
118 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

Improved Coding Over Sets for
DNA-Based Data Storage

Hengjia Wei and Moshe Schwartz , Senior Member, IEEE

Abstract— Error-correcting codes over sets, with applications
to DNA storage, are studied. The DNA-storage channel receives
a set of sequences, and produces a corrupted version of the
set, including sequence loss, symbol substitution, symbol inser-
tion/deletion, and limited-magnitude errors in symbols. Various
parameter regimes are studied. New bounds on code parameters
are provided, which improve upon known bounds. New codes
are constructed, at times matching the bounds up to lower-order
terms or small constant factors.

Index Terms— Error-correcting codes, DNA storage, coding
over sets.

I. INTRODUCTION

DUE to recent developments in DNA sequencing and
synthesis technologies, storing data in DNA strands has

gained a lot of interest in recent years. One notable feature
of DNA-based storage is its ultrahigh storage densities of
1015–1020 bytes per gram of DNA, as demonstrated in recent
experiments (see [21, Table 1]). Additionally, a DNA strand
is easy to maintain and remains stable over millennia. These
features make the DNA strand a suitable medium to store
massive amounts of data.

DNA strands can be treated as sequences composed of four
types of nucleotides A, T, G, and C. In order to produce or read
the strands with an acceptable error rate, the lengths of the
synthetic DNA strands cannot be too long, usually hundreds
of nucleotides. Thus, the data in a DNA storage system is
stored as a set of relatively short strands, each of which holds a
fraction of the whole data. These short DNA strands are stored
inside a solution and do not preserve the order in which they
were stored. The goal of the sequencer is to read these strands
and reconstruct the data without knowledge of the order of the
sequences, even in the presence of errors.

The unordered manner of data storing in DNA
storage systems motivates the study of coding problem
over sets, following several papers on this topic
[3], [6], [9], [10], [15]–[17], [20]. In [10], the authors
studied the storage model where the errors are a combination
of loss of sequences, as well as symbol errors inside the
sequences, such as insertions, deletions, and substitutions.

Manuscript received September 18, 2020; revised April 12, 2021; accepted
September 28, 2021. Date of publication October 13, 2021; date of cur-
rent version December 23, 2021. This work was supported in part by the
Israel Science Foundation (ISF) under Grant 270/18. (Corresponding author:
Hengjia Wei.)

The authors are with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel (e-mail:
hjwei05@gmail.com; schwartz@ee.bgu.ac.il).

Communicated by E. Yaakobi, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2021.3119584

Some lower and upper bounds were derived on the cardinality
of optimal error-correcting codes that are suitable for this
model. Several explicit code constructions are also proposed
for various error regimes. Later, [16], [17] adapted the model
of [10]. In [16], it was assumed that no sequences are lost
and a given number of symbol substitutions occur. Codes
which have logarithmic redundancy in both the number of
sequences and the length of the sequences have been proposed
therein. In [17], a new metric was introduced to establish a
uniform framework to combat both sequence loss and symbol
substitutions, and Singleton-like and Plotkin-like bounds on
the cardinality of optimal codes were derived. A related
model was discussed in [6], where unordered multisets are
received and errors are counted by sequences, no matter how
many symbol errors occur inside the sequences. [9], [15]
discussed the indexing technique to deal with the unordered
nature of DNA storage. Additionally, codes that can be used
as primer addresses were proposed in [3], [20] to equip the
DNA storage system with random-access capabilities.

In this paper, we continue the study of coding over sets.
We follow the model of [10] and present improved bounds
and constructions. We also extend the error model to include
limited-magnitude errors, following the recent application pre-
sented in [5]. Our main contributions are:

1) We derive some new lower bounds on the redundancy
of codes which can protect against substitutions or
deletions. These results, together with some existence
results, demonstrate that correcting deletions requires
fewer redundancy bits than correcting substitutions. Note
that a similar observation was made in [10], but only in
the regime where there is no sequence loss and only a
single symbol error occurs, whereas our results are proved
for two broad parameter ranges.

2) We propose several explicit constructions of codes hav-
ing redundancy that is logarithmic in the number of
sequences M , whereas the corresponding explicit con-
structions in [9], [10] require Θ(M c) bits of redundancy
with c > 0 a constant number.

3) We also study another error model, where data is repre-
sented by vectors of integers that may suffer from limited-
magnitude errors in some of their entries. This model is
motivated by a recently proposed method of encoding
information in DNA sequences which can optimize the
amount of information bits per synthesis time unit [5].
We utilize our explicit code constructions for substitutions
to combat limited-magnitude errors.

0018-9448 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8136-1489
https://orcid.org/0000-0002-1449-0026

WEI AND SCHWARTZ: IMPROVED CODING OVER SETS FOR DNA-BASED DATA STORAGE 119

TABLE I

LOWER AND UPPER BOUNDS ON THE REDUNDANCY OF OPTIMAL (s, t, ε)T-CORRECTING CODES. LOW ORDER TERMS ARE OMITTED

TABLE II

REDUNDANCY OF THE CODE CONSTRUCTIONS. LOW ORDER TERMS ARE OMITTED. THE SYMBOL ∗ MEANS EXPLICIT ENCODING FOR THE CORRE-
SPONDING CONSTRUCTION IS UNKNOWN. IN THE FIRST ROW, T ∈ {S, D, L}, AND δ = s + 2t IF T ∈ {L, S}; δ = s + t IF T = D. IN THE

SECOND ROW, ro DENOTES THE REDUNDANCY OF AN (s, 0, 0)T -CORRECTING CODE OF X2,Lo
M , WHILE rT DENOTES THE REDUNDANCY

OF A BLOCK-CODE OF DIMENSION Lo AND LENGTH L THAT CAN CORRECT s ERRORS OF TYPE T

A summary of the bounds and constructions appearing in this
paper, and a comparison with previous results, is given in
Table I and Table II.

The remainder of the paper is organized as follows.
In Section II we provide the notation and definitions used
throughout the paper. In Section III we consider channels
with a fixed number of lost sequences, and a fixed number of
erroneous sequences. Section IV studies codes for a channel
with no sequence loss. We then study codes when the errors
are of limited magnitude in Section V.

II. PRELIMINARIES

For a positive integer n ∈ N, let [n] denote the set
{1, 2, . . . , n}. For q ∈ N, we use Σq to denote a finite alphabet
with q elements, Zq to denote the cyclic group of integers with
addition modulo q, and Fq to denote the finite field of size q.
Throughout the paper, we denote the base-q logarithm of a
real number a ∈ R by logq a, and we omit the subscript if
q = 2.

For a sequence a = (a1, . . . , an) ∈ Σn
q , let a[i] denote the

ith symbol ai and a[i, j] denote the subword of a starting at
position i and ending at position j. We use |a| to denote the
length of a. For two sequences a and b, we use (a,b) to
denote the concatenation of a and b. Fix an ordering of the
sequences of Σn

q . Then every size-M subset S ⊆ Σn
q can be

represented by a binary vector �(S), termed the characteristic
vector, of length qn and weight M , where each non-zero
entry indicates that the corresponding element is contained
in S.

A. The DNA Storage Channel

In a DNA-based data storage system, data is stored as an
(unordered) set

S = {x1,x2, . . . ,xM} ⊆ ΣL
q

of M distinct sequences xi, i ∈ [M]. In practice, the length of
the sequences L is in the order of a few hundreds, while M
is significantly larger. A summary of typical values of L and
M can be found in [10, Table I]. In general, we assume that
M = qβL for some 0 < β < 1. For the sake of simplicity,
we further assume βL, i.e., logq M , is an integer. Otherwise,
a floor or ceiling is to be used in certain places, making
notation cumbersome and changing nothing in the asymptotic
analysis.

We study the (s, t, γ)T-DNA storage channel model defined
in [10]. In this channel, the sequences in S are drawn arbitrar-
ily and sequenced, possibly with symbol errors, and we have
the following assumptions on the errors:

1) the maximum number of sequences never drawn is s;
2) the maximum number of sequences with errors is t;
3) each sequence suffers at most γ errors of type T.

Note that erroneous sequences are not necessarily distinct from
each other or from the correct sequences, and that would result
in sequence losses. Thus, the output of the channel is a subset
S′ of at least M − s − t sequences of S with t (or fewer)
sequences each suffering γ (or fewer) errors of type T.

In [10], the authors mainly discuss the following types
of errors: substitutions (S), deletions (D), and a combina-
tion of substitutions, deletions and insertions (L), that is,
T ∈ {S, D, L}. In this paper, apart from the errors mentioned

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

120 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

above, we also discuss limited-magnitude errors (LM), the
model of which will be described and explained in the next
subsection.

