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Abstract— We study scalar-linear and vector-linear solutions of
the generalized combination network. We derive new upper and
lower bounds on the maximum number of nodes in the middle
layer, depending on the network parameters and the alphabet
size. These bounds improve and extend the parameter range
of known bounds. Using these new bounds we present a lower
bound and an upper bound on the gap in the alphabet size
between optimal scalar-linear and optimal vector-linear network
coding solutions. For a fixed network structure, while varying
the number of middle-layer nodes r, the asymptotic behavior of
the upper and lower bounds shows that the gap is in Θ(log(r)).

Index Terms— Gap size, generalized combination network,
network coding, vector network coding.

I. INTRODUCTION

IN MULTICAST networks that apply routing, a source
node multicasts information to other nodes in the network

in a multihop fashion, where every node can pass on their
received data. Network coding has been attracting increasing
attention since the seminal papers [1], [30] which showed
that the throughput can be increased significantly by not just
forwarding packets but also performing linear combinations
of them. Several follow-up works [14], [23], [31], [32] also
showed that network coding outperforms routing in terms of
delay, throughput and reliability for specific networks.

In network coding, each node is allowed to encode its
received data before passing it on. We formulate the network
coding problem as follows: for each node in the network,
find a function of its incoming messages to transmit on its
outgoing links, such that each receiver can recover all (or a
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predefined subset of all) the messages. We say a network is
solvable if such a function exists. The encoding at relay nodes
incurs delay and memory cost in the network. One approach
in minimizing these costs, is reducing the alphabet size of the
coding operations, thus resulting in less complexity in practical
implementations of network coding [22], [26], [28].

A. Previous Work

A considerable number of studies have been conducted
on different types of network coding: such as linear net-
work coding [25], [30] and non-linear network coding [29],
deterministic network coding [35] and random linear network
coding [24], [33]. In this paper, we only focus on linear
network coding and discuss the performance of scalar linear
network coding and vector linear network coding.

In linear network coding, each linear function for a receiver
consists of coding coefficients for incoming messages. If the
messages are scalars in Fq and the coding coefficients are
vectors over Fq, the solution is called a scalar linear solution.
If the messages are vectors in Ft

q , and the coding coefficients
are matrices over Fq, it is called a vector linear solution. Vector
network coding was mentioned in [5] as fractional network
coding and extended to vector network coding in [11].

Although a scalar solution over Fqt can be translated
to a vector solution composed of t × t matrices over Fq,
directly designing codes for vector network coding still has
advantages: there exist qt2 many t× t matrices over Fq, while
a scalar solution only employs qt of them. Therefore, vector
network coding offers a larger space of choices for optimizing
the performance of a network. However, not every solvable
network has a vector solution [10]. The hardness of finding
a capacity-achieving vector solution for a general instance of
the network coding problem was proved in [27]. In [6] it was
proved that for a class of non-multicast networks, a vector
linear solution of dimension t exists but no vector solution over
any finite field exists if the message dimension is less than t.
The existence of explicit networks where scalar solutions
still outperform binary vector solutions was shown in [34].
Nevertheless, a multicast network was constructed in [34]
whose minimal alphabet for a scalar linear solution is strictly
larger than the minimal alphabet for a vector linear solution.
The gap in the minimum alphabet size between a scalar
solution and a vector solution was shown to be positive in
generalized combination networks [17] and minimal multicast
networks [4]. Several algorithms for deterministic networks
via vector coding were presented in [11]–[13], [17].

Solving network coding problems also motivates research
in other topics such as new metrics for network codes [18],
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Fig. 1. Illustration of (ε, �) −Nh,r,α�+ε networks.

subspace codes design [15], [16], [20], networks over the
erasure channel [21] and distributed storage [8], [9]. More
long-standing open problems can be found in [19].

B. Our Goals and Contributions

In this paper, we only consider linear solutions of multicast
networks. Denote by Fq a finite field of size q. Bold low-
ercase letters denote vectors and bold capital letters denote
matrices.

The scalar and vector solutions stand for scalar linear and
vector linear solutions throughout the rest of the paper. We
call a scalar solution over Fq for a network, a (q, 1)-linear
solution, and we call a vector solution of length t over Fq,
a (q, t)-linear solution.

The main object we study in this paper is the class of gener-
alized combination networks. An (ε, �)−Nh,r,α�+ε generalized
combination network is illustrated in Figure 1 (see also [17]).
The network has three layers. The first layer consists of
a source with h source messages. The source transmits h
messages to r middle nodes via � parallel links (solid lines)
between itself and each middle node. Any α middle nodes in
the second layer are connected to a unique receiver (again,
by � parallel links each). Each receiver is also connected to
the source via ε direct links (dashed lines). It was shown
in [17, Thm. 8] that the (ε, �)−Nh,r,α�+ε network has a trivial
solution if h � � + ε and it has no solution if h > α� + ε.
In this paper we focus on non-trivially solvable networks, so it
is assumed � + ε < h � α� + ε throughout the paper.

The goal of this paper is to investigate the maximum number
of middle-layer nodes, denoted by rmax, such that the network
with fixed h, α, �, ε has a (q, t)-linear solution. This implies
bounds on the gap between the minimum required alphabet
size for scalar and vector solutions of generalized combination
networks. In order to derive the gap size, a metric to measure
the improvement has to be specified. We follow the notations
from [4] to distinguish between optimal scalar and vector
solutions. Given a generalized combination network N , let

qs(N ) := min{q;N has a (q, 1)-linear solution}.
The (qs(N ), 1)-linear solution is said to be scalar-optimal.
Similarly, let

qv(N ) := min{qt;N has a (q, t)-linear solution}.
Note that qv(N ) is defined by the size of the vector space,
rather than the field size. For qt = qv(N ), a (q, t)-linear

solution is called vector-optimal. By definition,

qs(N ) � qv(N ).

We define the gap as

gap2(N ) := log2(qs(N )) − log2(qv(N )),

which intuitively measures the advantage of vector network
coding by the amount of extra bits per transmitted symbol
we have to pay for an optimal scalar-linear solution compared
to an optimal vector-linear solution. We note that although
the definition of the gap differs from the definition of gap
in [4], it has been implicitly used in [17], and mentioned as
information gap in [4].

