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The Generalized Covering Radii of Linear Codes
Dor Elimelech , Graduate Student Member, IEEE, Marcelo Firer , Member, IEEE,

and Moshe Schwartz , Senior Member, IEEE

Abstract— Motivated by an application to database linear
querying, such as private information-retrieval protocols, we sug-
gest a fundamental property of linear codes – the generalized
covering radius. The generalized covering-radius hierarchy of a
linear code characterizes the trade-off between storage amount,
latency, and access complexity, in such database systems. Several
equivalent definitions are provided, showing this as a combina-
torial, geometric, and algebraic notion. We derive bounds on
the code parameters in relation with the generalized covering
radii, study the effect of simple code operations, and describe a
connection with generalized Hamming weights.

Index Terms— Linear codes, covering radius, generalized
Hamming weights, block metric.

I. INTRODUCTION

A COMMON query type in database systems involves a
linear combination of the database items with coefficients

supplied by the user. As examples we mention partial-sum
queries [4], and private information retrieval (PIR) proto-
cols [5]. In essence, one can think of the database server as
storing m items, x1, . . . , xm ∈ Fq� . A user may query the
contents of the database by providing s1, . . . , sm ∈ Fq , and
getting in response the linear combination

�m
i=1 si xi .

Various aspects of these systems are of interest and in need
of optimization, such as the amount of storage at the server,
and the required bandwidth for the querying protocol. One
important such aspect is that of access complexity, parallel-
ing a similar concern studied in distributed storage systems
[15], [25]. In a straightforward implementation, the time
required to access the elements of the database needed to
compute the answer to a user query is directly proportional to
the number of non-zero coefficients among s1, . . . , sm . This
may prove to be a bottleneck, in particular since in schemes
like PIR, the coefficients are random, and therefore a typical
query would require the database server to access a fraction
of 1 − 1

q of the items.
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A trade-off between access complexity and storage amount
was suggested for PIR in [28], echoing a similar suggestion
for databases made in [18]. The suggestion calls for a carefully
designed set of linear combinations to be pre-computed and
stored by the server. Instead of storing x = (x1, . . . , xm) as
is, the server stores h1 · x, . . . , hn · x , where each hi ∈ Fm

q
describes a linear combination. Assume that the matrix H ,
whose columns are h1, . . . , hn , is a parity-check matrix for
a code with covering radius r . Thus, when the user queries
the database using s = (s1, . . . , sm), by the properties of the
covering code, s may be computed using a linear combination
of at most r columns of H . Hence, at most r pre-computed
combinations that are stored in the database need to be
accessed in order to provide the user with the requested linear
combination. The trade-off between access complexity and
storage amount follows, since instead of storing m elements,
the server now stores n � m linear combinations, and so n
is lower bounded by the smallest possible length for a code
with covering radius r and redundancy m over Fq . These
code parameters have been thoroughly studied and are well
understood [6].

We now take access-complexity optimization one step fur-
ther. The database server naturally receives a stream of queries,
say s1, s2, . . . . Those may arrive from the same user, or from
multiple distinct users. Instead of handling each of the queries
separately, accessing r pre-computed linear combinations for
each query, the server may group together t queries, s1, . . . , st

and, hopefully, access fewer than r · t pre-computed linear
combinations as it would in a naive implementation. Thus,
both storage amount and latency are traded-off for a reduced
access complexity.

The motivation mentioned above leads us to the follow-
ing combinatorial problem: Design a set of vectors, h1, . . . ,
hn ∈ Fm

q (describing linear combinations to pre-compute),
such that every t vectors, s1, . . . , st ∈ Fm

q (describing user
queries), may be obtained by accessing at most r of the ele-
ments h1, . . . , hn . When viewed as columns of a parity-check
matrix for a code, this becomes a generalized covering radius
definition. It bears a resemblance to the generalized Hamming
weight of codes, introduced by Wei [27] to characterize the
performance of linear codes over a wire-tap channel.

The goal of this paper is to study the generalized covering
radius as a fundamental property of linear codes. Our main
contributions are the following:

1) We discuss three definitions for the generalized covering
radius of a code, highlighting the combinatorial, geomet-
ric, and algebraic properties of this concept, and showing
them to be equivalent.
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2) We derive bounds that tie the various parameters of
codes to the generalized covering radii. In particular,
we prove an asymptotic upper bound on the minimum
rate of binary codes with a prescribed second general-
ized covering radius, thus showing an improvement over
the naive approach. The bound on the minimal rate is
attained by almost all codes.

3) We determine the effect simple code operations have on
the generalized covering radii: code extension, punctur-
ing, the (u, u + v) construction, and direct sum.

4) We discuss a connection between the generalized cover-
ing radii and the generalized Hamming weights of codes
by showing that the latter is in fact a packing problem
with some rank relaxation.

The paper is organized as follows: Preliminaries and nota-
tions are presented in Section II. We study various definitions
of the generalized covering radius, and show them to be equiv-
alent, in Section III. Section IV is devoted to the derivation
of bounds on the generalized covering radii. Basic operations
on codes are studied in Section V, and a relation with the
generalized Hamming weights in Section VI. We conclude
with a discussion of the results and some open questions
in Section VII.

II. PRELIMINARIES

For all n ∈ N, we define [n] � {1, 2, . . . , n}. If A is a finite
set and t ∈ N, we denote by

�A
t

�
the set of all subsets of A

of size exactly t . We use Fq to denote the finite field of size
q , and denote F∗

q � Fq \ {0}. Given a vector space V over
Fq , we denote by

�V
t

�
the set of all vector subspaces of V of

dimension t ∈ N. We use lower-letters, v, to denote scalars,
overlined lower-case letters, v, to denote vectors, and either
bold lower-case letters, v, or upper-case letter, V , to denote
matrices. Whether vectors are row vectors or column vectors
is deduced from context.

If H is a matrix with n columns, we denote by hi its i -th
column. For I = {i1, i2, . . . , it } ∈ �[n]

t

�
, we denote by HI

the restriction of H to the columns whose indices are in I ,
i.e., HI � (hi1 , . . . , hit ). We shall also use �HI � to denote the
linear space spanned by the columns of HI , i.e.,

�HI � �
�
hi1 , hi2 , . . . , hit

�
.

Given v = (v1, . . . , vn) ∈ Fn
q , the support of v is defined by

supp(v) � {i ∈ [n]|vi �= 0} .
Whenever required, for a subset V ⊆ Fn

q we define

supp(V ) �
	
v∈V

supp(v).

The Hamming weight of v is then defined as wt(v) �
|supp(v)|. If v � ∈ Fn

q , then the Hamming distance between
v and v � is given by d(v, v �) � wt(v−v �). We also extend the
definition to the distance between a vector and a set, namely,
for a set C ⊆ Fn

q ,

d(v,C) � min


d(v, c)

��c ∈ C
�
.

Two shapes that will be useful to us are the ball and the
cube. For a non-negative integer r , the Hamming ball of radius
r centered at v ∈ Fn

q is defined as

Br,n,q(v) �

v � ∈ Fn

q

���d(v, v �) � r
�
.

The cube with support I ∈ �[n]
r

�
centered at v ∈ Fn

q is
defined as

QI,n,q (v) �

v � ∈ Fn

q

��� supp(v � − v) ⊆ I
�
.

We shall omit the subscripts n and q whenever they may
be inferred from the context. We observe that	

I∈([n]
r )

QI (v) = Br (v).

III. THE GENERALIZED COVERING RADII

We would now like to introduce the concept of generalized
covering radius. We present several definitions, with varying
approaches, be they combinatorial, algebraic, or geometric.
We then show all of the definitions are in fact equivalent
(at least, when linear codes are concerned).

Our first definition stems directly from the application
outlined in the introduction – database queries.

Definition 1: Let C be an [n, k] linear code over Fq , given
by an (n − k) × n parity-check matrix H ∈ F(n−k)×n

q . For
every t ∈ N we define the t-th generalized covering radius,
Rt (C), to be the minimal integer r ∈ N such that for every set
S ∈ �Fn−k

q
t

�
there exists I ∈ �[n]

r

�
such that S ⊆ �HI �. That is,

Rt (C) � max
S⊆F

n−k
q

|S|=t

min
I⊆[n]

S⊆�HI �
|I | .

While Rt (C) certainly depends on the code C , for the sake
of brevity we sometimes write Rt when we can infer C from
the context. At first glance it seems as if Rt does not only
depend on C , but also on the choice of parity-check matrix
H . However, the following lemma shows this is not the case.

Lemma 2: Let Rt be the given by a full-rank matrix H ∈
F(n−k)×n

q as in Definition 1. For any A ∈ GL(n − k, q)
(the group of (n − k) × (n − k) invertible matrices with
coefficients in Fq ), let R�

t be the generalized covering radius,
as in Definition 1, but using the matrix AH . Then Rt = R�

t .
Proof: Given s ∈ Fn−k

q , if s = �
i∈I αi hi , then,

by linearity, we have that

As = A
�
i∈I

αi hi =
�
i∈I

αi Ahi .

It follows that, given S ⊆ Fn−k
q , if S ⊆ �HI �, then A(S) ⊆

�AHI �. Thus,

min
I⊆[n]

S⊆�HI �
|I | � min

I⊆[n]
A(S)⊆�AHI �

|I | .