Denote
X

q,L
M �

{
S ⊆ ΣL

q

∣∣ |S| = M
}

.

For each S ∈ X
q,L
M , the error ball BT

s,t,γ(S) is defined to be
the set of all possible received S′ with S being the input of
the (s, t, γ)T-DNA storage channel. We say a subset S ⊆ X

q,L
M

is an (s, t, γ)T-correcting code if for any distinct S1, S2 ∈ S,
it always holds that

BT

s,t,γ(S1) ∩ BT

s,t,γ(S2) = ∅.

When γ = L, such a code is also called an (s, t, •)T-
correcting code. The redundancy of the code S is defined to
be

logq|Xq,L
M | − logq|S| = logq

(
qL

M

)
− logq|S|.

In Section III, we study (s, t, •)T-correcting codes with
T ∈ {S, D, L}, and in Section IV we study (0, t, γ)T-correcting
codes with T ∈ {S, D}. Our results are presented in the binary
case, and they can be easily generalized to the quaternary case,
i.e., Σ = {A, T, C, G}. Table I summarizes the lower bounds and
upper bounds on the redundancy of the optimal codes, while
Table II summarizes our explicit code constructions. These two
tables also include the corresponding results from [9], [10] for
comparison. From Table I, we have the following observations:

1) For the redundancy of the optimal (s, t, •)T-correcting
code, the lower bound almost attains the upper bound.

2) For the redundancy of the optimal (0, t, γ)T-correcting
code, the lower bound is nearly half as much as the upper
bound.

3) For the sets of parameters (s, t, •) or (0, 1, γ), correcting
deletions requires fewer redundancy bits than correcting
substitutions.

B. Limited-Magnitude Error Model

Recently, a new inexpensive enzymatic method of DNA
synthesis was proposed in [8]. Unlike other synthesis methods
that focus on the synthesis of a precise DNA sequence, this
method focuses on the synthesis of runs of homopolymeric
bases. Specifically, the synthesis process proceeds in rounds.
Assume at the beginning of the round, the current string is
u ∈ Σ∗. A letter a ∈ Σ is chosen, which differs from the last
letter of u. A chemical reaction is then allowed to occur for a
duration of T ∈ N time units. The resulting string at the end
of the round is (u, a, a, . . . , a︸ ︷︷ ︸

�

), where � is a random variable

whose distribution depends on the new letter being appended,
the last letter of the string at the beginning of the round, and
the duration of the chemical reaction.

For the sake of simplicity, in this paper, we consider the
binary case and assume that the last letter of the initiator is 0.
Since long runs may affect the DNA molecule’s stability, the
encoder refrains from using runs that are too long. Let q denote
the length of the longest run used by the encoder1. Thus, every
binary sequence produced by n rounds of synthesis process

1This is different from Section II.A, where q is the alphabet size.

can be represented by a sequence r = (r1, r2, . . . , rn) of Zn
q ,

where ri represents the length of the run appended in the ith
round.

Based on this enzymatic method of DNA synthesis, a new
method of encoding information in DNA strands is pro-
posed [5]. In this method, the data is encoded to a set of M
sequences ri of ZL

q . Then binary sequences ui are produced
by L rounds of synthesis process described above so that
by controlling the chemical reaction, the run lengths of ui

are the components of ri. In the system, what we store are
these sequences ui, whereas the data is represented by the
run-lengths of these sequences, i.e., {r1, r2, . . . , rM}.

The chemical reaction may end up shorter or longer than
planned, usually by a limited amount, due to variability in the
molecule-synthesis process. Consequently, the sequence of the
run lengths of ui is ri + e, where e = (e1, e2, . . . , eL) ∈
[−k−, k+]L for some non-negative integers k+, k−. We say
γ errors that are (k+, k−)-limited-magnitude errors (LM)
occurred, if exactly γ of the entries of e are non-zero. This kind
of errors can also be found in other applications, like high-
density recording [7], [11] and flash memories [1], and the
conventional coding problem to protect against such errors has
been extensively researched, e.g., see [18] and the references
therein.

In this paper, we consider coding over sets in the presence of
limited-magnitude errors. In this model, the codeword is still a
subset S = {r1, r2, . . . , rM} ⊆ ZL

q . However, each sequence
ri in S represents the run-lengths of a sequence ui produced
by L rounds of synthesis process. We note that these synthe-
sized sequences ui’s have the same number of runs, i.e. L, but
may have various lengths. With a codeword S ⊆ ZL

q as input,
the (s, t, γ, k+, k−)LM-DNA storage channel outputs a subsets
S′ of S with s (or fewer) sequences lost and t (or fewer)
sequences being corrupted by at most γ (k+, k−)-limited-
magnitude errors. The corresponding error-correcting code is
called an (s, t, γ, k+, k−)LM-correcting code. In Section V,
we propose a construction for such codes, which is based on
(0, t, γ)S-correcting codes. Some bounds on the redundancy
are also derived. As before, the redundancy of a code S ⊆
{S ⊆ ZL

q | |S| = M} is defined to be

logq

(
qL

M

)
− logq|S|,

where
(
qL

M

)
is the maximum number of messages encoded

by a set of M sequences that are synthesized by L rounds
of process. We emphasize that in this model the channel
receives as input M vectors of length L each, represent-
ing synthesis instructions for L rounds. The redundancy is
measured in this space. However, inside the channel, these
synthesis instructions are turned into DNA sequences. These
may be of different lengths for two reasons: first, the sum
of run-lengths may not be equal in all the vectors. Second,
the noisy synthesis process may result in different run-lengths
from those intended.

C. Some Useful Codes

Our constructions use the well-known Reed-Solomon codes
and BCH codes as input (e.g., see [12]). In addition, we also
require the following codes.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: IMPROVED CODING OVER SETS FOR DNA-BASED DATA STORAGE 121

Lemma 1 ([14, Theorem 1]): For any sequence c ∈ {0, 1}n

and a fixed positive integer γ, there exists a hash function
Hashγ : {0, 1}n → {0, 1}hε with hγ = 4γ log n + o(log n),
computable in O(n2γ+1) time, such that{

(c, Hashγ(c))
∣∣ c ∈ {0, 1}n

}
forms an γ-deletion-correcting code. The decoding complexity
of the code is O(nγ+1).

Lemma 2: Let �, δ be positive integers such that δ � 2�−1
�+1 .

Then there is a map enc : F2�

2 → Fr
2 with r � δ� + δ such

that the set {
(m, enc(m))

∣∣ m ∈ F
2�

2

}
is a code of minimum Hamming distance 2δ + 1.

Proof: Let n = 2�+1 − 1. Since δ � 2�−1
�+1 , there is a

binary [n, n − δ(� + 1), 2δ + 1] BCH code. We may shorten
this code and rearrange its coordinates to obtain a systematic
[2�+δ(�+1), 2�, 2δ+1] code, and then the conclusion follows.

III. (s, t, •)T-CORRECTING CODES

In this section, we study (s, t, •)T-correcting codes, where
T ∈ {S, D, L}. We give an improved lower bound on the
redundancy of such codes, which asymptotically agrees with
the upper bound in [10, Theorem 13] up to low-order terms.
Then we give an explicit construction of codes whose redun-
dancy is close to this bound.

A. Bounds Based on Constant-Weight Codes

Fix an ordering of the vectors of {0, 1}L. For a subset S
of {0, 1}L, its characteristic vector, denoted �(S), is a binary
vector of length 2L where each symbol ‘1’ indicates that a
specific vector is contained in the set S. In this way, a code
S ⊆ X

2,L
M can be represented by a binary constant-weight code

C(S) � {�(S) |S ∈ S},
where all the codewords have weight M .

The following result establishes the equivalence of an
(s, t, •)S-correcting code and a constant-weight code of certain
minimum distance.

Proposition 3: Let s and t be positive integers such that
s+ t � M . A code S ⊆ X

2,L
M is an (s, t, •)S-correcting code if

and only if the corresponding constant-weight code C(S) has
minimum Hamming distance at least 2(s + 2t) + 2.