Our main contributions are the following:
• two upper bounds on rmax, the maximal number of

nodes in the middle layer of a generalized combination
network such that the network has a (q, t)-linear solution
(Corollary 1, valid only for h � 2� + ε, and Corollary 2
for α = 2),

• two lower bounds on rmax (Theorem 3 and Corollary 3
for h � 2� + ε),

• an upper bound on the gap in the minimum alphabet size
for any fixed generalized combination network structure
(Theorem 6),

• a lower bound on the gap (Theorem 7).

Our new upper bound on rmax is better than a previous
bound from [18] (recalled in Corollary 6) for h � 2� +
ε, and the lower bounds outperform previous ones for the
whole parameter range of non-trivially solvable generalized
combination networks, and they agree with our upper bound
up to a small constant factor, for h � 2� or h � 2�,
α = 2.

To the best of our knowledge, our upper and lower
bounds on the gap are the first such bounds considering
fixed network parameters. These bounds are valid for all
generalized combination networks with ε �= 0. The asymp-
totic behavior of the upper and lower bound shows that
gap2(N ) = Θ (log(r)).

C. Paper Organization

The rest of this paper is organized as follows. In Section II,
we present two new upper bounds on the maximum number of
middle-layer nodes, and in Section III we give two new lower
bounds on it. In Section IV we show the gap between the field
sizes of scalar-linear and vector-linear solutions. In Section V,
we compare our upper and lower bounds on the maximum
number of nodes in the middle layer with the other known
bounds.

II. UPPER BOUNDS ON THE MAXIMUM NUMBER OF

MIDDLE LAYER NODES

In this section we fix the network parameters α, �, ε, h and
we bound from above the maximum number of nodes in the
middle layer such that the network has a (q, t)-linear solution.
The main result is given in Corollary 1 and Corollary 2.

We denote by G(n, k) the Grassmannian of dimension
k, which is a set of all k-dimensional subspaces of Fn

q .
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The cardinality of G(n, k) is the well-known q-binomial
coefficient (a.k.a. the Gaussian coefficient):

|G(n, k)| =
[
n

k

]
q

:=
k−1∏
i=0

qn − qi

qk − qi
=

k−1∏
i=0

qn−i − 1
qk−i − 1

.

A good approximation of the q-binomial coefficient can be
found in [24, Lemma 4]:

qk(n−k) �
[
n

k

]
q

< γ · qk(n−k), (1)

where γ ≈ 3.48.
Lemma 1: Let α � 2, h, �, t � 1, ε � 0, h − ε � 2�, and

let T be a collection of subspaces of F
(h−ε)t
q such that

(i) each subspace has dimension at most �t; and
(ii) any subset of α subspaces spans F

(h−ε)t
q .

Then we have α� � h − ε and

|T | �
(⌊

h − ε

�

⌋
− 2

)
+
(

α −
⌊

h − ε

�

⌋
+ 1

)[
�t + 1

1

]
q

.

Proof: Take arbitrarily �h−ε
� � − 2 subspaces from T and

take arbitrarily a subspace W of dimension (h− ε)t− �t− 1
which contains all these �h−ε

� � − 2 subspaces. Then for any

subspace T ∈ T , there is a hyperplane of F
(h−ε)t
q containing

both W and T . Note that there are
[
�t+1

�t

]
=
[
�t+1

1

]
hyperplanes

containing W and each of them contains at most α − 1
subspaces from T . Thus

|T | �
(⌊

h − ε

�

⌋
− 2

)

+
[
�t + 1

�t

]
q

(
α − 1 −

(⌊
h − ε

�

⌋
− 2

))

=
(⌊

h − ε

�

⌋
− 2

)
+
(

α −
⌊

h − ε

�

⌋
+ 1

)[
�t + 1

1

]
q

.

Theorem 1: Let α � 2, h, �, t � 1, ε � 0, h − ε � 2�, and
let S be a collection of subspaces of Fht

q such that

(i) each subspace has dimension at most �t; and
(ii) any subset of α subspaces spans a subspace of dimension

at least (h − ε)t.
Then we have α� � h − ε and

|S| �
[
(ε + �)t

εt

]
q

((
α −

⌊
h − ε

�

⌋
+ 1

)
q�t+1 − 1

q − 1
− 1

)

+
⌊

h − ε

�

⌋
− 1

(∗)
<γ

(
α −

⌊
h − ε

�

⌋
+ 1

)
q�t(εt+1)+

⌊
h − ε

�

⌋
− 1.

Proof: Take arbitrarily
⌊

h−ε
�

⌋
− 1 subspaces from S and

a subspace W ⊂ Fht
q of dimension (h− ε)t− �t such that W

contains all these
⌊

h−ε
�

⌋
−1 subspaces. Then for any subspace

S ∈ S there is a subspace of dimension (h − ε)t containing
both W and S.

Let m :=
[
(ε+�)t

εt

]
q
. Then there are m subspaces of dimen-

sion (h − ε)t containing W , say W1, W2, . . . , Wm. Note that

every α subspaces in Wi∩S span the subspace Wi. According
to Lemma 1, we have

|Wi∩S| �
(⌊

h−ε

�

⌋
−2

)
+
(

α −
⌊

h − ε

�

⌋
+ 1

)[
�t + 1

1

]
q

.

Hence,

|S| �
m∑

i=1

(
|Wi ∩ S| −

(⌊
h − ε

�

⌋
− 1

))
+
⌊

h − ε

�

⌋
− 1

�
[
(ε + �)t

εt

]
q

((
α −

⌊
h − ε

�

⌋
+ 1

)
q�t+1 − 1

q − 1
− 1

)

+
⌊

h − ε

�

⌋
− 1.

The inequality (∗) is derived by (1).
The following corollary rephrases Theorem 1 with network

parameters.
Corollary 1: Let α � 2, h, �, t � 1, ε � 0, and

h − ε � 2�. If (ε, �) − Nh,r,α�+ε has a (q, t)-linear solution
then

r � rmax < γθq�t(εt+1) + α − θ,

where θ := α −
⌊

h−ε
�

⌋
+ 1 and γ ≈ 3.48.

Proof: If a (q, t)-linear solution exists, then each of the
r nodes in the middle layer gets a subspace of dimension �t
of the source messages space. Since all receivers are able to
recover the entire source message space, every α-subset of the
middle nodes span a subspace of dimension at least (h− ε)t.
We then use Theorem 1.

Theorem 1 and Corollary 1 are valid for all α � 2. However,
we derive a better upper bound for α = 2, as shown in the
following theorem.