Continuing with the same argument but using A−1, we have

min
I⊆[n]

A(S)⊆�AHI �
|I | � min

I⊆[n]
A−1 A(S)⊆�A−1 AHI

� |I | = min
I⊆[n]

S⊆�HI �
|I | .

Authorized licensed use limited to: Moshe Schwartz. Downloaded on November 20,2021 at 17:52:40 UTC from IEEE Xplore.  Restrictions apply. 



8072 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 67, NO. 12, DECEMBER 2021

It then follows that

min
I⊆[n]

S⊆�HI �
|I | = min

I⊆[n]
A(S)⊆�AHI �

|I | .

As a consequence, if S0 realizes the maximum condition,

Rt = max
S⊆F

n−k
q

|S|=t

min
I⊆[n]

S⊆�HI �
|I | = min

I⊆[n]
S0⊆�HI �

|I | = min
I⊆[n]

A(S0)⊆�AHI �
|I | .

It follows that Rt � R�
t . A symmetric argument, gives the

reversed inequality, proving the desired claim.
We observe, in Definition 1, that requiring S ⊆ �HI � also

ensures �S� ⊆ �HI �. We therefore must have for all t ∈ [n−k],
Rt � t . (1)

We also observe that R1 is in fact the covering radius of the
code C , and that the generalized covering radii are naturally
monotone increasing, i.e.,

R1 � R2 � . . . � Rn−k = n − k, (2)

as well as Rt = n − k for all t � n − k. Thus, the values
R1, . . . , Rn−k are called the generalized covering-radius hier-
archy. While being monotone increasing, we do note however,
that the generalized covering radius Rt is not necessarily
strictly increasing in t , as the following example shows.

Example 3: Consider the binary Hamming code C , with
parameters [2m − 1, 2m − 1 − m, 3]. An m × (2m − 1) parity-
check matrix H for C comprises of all binary vectors of length
m as columns, except for the all-zero column. One can easily
check that Rt (C) = t for all t ∈ [m].

Assume m � 2. Now take C � to be a [2m −2, 2m −2−m, 3]
code obtained from C by shortening once. Thus, a parity-check
matrix H � for C � is obtained by taking H and deleting one
of its columns; let us suppose that the shortening was done
in the position corresponding to the all-ones column of H .
We now obviously have R1(C �) = 2 since in order to cover

1
�

two columns of H � are required. However, we also have
R2(C �) = 2 since any 2-dimensional subspace of Fm

2 has at
least two nonzero (and hence linearly independent) vectors
that appear as columns of H �.

Aiming for a geometric interpretation of the generalized
covering radii, we provide two more equivalent definitions that
are increasingly geometric in nature.

Definition 4: Let C be an [n, k] linear code over Fq . Then
for every t ∈ N we define the t-th generalized covering radius,
Rt (C), to be the minimal integer r ∈ N such that for every
v1, . . . , v t ∈ Fn

q , there exist codewords c1, . . . , ct ∈ C and
there exists I ∈ �[n]

r

�
, such that v i ∈ QI (ci ) for all i ∈ [t].

Lemma 5: Let C be an [n, k] linear code over Fq . Then the
values of Rt from Definitions 1 and 4 are the same.

Proof: Fix a parity-check matrix H for C (with full rank).
Denote the numbers from Definition 1 and Definition 4 by Rt

and R�
t , respectively.

For the first direction, let v1, . . . , v t ∈ Fn
q . Consider

s1, . . . , st ∈ Fn−k
q given by si = Hvi for all i ∈ [t].

By Definition 1 of Rt , there exists a set


i1, . . . , iRt

� =
I ∈ �[n]

t

�
such that s1, . . . , sn ∈ �HI �. That is, for each

� ∈ [t], there exist scalars w�,1, . . . , w�,Rt ∈ Fq such that

s� =�Rt
j=1w�, j hi j . We define w� ∈ Fn

q to be the vector con-
taining w�,1, . . . , w�,Rt in the positions of I , and 0 otherwise.
Let c� � w� − v�. We note that c� ∈ C , as

H c� = Hw� − Hv� = s� − s� = 0.

On the other hand, supp(c� − v�) = supp(w�) ⊆ I , and in
particular v� ∈ QI (c�). This shows that Rt � R�

t .
For the second direction of the proof, assume we have

vectors s1 . . . , st ∈ Fn−k
q . Since H has full rank, there exist

v1, . . . , v t ∈ Fn
q such that H vi = si for all i ∈ [t]. From

Definition 4 of R�
t , there exists a set I ∈ �[n]

t

�
such that for

all i ∈ [t], supp(v i − ci ) ⊆ I . For each i ∈ [t], we define
wi � v i − ci , and we have

Hwi = H (vi − ci ) = si .

Since supp(wi ) ⊆ I , for all i ∈ [t], it follows that
s1, . . . , st ∈ �HI �. This shows that R�

t � Rt .
Combining the two directions together we obtain that the

values of Rt from Definitions 1 and 4 are the same.
We now move to a “classical” covering in the geometric

sense. It involves a covering of a space with certain shapes.
We shall require an extension of the cube to a t-cube. Given
a non-negative integer r and support I ∈ �[n]

r

�
, the t-cube

centered at

v =
⎡⎢⎣v1
...
v t

⎤⎥⎦ ∈ Ft×n
q ,

is defined as

Q(t)
I,n,q (v) �

�
v� =

⎡⎢⎣v
�
1
...
v �

t

⎤⎥⎦ ∈ Ft×n
q

����
∀i ∈ [t], supp(v �

i − v i ) ∈ I

�
.

This brings us to the definition of a t-ball centered at v
given by,

B(t)r,n,q (v) �
	

I∈([n]
r )

Q(t)
I (v),

where we say r is the radius of the t-ball. Again, we shall
omit the subscripts n and q whenever they may be inferred
from the context. This is indeed a generalization of the ball
since

B(1)r (v) = Br (v).

Thus, a superscript of (1) will generally be omitted unless
a special need for emphasis arises.

In fact, the ball B(t)r (v) realizes a ball in the natural sense,
in the following metric we now define. The space we operate
in is Ft×n

q . The t-weight of a matrix v ∈ Ft×n
q , with row vectors

denoted v i , is defined as

wt(t)(v) �

������
	
i∈[t ]

supp(v i )

������ .
We now define the t-distance between v, v� ∈ Ft×n

q as

d(t)(v, v�) � wt(t)(v − v�).
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In particular, this also shows that d(t) is translation invariant,
i.e., for all v, v�, v�� ∈ Ft×n

q ,

d(t)(v + v��, v� + v��) = d(t)(v, v�).

It is easily seen now that the t-ball is in fact a ball in the
metric induced by the t-distance, i.e.,

B(t)r (v) =


v� ∈ Ft×n
q

��d(t)(v, v�) � r
�
.

We also note that d(1) is simply the Hamming distance
function, hence our previous observation of a 1-ball being a
ball in the Hamming metric.

Definition 6: Let C be an [n, k] linear code over Fq . Then
for every t ∈ N, we define the t-th generalized covering radius,
Rt , to be the minimal integer r such that t-balls centered at

Ct �

⎧⎪⎨⎪⎩
⎡⎢⎣c1
...

ct

⎤⎥⎦
������� ∀i ∈ [t], ci ∈ C

⎫⎪⎬⎪⎭ ,
cover Ft×n

q , i.e., 	
c∈Ct

B(t)r (c) = Ft×n
q .

Lemma 7: Let C be an [n, k] linear code over Fq . Then the
values of Rt from Definitions 1, 4, and 6, are the same.

Proof: The proof is straightforward. We observe that for
every v1, . . . , v t ∈ Fn

q there are c1, . . . , ct ∈ C and a support
I ∈ �[n]

r

�
such that v i ∈ QI (ci ) for all i ∈ [t] if and only if⎡⎢⎣v1

...
v t

⎤⎥⎦ ∈ B(t)r

⎛⎜⎝
⎡⎢⎣c1
...

ct

⎤⎥⎦
⎞⎟⎠ .

Thus, the minimal integer r which defines Rt is the same
in Definitions 4 and 6. By Lemma 5, it is also the same as in
Definition 1.

We would like to comment that if we denote the columns
of v ∈ Ft×n

q by %v1, . . . ,%vn ∈ Ft
q , then

wt(t)(v) = ��
 j ∈ [n]��%v j �= 0
��� .

This metric is known in the literature as the block metric
and it was introduced, independently, by Gabidulin [14] and
Feng [19].

For our last approach, we make the obvious next step,
resulting in an algebraic definition of the generalized covering
radii. Assume v ∈ Ft×n

q has rows v1, . . . , v t ∈ Fn
q . Using the

well-known isomorphism Ft
q

∼= Fqt , we can then read each
column of v as a single element from Fqt . More precisely, fix
a basis for Fqt as a vector space over Fq , say, β1, . . . , βt ∈ Fqt ,
and associate with v above the vector

v =
⎡⎢⎣v1
...
v t

⎤⎥⎦ ∈ Ft×n
q �→ �(v) �

t�
i=1

βiv i ∈ Fn
qt . (3)

Note that this mapping is in fact a bijection. Under this
mapping, a t-ball is mapped to a ball, namely,

�(B(t)r,n,q (v)) = B(1)r,n,qt (�(v)), (4)

where we emphasize that the two balls are over different
alphabets.