Proof: Denote δ � s + 2t. We first show that if C(S) has
minimum distance � 2δ + 2 then S is an (s, t, •)S-correcting
code. Note that for a codeword S ∈ S, the s deletions and t
substitutions of sequences in S correspond to at most s + t
asymmetric 1 → 0 errors and t asymmetric 0 → 1 errors in
�(S). Thus, if C(S) has minimum Hamming distance 2δ + 2,
we can correct these δ substitution errors in �(S), and then
recover S. That is, S is an (s, t, •)S-correcting code

In the other direction, if C(S) has minimum Hamming
distance less than 2δ+2, then it is at most 2δ since the distance
between two sequences of the same weight is even. Let �(S)
and �(S′) be two codewords in C(S) with distance at most 2δ.
Necessarily, S and S′ share at least M−δ sequences. W.l.o.g.,
we may assume that

S = {u1,u2, . . . ,uM−δ,a1, . . . ,as,b1, . . . ,b2 t} ∈ S

and

S′ = {u1,u2, . . . ,uM−δ, a′
1, . . . ,a

′
s,b

′
1, . . . ,b

′
2 t} ∈ S.

Note that in the (s, t, •)S-DNA storage channel, the result
of an erroneous sequence could be any sequence of {0, 1}L.
Hence, after going through the channel, both S and S′ can
generate the set{

u1,u2, . . . ,uM−δ,b1,b2, . . . ,bt,b′
t+1, . . . ,b

′
2 t

}
.

This implies that S is not an (s, t, •)S-correcting code.
The following upper bound on the size of a constant-weight

code can be found in [4].
Lemma 4: Let C be a binary constant-weight code of length

n, weight w and minimum distance 2τ . Then

|C| �
(

n
w−τ+1

)(
w

w−τ+1

) .

Corollary 5: Let s and t be positive integers such that s +
t � M . For any (s, t, •)S-correcting code S, the code size
satisfies

|S| �
(

2L

M−s−2t

)(
M

M−s−2t

) .

In particular, if both s and t are fixed, the redundancy of
an (s, t, •)S-correcting code is at least

(s + 2t)L − log((s + 2t)!) − o(1).

Proof: The first bound is obtained directly from Proposi-
tion 3 and Lemma 4. If s and t are both fixed, then δ is fixed,
and the redundancy satisfies

log
(

2L

M

)
− log|S|

� log

(
2L

M

)(
M

M−δ

)
(

2L

M−δ

)
= log

(2L − M + 1)(2L − M + 2) · · · (2L − M + δ)
δ!

� δ log(2L − M + 1) − log(δ!)

= δL − δ log
2L

2L − M + 1
− log(δ!)

= δL − δ (log e) ln
(

1 +
M − 1

2L − M + 1

)
− log(δ!)

(a)

� δL − (M − 1)δ log e

2L − M + 1
− log(δ!)

(b)
= δL − log(δ!) − o(1),

where (a) holds as ln(1 + x) � x for all x > −1, and (b)
holds as M = 2βL for some constant β < 1.

Remark: Note that an (s, t, •)L-correcting code is also an
(s, t, •)S-correcting code. According to Corollary 5, the redun-
dancy of an (s, t, •)L-correcting code is at least

(s + 2t)L − log((s + 2t)!) − o(1),

which improves upon the bound (s + t)L + t log M + o(1) in
[10, Corollary 1] since L > log M . Moreover, this new bound
is asymptotically tight since there exist (s, t, •)L-correcting

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

122 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

codes of redundancy (s + 2t)L [10, Construction 2 and
Theorem 13].

Using the same argument, we have the following results for
codes that can correct deletions.

Proposition 6: Let s and t be positive integers such that
s + t � M . A code S ⊆ X

2,L
M is an (s, t, •)D-correcting code

if and only if the corresponding constant-weight code C(S)
has minimum Hamming distance 2(s + t) + 2.

Corollary 7: Let s and t be positive integers such that s +
t � M . For any (s, t, •)D-correcting code S, the code size
satisfies

|S| �
(

2L

M−s−t

)(
M

M−s−t

) .

In particular, if both s and t are fixed, the redundancy of
an (s, t, •)D-correcting code is at least

(s + t)L − log((s + t)!) − o(1).

Note that the (s, t, •)D-correcting code in [10, Table 2] has
redundancy (s+ t)L. This redundancy almost meets the lower
bound in Corollary 7, and is strictly less than the minimum
redundancy (s + 2t)L − log((s + 2t)!) − o(1) required for
correcting substitutions.

B. Explicit Code Constructions

For (s, t, •)T-correcting codes, three constructions can be
found in [10]. In particular, [10, Construction 1] and [10,
Construction 3] can produce codes with redundancy Θ(M)
and Θ(M c log M) for some real constant c > 0, respectively,
while [10, Construction 2] requires δL bits of redundancy,
where

δ =

{
s + 2t, if T ∈ {S, L},

s + t, if T = D.
(1)

Noting that L = β−1 log M , the latter construction is much
better than the former two. However, efficient encoding2 for
[10, Construction 2] is unknown.

In this section, we propose an explicit construction
of (s, t, •)T-correcting codes with redundancy at most
δL + O(log log M), that can be encoded efficiently when δ
is fixed. Our method modifies [10, Construction 1], where the
code contains the codewords S = {x1,x2 . . . ,xM} ⊆ FL

2

such that
1) xi = (I(i),ui) for 1 � i � M , where I(i) is the binary

representation of i − 1;
2) if each ui is regarded as an element of F2L−log M ,

the sequence (u1,u2, . . . ,uM) belongs to a given
[M, M − δ, δ + 1] MDS code over F2L−log M , where
δ � s + 2t.

In our construction, instead of using the binary representa-
tions I(i) to index the sequences in the codeword S, we use
sequences of length L′ with L′ > log M to index those
sequences. Specifically, let log M < L′ < L, and let A

be the collection of all the subsets of FL′
2 of size M . Each

set A = {a1,a2, . . . ,aM} ∈ A is regarded as a set of

2By “efficient”, we mean the complexity of the encoding is in poly(M)
time.

addresses.3 For each codeword S of the proposed DNA-storage
code, we associate an address set A ∈ A to S and use
the addresses ai’s to index the sequences in S. It is worth
noting that, in our construction, different codewords may be
associated with different address sets, while in [10, Construc-
tion 1] all the codewords use the same set of addresses,
i.e., {I(i) | 1 � i � M}.

Besides A, our construction also requires the following
codes:

• A binary systematic [2L′
+ δ(L′ + 1), 2L′

, 2δ + 1] code
CA from Lemma 2. For each A ∈ A, let encA(A) be the
vector of F

δ(L′+1)
2 such that (�(A), encA(A)) ∈ CA.

• A hash function Hashδ : {0, 1}δ(L′+1) → {0, 1}h from
Lemma 1, where h = 4δ log(L′) + o(log L′).

• An [M, M − δ, δ + 1] MDS code B over F2L−L′ . Such a
code exists whenever L − L′ � log M .

Theorem 8: Let T ∈ {S, D, L}. Given s, t, M and L, let δ
be defined as in (1) and let L′ be a positive integer such that
log M < min{L′, L−L′}. Suppose that δ(L′+1)+h � M−δ,
and assume A, CA, Hashδ, and B, are as above.

Denote by S the collection of the sets {xi = (ai,ui) | 1 �
i � M} ⊆ FL

2 that satisfy all of the following conditions:
1) A � {a1, . . . ,aM} ∈ A (indexed lexicographically).
2)

(u1[1],u2[1], . . . ,uδ(L′+1)+h[1])
= (encA(A), Hashδ(encA(A))).

3) (u1,u2, . . . ,uM) ∈ B, where ui is treated as an element
of F2L−L′ .

Then the code S is an (s, t, •)T-correcting code of size

|S| =
(

2L′

M

)
2(L−L′)(M−δ)−δ(L′+1)−h.

Proof: We first check the size of S, i.e., the number
of possible choices of {x1,x2, . . . ,xM} that satisfy all the
conditions above. The construction is depicted in Fig. 1.

From 1), there are
(
2L′

M

)
choices of A = {a1, a2, . . . ,aM}.