Theorem 2: Let α = 2, h, �, t � 1, ε � 0, and let S be a
collection of subspaces of F

ht
q such that

(i) each subspace has dimension at most �t; and
(ii) the sum of any two subspaces has dimension at least

(h − ε)t.
Then we have

|S| �

[
ht

2�t−(h−ε)t+1

]
q[

�t
2�t−(h−ε)t+1

]
q

< γ · q(h−�)(2�+ε−h)t2+(h−�)t.

Proof: We may assume that each subspace has dimension
�t. Since the sum of every two subspaces has dimension at
least (h − ε)t, then their intersection has dimension at most
2�t − (h − ε)t. It follows that any subspace of dimension
2�t− (h− ε)t + 1 is contained in at most one subspace of S.
Note that there are

[
ht

2�t−(h−ε)t+1

]
q

subspaces of dimension

2�t− (h−ε)t+1 and each subspace of dimension �t contains[
�t

2�t−(h−ε)t+1

]
q

such spaces. We have that

|S| �
[

ht

2�t− (h − ε)t + 1

]
q

/[ �t

2�t − (h − ε)t + 1

]
q

.

The following corollary rephrases Theorem 2 with network
parameters.
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Corollary 2: Let α = 2, h, �, t � 1, ε � 0. If (ε, �) −
Nh,r,α�+ε has a (q, t)-linear solution then

r � rmax < γ · q(h−�)(2�+ε−h)t2+(h−�)t,

where γ ≈ 3.48.
Proof: If a (q, t)-linear solution exists, then each of the

r nodes in the middle layer gets a subspace of dimension �t
of the source messages space. Since all receivers are able to
recover the entire source message space, any two subset of the
middle nodes span a subspace of dimension at least (h− ε)t.
We then use Theorem 2.

III. LOWER BOUNDS ON THE MAXIMUM NUMBER OF

MIDDLE LAYER NODES

We now turn to study a lower bound on rmax with the para-
meters α, �, ε, h being fixed. The main results are summarized
in Theorem 3 and Corollary 3. In the following, we first give
the condition on the coding coefficients under which a linear
solution exists.

Let x1, . . . , xh ∈ Ft
q denote the h source messages

and y1, . . . , yN ∈ F
(ε+α�)t
q the messages received by each

receiver.1 Since each middle-layer node receives � incoming
edges, and has � outgoing edges directed at a given receiver,
we may assume without loss of generality that this node just
forwards its incoming messages. Let us denote the coding coef-
ficients used by the source node for the messages transmitted
to the r middle nodes by A1, . . . , Ar ∈ F�t×ht

q . Additionally,
we denote the coding coefficients used by the source node
for the messages transmitted directly to the receivers by
B1, . . . , BN ∈ Fεt×ht

q .
Each receiver has to solve the following linear system of

equations (LSE):

yi =

⎛
⎜⎜⎜⎝

Ai1
...

Aiα

Bi

⎞
⎟⎟⎟⎠

(ε+α�)t×ht

·

⎛
⎜⎝

x1

...
xh

⎞
⎟⎠

ht×1

, ∀i = 1, . . . , N =
(

r

α

)
,

where {Ai1 , . . . , Aiα} ⊂ {A1, . . . , Ar}.
Any receiver can recover the h source messages x1, . . . , xh

if and only if

rank

⎛
⎜⎝

Ai1
...

Aiα

⎞
⎟⎠

α�t×ht

� (h − ε)t, ∀i = 1, . . . , N. (2)

Here the solution of the (ε, �) − Nh,r,α�+ε network is a set
of the coding coefficients {A1, . . . , Ar} s.t. (2) holds (where
B1, . . . , BN may be easily determined from the solution).

A. A Lower Bound by the Lovász-Local Lemma

Lemma 2 (The Lovász-Local-Lemma [2, Ch. 5], [3]): Let
E1, E2, . . . , Ek be a sequence of events. Each event occurs with
probability at most p and each event is independent of all the
other events except for at most d of them. If epd � 1 (where
e ≈ 2.71828 is Euler’s number), then there is a non-zero
probability that none of the events occurs.

1The vector yi is the concatenation of all the messages received by the ith
receiver node.

We choose the matrices A1, . . . , Ar ∈ F�t×ht
q indepen-

dently and uniformly at random. For 1 � i1 < · · · < iα � r,
we define the event

Ei1,...,iα :=

⎧⎪⎨
⎪⎩(Ai1 , . . . , Aiα); rank

⎛
⎜⎝

Ai1
...

Aiα

⎞
⎟⎠ < (h − ε)t

⎫⎪⎬
⎪⎭ .

Let p = Pr(Ei1,...,iα) and denote by d the number of other
events Ei′1,...,i′α that are dependent on Ei1,...,iα .

Lemma 3: Let α � 2, h, �, t � 1, ε � 0. Fixing 1 � i1 <
· · · < iα � r, we have

Pr(Ei1,...,iα) � 2γ · q(h−α�−ε)εt2+(h−α�−2ε)t−1,

where γ ≈ 3.48.
Proof: The number of matrices A ∈ Fm×n

q of rank s is

M(m, n, s) :=
s−1∏
j=0

(qm − qj)(qn − qj)
qs − qj

� γ · q(m+n)s−s2
.

(3)

Then,

Pr(Ei1,...,iα) =

(h−ε)t−1∑
i=0

M(α�t, ht, i)

qα�ht2

�

(h−ε)t−1∑
i=0

γ · q(h+α�)ti−i2

qα�ht2
(4)

� γ · q

q − 1
· qmaxi{(h+α�)ti−i2}−α�ht2 (5)

= γ · q

q − 1
· q(h+α�)ti−i2|i=(h−ε)t−1−α�ht2 (6)

� γ · 2 · q(h−α�−ε)εt2+(h−α�−2ε)t−1

where (4) holds due to (3), (5) follows from a geometric sum,
and (6) follows by maximizing (h + α�)ti − i2.

Lemma 4: Let α � 2, h, �, t � 1, ε � 0. Fixing 1 � i1 <
· · · < iα � r, the event Ei1,...,iα is statistically independent of
all the other events Ei′1,...,i′α (1 � i′1 < · · · < i′α � r), except
for at most α

(
r−1
α−1

)
of them.

Proof: For 1 � i1 < · · · < iα � r and 1 � i′1 <
· · · < i′α � r, the events Ei1,...,iα and Ei′1,...,i′α are statistically
independent if and only if {i1, . . . , iα} ∩ {i′1, . . . , i′α} = ∅.
Thus, having chosen 1 � i1 < · · · < iα � r, there are at most
α
(

r−1
α−1

)
ways of choosing an independent event.