Definition 8: Let C be an [n, k] linear code over Fq .
Assume G ∈ Fk×n

q is a generator matrix for C , namely,

C =


uG
���u ∈ Fk

q

�
.

Let t ∈ N, and let C � be the linear code over Fqt generated
by the same matrix G, namely,

C � =


uG
���u ∈ Fk

qt

�
.

Then we define the t-th generalized covering radius Rt of
C as the covering radius of C �, namely,

Rt (C) � R1(C
�).

Lemma 9: Let C be an [n, k] linear code over Fq . Then the
values of Rt from Definitions 1, 4, 6, and 8, are the same.

Proof: Assume the notation of Definition 8. Let c ∈ Ct ,
with rows c1, . . . , ct ∈ C , and let ui ∈ Fk

q be such that ci =
ui G. As in (3), assume β1, . . . , βt ∈ Fqt is a basis for Fqt

over Fq . Then

�(c) =
t�

i=1

βi ci =
&

t�
i=1

βi ui

'
G.

Hence, �(c) ∈ C �, where C � is the code generated by G
over Fqt . A symmetric argument gives that � is in fact a
bijection between Ct and C �. The claim now follows from
Definition 6 and Lemma 7.

As a final comment to this section, our original approach
to generalize the covering radii of a code, introduced in
Definition 1, arises from the interest in querying databases
by linear combinations (as, for example, used in PIR), and
it uses the parity-check matrix of a code, hence it makes
sense only for linear codes. This is not the case for the
approach in Definition 6, where Rt is defined intrinsically as
a metric invariant. This means that we can use this definition
to generalize the covering radii for general (non-linear) codes.

IV. BOUNDS

A crucial part in our understanding of any figure of merit,
is the limits of values it can take. Thus, we devote this section
to the derivation of bounds on the generalized covering radii of
codes. We put an emphasis on asymptotic bounds, that, given
the normalized t-th covering radius, bound the best possible
rate. We present a straightforward ball-covering argument for
a lower bound. We then also present a trivial upper bound. Our
main result is an asymptotic upper bound that improves upon
the trivial one, and thus showing there is merit to the usage
of generalized covering radii to improve database querying,
as described in Section I. Our upper bound is non-constructive,
and uses a probabilistic method. It shall be made constructive
(albeit, not useful) in Section V.

As is standard, we will require the size of a t-ball. Since
the metrics involved are all translation invariant, the size of
the ball does not depend on the choice of center. We therefore
use

V (t)
r,n,q �

���B(t)r,n,q(0)
��� .

Thus, (4) gives the following immediate corollary.
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Corollary 10: For all integers n, t, r and a prime power q ,

V (t)
r,n,q = Vr,n,qt =

r�
i=0

(
n

i

)
(qt − 1)i .

We also recall the definition of the q-ary entropy function,

Hq(x) = x logq(q − 1)− x logq(x) − (1 − x) logq(1 − x).

Using Stirling’s approximation, it is well known that

Vr,n,q =
*

qnHq (r/n)−o(n) 0 � r
n � 1 − 1

q ,

qn−o(n) 1 − 1
q <

r
n � 1,

and thus,

V (t)
r,n,q = Vr,n,qt =

*
qtnHqt (r/n)−o(n) 0 � r

n � 1 − 1
qt ,

qtn−o(n) 1 − 1
qt <

r
n � 1.

(5)

Let kt (n, r, q) denote the smallest dimension of a linear code
C over Fq with length n and t-covering radius Rt (C) � r . The
following theorem was proved in [7].

Theorem 11 [7]: For all n, r ∈ N, and a prime power q ,

n − logq Vr,n,q � k1(n, r, q)

� n − logq Vr,n,q + 2 log2 n − logq n + O(1).

It is convenient to study normalized parameters with respect
to the length of the code. If C is an [n, k] linear code, we define
its normalized parameters,

κ � k

n
, λt � Rt

n
.

Note that we use κ for the rate of the code, and not R,
to avoid confusion with the covering radius. For t ∈ N and
a normalized covering radius 0 � λ � 1, the minimal rate
achieving λ is defined to be

κt (λ, q) � lim inf
n→∞

kt (n, λn, q)

n
.

In this notation, Theorem 11 gives an asymptotically tight
expression,

κ1(n, λ) =
*

1 − Hq(λ) 0 � λ < 1 − 1
q ,

0 1 − 1
q � λ � 1.

(6)

A. General Bounds

For a simple lower bound we use the ball-covering
argument.

Proposition 12: For any n, t ∈ N, prime power q , and 0 �
λ � 1 − 1

qt ,
κt (λ, q) � 1 − Hqt (λ).

Proof: Let C be an [n, k] code over Fq with Rt (C) � λn.
For any c ∈ Ct consider the t-ball of radius Rt (C) centered
at c, B(t)Rt (C)

(c). By Definition 6,	
c∈Ct

B(t)Rt (C)
(c) = Ft×n

q .

Thus, using Corollary 10,

qkt · V (t)
Rt (C),n,q

= ��Ct
�� · V (t)

Rt (C),n,q
=
�
c∈Ct

���B(t)Rt (C)
(c)
��� � qnt ,

and therefore,

k

n
� 1 − logqt V (t)

Rt (C),n,q

n
.

Using (5) we get,

κ � 1 − Hqt

(
Rt (C)

n

)
+ o(1) � 1 − Hqt (λ)+ o(1).

This bound holds for an arbitrary [n, k] code with t-covering
radius at most λn. Therefore, we have

kt (n, λn, q)

n
� 1 − Hqt (λ)+ o(1),

and by taking lim inf we conclude.
For an upper bound, we first make the following

observation.
Proposition 13: Let C be an [n, k] code over Fq . Then for

all t ∈ N,

Rt � t · R1.

Proof: Let H be a parity-check matrix for C .
By Definition 1, given S = {s1, . . . , st } ∈ �Fn−k

q
t

�
, there exist

Ii ∈ �[n]
R1

�
such that si ∈ �

HIi

�
, for all i ∈ [t]. Define

I �
+

i∈[t ] Ii , then S ⊆ �HI �. It follows that

Rt � |I | �
t�

i=1

|Ii | = t · R1.

We can now give the following naive upper bound.
Proposition 14: For any n, t ∈ N, t � 2, prime power q ,

and 0 � λ � 1,

κt (λ, q) � 1 − Hq

,λ
t

-
.

Proof: By Proposition 13,

κt (λ, q) � κ1

,λ
t
, q
-
.

We then combine (6) with the fact that t � 2 implies λ
t �

1 − 1
q , to obtain the desired result.

Proposition 13 is in fact a consequence of the following,
more general, upper bound. This upper bound shows the
generalized covering radii are sub-additive.

Proposition 15: Let C be an [n, k] code over Fq . Then for
all t1, t2 ∈ N,

Rt1+t2 � Rt1 + Rt2 .

Proof: Let H be a parity-check matrix for C . Given S ∈�
F

n−k
q

t1+t2

�
, partition it arbitrarily to S = S1 ∪ S2, where |S1| = t1

and |S2| = t2. By Definition 1 there exist

I1 ∈
([n]

Rt1

)
and I2 ∈

([n]
Rt2

)
,

such that S1 ⊆ �HI1

�
, and S2 ⊆ �HI2

�
. Define I � I1 ∪ I2, then

S = S1 ∪ S2 ⊆ �HI �. The claim now follows.
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B. Upper Bounding the Binary Case With t = 2

The upper bound we now present improves upon the trivial
one from Proposition 14. Since it is significantly more com-
plex, and has many moving parts, we focus on the binary
case with t = 2 only. We follow a similar strategy to
the one employed by [6, Theorem 12.3.5] for the covering
radius, though major adjustments are required due to the
more involved nature of this generalized problem. In essence,
we show the existence of a covering code using the proba-
bilistic method. The probability is nearly 1, implying almost
all codes are at least as good as this bound. The main result
is Theorem 22.

We outline the proof strategy to facilitate reading this
section. We use the probabilistic method by choosing a random
generator matrix for a code and bounding the probability that
balls centered at the codewords indeed cover the entire space.
To do so, we study the random variable that counts how many
codewords cover a given point in space. To get a handle on
this variable, we bound its expectation and variance.

We first recall the following useful lemma from
[7, Lemma 1] concerning the average intersection of a set with
its translations. Though originally proved for vectors, it also
holds (with exactly the same proof) for matrices.

Lemma 16 [7]: For any S ⊆ Ft×n
q ,

1

qtn

�
v∈F

t×n
q

|S ∩ (S + v)| = |S|2
qtn

.

Let k, n ∈ N such that n � 2 and t � k < n. We consider
the random matrix G ∈ Fk×n

2 , with rows g1, . . . , gk indepen-
dently and uniformly drawn from Fn

2. Let C be the random
code with generator matrix G.

For a matrix u ∈ Ft×k
2 , let cu ∈ Ct be defined by cu � uG.

Clearly,

Ct =


cu

���u ∈ Ft×k
2

�
.

The next lemma shows a connection between the rank of u
and the statistical independence of the rows of cu. We remark
that the probability of u being a full rank matrix goes to 1 as
k → ∞.