Given A, according to 2), there are 2L−L′−1 choices of ui for
each 1 � i � δ(L′ +1)+h, and 2L−L′

choices of ui for each
δ(L′+1)+h+1 � i � M−δ. Finally, for M−δ+1 � i � M ,
according to 3) these ui’s are determined by (u1, . . . ,uM−δ)
since the code B has dimension M − δ. Thus, the size of S

stated in the theorem is correct.
Now, we show that S is an (s, t, •)T-correcting code by

describing a decoding procedure. Suppose that the input of
the channel is a set S = {xi = (ai,ui) | 1 � i � M} and the
output is a set S′ = {x′

i = (a′
i,u

′
i) | 1 � i � M − s′}, where

0 � s′ � s and the sequences in S and S′ are enumerated
in a descending lexicographic order. Our decoding has the
following steps:

Step 1: Let c′ � (u′
1[1],u′

2[1], . . . ,u′
δL′+h−s[1]). Then c′

can be obtained from c � (u1[1],u2[1], . . . ,uδ(L′+1)+h[1])
by deleting s′ elements and inserting t′ elements for some s′

and t′. In the following, we give an upper bound on s′+t′. We
treat the channel as having two stages. In the first stage, only

3Throughout this paper we keep enumerating the sequences in the address
set A in a descending lexicographic order.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: IMPROVED CODING OVER SETS FOR DNA-BASED DATA STORAGE 123

Fig. 1. The construction in Theorem 8. The dotted parts represent the
addresses, the blank parts represent the information bits, and the gray parts
represent the check bits of the codeword.

s sequences are lost but no surviving sequence is corrupted.
Hence, in this stage there are s deletions in c. In the second
stage, at most t sequences are corrupted. Note that each
erroneous sequence results in either one substitution or one
deletion and one insertion. In total, we have that s′+t′ � s+2t.
If T = S or L, then s′ + t′ � s + 2t = δ. Due to the error-
correcting capability of the deletion code in Lemma 1, we are
able to recover c from c′,4 and so also encA(A). If T = D,
we further delete u′

�[1] from c′ if the length of x′
� is less than L

and denote the resulting sequence as c′′. Note that in this case
each erroneous sequence only results in one deletion. Thus, c′′

can be obtained from c by deleting at most s+t = δ elements.
Hence, we can recover c from c′′, and so also encA(A).

Step 2: Let

A′ � {a′ |x′ = (a′,u′) ∈ S′, |x′| = L} .

Here we ignore the multiplicity of the elements in A′,
namely, A′ is a simple set. Since at most s sequences of
S are lost and t sequences are erroneous, the characteristic
vector �(A′) can be treated as an erroneous version of �(A)
with at most s + 2t substitution errors if T = S or L,
or with at most s + t substitutions if T = D. Thus, we can
run the decoding algorithm of CA on the concatenation of
�(A′) and encA(A) to recover �(A), and so, the address set
A = {a1,a2, . . . ,aM}.

Step 3: For each 1 � i � M , if there is a unique sequence
x′ = (a′,u′) ∈ S′ with |x′| = L such that a′ = ai, let
u′

i = u′; otherwise, let u′
i be the empty string (representing

an erasure). Consider the sequence (u′
1,u

′
2, . . . ,u

′
M) over

F2L−L1 . Using the same argument as that in the proof of
[10, Construction 1], one can show that this sequence can be
obtained from (u1,u2, . . . ,uM) by at most s′ erasures and t′

substitutions with s′+2t′ � δ if T ∈ {S, L}, or by at most s+t
erasures if T = D. So, we may run the decoding algorithm of
B on (u′

1,u
′
2, . . . ,u

′
M) to recover (u1,u2, . . . ,uM).

4We note that the decoding in Lemma 1 is designed to correct deletions,
while we need to correct both deletions and insertions. However, since the
number of codewords is 2δ(L′+1), if L′ = O(log M), we still can decode
in poly(M) time.

We now turn to show that the redundancy of the code
constructed in Theorem 8 is δL + O(log log M).

Corollary 9: Let T ∈ {S, D, L}. Given s, t, M and L,
let δ be defined as in (1). Assume that M � 2δ log M +
6δ log log M and L > 3 log M , then there is an (s, t, •)T-
correcting code of X

2,L
M with redundancy at most

δL + 4δ log log M + o(log log M).

Proof: Applying Theorem 8, we get an (s, t, •)T-
correcting code S with redundancy

log
(

2L

M

)
− log|S|

= log
(

2L

M

)
− log

(
2L′

M

)
− (L − L′)(M − δ) + δ(L′ + 1) + h

� M(L − L′) + M log
2L′

2L′ − M
− (L − L′)(M − δ) + δ(L′ + 1) + h

� δ(L − L′) + δ(L′ + 1) + h + log e
M2

2L′ − M

= δL + δ + h + log e
M2

2L′ − M
,

= δL + δ + 4δ log(L′) + log e
M2

2L′ − M
+ o(log L′).

Note that if L′ � c log M for some constant 0 < c < 2,
then M2

2L′−M
= Ω(M2−c). Thus, we require that L′ � 2 log M .

On the other hand, log(L′) is increasing with L′ and L > L′+
log M . So we choose L′ = 2 logM and then, the redundancy
is δL + 4δ log log M + o(log log M).

Next, we analyze the complexity of the encoding and the
decoding of the codes in Theorem 8. Assume that the message
is

(a,m) ∈
[
0,

(
2L′

M

)
− 1

]
× F

(L−L′)(M−δ)−δ(L′+1)−h
2 .

Let us first examine the encoding process. First, we encode

the integer a of
[
0,
(
2L′

M

)− 1
]

to a subset A =
{a1, . . . ,aM} ∈ A. This can be done by a greedy algorithm
in O(M2L′

L′) time. We run the encoding of CA on �(A)
to obtain encA(A). Since CA has dimension 2L′

and redun-
dancy δ(L′ + 1), the time complexity is O(2L′

δ(L′ + 1)).
Then, we compute Hashδ(encA(A)), which can be done
in O((δL′)2δ+1) time. We write encA(A), Hashδ(encA(A))
and the word m of F

(L−L′)(M−δ)−δ(L′+1)−h
2 onto ui, where

1 � i � M − δ. Finally, we use the encoding of the code
B to determine ui, where M − δ + 1 � i � M . The time
complexity of this step is O(δ(M − δ)(L−L′)). In summary,
taking L′ = 2 log M , and since δ is a constant, the total
time complexity of the encoding is O(M3 log M) operations
over F2.

For the decoding, in Step 1 we first sort the sequences in the
received codeword S′ and then decode encA(A) from c′. This
may be done in O(M2 log M) time. Steps 2 and 3 simply run
the decoding of the codes CA and B. Hence, the complexity
of the whole decoding is O(M3).

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

124 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

C. Application to (s, M − s, γ)T-Correcting Codes

In [10], Lenz et al. gave a concatenation method to con-
struct (s, M − s, γ)T-correcting codes. This construction uses
an (s, 0, 0)T-correcting code as the inner code. Lenz et al.
suggested to use their Constructions 1, 2 or 3 to obtain
the required (s, 0, 0)T-correcting code. Now we can use the
code from Theorem 8 as the inner code to construct the
(s, M − s, γ)T-correcting code and the whole construction is
still explicit.

Lemma 10: [10, Construction 4 and Lemma 8] Let T ∈
{S, D}. Let So ⊆ X

2,Lo

M be an (s, 0, 0)T-correcting code and
Ci be a block-code of dimension Lo and length L that can
correct γ errors of type T. Let enci(·) : {0, 1}Lo → {0, 1}L

be an encoder of the code Ci. Define

S �
{

S ∈ X
2,L
M

∣∣∣∣∣ S =
⋃

xo∈So

{enci(xo)} , So ∈ So

}
.

Then S is an (s, M − s, γ)T-correcting code.
Let ro � log

(
2Lo

M

) − log|So| and ri � L − Lo be the
redundancy of the outer code and the inner code, respectively.
When Lo � 2 log M , the redundancy of the code S in the
construction above can be bounded as follows:

log
(

2L

M

)
− log|S|

= log
(

2L

M

)
− log

(
2Lo

M

)
+ log

(
2Lo

M

)
− log|So|

� M(L − Lo) + M log
2Lo

2Lo − M
+ log

(
2Lo

M

)
− log|So|

� Mri + ro + 2 log e.

Using the code from Lemmas 1 or 2 as the inner code and
the code from Corollary 9 as the outer code, we obtain the
following results.

Corollary 11: For any positive integers s, M, Lo with
Lo > 3 log M and M � 2s log M + 5s log log M , and a fixed
positive integer γ, there is an (s, M − s, γ)S-correcting code
S ⊆ X

2,L
M with L = Lo + γ(�log Lo� + 1) and redundancy at

most

Mγ(�logLo� + 1) + sLo + 4s log log M + o(log log M).

Corollary 12: For any positive integers s, M, Lo with
Lo > 3 log M and M � 2s log M + 5s log log M , and a fixed
positive integer γ, there is an (s, M − s, γ)D-correcting code
S ⊆ X

2,L
M with L = Lo+4γ logLo+o(log Lo), and redundancy

at most

4Mγ logLo + sLo + o(M log Lo).