Remark 1: Lemma 4 is a union-bound argument on the
number of dependent events. The exact number is

(
r
α

)
−
(
r−α

α

)
.

However the exact expression makes it harder to resolve
everything for r later so we use the bound here.

Theorem 3: Let α � 2, ε � 0, �, t � 1, and 1 � h � α�+ε
be fixed integers. If

r � β · q
f(t)
α−1 (7)

where β :=
(

(α−1)!
2eγα

) 1
α−1

, γ ≈ 3.48, e ≈ 2.71828 is Euler’s

number, and f(t) := (α� + ε − h)εt2 + (α� + 2ε − h)t + 1,
then (ε, �) −Nh,r,α�+ε has a (q, t)-linear solution.
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Namely, for an (ε, �) − Nh,r,α�+ε that has a (q, t)-linear
solution, the maximum number of middle nodes satisfies

rmax � β · q
f(t)
α−1 .

Proof: By the Lovász Local Lemma, it suffices to show
that epd � 1. Noting that d � α

(
r−1
α−1

)
� α· (r−1)α−1

(α−1)! , we shall
require

e · 2γq(h−α�−ε)εt2+(h−α�−2ε)t−1 · α (r − 1)α−1

(α − 1)!
� 1.

Namely, if r � β · q
(α�+ε−h)ε

α−1 t2+ α�+2ε−h
α−1 t+ 1

α−1 + 1, then
(ε, �) − Nh,r,α�+ε has a (q, t)-linear solution. We omit the
plus one for simplicity.

Remark 2: For any α � 7, (7) can be simplified to

r � q
f(t)
α−1 ,

since the prefactor β > 1 for all α � 7.
Remark 3: For t � 3, α � 5 or q � 4, it can be seen from

numerical analysis that β · q
α�+2ε−h

α−1 t+ 1
α−1 � 1. Thus, (7) can

be simplified to a looser upper bound

r � q
(α�+ε−h)ε

α−1 t2 .

However, omitting the term β · q
α�+2ε−h

α−1 t+ 1
α−1 will cause a

loss in estimating the maximum achievable number of middle
nodes. Nevertheless, the loss is negligible when t → ∞.

B. A Lower Bound by α-Covering Grassmannian Codes

Definition 1 (Covering Grassmannian Codes [18]): An
α-(n, k, δ)c

q covering Grassmannian code C is a subset of
G(n, k) such that each subset with α codewords of C spans a
subspace whose dimension is at least δ+k in Fn

q . Additionally,
let Bq(n, k, δ; α) denote the maximum possible size of an
α-(n, k, δ)c

q covering Grassmannian code.
The following theorem from [18] shows the connection

between covering Grassmannian codes and linear network
coding solutions.

Theorem 4 ( [18, Thm. 4]): The (ε, �)−Nh,r,α�+ε network
is solvable with a (q, t)-linear solution if and only if there
exists an α-(ht, �t, ht − �t − εt)c

q code with r codewords.
For two matrices A, B ∈ Fk×�

q , the rank distance between
them is defined to be d(A, B) := rank(A−B). A linear sub-
space C ⊆ Fk×�

q is a linear rank-metric code with parameters
[k × �, K, d] if it has dimension K , and for any two distinct
matrices C1, C2 ∈ C, d(C1, C2) � d. It was proved in [7]
that

K � min{k(� − d + 1), �(k − d + 1)}.

Codes attaining this bound with equality are always possible,
and are called maximum rank distance (MRD) codes [7].

Let A be a k×(n−k) matrix, and let Ik be a k×k identity
matrix. The matrix [Ik A] can be viewed as a generator matrix
of a k-dimensional subspace of Fn

q , and it is called the lifting
of A. When all the codewords of an MRD code are lifted
to k-dimensional subspaces, the result is called a lifted MRD
code, denoted by CMRD.

Theorem 5: Let n, k, δ and α be positive integers such that
1 � δ � k, δ + k � n and α � 2. Then

Bq(n, k, δ; α) � (α − 1)qmax{k,n−k}(min{k,n−k}−δ+1).

Proof: Let m = n − k and K = max{m, n −
m}(min{m, n − m} − δ + 1). Since δ � min{m, n − m},
an [m × (n − m), K, δ]q MRD code C exists. Let C

MRD be
the lifted code of C. Then CMRD is a subspace code of Fn

q ,
which contains qK m-dimensional subspaces as codewords
and its minimum subspace distance is 2δ [33]. Hence, for any
two different codewords C1, C2 ∈ CMRD we have

dim(C1 ∩ C2) � m − δ.

Now, let D = {C⊥; C ∈ C
MRD}. Take α − 1 copies of

D and denote their multiset union as D(α). We claim that
D(α) is an α-(n, k, δ)c

q covering Grassmannian code. For each
codeword of D(α), since it is the dual of a codeword in CMRD,
it has dimension n−m, which is k. For arbitrarily α codewords
D1, D2, . . . , Dα of D

(α), there exist 1 � i < j � α such that
Di �= Dj . Let Ci = D⊥

i and Cj = D⊥
j . Then Ci and Cj are

two distinct codewords of CMRD. It follows that

dim

(
α∑

�=1

D�

)
� dim (Di + Dj) = n − dim

(
D⊥

i ∩ D⊥
j

)
= n − dim (Ci ∩ Cj) � n − m + δ = k + δ.

So far we have shown that D(α) is an α-(n, k, δ)c
q covering

Grassmannian code. Then the conclusion follows by noting
that

|D(α)| =(α − 1)|D| = (α − 1)|CMRD|
=(α − 1)qmax{k,n−k}(min{k,n−k}−δ+1).

Corollary 3 below results from the relation between cover-
ing Grassmannian codes and network solutions in Theorem 4
and the lower bound on the cardinality of covering Grass-
mannian codes in Theorem 5.

Corollary 3: Let α � 2, h, �, t � 1, ε � 0, h � 2� + ε.
For an (ε, �) − Nh,r,α�+ε which has a (q, t)-linear solution,
the maximum number of middle nodes

rmax � (α − 1)qg(t)

where

g(t) :=max{�t, (h− �)t}
· (min{�t, (h − �)t} − (h − � − ε)t + 1)

=

{
�εt2 + �t h � 2�,

(h − �)(2� + ε − h)t2 + (h − �)t otherwise.