Lemma 17: If u ∈ Ft×k
2 has full rank, then cu is uniformly

distributed on Ft×n
2 . In particular, the rows of cu are statisti-

cally independent.
Proof: Consider the function fu : Fk×n

2 → Ft×n
2 given by

fu(A) = uA. Since u has full rank, fu is surjective and it is
2(k−t)n to one. Hence, for any subset S ⊆ Ft×n

2 , the size of the
pre-image f −1

u (S) is 2(k−t)n |S|. We recall that the generator
matrix G is uniformly distributed on Fk×n

2 . Hence,

P [cu ∈ S] = P [uG ∈ S] = P [ fu(G) ∈ S]

= P
.
G ∈ f −1

u (S)
/

=
�� f −1

u (S)
��

2kn

= 2(k−t)n|S|
2kn

= |S|
2tn

= |S|��Ft×n
2

�� .
This completes the proof.
In preparation for bounding the variance of a certain ran-

dom variable yet to be defined, we shall need to study the

probability that pairs of codewords reside in the same ball.
For u1,u2 ∈ F2×k

2 , we consider the matrix cu1,u2 ∈ F4×k
2

defined by

cu1,u2 �
0

cu1

cu2

1
.

We first show that the probability the two codewords are
contained in the same ball is maximized by the ball centered
at 0.

Lemma 18: Let 1 � r � n − k be an integer and u1,u2 ∈
F2×k

2 with full rank, such that rank
� u1

u2

� = 3. Then for any
v ∈ F2×n

2 we have

P
0

cu1,u2 ∈
,

B(2)r,n,2(v)
-2
1

� P
0

cu1,u2 ∈
,

B(2)r,n,2(0)
-2
1
,

where ,
B(2)r,n,2(v)

-2 = B(2)r,n,2(v)× B(2)r,n,2(v) ⊆ F4×n
2

is the Cartesian product of the ball B(2)r,n,2(v) with itself.
Proof: Let u1, u2, u3, u4 denote the rows of

� u1
u2

�
and

v =
.
v1
v2

/
∈ F2×n

2 . Without loss of generality, we assume that

u1, u2, and u3, are linearly independent. By this assumption,

u4 = a1 · u1 + a2 · u2 + a3 · u3,

for some a1, a2, a3 ∈ F2. Let c1, c2 and c3, c4 be the rows of
cu1 and cu2 , respectively. We have⎡⎢⎢⎣

c1
c2
c3
c4

⎤⎥⎥⎦ =
0

cu1

cu2

1
=
0

u1
u2

1
· G =

⎡⎢⎢⎣
u1
u2
u3

a1u1 + a2u2 + a3u3

⎤⎥⎥⎦ · G,

where G is the random generator matrix of the code. Thus,

c4 = a1 · c1 + a2 · c2 + a3 · c3,

and by Lemma 17,

0
c1
c2
c3

1
is uniformly distributed on F3×n

2 .

We define⎡⎢⎢⎣
2c12c22c32c4

⎤⎥⎥⎦ �

⎡⎢⎢⎣
c1
c2
c3
c4

⎤⎥⎥⎦−

⎡⎢⎢⎣
v1
v2
v1
v2

⎤⎥⎥⎦ = cu1,u2 −
0

v
v

1
.

By the translations invariance of the metric d(2),

cu1,u2 ∈
,

B(2)r,n,2(v)
-2 ⇐⇒ cu1,u2 −

0
v
v

1
∈
,

B(2)r,n,2(0)
-2
.

We note that the map ψ : F3×n
2 → F3×n

2 given by

ψ(z) = z −
⎡⎣v1
v2
v1

⎤⎦
is a bijection, and therefore,⎡⎣2c12c22c3

⎤⎦ = ψ

⎛⎝⎡⎣c1
c2
c3

⎤⎦⎞⎠
is uniformly distributed on F3×n

2 as well.
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We divide our analysis into cases, depending on the value
of (a1, a2, a3). Since rank(u1) = rank(u2) = 2, and rank� u1

u2

� = 3, the combinations (a1, a2, a3) = (0, 0, 0) and
(a1, a2, a3) = (0, 0, 1) are impossible.

Case 1: If (a1, a2, a3) = (1, 1, 1), a simple calculation
shows that we have,

2c4 =2c1 +2c2 +2c3.

Thus, cu1,u2 and cu1,u2 − � v
v
�

have the same distribution, so

P
0

cu1,u2 ∈
,

B(2)r,n,2(v)
-2
1

= P
0

cu1,u2 −
0

v
v

1
∈
,

B(2)r,n,2(0)
-2
1

= P
0

cu1,u2 ∈
,

B(2)r,n,2(0)
-2
1
.

Case 2: If (a1, a2, a3) = (1, 1, 0), a similar calculation as
in the previous case shows that

2c4 =2c1 +2c2 + v1.

For any z ∈ Fn
2 we consider the set

Sz �

⎧⎪⎪⎨⎪⎪⎩
⎡⎣w1
w2
w3

⎤⎦ ∈ F3×n
2

��������
⎡⎢⎢⎣

w1
w2
w3

w1 + w2 + z

⎤⎥⎥⎦ ∈
,

B(2)r (0)
-2

⎫⎪⎪⎬⎪⎪⎭ .
Since

02c12c22c3

1
and

0
c1
c2
c3

1
are uniformly distributed, to prove

the theorem’s claim is equivalent to showing that
��S0

�� � ��Sv1

��,
which is also equivalent to

��S0 \ Sv1

�� � ��Sv1 \ S0

��.
If v1 = 0, this condition is automatically satisfied. Other-

wise, we will prove our claim by showing that for v �
1 obtained

by zeroing one of the bits of v1 we have
���Sv �

1
\ Sv1

��� ����Sv1 \ Sv �
1

��� . Then, repeating this arguments and zeroing all

the non-zero bits of v1 we conclude the desired inequality.
Indeed, we find an injection Sv1 \ Sv �

1
→ Sv �

1
\ Sv1 . Let

i ∈ [n] be an index such that the i -th bit of v1 is 1. Denote
by ei the i -th standard unit vector, and set v �

1 = v1 + ei . Let0
w1
w2
w3

1
∈ Sv1 \ Sv �

1
. We have0

w1
w2

1
∈ B(2)r (0),

0
w3

w1 +w2 + v1

1
∈ B(2)r (0)

and 0
w3

w1 +w2 + v1 + ei

1
/∈ B(2)r (0).

Thus,

supp(w1 +w2 + v1) � supp(w1 +w2 + v1 + ei ).

Since the i -th bit of v1 + ei is 0, it is only possible if the
i -th bit of w1 + w2 is 1. Hence,

i ∈ supp

(0
w1
w2

1)
. (7)

We define

φ

⎡⎣w1
w2
w3

⎤⎦ �

⎡⎣w1 + ei

w2
w3

⎤⎦ .
By (7) we have,

supp

⎛⎝φ
⎡⎣w1
w2
w3

⎤⎦⎞⎠ ⊆ supp

⎛⎝⎡⎣w1
w2
w3

⎤⎦⎞⎠ .
Hence, 0

w1 + ei

w2

1
∈ B(2)r (0).

Furthermore, (w1 +w2 + ei )+ v �
1 = w1 +w2 + v1, and so0

w3
(w1 + w2 + ei )+ v �

1

1
=
0

w3
w1 +w2 + v1

1
∈ B(2)r (0).

That is, φ

0
w1
w2
w3

1
∈ Sv �

1
. On the other hand,0

w3
(w1 + w2 + ei )+ v1

1
=
0

w3
w1 +w2 + v �

1

1
/∈ B(2)r (0).

Hence, φ

0
w1
w2
w3

1
/∈ Sv1 . This shows that φ maps Sv1 \ Sv �

1
to

Sv �
1
\ Sv1 . Clearly φ is injective and it is the desired map.

Case 3: If (a1, a2, a3) = (1, 0, 1) we have c4 = c3 + c1,
or equivalently, c1 = c3+c4. This case is equivalent to the case
where (a1, a2, a3) = (1, 1, 0) with c1, c2 and c3, c4 switching
rolls.

Case 4: If (a1, a2, a3) = (0, 1, 1) this is equivalent to the
case where (a1, a2, a3) = (1, 1, 0).

Case 5: If (a1, a2, a3) = (0, 1, 0) we have2c4 =2c2.

Thus, cu1,u2 and cu1,u2 − � v
v
�

have the same distribution,
and the case is completed as Case 1.

Case 6: If (a1, a2, a3) = (1, 0, 0) then we have2c4 =2c1 + (v1 + v2).

Similarly to Case 2, where (a1, a2, a3) = (1, 1, 0), we show
that

��S0

�� �
��Sv1+v2

��. We use the same technique in order to
show that we increase

��Sv1+v2

�� when we flip a bit of v1 + v2
from 1 to 0, and the same mapping φ.

For any v ∈ F2×n
2 we define Xv to be the number of

codewords in C2 that are generated from full-rank coefficients
matrices, and that r -cover v. Formally,

Xv �
�

u∈F
2×k
2

rank(u)=2

I
v∈B(2)r (cu)

�,

where IA is the indicator function of the event A. Clearly,
Xv depends on n, k, and r , although we omit them from our
notation. The random variable Xv plays an important role in
our main result, and we study its properties in preparation for
the main theorem. We first bound the expectation of Xv.