IV. (0, t, γ)T-CORRECTING CODES

In this section, we study channels that have no sequence
loss, namely, (0, t, γ)T-correcting codes with T ∈ {S, D}.
We improve the lower bound on the redundancy of optimal
(0, t, γ)D-correcting codes and propose new constructions for
(0, 1, γ)D-correcting codes and (0, t, γ)S-correcting codes.

A. (0, t, γ)D-Correcting Codes

Let s = 0 and t and γ be fixed. Lenz et al. [10] showed
the following two lower bounds on the number of redundancy
bits that are required to correct substitutions and deletions,
respectively.

Lemma 13 ([10, Theorem 7 and Theorem 9]): For fixed
positive integers t and γ, the redundancy of a (0, t, γ)S-
correcting code is at least

t log M + tγ log L + o(1),

while the redundancy of a (0, t, γ)D-correcting code is at least

tγ log L + o(1).

Since M = 2βL, it follows that tγ log L = O(log log M).
Thus Lemma 13 implies that in the (0, t, γ)T-DNA storage
channel, correcting deletions may require fewer redundancy
bits than correcting deletions. When t = γ = 1, Lenz
et al. demonstrated this by constructing a class of (0, 1, 1)D-
correcting codes of redundancy log(L + 1). Their method
utilized the fact that one can directly identify the unique
erroneous sequence with deletions. We generalize their method
to γ > 1 and obtain the following result.

Theorem 14: Let M , L, and γ, be positive integers. Let
Hashγ : {0, 1}L → {0, 1}hε be the hash function defined
in Lemma 1, where hγ = 4γ logL + o(log L). For any
a ∈ {0, 1}hε, define

Sa �
{

S ∈ X
2,L
M

∣∣∣∣∣ ∑
x∈S

Hashγ(x) = a.

}

Then Sa is a (0, 1, γ)D-correcting code. Furthermore, there
is at least one choice of a ∈ {0, 1}hε such that the code Sa

has redundancy at most

4γ logL + o(log L).

Proof: Suppose that the input of the channel is S and the
output is S′. W.l.o.g., assume that the deletions occur in the
sequence x0 ∈ S and result in a sequence x′

0 ∈ S′. We can
identify the M − 1 error-free sequences from S′ as they have
length L and the erroneous sequence x′

0 has length less than
L. So we have that

Hashγ(x0) = a −
∑

x∈S′,|x|=L

Hashγ(x).

We then recover the sequence x0 from x′
0 by running the

decoding algorithm mentioned in Lemma 1.
As a consequence, we observe that as long as t = 1,

correcting deletions indeed requires fewer redundancy bits
than correcting substitutions. When t � 2, however, the lower
bound for deletions in Lemma 13 is not tight. We can improve
it exponentially, from Ω(log log M) to �t/2	 logM .

Theorem 15: Let M, L, t, γ be positive integers with t and
γ fixed. Assume that L > 3 log M + γ. Then the redundancy
of a (0, t, γ)D-correcting code is at least

�t/2	 logM + �t/2	γ − O(1).

Proof: For each S ∈ X
2,L
M , we index the sequences

x1,x2, . . . ,xM in S such that they are in a descending

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: IMPROVED CODING OVER SETS FOR DNA-BASED DATA STORAGE 125

lexicographic order. Denote Lγ � L − γ. Let S|Lε be the
multiset projection of S onto the first Lγ bits, i.e., the multiset

S|Lε � {x1[1, Lγ],x2[1, Lγ], . . . ,xM [1, Lγ]}.
Partition X

2,L
M into equivalence classes D1, D2, . . . , Dm

such that S and S′ are in the same subset if and only if
their multiset projections S|Lε and S′|Lε are the same. Each
S contains M distinct sequences, so in each projection, each
sequence of length Lγ occurs at most 2γ times. Thus, the num-
ber of equivalence classes m is exactly the number of ways to
throw M indistinguishable balls into 2Lε distinguishable urns,
each of capacity limited to 2γ balls. This number is known to
be (e.g., see [2, Ex. 6, p. 360])

m =
2Lε∑
j=0

(−1)j

(
2Lε

j

)(
2Lε + M − j(2γ + 1) − 1

2Lε

)
.

This expression for m, however, is inconvenient to work
with, so now we give an upper bound on m. W.l.o.g.,
we assume that for 1 � i � m1, where m1 � m, the multiset
projection in each Di contains M different sequences of length
Lγ, and for m1 < i � m, the multiset projection contains
fewer than M distinct sequences. For 1 � i � m1, since the
projection in each Di has M different sequences, Di has size
exactly (2γ)M , and so

m1 =
(

2Lε

M

)
�
(
2L

M

)
2γM

. (2)

The number of equivalence classes with repetitions is

m − m1 �
M−1∑
K=1

(
2Lε

K

)
KM−K ,

where in this expression, K counts the number of distinct
sequences in the multiset,

(
2Lε

K

)
gives the number of choices

of these distinct sequences, and KM−K counts how the
remaining M − K sequences as repetitions of the K distinct
ones (we ignore the 2γ upper limit on repetition). Since
L > 3 log M + γ, when K � M − 2, we have(

2Lε

K

)
KM−K(

2Lε

K+1

)
(K + 1)M−K−1

=
(K + 1)2

2Lε − K

(
K

K + 1

)M−K

< 1.

It follows that
(
2Lε

K

)
KM−K is increasing in K . Hence,

m − m1 =
M−1∑
K=1

(
2Lε

K

)
KM−K �

(
2Lε

M − 1

)
M2. (3)

We show that the number in (2) is larger than that in (3):(
2L

M

)
2γM

/((
2Lε

M − 1

)
M2

)

=
(2L − M + 1)(2L − M + 2)(2L − M + 3) · · · 2L

M(2Lε − M + 2)(2Lε − M + 3) · · · 2Lε

· 1
2γMM2

� (2Lε − M + 1)(2Lε − M + 2)(2Lε − M + 3) · · · 2Lε

M3(2Lε − M + 2)(2Lε − M + 3) · · · 2Lε

=
2Lε − M + 1

M3
� 2Lε−1−3 log M � 1.

Hence,

m �
(
2L

M

)
2γM−1

.

Now, let S be a (0, t, γ)D-correcting code. According to the
pigeonhole principle, there is one Di0 , where 1 � i0 � m,
such that S ∩ Di0 has size at least |S|

m . Denote S∗ � S ∩ Di0 .
So

|S∗| � |S|
m

� |S|(
2L

M

)/
2γM−1

. (4)

Let Σ � {0, 1}γ and

C �{
(x1[Lγ + 1, L],x2[Lγ + 1, L], . . . ,xM [Lγ + 1, L]) ∈ ΣM∣∣{x1,x2, . . . ,xM} ∈ S∗}.

We point out that while {x1,x2, . . . ,xM} ∈ S∗ is a set,
at this point we use the lexicographic ordering to assign
the indices, resulting in a single vector, (x1[Lγ + 1, L],
x2[Lγ + 1, L], . . . ,xM [Lγ + 1, L]) ∈ ΣM .

We contend that C ⊆ ΣM is a code of minimum Hamming
distance at least t + 1; otherwise, if there are two codewords
in C that have a Hamming distance of at most t, then the
two corresponding codewords in S∗ would be confusable in
the (0, t, γ)D-DNA storage channel by deleting the length-γ
suffixes corresponding to the positions in which the codewords
in C differ. Hence, by using the Hamming bound on |C|, which
is the same as |S∗|, we have that

|S∗| � 2γM∑�t/2�
i=0

(
M
i

)
(2γ − 1)i

. (5)

Combining (4) and (5), we have that

|S| �
2
(
2L

M

)
∑�t/2�

i=0

(
M
i

)
(2γ − 1)i

.

Hence

log
(

2L

M

)
− log|S| � log

⎛
⎝�t/2�∑

i=0

(
M

i

)
(2γ − 1)i

⎞
⎠− 1

= �t/2	 logM + �t/2	γ − O(1).

Remark: When t � 2, it is still unclear whether there
are (0, t, γ)D-correcting codes of redundancy less than the
lower bound t log M + tγ log L + o(1) in Lemma 13 for
substitutions. The Gilbert-Varshamov bound shows that the
redundancy of optimal (0, t, γ)D-correcting codes is at most
t log M + 2tγ log(L/2), see [10, Thm. 4]. This upper bound
is nearly twice the improved lower bound for deletions in
Theorem 15, but is still a bit larger than the lower bound
for substitutions.