IV. BOUNDS ON THE FIELD SIZE GAP

In previous sections, we discussed bounds on rmax. The
main results in this section are the lower and upper bounds
on gap2(N ) in Theorem 7 and 6 respectively. To discuss
gap2(N ), we first need the following conditions on the
smallest field size qs(N ) or qv(N ), for which a network N
is solvable.
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Lemma 5: Let α � 2, r, h, �, t � 1, ε � 0. If (ε, �) −
Nh,r,α�+ε has a (q, t)-linear solution then

qt �

⎧⎪⎨
⎪⎩
(

r+θ−α
γ·θ

) 1
�(εt+1)

h � 2� + ε,(
r

γ(α−1)

) 1
�(εt+1)

otherwise,

where θ := α −
⌊

h−ε
�

⌋
+ 1 and γ ≈ 3.48.

Proof: The first case follows from Corollary 1 that for

h � 2�+ ε, qt �
(

r+θ−α
γ·θ

) 1
�(εt+1)

. The second case is derived
from an upper bound on r in [18] (recalled in Corollary 6) in
a similar manner.

Lemma 6: Let α � 2, r, h, �, t � 1, ε � 0. There exists a
(q, t)-linear solution to (ε, �) −Nh,r,α�+ε when

qt �

⎧⎪⎨
⎪⎩
(

r
β

) (α−1)t
f(t)

h � 2� + ε(
r

α−1

) t
g(t)

otherwise,

where β and f(t) are defined as in Theorem 3, and g(t) is
defined as in Corollary 3.

Proof: The proof is similar to that in Lemma 5 and the
cases follow from Theorem 3 and Corollary 3 respectively.

Lemma 5 and Lemma 6 can be seen as the necessary and
the sufficient conditions respectively on the pair (q, t) s.t. a
(q, t)-linear solution exists.

In the following, we use the lemmas above to derive bounds
on the gap2(N ) for a given network N . The bounds are
determined only by the network parameters.

Theorem 6: Let α � 2, r, h, � � 1, ε � 0. Then for the
(ε, �) −Nh,r,α�+ε network,

gap2(N ) �

⎧⎨
⎩

α−1
f(1) log2

(
r
β

)
− A h � 2� + ε

1
g(1) log2

(
r

α−1

)
−B otherwise,

where θ := α −
⌊

h−ε
�

⌋
+ 1, β and f(t) are defined as in

Theorem 3, g(t) is defined as in Corollary 3, and we define

A := min
{

log2

(
qt
)
; qt �

(
r+θ−α

γθ

) 1
�(εt+1)

}
and

B := min
{

log2

(
qt
)
; qt �

(
r

γ(α−1)

) 1
�(εt+1)

}
.

Furthermore, for tA := min
{

t; 2t �
(

r+θ−α
γθ

) 1
�(εt+1)

}
> 2,

we have

A � min
{

tA,
1

�(ε(tA − 2) + 1)
log2

(
r+θ−α

γθ

)}
� tA − 1,

and for tB := min
{

t; 2t �
(

r
γ(α−1)

) 1
�(εt+1)

}
> 2, we have

B � min
{

tB,
1

�(ε(tB − 2) + 1)
log2

(
r+θ−α

γθ

)}
� tB − 1.

Proof: We only prove the bound for the case h � 2� + ε.
The other case follows analogously. Lemma 6 implies that

qs(N ) �
(

r

β

)α−1
f(1)

.

By the definition of qv(N ) and Lemma 5, qt = qv(N ) must
fulfill

qt �
(

r+θ−α
γθ

) 1
�(εt+1)

.

Hence, we get a lower bound on qv(N ) by determining the
smallest qt that fulfills this inequality, i.e., A. Note that the
left-hand side of the inequality is a strictly monotonically
increasing function in t (for a fixed q), and the right side is
monotonically decreasing in t (among others, this implies that
A and tA are well-defined).

For the lower bound on A for tA > 2, consider the case
that there is a prime power q > 2 and a positive integer t with

2tA � qt �
(

r+θ−α
γθ

) 1
�(εt+1)

. Then we have t � tA − 2 since
q � 3 and tA � 3. Hence,

qt �
(

r+θ−α
γθ

) 1
�(ε(tA−2)+1) �

(
r+θ−α

γθ

) 1
�(ε(tA−1)+1) � 2tA−1,

which proves the claim.
Corollary 4: Let α � 2, r, h, � � 1, ε � 0. Then for the

(ε, �) −Nh,r,α�+ε network,

gap2(N ) �

⎧⎨
⎩

α−1
f(1) log2

(
r
β

)
− max{t′ − 1, 1} h � 2� + ε

1
g(1) log2

(
r

α−1

)
− max{t′′ − 1, 1} otherwise,

where γ ≈ 3.48, θ = α −
⌊

h−ε
�

⌋
+ 1, β =

(
(α−1)!
2eγα

) 1
α−1

,

f(t) and g(t) are defined as in Theoremm 3 and Corollary 3
respectively, and

t′ =

√
1
�ε

log2

(
r + θ − α

γθ

)
+

1
4ε2

− 1
2ε

,

t′′ =

√
1
�ε

log2

(
r

γ(α−1)

)
+

1
4ε2

− 1
2ε

.

In particular, if all parameters are constants except for r → ∞,
then gap2(N ) ∈ O(log r).

Proof: We only prove the bound for the case h � 2� + ε.
The other case follows analogously. We determine tA as
defined in Theorem 6. Note that 2t is strictly monotonically

increasing in t and
(

r+θ−α
γθ

) 1
�(εt+1)

is strictly monotonically

decreasing. Hence, we have tA = �t′�, where t′ is the
unique (positive) solution of

2t′ =
(

r+θ−α
γθ

) 1
�(εt′+1)

.

By rewriting this equation into a quadratic equation in t′,
we obtain the following positive solution:

t′ =

√
1
�ε

log2

(
r + θ − α

γθ

)
+

1
4ε2

− 1
2ε

.

Using the bound A � tA − 1 for tA > 2 (Theorem 6) and
the trivial bound A � 1 otherwise, the claim follows. The
asymptotic statement is an immediate consequence.