Lemma 19: For 0 � λ < 3
4 , n, k, r ∈ N, 3 � k � n,

r = λn, and v ∈ F2×n
2 ,

V (2)
r,n,2 · 22k−1−2n < E[Xv] < V (2)

r,n,2 · 22k−2n .
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Proof: By Lemma 17 for u ∈ F2×k
2 with full rank, cu is

uniformly distributed on F2×n
2 . Therefore,

E[Xv] =
�

u∈F
2×k
2

rank(u)=2

E

0
I

v∈B(2)r (cu)
�1

=
�

u∈F
2×k
2

rank(u)=2

P
.
v ∈ B(2)r (cu)

/

=
�

u∈F
2×k
2

rank(u)=2

���B(2)r (cu)
���

22n
= (2k − 1)(2k − 2)

V (2)
r,n,2

22n
.

For k � 3 we have

22k−1 < (2k − 1)(2k − 2) < 22k,

which gives us the desired result.
We consider the functions f1, f2 : [0, 1] → R defined by

f1(λ) � max
0�α�λ
0�β�α

0�γ�λ−α+β

(
H2(α)+ αH2

(
β

α

)
+ 2(α − β)

+ (1 − α + β)H2

(
γ

1 − α + β

))
,

and

f2(λ) � max
0�α�λ

0�β�λ−α

(
H2(α)+ 2(1 − α)H2

(
β

1 − α

)
+ 2α

)
.

We then define

f (λ) � max ( f1(λ), f2(λ)) ,

which we will use in order to bound Var(Xv).
Lemma 20: For 0 � λ < 3

4 , n, k, r ∈ N, k � n, r = λn,
and v ∈ F2×n

2 ,

Var(Xv) � 7 E[Xv] + 23(k−n)+n( f (λ)+o(1))

Proof: To simplify notation, we denote

ηu � I
v∈B(2)r (cu)

�.
We then calculate,

Var(Xv) = Var

⎛⎜⎜⎜⎝ �
u∈F

2×k
2

rank(u)=2

ηu

⎞⎟⎟⎟⎠
=

�
u∈F

2×k
2

rank(u)=2

Var (ηu)

+
�

u1∈F
2×k
2

rank(u1)=2

�
u2∈F

2×k
2

rank(u2)=2

Cov
�
ηu1 , ηu2

�
. (8)

We separate the sums in (8) into four parts, and bound each
one of them individually.

For a Bernoulli random variable Z ∼ Ber(p) we have

Var(Z) = E[Z2] − E[Z ]2 = p − p2 � p = E[Z ]. (9)

Applying this bound to the first sum of (8), we have�
u∈F

2×k
2

rank(u)=2

Var (ηu) �
�

u∈F
2×k
2

rank(u)=2

E [ηu] = E[Xv]. (10)

We now consider the double sum in (8), which we separate
into three parts, according to rank

�� u1
u2

��
.

If rank
�� u1

u2

�� = 4, by Lemma 17, cu1 and cu2 are statis-
tically independent and therefore so are ηu1 and ηu2 . Thus,
the covariance in that case is 0.

If rank(u1) = rank(u2) = rank
�� u1

u2

�� = 2, by the Cauchy-
Schwarz inequality, Lemma 17 and (9) we have

Cov
�
ηu1, ηu2

�
�
3

Var
�
ηu1

�
Var
�
ηu2

�
�
3

E
�
ηu1

�
E
�
ηu2

�
=
4

P
.
v ∈ B(2)r (cu1)

/
P
.
v ∈ B(2)r (cu2)

/
=
4

P
.
cu1 ∈ B(2)r (v)

/
P
.
cu2 ∈ B(2)r (v)

/
=
���B(2)r (v)

���
22n

= E
�
ηu1

�
.

Since rank(u1) = rank(u2), we have that u2 = A ·u1 where
A ∈ GL(2, 2) is a 2 × 2 invertible matrix over F2. Summation
over all pairs u1,u2 such that rank(u1) = rank(u2) =
rank

�� u1
u2

�� = 2 gives�
u1∈F

2×k
2

rank(u1)=2

�
A∈GL(2,2)

Cov
�
ηu1, ηAu1

�

�
�

u1∈F
2×k
2

rank(u1)=2

�
A∈GL(2,2)

E
�
ηu1

�

=
�

A∈GL(2,2)

�
u1∈F

2×k
2

rank(u1)=2

E
�
ηu1

�

=
�

A∈GL(2,2)

E[Xv] = 6 E[Xv],

where the last equality follows since there are exactly six
2 × 2 invertible matrices over F2.

We are left with the case of rank
�� u1

u2

�� = 3. We start
by bounding Cov(ηu1, ηu2), and then evaluate this bound,
dividing our analysis into three cases according to the linear
dependence structure of u1 and u2.

By Lemma 18,

Cov(ηu1 , ηu2) = E[ηu1ηu2] − E[ηu1] E[ηu2 ]
� E[ηu1ηu2] = P

.
cu1, cu1 ∈ B(2)r (v)

/
� P

.
cu1, cu1 ∈ B(2)r (0)

/
.
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As before, let u1, u2, u3, u4 denote the rows of
� u1

u2

�
.

Without loss of generality, assume u1, u2, u3 are linearly
independent and u4 ∈ �u1, u2, u3�, that is,

u4 = a1 · u1 + a2 · u2 + a3 · u3,

for some a1, a2, a3 ∈ F2. Thus,

0
u1
u2
u3

1
G is uniformly distrib-

uted on F3×n
2 and therefore P

.
cu1, cu2 ∈ B(2)r (0)

/
is propor-

tional to the number of triples w1, w2, w3 ∈ Fn
2 such that0

w1
w2

1
,

0
w3

a1 ·w1 + a2 ·w2 + a3 · w3

1
∈ B(2)r (0).

We enumerate the number of such triples in every depen-
dence structure, which we denote by N(a1, a2, a3). Since
rank(u2) = 2 the combinations a1 = a2 = a3 = 0 and
a1 = a2 = 0, a3 = 1 are impossible. Thus we have six cases,
and we will show that they can be reduced to three cases.

Case 1 - (a1, a2, a3) = (1, 1, 0): If (a1, a2, a3) = (1, 1, 0),
then w4 = w1 +w2. Hence, the number of triples in this case
is given by

N(1, 1, 0) =
r�

i=0

(
n

i

) i�
j=0

(
i

j

)
2i− j

r−i+ j�
�=0

(
n − i + j

�

)
2i− j .

Here, the integer i runs over all possible values for the size
of supp

,.
w1
w2

/-
, namely, between 0 and r , and

�n
i

�
counts the

number of ways to choose this support. The integer j runs over
all possible values for the number of overlapping 1’s between
w1 and w2,

� i
j

�
counts the number of ways to choose these

overlapping positions, and 2i− j counts the number of ways to
distribute the remaining 1’s between w1 and w2. The integer �
runs over all possible values of the number of non-overlapping
1’s between w3 and w1 +w2, and

�n−i+ j
�

�
counts the number

of ways to choose those non-overlapping 1’s in the remaining
n − (i − j) coordinates. Finally, 2i− j counts the number of
ways to choose overlapping 1’s from supp(w1 +w2) to w3.

Case 2 - (a1, a2, a3) = (1, 1, 1): By similar calculations as
in the first case we obtain,

N(1, 1, 1) = N(1, 1, 0).

Case 3 - (a1, a2, a3) = (1, 0, 0): In this case

N(1, 0, 0) =
r�

i=0

(
n

i

)⎛⎝r−i�
j=0

(
n − i

j

)
2i

⎞⎠2

.

The other three cases can be reduced to one of the previous
one. The case where (a1, a2, a3) = (0, 1, 0) is trivially
equivalent to the case of (1, 0, 0). If (a1, a2, a3) = (1, 0, 1)
we have w4 = w1 + w3, and therefore w1 = w3 + w4.
Thus, this case is equivalent to the case of (1, 1, 0) with
w1, w2 and w3, w4 switching parts. Similarly the case where
(a1, a2, a3) = (0, 1, 1) is equivalent to the case of (1, 1, 0).

We recall that r = λn. Fix some 0 � i � r , 0 � j � i and
0 � � � λ − i + j . We denote

i = αn j = βn � = γ n.

The constraints on i, j and � impose

0 � α � λ, 0 � β � α, 0 � γ � λ − α + β.

Using the well-known identity
� n
αn

� = 2n(H2(α)+o(1)) we
have(

n

i

)(
i

j

)
2i− j

(
n − i + j

�

)
2i− j

= 2
n
,

H2(α)+αH2

,
β
α

-
+2(α−β)+(1−α+β)H2

,
γ

1−α+β
-
+o(1)

-
� 2n( f1(λ)+o(1)).

and therefore

r�
i=0

(
n

i

) i�
j=0

(
i

j

)
2i− j

r−i+ j�
�=0

(
n − i + j

�

)
2i− j

� n32n( f1(λ)+o(1)) = 2n( f1(λ)+o(1)).

In a similar fashion we obtain

r�
i=0

(
n

i

)⎛⎝r−i�
j=0

(
n − i

j

)
2i

⎞⎠2

� 2n( f2(λ)+o(1)).