B. (0, t, γ)S-Correcting Codes

Next, we consider the problem of finding explicit construc-
tions for (0, t, γ)S-correcting codes. A related problem is stud-
ied in [9]. The input of that channel is a set S of M indexed
sequences of FL

2 , i.e., S = {(I(i),ui) | 1 � i � M} ⊆ FL
2 ,

and at the decoder no sequences of S are lost, and at most t

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

126 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

sequences are erroneous where each I(i) suffers at most γ1

substitution errors and each ui at most γ2 substitution errors.
The construction proposed in [9] requires M log e+4t logM+
2tγ2 log L bits of redundancy.5

Our construction involves the following codes:
• A code

A �
{ {a1,a2, . . . ,aM} ⊆ F

L′
2

∣∣ a1 = 1,

dH(ai,aj) � 2γ + 1 for all i
= j
}
, (6)

where log M < L′ < L. The idea behind this code
comes from [9] and the cardinality analysis may be
found in [13]. [16] shows that such a code can be
constructed using an algorithm which is similar to the
Gilbert-Varshamov bound so that

|A| �
∏M

i=2

(
2L′ − (i − 1)Q

)
(M − 1)!

,

where Q =
∑2γ

i=0

(
L′

i

)
is the size of a Hamming ball

of radius 2γ in FL′
2 . [15] proposes an efficient encoding

algorithm in poly(M, L, γ) time.
• A binary [2L′

+ 2t(L′ + 1), 2L′
, 4t + 1] code CA from

Lemma 2. For each A ∈ A, let encA(A) be the vector
of F

2t(L′+1)
2 such that (�(A), encA(A)) ∈ CA.

• A hash function Hash2t : {0, 1}2t(L′+1) → {0, 1}h from
in Lemma 1, where h = 8t log(L′) + o(log L′).

• A binary [L − L′, L − L′ − r, 2γ + 1] code C1 with
r � γ�log(L − L′)�. To obtain such a code, we may
shorten a binary [n, n − r, 2γ + 1] BCH code with
n = 2�log(L−L′)� − 1.

• An [M, M − r̃, 2t+1] code C2 over F2r . Let q = 2r and
m = �log(M + 1)/r�. Then this code can be obtained
by shortening a [qm − 1, qm − 1 − r̃, 2t + 1] BCH code
over Fq. Note that

r̃ < 2tm = 2t�log(M + 1)/r�.
Theorem 16: Given t, M and L, let L′ be a positive integer

such that log M < min{L′, L−L′}. Let A, encA(A), Hash2t,
C1 and C2 be defined as above. Let H be the parity check
matrix of C1. Suppose that M � 2t(L′ + 1) + h where
h = 8t log(L′) + o(log L′).

Denote by S the collection of the sets {x1 = (ai,ui) | 1 �
i � M} ⊆ FL

2 that satisfy all of the following:
1) A � {a1,a2, . . . ,aM} ∈ A.
2)

(u1[1],u2[1], . . . ,u2t(L′+1)+h[1])
= (encA(A), Hash2t(encA(A))).

3) (s1, s2, . . . , sM) ∈ C2, where si � uiH
T is regarded as

an element of F2r .6

Then the code S is a (0, t, γ)S-correcting code of size

|S| = |A|2M(L−L′)−2t(L′+1)−h−rr̃.

5The redundancy in [9], which is defined to be M(L − log M) − log|S|,
is different from the one defined in this paper and [10].

6This kind of coding scheme is known as a tensor product code [19]. See
also [9] and the reference therein.

Fig. 2. The construction in Theorem 16. The dotted parts represent the
addresses, the blank parts represent the information bits and the gray parts
represent the check bits of the codeword.

Proof: We first check the size of S, i.e., the number
of possible choices of {x1,x2, . . . ,xM} satisfying all the
conditions above. The construction is depicted in Fig. 2. For 1),
there are |A| choices of A = {a1, a2, . . . ,aM}. Given A,
according to 2), there are 2L−L′−1 choices of ui for each
1 � i � 2t(L′ + 1) + h, and 2L−L′

choices of ui for each
2t(L′+1)+h+1 � i � M−r̃. According to 3), the sequences
ui, where 1 � i � M−r̃, can determine si for all 1 � i � M ,
as C2 has dimension M−r̃. Now, for each M−r̃+1 � i � M ,
given si, there are 2L−L′−r choices of ui, since C1 is a code
of dimension L − L′ − r. Thus, the size of S is as stated.

Now, we show that S is a (0, t, γ)S-correcting code by
providing a decoding procedure. Suppose that the input of
the channel is a set S = {xi = (ai,ui) | 1 � i � M} and the
output is a set S′ = {x′

i = (a′
i,u

′
i) | 1 � i � M}, where

the sequences in S and S′ are enumerated in a descending
lexicographic order. Our decoding has the following steps.

1) Let c′ � (u′
1[1],u′

2[1], . . . ,u′
2t(L′+1)+h[1]). Then c′ can

be obtained from c = (u1[1],u2[1], . . . ,u2t(L′+1)+h[1])
by deleting t′ elements and inserting t′ elements with
t′ � t. Due to the error-correcting capability of the
deletion code in Lemma 1, we are able to recover c from
c′, and so encA(A).

2) Denote A′ � {a′ | (a′,u′) ∈ S′}. Noting that there are
at most t sequences of S suffering errors, the distance
between �(A) and �(A′) is at most 2t. Thus, we may
run the decoding algorithm of CA on the concatenation
of �(A′) and encA(A) to recover �(A), and so the set
A. Denote the sequences of A as a1, a2, . . . ,aM , in a
descending lexicographic order. Since A is a code of
minimum distance 2γ + 1, for each 1 � i � M , there
is a unique sequence of S′ such that its length-L′ prefix
is of distance at most γ from ai. Denote this sequence as
x′

i = (a′
i,u

′
i).

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: IMPROVED CODING OVER SETS FOR DNA-BASED DATA STORAGE 127

3) Compute the syndromes s′i = u′
iH

T for 1 � i � M .
Since there are at most t sequences of S′ are erro-
neous, we can run the decoding algorithm of C2 on
(s′1, s

′
2, . . . , s

′
M) to recover (s1, s2, . . . , sM).

4) For each 1 � i � M , choose an arbitrary solution yi to
yiH

T = si. Then (ui − yi)HT = uiH
T − yiH

T = 0,
and so ui − yi is a codeword of B. Run the decoding
algorithm of C1 on u′

i − yi to recover ui − yi, and so
xi = (ai,ui).

Corollary 17: If L � 4 logM + 4γ2 + 1, t and γ are fixed
positive integers, and M is sufficiently large, then there is a
(0, t, γ)S-correcting code with redundancy at most

(8t + 2) log M + 2tγ�logL� + 8t log log M + o(log log M).

Proof: Let L′ = 3 logM + 4γ2 + 1. Then log M <
min{L′, L − L′} and M � 2t(L′ + 1) + h, and Theorem 16
shows that there is a (0, t, γ)S-correcting code S of redundancy

log
(

2L

M

)
− log|S|

� log
(

2L

M

)
− log

∏M
i=2[2

L′ − (i − 1)Q]
(M − 1)!

− M(L − L′)

+ 2t(L′ + 1) + rr̃ + h

� ML′ − log M − (M − 1) log
(
2L′ − MQ

)
+ 2t(L′ + 1) + h + rr̃

= L′ − log M + (M − 1) log
(

1 +
MQ

2L′ − MQ

)
+ 2t(L′ + 1) + h + rr̃

� L′ − log M +
(M − 1)MQ

2L′ − MQ
log e + 2t(L′ + 1) + h + rr̃

(a)

� L′ − log M + log e + 2t(L′ + 1) + h + rr̃

� (8t + 2) log M + 2tγ�logL� + 8t log log M

+ o(log log M),

where the inequality (a) holds as Q =
∑2γ

i=0

(
L′

i

)
< (L′)2γ,

and M2(L′)2γ � 2L′
when L′ = 3 logM + 4γ2 + 1,

see [16, Appendix E].

V. CODES CORRECTING LIMITED-MAGNITUDE ERRORS

In this section, we study the limited-magnitude errors, moti-
vated by DNA-storage channels that involve such errors [5].
Unlike substitution errors studied in previous sections,
a limited-magnitude error replaces an integer entry x ∈ Z

by x′ such that x − k− � x′ � x + k+. Thus, we no longer
use the binary alphabet, instead, using Zq .

First, we derive the following Gilbert-Varshamov bound.
Lemma 18: There is an (s, t, γ, k+, k−)LM-correcting code

S ⊆ X
q,L
M of size at least(

qL

M

)/[(
M

s

)(
M − s

t

)(
M − s + t − 1

t

)(
qL

s

)
V 2t

]
,

where

V =
γ∑

i=0

(
L

i

)
(k+ + k−)i.

