motivated by coding for integer vectors with limited-
magnitude errors, we provided several constructions of pack-
ings of Z

n by B(n, t, k+, k−) for various parameters. These
are summarized in Table I. While the parameter ranges of
the constructions sometimes overlap, and perhaps result in
equal or inferior asymptotic density, having more constructions
allows for more choices for fixed values of the parameters.

One main goal was to construct lattice packings, analogous
to linear codes, as these are generally easier to analyze,
encode, and decode. Thus, except for one case, all con-
structions we provide are lattices. The main tool in con-
structing these is the connection between lattice packings of
B(n, t, k+, k−) and t-splittings of Abelian groups. The other
important goal was to have asymptotic packing density that is
non-vanishing. This is achieved in many of the cases.

We also discussed λ-packing, which allows for a small
overlap between the translates of B(n, t, k+, k−) centered at
the lattice points. This is useful for list-decoding setting with
a list size of λ. The result we obtain is non-constructive, and
it provides a trade-off between the list size and the packing
density. Finally, we also addressed the problem of lattice-
covering of Z

n by B(n, t, k+, k−), showing using the product
construction, that there exist such coverings with asymptotic
constant density.

The results still leave numerous open questions, of which
we mention but a few:

1) Constructions for packings of B(n, t, k+, k−) with t � 3,
k+ � 2, and non-vanishing asymptotic density are still
unknown.

2) Whether asymptotic density of 1 is attainable for all para-
meters is still an open questions. Such lattice packings
would be analogous to asymptotically perfect codes.

3) In the asymptotic regime of t = Θ(n), all of the con-
structions in this paper produce packings with vanishing
asymptotic rates. Such families of packings are analogous
to good codes in the Hamming metric, and their existence
and constructions would be most welcome.

4) Efficient decoding algorithms are missing for most of
the cases. In the asymptotic regime of constant t,
|B(n, t, k+, k−)| = Θ(nt). Thus, we are looking for non-
trivial decoding algorithms, whose run-time is o(nt).

5) We would also like to find constructive versions of
the non-constructive proofs for λ-packings, and covering
lattices.
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