Combining the bounds we obtain

Cov(ηu1, ηu2) � P
.
cu1, cu1 ∈ B(2)r (0)

/
� 2n(max( f1(λ), f2(λ))+o(1))

23n

= 2n( f (λ)−3+o(1)).

Summing overall u1,u2 such that rank
�� u1

u2

�� = 3 gives�
rank

,.
u1
u2

/-
=3

Cov(ηu1, ηu2)

�
�

rank
,.

u1
u2

/-
=3

2n( f (λ)−3+o(1))

�
,

2k − 1
- ,

2k − 2
- ,

2k − 4
-

232n( f (λ)−3+o(1))

� 2n( f (λ)−3+o(1))+3k.

Summing the upper bounds on all of the parts in the sum
(8) we obtain the desired bound and complete the proof.

The functions f1(λ) and f2(λ) are given by maximizing the
two functions,

f �
1(α, β, γ ) �

(
H2(α)+ αH2

(
β

α

)
+ 2(α − β)

+ (1 − α + β)H2

(
γ

1 − α + β

))
,

f �
2(α, β) �

(
H2(α)+ 2(1 − α)H2

(
β

1 − α

)
+ 2α

)
.

We observe that the parameter λ only controls the maxi-
mization domain. Using standard analysis techniques we can
find the exact expression for f (λ). Let us denote

s(λ) � 1

10

,
1 + 8λ −

5
1 + 16λ − 16λ2

-
.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on November 20,2021 at 17:52:40 UTC from IEEE Xplore.  Restrictions apply. 



ELIMELECH et al.: GENERALIZED COVERING RADII OF LINEAR CODES 8079

Fig. 1. The function f (λ) from Lemma 20.

For 0 � λ < 3
4 , f �

1 is maximized at the point�
αmax

1 (λ), βmax
1 (λ), γmax

1 (λ)
� = (λ, λ − s(λ), s(λ)) ,

and for 3
4 � λ � 1 it is maximized at�
αmax

1 (λ), βmax
1 (λ), γmax

1 (λ)
� =

(
3

4
,

1

4
,

1

4

)
.

Similarly, for 0 � λ < 3
4 , f �

2 is maximized at the point�
αmax

2 (λ), βmax
2 (λ)

� = (s(λ), λ − s(λ)) ,

and for 3
4 � λ � 1 it is maximized at�

αmax
2 (λ), βmax

2 (λ)
� =

(
1

2
,

1

4

)
.

Curiously, f �
1 and f �

2 take the same value at their maximum
points for any 0 � λ � 1, and therefore

f (λ) = f �
1

�
αmax

1 (λ), βmax
1 (λ), γmax

1 (λ)
�

= f �
2

�
αmax

2 (λ), βmax
2 (λ)

�
=

⎧⎪⎪⎨⎪⎪⎩
H2(s(λ))+ 2s(λ)

+2(1 − s(λ))H2

,
λ−s(λ)
1−s(λ)

-
0 � λ < 3

4 ,

3 3
4 � λ � 1.

The function f (λ) is shown in Figure 1.
We now use the obtained bounds on the expectation and

variance of Xv in order to prove (under certain conditions) that
with high probability, all Xv are positive. Namely, the entire
space is covered.

Proposition 21: Let 0 � λ < 3
4 , and let (kn)

∞
n=1 be a

sequence of integers such that

kn > n − log4

,
V (2)
λn,n,2

-
+ log2(n)

and

lim sup
n→∞

max
v∈F

2×n
2

log2(Var(Xv))

log2(E[Xv]) < s < 2,

where Xv is defined with respect to n, kn , and rn = λn.

Let C �
n be the random code with a uniformly distributed

k �
n × n random generator matrix G�, where k �

n = kn + 26
log2(n)

7+ 2. Then

R2(C
�
n) � rn = λn

with probability that tends to 1 as n → ∞.
Proof: Let G be the matrix obtained by taking the first

kn rows of G�, and g1, . . . , gm be the remaining rows, m =
2
6
log2(n)

7+ 2. We fix some ε > 0 and v ∈ F2×n
2 . Consider

the random code Cn with random generator matrix G.
By Chebyshev’s inequality

P
.
|Xv − E[Xv]| � 2ε · E[Xv]s/2

/
� Var(Xv)

22ε E[Xv]s
.

By assumption, for sufficiently large n, Var(Xv) < E[Xv]s ,
and therefore

P
.
|Xv − E[Xv]| � 2ε · E[Xv]s/2

/
< 2−2ε. (11)

We denote β � E[Xv] and define β(ε) � β− 2εβs/2. From
(11) it follows that for sufficiently large n,

P [Xv � β(ε)] < 2−2ε.

Define the set Q0 to be the set of elements in F2×n
2

that are rn-covered by at most β(ε) codewords from the set
cu
��u ∈ F2×k

2 , rank(u) = 2
�

⊆ C2
n . Formally,

Q0 �


v ∈ F2×n
2

��Xv � β(ε)
�
.

Let

q0 � |Q0|
22n

denote the proportion of Q0 inside F2×n
2 . We have

q0 = 1

22n

�
v∈F

2×n
2

I{Xv�β(ε)},

and therefore, for sufficiently large n,

E[q0] = P[Xv � β(ε)] < 2−2ε. (12)

By Markov’s inequality and (12) we have

P
�
q0 � 2−ε� � E[q0]

2−ε < 2−ε. (13)

For a set V ⊆ F2×n
2 we define Q(V ) to be the set of

rn-remote points from V . That is,

Q(V ) � F2×n
2 \

	
v∈V

B(2)rn
(v).

Clearly, if β(ε) � 0, we have

Q(Cn) ⊆ Q0. (14)

We will later choose ε such that β(ε) � 0.
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For arbitrary x, y ∈ Fn
2 we consider the linear code

generated by adding x and y, which is Cn + �x, y�. From
the definition of Q we have,

Q
,
(Cn + �x, y�)2

-
⊆ Q

(
C2

n ∪
(

C2
n +

0
x
y

1))
= Q

,
C2

n

-
∩ Q

(
C2

n +
0

x
y

1)
= Q

,
C2

n

-
∩
(

Q
,

C2
n

-
+
0

x
y

1)
,

where the last equality follows from the invariance of d(2)

under translations. Hence, we have���Q ,(Cn + �x, y�)2
-��� � ����Q ,C2

n

-
∩
(

Q
,

C2
n

-
+
0

x
y

1)���� .
Combining this with (14) and Lemma 16 we have

1

22n

�
x,y∈F

n
2

���Q ,(Cn + �x, y�)2
-���

� 1

22n

�
x,y∈F

n
2

����Q ,C2
n

-
∩
(

Q
,

C2
n

-
+
0

x
y

1)����
= 1

22n
·
��Q �C2

n

���2
22n

� 1

22n
· |Q0|2

22n
= q2

0 . (15)

Recall the first kn rows of G� make up G, and the remaining
rows are denoted by g1, . . . , gm . For 1 � � � m

2 we denote

q� �
��Q �(Cn + �g1, . . . , g2�

�
)2
���

22n
.

Since the rows of G and the remaining rows g1, . . . , gm are
independent and uniformly distributed, (15) implies that

E[q1; q0] � q2
0 , (16)

and by a similar argument,

E[q�; q�−1] � q2
�−1. (17)

We fix some λ > 0 and bound P
�
q1 � 2λ−2ε

�
from below.

By Markov’s inequality, the law of total probability, and (13),
we have

P
.
q1 � 2λ−2ε

/
� P[q1 � 2λ−2ε; q0 � 2−ε] · P

�
q0 � 2−ε�

�
,

1 − P[q1 > 2λ−2ε; q0 � 2−ε]
-

· �1 − 2−ε�
�
(

1 − E[q1; q0 � 2−ε]
2λ−2ε

)
· �1 − 2−ε� .

By the law of total expectation and (16) we obtain a bound
on E[q1; q0 � 2−ε],

E[q1; q0 � 2−ε]
= Eq0

�
E[q1; q0, q0 � 2−ε]�

=
�

a�2−ε
E[q1; q0 = a, q0 � 2−ε]P[q0 = a; q0 � 2−ε]

=
�

a�2−ε
E[q1; q0 = a]P[q0 = a; q0 � 2−ε]

�
�

a�2−ε
a2 · P[q0 = a; q0 � 2−ε] � 2−2ε,

where summation over a � 2−ε is valid since our distribution
is discrete with finite support. Altogether,

P
.
q1 � 2λ−2ε

/
�
�
1 − 2−λ� �1 − 2−ε� .

Repeating the same arguments inductively using (17),
we obtain

P
.
q� � 22�(λ−ε)−λ/ �

�
1 − 2−λ�� �1 − 2−ε� (18)

for all 1 � � � m
2 .

We now set
ε = 2 log2(log2 n),

and recall the assumption,

kn > n − log4

,
V (2)
λn,n,2

-
+ log2(n).

By Lemma 19 we have

β = E[Xv] > V (2)
λn,n,2 · 22 kn−1−2n

> V (2)
λn,n,22

2
,

n−log4

,
V (2)
λn,n,2

-
+log2(n)

-
−1−2n = n2

2
.