Proof: Given a set S ∈ X
q,L
M , let BLM(S) be the set

of all possible received S′ with S being the input of the
(s, t, γ, k+, k−)LM-DNA storage channel. We shall give an
upper bound on the number of sets S̃ ∈ X

q,L
M such that

BLM(S) ∩ BLM(S̃)
= ∅.
Note that if two balls BLM(S) and BLM(S̃) intersect,

necessarily in the intersection there is a set S′ of size at most
M −s. The number of S′ ∈ BLM(S) with |S′| � M −s is no
more than

(
M
s

)(
M−s

t

)
V t, where V =

∑γ
i=0

(
L
i

)
(k+ + k−)i.

Now, fix a set S′ ∈ BLM(S), we count the number of
S̃ ∈ X

q,L
M such that S′ ∈ BLM(S̃). First, there are at most(

qL

s

)
choices for the lost sequences. Next, noting that each

sequence of S′ may come from different sequences of S̃ with
errors, the number of the choices for the erroneous sequences
of S̃ is at most

(
M−s+t−1

t

)
V t. Hence, the number of S̃ such

that BLM(S) ∩ BLM(S̃)
= ∅ is at most(
M

s

)(
M − s

t

)(
M − s + t − 1

t

)(
qL

s

)
V 2t.

The conclusion follows from this estimation and a greedy
argument.

Corollary 19: When s and t are fixed and γ = L, there is
a q-ary (s, t, •, k+, k−)LM-correcting code with redundancy at
most

(s + 2t) logq M + 2tL logq(k+ + k− + 1) + sL + O(1);

when s and γ are fixed, and t = M − s, there is a q-ary
(s, M − s, γ, k+, k−)LM-correcting code with redundancy at
most

2M(γ logq L + γ logq(k+ + k−) + logq 2 − logq γ!) + o(M);

when s, t, γ are fixed, there is a q-ary (s, t, γ, k+, k−)LM-
correcting code of redundancy at most

(s+2t) logq M +sL+2tγ logq L+2tγ logq(k+ +k−)+O(1).

For lower bounds on the redundancy, we follow the
approach in [10] and derive the following sphere-packing
bounds. The proofs are the same as that of [10, Theorem 7 and
Theorem 8], and we omit here.

Lemma 20: For fixed s, t, γ and fixed 0 < β < 1, any
(s, t, γ, k+, k−)LM-correcting code S ⊆ X

q,L
M with M = qβL

has redundancy at least

sL + t logq M + tγ(logq L + logq(k+ + k−))
− logq(s!t!(γ!)

t) + o(1).

Lemma 21: For fixed s, γ and fixed 0 < β < 1, any (s, M−
s, γ, k+, k−)LM-correcting code S ⊆ X

q,L
M with M = qβL has

redundancy at least

Mγ(logq L + logq((k+ + k−))) + O(M).

We can make use of (0, t, γ)S-codes which we constructed
earlier as a basis for constructing codes for the limited-
magnitude error scenario.

Theorem 22: Let C ⊆ X
p,L
M be a (0, t, γ)S-correcting code

with p � k+ + k− + 1. Suppose that for each C ∈ C,
the minimum Hamming distance of C is at least 2γ+1. Define

S �
{{x1, . . . ,xM} ⊆ Z

L
q

∣∣ {xi (mod p) | 1 � i � M} ∈ C
}
.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

128 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 1, JANUARY 2022

Then S is a (0, t, γ, k+, k−)LM-correcting code over Zq of
size |S| � �q/p	ML|C|.

Proof: We prove the theorem by describing a decoding
procedure. Let S = {x1,x2, . . . ,xM} ∈ S be the input
of the channel, and S′ be the output. Since each codeword
C ∈ C has minimum Hamming distance 2γ + 1, we can see
that S′ comprises M distinct sequences. W.l.o.g., we assume
that S′ = {y1,y2, . . . ,yM} and there is a permutation π (to
be determined later) such that for all 1 � i � M , xi yields
yπ(i) after passing through the channel.

Let χi = xi (mod p) and ψi = yi (mod p). Then
ψπ(i) − χi = yπ(i) − xi (mod p). That implies that ψπ(i)

is an erroneous version of χi with at most γ positions
being corrupted by substitution errors. Thus, we may run
the decoding algorithm of the (0, t, γ)S-correcting code C on
{ψ1,ψ2, . . . ,ψM} to recover the set {χ1,χ2, . . . ,χM}.

Now, for each χi, we have dH(χi,ψπ(i)) � γ. We claim
that dH(χi,ψj) > γ for all j
= π(i). Otherwise,

dH(χi,χπ−1(j)) � dH(χi,ψj) + dH(ψj ,χπ−1(j)) � 2γ,

which contradicts the assumption that the minimum Hamming
distance of C is at least 2γ + 1. Therefore, the permutation
π can be determined by computing the Hamming distance
between χi and ψj for all 1 � i, j � M . Denote εi = ψπ(i)−
χi (mod p) and let ei = (e(i)

1 , e
(i)
2 , . . . , e

(i)
L) where

e
(i)
� �

{
�
(i)
� , if 0 � �

(i)
� � k+;

�
(i)
� − p, otherwise.

Then xi can be decoded as xi = yπ(i) − ei.
Let

rp(C) � logp

(
pL

M

)
− logp|C|.

Then we have that

logq|C| = logq p logp|C| = logq

(
pL

M

)
− rp(C) logq p.

If p | q and logp M < L/2, then the redundancy of the code
S is

logq

(
qL

M

)
− logq|S|

= logq

(
qL

M

)
− ML logq

(
q

p

)
− logq|C|

= logq

(
qL

M

)
− logq

(
pL

M

)
− ML logq

(
q

p

)
+ rp(C) logq p

� M logq

pL

pL − M
+ rp(C) logq p

� M2

pL − M
logq e + rp(C) logq p

= rp(C) logq p + o(1).

We note that the code in Corollary 17 satisfies the condition
in Theorem 22, i.e., each codeword has minimum Hamming
distance 2γ + 1, thus we may use it as the input code and get
the following result.

Corollary 23: Let q > 0 be an even integer. If L �
(2t + 1)(3 logM + 4γ2 + 2) + γ�log L� − 1, and t and γ

are fixed, then there is a q-ary (0, t, γ, 1, 0)LM-correcting code
with redundancy at most

(8t + 2) logq M + (2t + 1)γ logq L + O(1).

We note that this redundancy is larger than the Gilbert-
Varshamov bound 2t logq M + 2tγ logq L + O(1).

Next, we modify Lemma 10 to construct an
(s, M − s, γ, k+, k−)LM-correcting code.

Lemma 24: Let So ⊆ X
2,Lo

M be an (s, 0, 0)T-correcting code
and let Ci be a q-ary block-code of size 2L

o and length L that
can correct γ (k+, k−)-limited-magnitude errors. Let enci(·) :
{0, 1}Lo → Z

L
q be an encoder of the inner code Ci. Define

S �
{ ⋃

xo∈So

{enci(xo)} ∈ X
q,L
M

∣∣∣∣∣ So ∈ So

}
.

Then S is an (s, M − s, γ, k+, k−)LM-correcting code.
Proof: We first use the inner code to correct all the

limited-magnitude errors, and then use the outer code to
recover all the lost sequences.

Let Lo > 3 log M . We may use the code in Corollary 9
as the outer code with redundancy ro = sL + O(log log M).
As for the inner code, let p be the smallest prime number
such that p > k+ + k−, and L be the smallest integer such
that qL

pL−K � 2Lo , where L − K = �2γ(1 − 1/p) logp L�.
We take the code in [18, Theorem 5 and Corollary 8] of
size qL

pL−K as the inner code. The redundancy of the resulting
code is

logq

(
qL

M

)
− logq|So|

� logq

(
qL

M

)
− logq

(
2Lo

M

)
+ logq

(
2Lo

M

)
− logq|So|

� M logq

qL

2Lo
+ M logq

2Lo

2Lo − M
+

ro

log q

� M�2γ(1 − 1/p) logp L� logq p + o(M).

Since 2γ(1 − 1/p) < 2γ, this redundancy is usually better
than the Gilbert-Varshamov bound in Corollary 19. When
(k+, k−) = (1, 0) and p = 2, it almost meets the sphere-
packing bound Mγ logq L + o(M).

Finally, we would like to discuss the case where γ = L.
We note that by using q-ary deletion-correcting codes, one
can easily generalize Theorem 8 to obtain q-ary (s, t, •)S-
correcting codes of redundancy

(s + 2t)L + O(logq logq M).