Theorem 7: Let α � 2, r, h, � � 1, ε � 0. Then for the
(ε, �) −Nh,r,α�+ε network,

gap2(N ) �

⎧⎨
⎩

1
�(ε+1) log2

(
r+θ−α

γθ

)
− tΔ h � 2� + ε

1
�(ε+1) log2

(
r

γ(α−1)

)
− t	 otherwise,
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where γ ≈ 3.48, θ = α −
⌊

h−ε
�

⌋
+ 1, tΔ is the

smallest positive integer s.t. 2
f(tΔ)
α−1 � r

β and t	 is the
smallest positive integer s.t. 2g(t�) � r

α−1 . Here, β and
f(t) are defined as in Theorem 3, and g(t) is defined as in
Corollary 3.

Proof: Let us only consider the first case h � 2�+ε. The
other case can be proved in the same manner. According to
Lemma 5, we have the lower bound on the smallest field size
of a scalar solution,

qs(N ) �
(

r + θ − α

γ · θ

) 1
�(ε+1)

.

For vector solutions, according to Lemma 6, we want to find
(q, t) s.t. q

f(t)
α−1 � r

β . Since tΔ is the smallest positive integer

t s.t. 2
f(t)
α−1 � r

β , it is guaranteed that a (2, tΔ)-linear solution
exists. Therefore, qv(N ) (the smallest value of qt) should be
at most qv(N ) � 2tΔ . The lower bound then follows directly
from the definition of gap2(N ).

By carefully bounding t	 and tΔ, the following is obtained:
Corollary 5: Let α � 2, r, h, �, ε � 1. Assume that h �=

α� + ε. Then for the (ε, �) −Nh,r,α�+ε network,

gap2(N ) �

⎧⎨
⎩

log2( r+θ−α
γθ )

�(ε+1) −
√

(α−1) log2( r
β )

(α�+ε−h)ε h � 2� + ε

log2( r
α−1 )−2

�(ε+1) −
√

log2( r
α−1 )

�ε otherwise,

where γ ≈ 3.48, θ = α −
⌊

h−ε
�

⌋
+ 1, β =

(
(α−1)!
2eγα

) 1
α−1

,

f(t) and g(t) are defined as in Theoremm 3 and Corollary 3
respectively. In particular, if all parameters are constants
except for r → ∞, then gap2(N ) ∈ Ω(log r).

Proof: When h � 2� + ε, noting that α� + 2ε − h > 0
and h �= α� + ε, we may choose

t =

(
(α − 1) log2(

r
β )

(α� + ε − h)ε

)1/2

such that 2f(t) � 2(α�+ε−h)εt2 = ( r
β )α−1. Then we

have that

gap2(N ) �
log2

(
r+θ−α

γθ

)
�(ε + 1)

−
(

(α − 1) log2(
r
β )

(α� + ε − h)ε

)1/2

� log2(r + θ − α) − log2 θ − 2
�(ε + 1)

−
(

log2 r − log2 β

(� − h−�−ε
α−1 )ε

)1/2

Recall that β and θ are determined by α, h, ε, and �. Thus if
α, h, ε, and � are fixed, gap2(N ) = Ω(log r).

When h < 2� + ε, we may choose

t =
( log2(

r
α−1 )

�ε

)1/2

Fig. 2. An illustration of proofs of Theorem 6 and Theorem 7 for the network
(2, 1) −N12,8e5,20 .

such that 2g(t) � 2�εt2 = r
α−1 . It follows that

gap2(N ) �
log2

(
r

γ(α−1)

)
�(ε + 1)

−
( log2(

r
α−1 )

�ε

)1/2

�
log2

(
r

α−1

)
− 2

�(ε + 1)
−
( log2(

r
α−1 )

�ε

)1/2

This shows that gap2(N ) ∈ Ω(log r).
Corollaries 4 and 5 show that for fixed network parameters

except for r, the gap size grows as

gap2(N ) = Θ(log r) (r → ∞).

Example 8: We illustrate the proof of Theorem 6 and Theo-
rem 7 by two network examples with r = 8× 105 in Figure 2
and r = 8 × 106 in Figure 3. Note that the curves in the
figures are not bounds on the gap size. They are the necessary
(blue curve) and the sufficient (green curve) condition on qt

such that a (q, t)-linear solution exists. Namely, there is no
(q, t)-linear solution in the region below the blue curve and
there must be a (q, t)-linear solution in the region above the
green curve. Thus the minimum gap of the network (2, 1) −
N12,r,20 is determined by the difference between the necessary
condition with t = 1 and the minimum 2t that is in the region
above the sufficient condition. Similarly, the maximum gap
of the network is determined by the difference between the
sufficient condition with t = 1 and the minimum 2t that is in
the region above the necessary condition.

By comparing the two plots it can be seen that the gap
increases as the number of middle node in the network
increases.

V. DISCUSSION

In this section we will compare our upper and lower bound
on rmax with previous known bounds.
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Fig. 3. An illustration of proofs of Theorem 6 and Theorem 7 for the network
(2, 1) −N12,8e6,20 .

A. Other Upper Bound on rmax

In the following we recall the result from [18, Corollary 3]
and compare it with our upper bound in Corollary 2.

Theorem 9 ( [18, Corollary 3]): If n, k, δ, and α, are
positive integers such that 1 < k < n, 1 � δ � n − k
and 2 � α �

[
k+δ−1

k

]
q
+1, then for an α− (n, k, δ)c

q covering
Grassmannian code C, we have that

|C| �

⎢⎢⎢⎣(α − 1)

[
n

δ+k−1

]
q[

n−k
δ−1

]
q

⎥⎥⎥⎦ .

By combining Theorem 9 and Theorem 4, the following
corollary can be directly derived.

Corollary 6: If the (ε, �)−Nh,r,α�+ε network has a (q, t)-
linear solution then

r � rmax �

⎢⎢⎢⎣(α − 1)

[
ht

ht−εt−1

]
q[

ht−�t
ht−�t−εt−1

]
q

⎥⎥⎥⎦
< (α − 1)

γq(εt+1)(ht−εt−1)

q(εt+1)(ht−�t−εt−1)

= γ(α − 1)q�t(εt+1),

with 1 < �t < ht, 0 � ε � h−�− 1
t , 2 � α �

[
ht−εt−1

�t

]
q
+1.

B. Comparison Between Upper Bounds

In the following, we first show that for some parameters,
the upper bound in Corollary 1 could be better than that in
Corollary 6. Denote

θ :=
(

α −
⌊

h − ε

�

⌋
+ 1

)
.