We also recall that in the beginning of our analysis,
we assumed that ε is chosen such that β(ε) � 0 (for
sufficiently large n). Indeed, since β > n2

2 and s < 2,

β(ε) = β − 2εβ
s
2 = β − 22 log2(log2 n))β

s
2

= β − (log2 n)2β
s
2 −−−→

n→∞ ∞.

We set λ = ε − 1. For sufficiently large n, λ > 0 and

22m/2(λ−ε)−λ < 2−2m/2 = 2−2�log2(n)�+1
< 2−2n.

Hence, the event


q m
2
< 22m/2(λ−ε)−λ

�
implies the event

that
�
Cn + �g1, . . . , gm

��2 = C �
n has covering radius

R2(C �
n) � λn, because q m

2
< 2−2n implies��Q(C �

n)
�� = ���Q ,(Cn + �g1, . . . , gm

�
)2
-��� < 1,

but since this quantity is a non-negative integer, it must be 0.
In total,

P
�
R2(C

�
n) � λn

�
�
�
1 − 2−ε� �1 − 2−λ�m/2

= �1 − 2−ε� ,1 − 2−ε+1
-�log2 n�+1

=
,

1 − (log2 n)−2
- ,

1 − 2(log2 n)−2
-�log2 n�+1

= O

(
1 − 1

(log2(n))2

)
−−−→
n→∞ 1.

This completes the proof.
Ultimately, we are interested in κt (λ, q), which is the

asymptotic minimal rate required for covering (Fn
q)

t (that we
identify with Ft×n

q ) by t-balls of radius λn. We now prove our
main result for this section.

Theorem 22: For any 0 < λ � 1,

κ2(λ, 2) �
*

1 − (4H4(λ)− f (λ)) 0 � λ < 3
4 ,

0 3
4 � λ � 1.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on November 20,2021 at 17:52:40 UTC from IEEE Xplore.  Restrictions apply. 



ELIMELECH et al.: GENERALIZED COVERING RADII OF LINEAR CODES 8081

Proof: Let us first consider 0 � λ < 3
4 . Fix some ε > 0.

For any n ∈ N we look for kn such that, if n is sufficiently
large,

log2 Var(Xv)

log2 E[Xv] < 2 − ε

2

for all v ∈ F2×n
2 . By Lemma 20,

Var(Xv) � 7 E[Xv] + 23(kn−n)+n( f (λ)+o(1)).

By Lemma 19 we have

E[Xv] � 22kn−1−2nV (2)
λn,n,2 = 22kn−1−2n+2n(H4(λ)+o(1)),

and therefore,
log2 Var(Xv)

log2 E[Xv] � 3(kn − n)+ n( f (λ)+ o(1))

2kn − 1 − 2n + 2n(H4(λ)+ o(1))
.

Let k∗
n be the solution of the equation

3(k∗
n − n)+ n f (λ)

2k∗
n − 1 − 2n + 2nH4(λ)

= 2 − ε,

namely,

k∗
n = 2 − ε + n(1 + f (λ)− 4H4(λ)+ 2ε(H4(λ)− 1))

1 − 2ε
.

Define kn �
8

k∗
n

9
. Since kn

k∗
n

−−−→
n→∞ 1, for sufficiently large

n,
log2 Var(Xv)

log2 E[Xv] � 3(kn − n)+ n( f (λ)+ o(1))

2kn − 1 − 2n + 2n(H4(λ)+ o(1))

� (2 − ε)+ ε

2
= 2 − ε

2
.

We note that

lim
ε→0

k∗
n = 2 + n(1 − 4H4(λ)+ f (λ)).

By standard analysis techniques, for all 0 � λ < 3
4 ,

1 − 4H4(λ)+ f (λ) > 1 − H4(λ).

Thus, for a sufficiently small ε we can choose a sufficiently
large n, such that

kn > n − log4(V
(2)
λn,n,2)+ log2(n)

and
log2 Var(Xv)

log2 E[Xv] � 2 − ε

2
.

By Proposition 21, there exists a sequence of codes (C �
n)

∞
n=N

such that C �
n is an [n, k �

n] code where

k �
n = kn + 2

6
log2(n)

7+ 2,

R2(Cn) � λn.

Thus, for sufficiently large n,

k2(n, λn, 2) � kn + 2
6
log2(n)

7+ 2,

and therefore,

κ2(λ, 2) = lim sup
n→∞

k2(n, λn, 2)

n

� lim
n→∞

kn + 2
6

log2(n)
7+ 2

n

= 1 + f (λ)− 4H4(λ)+ 2ε(H4(λ)− 1))

1 − 2ε
.

Taking ε → 0 we obtain

κ2(λ, 2) � 1 + f (λ)− 4H4(λ),

as desired.
By its definition, kt (λ, q) is a decreasing monotonic func-

tion in λ. It is easy to verify that f (λ) tends to 3 when λ
tends to 3

4 from the left. Thus, for 3
4 � λ � 1,

0 � k2(λ, 2) � lim
λ�→

,
3
4

-
−

κ2(λ
�, 2)

� lim
λ�→

,
3
4

-
−

1 − 4H4(λ
�)+ f (λ�) = 0.

A comparison of the various asymptotic bounds is shown
in Figure 2. It is interesting to note that the upper bound of
Theorem 22 matches the lower ball-covering bound at λ = 3

4 ,
particularly so because the function f (λ) is defined by the
binary entropy function, and not the quaternary entropy func-
tion. We also note that the naive upper bound of Proposition 14
is better than the upper bound of Theorem 22 for λ � 0.145.

V. SIMPLE CODE OPERATIONS

Some code operations are very common. Among these
we can find code extension, code puncturing, the (u, u + v)
construction, and direct sum. In this section we show the
effect these operations have on the generalized covering radii
mirrors their effect on the (regular) covering radius. We use
the direct product to turn the non-constructive upper bound
of Theorem 22 to an explicit construction, albeit, not a very
useful one.

Given a code C ⊆ Fn
q , let

C∗ �


(c1, . . . , cn−1)

��(c1, . . . , cn−1, cn) ∈ C
�
,

be the punctured code, and

C �
*&

c1, . . . , cn,−
n�

i=1

ci )

����� (c1, . . . , cn) ∈ C

:
,

be the extended code. Even though puncturing is defined as
the removal of the last coordinate, the following results apply
to the removal of any single coordinate.

By [6, Theorem 3.1.1, p. 62], R1(C∗) equals R1(C) or
R1(C)− 1 and R1(C) equals R1(C) or R1(C)+ 1. The same
result holds for the generalized covering radii.

Proposition 23: Let C be an [n, k] linear code. Then for
any t ∈ N,

1) Rt (C∗) equals Rt (C) or Rt (C)− 1;
2) Rt (C) equals Rt (C) or Rt (C)+ 1.

Proof: Let G ∈ Fk×n
q be a generator matrix for C , and let

D ⊆ Fn
qt be the code generated by G over Fqt . The code

C∗ over Fq is then generated by G∗ which is the matrix
obtained from G by removing the last column. Denote by
D∗ ⊆ Fn−1

qt the code generated by G∗ over Fqt . Obviously,
D∗ is also obtained by puncturing D. By Definition 8, and
[6, Theorem 3.1.1, p. 62],

Rt (C
∗) = R1(D

∗) ∈ {R1(D), R1(D)− 1}
= {Rt (C), Rt (C)− 1} .
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Fig. 2. A comparison of the bounds on κ2(λ, 2): (a) the ball-covering lower bound, (b) the upper bound of Theorem 22, and (c) the naive upper bound of
Proposition 14.

Using a similar approach we prove the case of code exten-
sion. We construct the following k × (n + 1) matrix

G � [G,−G · 1].
Obviously the code generated over Fq by G is C . Using

G and G over Fqt we get the codes D and D, respectively.
Again, by Definition 8, and [6, Theorem 3.1.1, p. 62],

Rt (C) = R1(D) ∈ {R1(D), R1(D)+ 1}
= {Rt (C), Rt (C)+ 1} .

Assume C1 and C2 are [n, k1] and [n, k2] codes,
respectively. The (u, u + v) construction uses C1 and C2 to
produce a code

C = 
(u, u + v)
��u ∈ C1, v ∈ C2

�
,

and by [6, Theorem 3.4.1, p. 66], its covering radius is upper
bounded by R1(C) � R1(C1)+ R1(C2).

Proposition 24: Let Ci be an [n, ki ] code over Fq , i = 1, 2,
and let C be the code constructed from C1 and C2 using the
(u, u + v) construction. Then for any t ∈ N,

Rt (C) � Rt (C1)+ Rt (C2).

Proof: If Gi ∈ Fki ×n
q is a generator matrix for Ci , i = 1, 2,

then it is easy to see that

G �
0

G1 G1
0 G2

1
,

is a generator matrix for C . The rest of the proof follows
that of Proposition 23 by considering the code generated by
G over Fqt .

We now look at the direct sum. Given an [n1, k1] code C1,
and an [n2, k2] code C2, both over Fq , the direct sum is
defined as

C1 ⊕ C2 �


(c1, c2)

��c1 ∈ C1, c2 ∈ C2
�
,

which is an [n1 + n2, k1 + k2] code over Fq . It is well known
[6, Theorem 3.2.1, p. 63] that

R1(C1 ⊕ C2) = R1(C1)+ R1(C2).