This code can be used as an (s, t, •, k+, k−)LM-correcting
code. In contrast, Corollary 19 shows the existence of such a
code of redundancy no more than

sL + 2tL logq(k+ + k− + 1) + (s + 2t) logq M + O(1).

Since logq(k+ +k−+1) is less than one, in some cases this
Gilbert-Varshamov bound is less than (s+2t)L. It is therefore
an interesting question to find explicit constructions of codes
with redundancy less than (s + 2t)L. Besides, establishing a
good lower bound on the redundancy of such codes is also an
open problem.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: IMPROVED CODING OVER SETS FOR DNA-BASED DATA STORAGE 129

We close this section with a description of the quaternary
case. Unlike the binary case, a quaternary sequence produced
by n rounds of synthesis process is represented by a sequence

d ◦ r � ((d1, r1), (d2, r2), . . . , (dn, rn)) ∈ (Z3 × Zq)n,

where the sequence d = (d1, d2, . . . , dn) represents the
difference between the letters appended in the (i− 1)th round
and ith round, or the difference between the letters in the
initiator and in the first round (e.g., ref [8]), and the sequence
r = (r1, r2, . . . , rn) still represents the run-lengths.

Our codeword is a subset S = {d1 ◦ r1,d2 ◦ r2, . . . ,dM ◦
rM} of (Z3 × Zq)L. The (s, t, γ, k+, k−)LM-DNA storage
channel outputs a subset S′ of S, with at most s sequences lost
and at most t sequences corrupted. In each erroneous sequence
di ◦ ri, the sequence di is preserved and at most γ elements
of ri are corrupted by the (k+, k−)-limited-magnitude errors.

In the following we briefly describe how to generalize the
constructions in Theorem 22 and Lemma 24 to yield codes of
(Z3 × Zq)L with the same error-correcting capability. We do
the encoding such that (d1,d2, . . . ,dM) is a codeword of an
s-erasure-correcting code over F3L , and {r1, r2, . . . , rM} is a
codeword of the codes over sets in Theorem 22 or Lemma 24.
Note that the constructions ensure that {r1, r2, . . . , rM} is
a block-code correcting γ (k+, k−)-limited-magnitude errors.
Assume that S′ = {d′

1◦r′1,d′
2◦r′2, . . . ,d′

M−s◦r′M−s}. We can
first recover the set {r1, r2, . . . , rM} from {r′1, r′2, . . . , r′M−s}
by using the decoding schemes in the proofs of Theorem 22
or Lemma 24. Since {r1, r2, . . . , rM} is an (γ, k+, k−)-error-
correcting code, by comparing the sequences r′i with the
sequences ri, we can determine the ordering of the received
sequences d′

i ◦ r′i. In this way we actually determine the
ordering of the M − s surviving sequences di’s. Thus we
can use the s-erasure-correcting code to recover the lost s
sequences.

ACKNOWLEDGMENT

The authors would like to thank the associate editor and
the anonymous reviewers for their insightful comments and
suggestions.

REFERENCES

[1] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with applications to multilevel
flash memories,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–1595,
Apr. 2010.

[2] C. A. Charalambides, Enumerative Combinatorics. Boca Raton, FL,
USA: CRC Press, 2002.

[3] Y. M. Chee, H. M. Kiah, and H. Wei, “Efficient and explicit balanced
primer codes,” IEEE Trans. Inf. Theory, vol. 66, no. 9, pp. 5344–5357,
Sep. 2020.

[4] R. Graham and N. Sloane, “Lower bounds for constant weight codes,”
IEEE Trans. Inf. Theory, vol. IT-26, no. 1, pp. 37–43, Jan. 1980.

[5] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized
writing rate in DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 711–716.

[6] M. Kovacevic and V. Y. F. Tan, “Codes in the space of multisets—
Coding for permutation channels with impairments,” IEEE Trans. Inf.
Theory, vol. 64, no. 7, pp. 5156–5169, Jul. 2018.

[7] A. V. Kuznetsov and A. J. H. Vinck, “A coding scheme for single peak-
shift correction in (d, k)-constrained channels,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1440–1450, Jul. 1993.

[8] H. H. Lee, R. Kalhor, N. Goela, J. Bolot, and G. M. Church,
“Terminator-free template-independent enzymatic DNA synthesis for
digital information storage,” Nature Commun., vol. 10, no. 1, pp. 1–12,
Dec. 2019.

[9] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-based
correction of substitutions in indexed sets,” in Proc. IEEE Int. Symp.
Inf. Theory (ISIT), Jul. 2019, pp. 757–761.

[10] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding
over sets for DNA storage,” IEEE Trans. Inf. Theory, vol. 66, no. 4,
pp. 2331–2351, Apr. 2020.

[11] V. I. Levenshtein and A. J. H. Vinck, “Perfect (d, k)-codes capable of
correcting single peak-shifts,” IEEE Trans. Inf. Theory, vol. 39, no. 2,
pp. 656–662, Mar. 1993.

[12] F. J. MacWilliams and N. J. A. Sloane, The Theory Error-Correcting
Codes. Haarlem, The Netherlands: North-Holland, 1978.

[13] T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh, “Clustering-
correcting codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris,
France, Jul. 2019, pp. 81–85.

[14] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion cor-
recting codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles,
CA, USA, Jun. 2020, pp. 769–774.

[15] J. Sima, N. Raviv, and J. Bruck, “Robust indexing-optimal codes for
DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Los Angeles,
CA, USA, Jun. 2020, pp. 717–722.

[16] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced information,”
IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2793–2807, May 2021.

[17] W. Song, K. Cai, and K. A. Schouhamer Immink, “Sequence-subset
distance and coding for error control in DNA-based data storage,” IEEE
Trans. Inf. Theory, vol. 66, no. 10, pp. 6048–6065, Oct. 2020.

[18] H. Wei, X. Wang, and M. Schwartz, “On lattice packings and cover-
ings of asymmetric limited-magnitude balls,” IEEE Trans. Inf. Theory,
vol. 67, no. 8, pp. 5104–5115, Aug. 2021.

[19] J. K. Wolf, “An introduction to tensor product codes and applications
to digital storage systems,” in Proc. IEEE Inf. Theory Workshop (ITW),
Chengdu, China, Oct. 2006, pp. 6–10.

[20] S. M. H. T. Yazdi, H. M. Kiah, R. Gabrys, and O. Milenkovic, “Mutually
uncorrelated primers for DNA-based data storage,” IEEE Trans. Inf.
Theory, vol. 64, no. 9, pp. 6283–6296, Sep. 2018.

[21] S. M. H. T. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and error-
free DNA-based data storage,” Sci. Rep., vol. 7, Jul. 2017, Art. no. 5011.

Hengjia Wei received the Ph.D. degree in applied mathematics from Zhejiang
University, Hangzhou, Zhejiang, China, in 2014.

He was a Post-Doctoral Fellow with Capital Normal University, Beijing,
China, from 2014 to 2016, and a Research Fellow with the School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore,
from 2016 to 2019. He is currently a Post-Doctoral Fellow with the School
of Electrical and Computer Engineering, Ben-Gurion University of the Negev,
Israel. His research interests include combinatorial design theory, coding
theory, and their intersections. He received the 2017 Kirkman Medal from
the Institute of Combinatorics and its Applications.

Moshe Schwartz (Senior Member, IEEE) received the B.A. (summa cum
laude), M.Sc., and Ph.D. degrees from the Computer Science Department,
Technion—Israel Institute of Technology, Haifa, Israel, in 1997, 1998, and
2004, respectively.

He was a Fulbright Post-Doctoral Researcher with the Department of
Electrical and Computer Engineering, University of California San Diego, and
a Post-Doctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical from 2012 to 2014,
he was a Visiting Scientist at the Massachusetts Institute of Technology (MIT).
He is currently a Professor with the School of Electrical and Computer Engi-
neering, Ben-Gurion University of the Negev, Israel. His research interests
include algebraic coding, combinatorial structures, and digital sequences.

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in signal processing and coding for data storage and the
2020 NVMW Persistent Impact Prize. He served as an Associate Editor
for coding techniques and coding theory for the IEEE TRANSACTIONS ON
INFORMATION THEORY during 2014–2021. Since 2021, he has been serving
as an Area Editor for coding and decoding for the IEEE TRANSACTIONS ON

INFORMATION THEORY and an Editorial Board Member for the Journal of
Combinatorial Theory, Series A.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on December 23,2021 at 07:26:16 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