The upper bound in Corollary 1 and Corollary 6 can be
respectively written as

UA :=
[
(ε + �)t

εt

]
q

(
θ · q�t+1 − 1

q − 1
− 1

)
+ α − θ

and

UB := (α−1)

[
ht

ht−εt−1

]
q[

ht−�t
ht−�t−εt−1

]
q

=(α−1)q�t(εt+1)
εt∏

i=0

qht−i − 1
qht−i − q�t

.

Lemma 7: Let h � 2� + ε and 2 � α �
[
ht−εt−1

�t

]
q

+ 1.

Assume
[
ε+�)t

εt

]
q

� α, then

logq UA − logq UB < logq

2θα

α − 1
− �εt2.

Particularly, if
2θα

α − 1
� q�εt2 ,

then
UA < UB.

That is, the upper bound in Corollary 1 is better than that in
Corollary 6.

Proof: Under the assumption
[
(ε+�)t

εt

]
q

� α, we have

logq UA � logq

(
α

(
θ · q�t+1 − 1

q − 1
− 1

)
+ α − θ

)

= logq(αθ · q�t+1 − 1
q − 1

− α + α − θ)

= logq θ + logq(α · q�t+1 − 1
q − 1

− 1)

< logq θ + logq(α · q�t+1 − 1
q − 1

)

(∗)
< logq θ + logq α + logq(2 · q�t)
= logq θ + logq α + �t + logq 2.

The inequality (∗) is because q�t+1−1
q−1 =

�t∑
i=0

qi < 2 · q�t. By

the bounds on the q-binomial coefficient,

logq UB > log(α − 1) + �t(εt + 1),

we have that

logq UA − logq UB < logq

2θα

α − 1
− �εt2.

Together with the assumption 2θα
α−1 � q�εt2 , the conclusion

follows.
Lemma 8: Let h � 2� + ε and 2 � α �

[
ht−εt−1

�t

]
q

+ 1.

Assume
[
(ε+�)t

εt

]
q

� α. If h � 2ε, then

UA

UB
� 8θ

α − 1
.

So, when
8θ < α − 1,

we have that
UA < UB.
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That is, the upper bound in Corollary 1 is better than that in
Corollary 6.

Proof: Since
[
ε+�)t

εt

]
q

� α, we have that

UA � θ ·
[
(ε + �)t

εt

]
q

q�t+1 − 1
q − 1

.

Then

UA

UB
� θ

α − 1
· q�t+1 − 1

q − 1

[
(ε + �)t

εt

]
q

·
[

(h − �)t
(h − � − ε)t − 1

]
q

[
ht

(h − ε)t − 1

]−1

q

=
θ

α − 1
· q�t+1 − 1

q − 1

[
(ε + �)t

εt

]
q

[
(h − �)t
εt + 1

]
q

[
ht

εt + 1

]−1

q

=
θ

α − 1
· q�t+1 − 1

q − 1
· (q(ε+�)t − 1) · · · (q�t+1 − 1)

(qεt − 1) · · · (q − 1)

· (q(h−�)t − 1) · · · (q(h−�−ε)t − 1)
(qht − 1) · · · (q(h−ε)t − 1)

<
θ

α − 1
· q�t+1

q − 1
· q(ε+�)t · · · q�t+1

(qεt − 1) · · · (q − 1)

· q(h−�)t · · · q(h−�−ε)t

(qht − 1) · · · (q(h−ε)t − 1)

=
θ

α − 1
· q

q − 1
·

εt∏
i=1

(
1 − 1

qi

)−1

·
ht∏

i=ht−εt

(
1 − 1

qi

)−1

� θ

α − 1
·
(

1+
1

q − 1

) ht∏
i=1

(
1 − 1

qi

)−1

(assume 2ε � h)

<
8 · θ
α − 1

,

and the conclusion follows.
Now, we compare the upper bound in Corollary 2 with that

in Corollary 6 for α = 2.
Lemma 9: Denote UC := γq(h−�)(2�+ε−h)t2+(h−�)t and

UD := γq�t(εt+1). Then

logq UC − logq UD = [(h− �)(2�+ ε−h)− ε�]t2 +(h− 2�)t.

Particularly, if one of the following three conditions is satis-
fied,

• εt + 1 < �t, and either h > 2� or h < � + ε + 1
t ;

• εt + 1 > �t, and either h > � + ε + 1
t or h < 2�;

• εt + 1 = �t and h �= 2�,
then

logq UC − logq UD < 0,

and the upper bound in Corollary 2 is better than the upper
bound in Corollary 6 for α = 2.

Proof: Denote C = (h − �)(2� + ε − h)t + (h − ε) and
D = �(εt + 1). Then logq UC − logq UD = Ct − Dt. So it
suffices to show that C < D. Note that C = −th2+3� + εth+
h+ · · · is a quadratic function in h which is symmetric about
h = (3�+ε)t+1

2t . We proceed in three cases, according to the
position of the axis of symmetry.

1) If εt + 1 < �t, then (3�+ε)t+1
2t < 2�, i.e., the axis of

symmetry is on the left of h = 2�. In this case, C is
decreasing when h � 2�. It follows that C < D for

h > 2� as C = D when h = 2�. Furthermore, according
to the symmetry, C < D also holds for h < � + ε + 1

t .
2) If εt + 1 > �t, then (3�+ε)t+1

2t > 2�. Using the same
argument, we can see that C < D holds for h < 2� and
h > � + ε + 1

t .
3) If εt + 1 = �t, then (3�+ε)t+1

2t = 2�. The maximal value
of C −D is taken at h = 2�, which is 0. So C < D for
all h �= 2�.

The following example shows that, in some cases, the upper
bound in Corollary 2 matches a lower bound from [15] within
a factor of γ ≈ 3.48.

Example 10: Let α = 2, ε = �, and h = 2� + 1. A lower
bound from [15] is

q(�2−1)t2+(�+1)t � r.

For the upper bound, Corollary 2 shows that

r � γq(�2−1)t2+(�+1)t,

agreeing with the lower bound up to a factor of γ. In contrast,
Corollary 6 shows that

r � γq�2 t2+�t,

which differs from the lower bound by a factor of γqt2−t.
Corollary 7: If n, k, δ, and α, are positive integers such that

1 < k < n, 1 � δ � min{n−k, k}, and 2 � α �
[
k+δ−1

k

]
q
+

1, then an upper bound on the size of an α − (n, k, δ)c
q code

C is that

|C| �
[
n − δ

k

]
q

((
α −

⌊
δ − k

k

⌋
+ 1

)
qk+1 − 1

q − 1
− 1

)

+
⌊

δ − k

k

⌋
− 1.