Proposition 25: Let Ci be an [ni , ki ] code over Fq , for
i = 1, 2. Then for any t ∈ N,

Rt (C1 ⊕ C2) = Rt (C1)+ Rt (C2).

Proof: If Gi ∈ Fki ×ni
q is a generator matrix for Ci ,

i = 1, 2, then it is easy to see that

G �
0

G1 0
0 G2

1
,

is a generator matrix for C1⊕C2. The rest of the proof follows
that of Proposition 23 by considering the code generated by
G over Fqt .

Remark 26: The upper bound presented in Theorem 22 is
proved by showing the existence of a sequence of codes in
a non-constructive way. We use Proposition 25 in order to

Authorized licensed use limited to: Moshe Schwartz. Downloaded on November 20,2021 at 17:52:40 UTC from IEEE Xplore.  Restrictions apply. 



ELIMELECH et al.: GENERALIZED COVERING RADII OF LINEAR CODES 8083

find an explicit construction for a code attaining the bound of
Theorem 22.

We fix 0 � λ � 1. In the proof of Theorem 22, we find
a sequence of covering codes (Cn)n , where Cn is an [n, kn]
code with covering radius at most λn and

lim
n→∞

kn

n
= 1 − 4H4(λ)+ f (λ).

The existence of such a sequence of codes is guaranteed
by Proposition 21, where it is proved that, when we ran-
domly choose a kn × n generator matrix, the probability
to get a code with those properties is lower bounded by
O
�
1 − (log2(n))

−2
�
.

We consider the [n2n·kn , kn2n·kn ] code generated by the
direct product 2Cn �

;
G∈F

kn×n
2

CG ,

where CG is the code with generator matrix G. We note that
the rate of 2Cn is upper bounded by kn

n . By our probabilistic
argument, the normalized covering radius of 2Cn is upper
bounded by λ · (1 − O(log2(n)

−2))+ 1 · O(log2(n)
−2), which

tends to λ as n → ∞.
This technique of explicitly constructing codes by direct-

summing codes is well known and has been used many
times in order to make probabilistic proofs constructive, e.g.,
[3], [24]. The disadvantage of this technique is the enormous
block length of the resulting code. In our construction, in order
to ensure a normalized covering radius at most λ + ε the
required block length is �

,
221/ε+1/

√
ε
-

.

VI. THE GENERALIZED PACKING RADII

Given an [n, k] linear code C over Fq , the generalized
Hamming weight of the code, dt , t ∈ N, is defined as the
minimal support size containing a linear subcode of C of
dimension t , i.e.,

dt � min
C �∈[C

t ]

��supp(C �)
�� .

In particular, d1 is the usual minimum distance of C .
Generalized Hamming weights were introduced by

Wei in 1991 [27], as a figure of merit to analyze the security
performance of a code on a wire-tap channel. Wei proved
that the weight hierarchy is strictly increasing and proved the
duality theorem, relating the weight hierarchy of a code and
its dual. A stronger duality theorem, namely a generalization
of MacWilliams identity for the generalized Hamming weight
distribution of a code and its dual was provided in [20].
The weight hierarchy of a code was computed for many
families of codes [11], [16], [27] and bounds are produced in
[1], [8], [17]. Natural generalizations of MDS codes are
presented in [10]. The generalized weights were also defined
in other metric instances, such as the rank metric [21], [23].
In a very interesting approach to generalized weights,
considering a representation of linear codes as a set of
points in a projective space, Tsfasman and Vladut [26]
transform the generalized weights from a metric problem
into a combinatorial-incidence problem. Forney showed

in [12] deep connections between the generalized Hamming
weight hierarchy of a linear code and the complexity of its
minimal trellis diagram and an initial attempt to bound the
error probability of a code (in the erasure channel) using the
generalized weights was done in [9], [22].

In the following we shall require the size �(dt − 1)/2�.
To simplify the presentation we define for all t ∈ N,

δt �
<

dt − 1

2

=
.

We also define the set

L(t)(Fn
q) �


v ∈ Ft×n

q

�� rank(v) = t
�
.

Lemma 27: Let C be an [n, k] linear code over Fq . Then
for every t ∈ [k], δt is the largest integer satisfying that for
all c, c� ∈ Ct such that c − c� ∈ L(t)(Fn

q),

B(t)δt
(c) ∩ B(t)δt

(c�) = ∅.
Proof: First, for 0 � r � δt , assume to the contrary that

there exist c, c� ∈ Ct , c − c� ∈ L(t)(Fn
q), and that

B(t)r (c) ∩ B(t)r (c�) �= ∅.
Let v be in that intersection. Thus, there exist I, I � ⊆ [n],

with |I | , ��I ��� � r � δt , such that

v ∈ Q(t)
I (c) and v ∈ Q(t)

I � (c�).

But then

c − c� ∈ Q(t)
I∪I � (0).

Since c − c� ∈ L(t)(Fn
q), the row space of c − c� is a

t-dimensional subcode of C supported by
��I ∪ I ��� � 2r �

2δt < dt coordinates, which is a contradiction to the definition
of dt .

For the second direction, assume r > δt . By the definition
of δt , there exists a subcode C � = �c1, . . . , ct � ⊆ C of
dimension t and support I of size |I | = δt . Set c ∈ Ct to be
the matrix whose rows are c1, . . . , ct , and arbitrarily choose
I1, I2 ∈ �[n]

r

�
such that I ⊆ I1 ∪ I2. We construct, for all

i ∈ [t], a vector v i that agrees with ci in the coordinates I1,
and is 0 elsewhere. Set v ∈ Ft×n

q to be the matrix whose rows
are v1, . . . , v t , and observe that

v ∈ Q(t)
I1
(0) and v ∈ Q(t)

I2
(c).

Hence

B(t)r (0) ∩ B(t)r (c) �= ∅,
so δt is the maximal integer with the desired property.

We observe that for t = 1, Lemma 27 becomes the standard
packing of Hamming error balls induced by the code C , and
δ1 is the packing radius of the code, and hence, δ1 � R1.
It is therefore tempting to conjecture that δt � Rt for all
t ∈ [min {k, n − k}]. However, Lemma 27 does not describe
a packing of t-balls, when t � 2, since these may intersect if
the difference between their centers is not of full rank.
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VII. CONCLUSION

We proposed a fundamental property of linear codes –
the generalized covering-radius hierarchy. It characterizes the
trade-off between storage amount, latency, and access com-
plexity in databases queried by linear combinations, as is the
case, for example, in PIR schemes. We showed three equiva-
lent definitions for these radii, highlighting their combinatorial,
geometric, and algebraic aspects. We derived bounds on the
code parameters in relation with the generalized covering
radii, and studied the effect simple code operations have on
them. Finally, we described a connection between the general-
ized covering-radius hierarchy and the generalized Hamming
weight hierarchy.

While the study of the generalized covering-radius hierarchy
has its own independent intellectual merit, let us also place
the bound of Theorem 22 back in the context of PIR schemes.
Consider the binary case, and assume we allow a latency of
t = 2, namely, the server waits until two queries arrive and
then handles them both. Further assume, that to handle the
two queries we allow the server to access at most 1

2 of its
storage. Stated alternatively, the average access per query is
a 1

4 of the storage. By Theorem 22, since κ2(
1
2 , 2) ≈ 0.11,

there exists a code allowing 89% of the server storage for user
information and only 11% for overhead. A naive approach,
using κ1(

1
4 , 2) ≈ 0.19, implies the storage may contain only

81% user information and 19% overhead.
Many other open problems remain, and we mention but

a few. First, extending Theorem 22 to address non-binary
generalized covering radii for all t is still an open question,
as is closing the gap with the lower bound of Proposition 12.

It would also be interesting to determine the generalized
covering-radius hierarchy of known codes. These may be
extreme in some cases. As we saw in Example 3, the Hamming
code satisfies Rt = t , and in particular the covering-radius
hierarchy is strictly increasing, that is, Rt < Rt+1 for all
t ∈ [n − k − 1]. This property is exclusive to the Hamming
code (except other trivial cases).

Proposition 28: Let C be an [n, k � 1, d � 3] linear code
over Fq . Then

R1 < R2 < . . . < Rn−k = n − k,

if and only if C is the q-ary Hamming code.
Proof: Suppose that the covering-radius hierarchy of a

code C is strictly increasing. Since Rn−k = n − k, we must
have R1 = 1. But a linear code with parameters [n, k, d � 3]
with covering radius R1 = 1 is 1-perfect and it must be the
q-ary Hamming code with parameters n = qm−1

q−1 , k = n − m,
and d = 3.

In contrast with the Hamming code, whose generalized
covering radii are all distinct, the opposite occurs with MDS
codes. As was shown in [2], [13], the (first) covering radius
of [n, k] MDS codes is n − k, except in rare cases where it is
n − k − 1. Since the upper limit on the generalized covering
radius is n − k, the entire hierarchy is either constant, or is a
step function.

Finally, we have an algorithmic question: Given a parity-
check matrix H for an [n, k] code over Fq , and given vectors

s1, . . . , st ∈ Fn−k
q , how do we efficiently find Rt columns of

H that span the t vectors? These questions, and many others,
are left for future research.
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