Proof: Note that an α−(n, k, δ)c
q code C exists if and only

if the (ε, �)−Nh,r,α�+ε network is solvable with linear scalar
solutions, where h = n, r = |C|, � = k and ε = h − � − δ =
n − k − δ. Then the conclusion follows from Corollary 1 by
setting t = 1.

C. Other Lower Bounds on rmax

Let Bq(n, k, δ; α) denote the maximum possible size of
an α-(n, k, δ)c

q covering Grassmannian code. Etzion et al.
proposed the following lower bounds on Bq(n, k, δ; α) for
δ � k in [15].

Theorem 11 ( [15, Theorem 21]): Let 1 � δ � k, k+δ � n
and 2 � α � qk + 1 be integers.

1) If n < k + 2δ, then

Bq(n, k, δ; α) � (α − 1)qmax{k,n−k}(min{k,n−k}−δ+1).

2) If n � k+2δ, then for each t such that δ � t � n−k−δ,
we have

a) If t < k, then

Bq(n, k, δ; α) � (α−1)qk(t−δ+1)Bq(n−t, k, δ; α).

b) If t � k, then

Bq(n, k, δ; α) �(α − 1)qt(k−δ+1)Bq(n − t, k, δ; α)
+ Bq(t + k − δ, k, δ; α).
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Fig. 4. An illustration of the gap for a minimal generalized combination
network (5, 1) −N8,8e5,8, where the number of messages is the min-cut of
the network.

Theorem 5 improves the theorem above by removing the
conditions α � qk + 1 and n < k + 2δ. For n � k + 2δ,
the numerical results show that either could be better, depend-
ing on the parameters. The theoretical comparison between the
two lower bounds is hard due to the recursive function and is
left for future research.

D. Discussion of Lower Bounds

In the following, we compare the lower bound on rmax in
Corollary 3 with the upper bounds in the previous sections.

• When h � 2�, Corollary 3 gives

rmax � (α − 1)q�t(εt+1),

which is close (up to a constant factor of γ ≈ 3.48) to
the upper bound in Corollary 6, i.e.,

rmax < γ(α − 1)q�t(εt+1).

• When h � 2� and α = 2, Corollary 3 gives

rmax � q(h−�)(2h+ε−h)t2+(h−�)t,

which is close (up to a constant factor of γ) to the upper
bound in Theorem 2,

rmax < γq(h−�)(2h+ε−h)t2+(h−�)t.

• The upper bound in Corollary 1 cannot be applied here
as (h − ε)/� � 2.

E. Minimal Generalized Combination Networks

Minimal networks are networks in which the removal of
any single edge makes it unsolvable linearly (see [4] and
the references therein). Thus, in such minimal networks,
the number of messages equals the min-cut. These networks

Fig. 5. An illustration of the gap for a minimal generalized combination
network (5, 1) − N13,8e5,13 , where the number of messages is the min-cut
of the network.

are of interest since they require the least amount of network
resources to enable the multicast operation.

For generalized combination networks, minimality occurs
exactly when h = α� + ε. For the case α = 2, it has been
shown in [17] that vector linear solutions do not outperform
scalar linear solutions in minimal generalized combination
networks. In Figures 4 and 5 we show two examples of
our results for α > 2 in minimal generalized combination
networks. The lower bound on the gap in Theorem 7 may
give a negative value, as illustrated in these two examples.
This is because the gap between the necessary (blue curve)
and the sufficient (green curve) conditions on qt such that
a (q, t)-linear solution exists, is relatively large compared to
non-minimal networks (cf. Figures 2 and 3). Taking a closer
look into the sufficient condition in Lemma 6, the function
f(t) results in the different behaviors of the green curve for
h = α� + ε and h < α� + ε. We observe that f(t) = εt + 1
if h = α� + ε, and is quadratic in t otherwise. Since the
sufficient condition for h � 2�+ε is directly derived from the
lower bound on rmax in Theorem 3, one possible way to close
the gap between the necessary and sufficient conditions is to
improve the lower bound on the rmax in Theorem 3, which
we leave as an open question.

VI. CONCLUSION

In this work, we studied necessary and sufficient conditions
for the existence of (q, t)-linear solutions to the generalized
combination network (ε, �)-Nh,r,α�+ε. We derived new upper
and lower bounds on rmax, the maximum number of nodes
in the middle layer, for a fixed network structure, thus getting
bounds on the field size of the scalar/vector solution. Our lower
bound is close (within a constant factor of γ ≈ 3.48) to our
upper bound for h � 2� or h � 2�, α = 2. We summarize the
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TABLE I

BOUNDS ON rmax OF THE (ε, �) −Nα,r,α�+ε NETWORK WITH (q, t)-LINEAR SOLUTIONS

best known bounds on rmax for different parameter ranges,
in Table I.

Moreover, we studied the gap between the minimal field
size of a scalar solution and a vector solution. For general
multicast networks, the gap is not well defined, since some
multicast networks with no scalar (qs, 1)-linear solution, but
only vector (q, t)-linear solutions (even for qs > qt), were
demonstrated in [34]. In our work, we focused on a class
of multicast networks, the generalized combination networks,
where both scalar and vector solutions exist. We studied
the gap for this specific class of multicast networks. Unlike
the previous works [4], [17], which focused on engineering the
networks to obtain a high gap, we started by fixing network
parameters (i.e., h, r, α, �, ε), and then provided bounds for
its gap, which do not depend on t. Of particular interest
is the conclusion from Corollary 4 and Corollary 5: fixing
the number of messages h, and parameters relating to the
connectivity level of the network (i.e., α, �, ε), we only vary the
number of middle layer nodes, r, or equivalently, the number
of receivers N :=

(
r
α

)
, proving that the gap is gap2(N ) =

Θ(log r) = Θ(log N). Namely, the scalar linear solutions
over-pays an order of log(r) extra bits per symbol to solve
the network, in comparison to the vector linear solutions.

The novel upper and lower bounds on the gap cover all
generalized network parameters, except ε = 0. This may imply
that the direct links between the source and the terminals are
crucial for vector network coding to have an advantage in
generalized combination networks. The direct link in usual
communication networks might not be practical, however,
in some recent applications, such as coded caching, this direct
link can be seen as the cached content at the receivers.
The exact nature of the connection between direct links and
field-size gap, is left for future work.
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