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A Construction of Maximally Recoverable Codes
With Order-Optimal Field Size
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Abstract— We construct maximally recoverable codes
(corresponding to partial MDS codes) which are based on
linearized Reed-Solomon codes. The new codes have a smaller
field size requirement compared with known constructions.
For certain asymptotic regimes, the constructed codes have
order-optimal alphabet size, asymptotically matching the known
lower bound.

Index Terms— Distributed storage, linearized Reed-Solomon
codes, locally repairable codes, maximally recoverable codes,
partial MDS codes, sum-rank metric.

I. INTRODUCTION

D ISTRIBUTED storage systems use erasure codes to
recover from node failures. Compared with the naive

replication solution, erasure-correcting codes, such as the max-
imum distance separable (MDS) codes, can provide similar
protection ability but with a far smaller redundancy. However,
as the scale of system grows, new challenges arise for MDS
codes, such as repair bandwidth [40] and repair complex-
ity [29], due to the large number of nodes that need to be
contacted during the recovery process - even for a single erased
node.

One of the approaches that have been suggested to overcome
those issues is locally repairable codes (LRCs) [15]. In such a
code, k information symbols are encoded into n code symbols,
which are arranged in repair sets (perhaps overlapping) of
size r + δ − 1. Each repair set is capable of recovering from
δ − 1 erasures by using the contents of the r non-erased code
symbols. Those codes are called LRCs with (r, δ)-locality.
Compared with MDS codes, even to recover just one erasure,
LRCs may dramatically reduce the required repair bandwidth
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and repair complexity, since for MDS codes we always need
to contact k code symbols, whereas in LRCs we only contact
r � k code symbols. For instances, in Microsoft Azure,
an LRC with n = 16, k = 12, r = 6, and δ = 2, is used
to reduce the repair bandwidth [24].

The original definition of LRCs with (r, δ = 2)-locality was
introduced in [15]. Several generalizations have followed later.
The definition of LRCs was expanded to (r, δ)-locality with
δ > 2 in [36], to allow repair sets to recover from more than
one erasure. The concept of availability was studied in [6],
[38], [44] to allow simultaneous recovery of a given code
symbol from multiple repair sets. To allow different require-
ments for local recovery, hierarchical and unequal locality
were introduced in [39] and [26], [47], respectively. Over the
past decade, many bounds and constructions for LRCs have
been introduced, e.g., [4], [7], [8], [10], [19], [23], [28], [33],
[37], [42], [45], [46] for (r, δ)-locality [5], [6], [25], [38], [43]
for multiple repair sets, [11], [30], [39], [48] for hierarchical
locality, and [26], [47] for unequal locality.

As is usually the case, locality comes at a cost of reduced
code rate and minimum Hamming distance. It was shown
in [15] that, except for trivial cases, the minimum Hamming
distance of LRCs cannot attain the well known Singleton
bound [41]. To make the most out of this restriction, one
natural problem is whether LRCs can recover from some
predetermined erasure patterns beyond those guaranteed by
their minimum Hamming distance. A subclass of LRCs named
maximally recoverable (MR) codes [15] offer a positive
answer to this question, by correcting the maximal possible set
of erasure patterns beyond the minimum Hamming distance.
Partial MDS (PMDS) codes [1], that form a subclass of MR
codes, improve the storage efficiency of RAID systems, where
h extra erasures may be recovered in addition to δ−1 erasures
in each repair set.

Motivated by their efficiency and applicability, [n, k, d]q MR
codes with (r, δ)-locality, and h global parity-check symbols,
have received much attention over the recent few years, where
[n, k, d]q denotes a linear code with length n, dimension
k, and minimum Hamming distance d, over a field of size
q. For [n, k, d]q MR codes with (r, δ)-locality, of particular
interest have been the asymptotic regime in which h and δ are
constants, and the goal to construct codes with the smallest
possible field size q. For the case of h = 1, MR codes were
constructed over a finite field of size q = Θ(r+δ−1) [1] and
a characterization was given in [21]. When h = 2, MR codes
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TABLE I

KNOWN (n, r, h, δ, q)-MR CODES (PMDS CODES) IN THE ASYMPTOTIC REGIME WHERE h AND δ ARE CONSTANT, AND WHERE m � n
r+δ−1

were constructed in [2] with q = Θ(n(δ − 1)), and later,
with q = Θ(n) [17] (see [22] for n = 2(r + δ − 1)). For
h = 3, MR codes were constructed with q = Θ(n3/2) for
a constant r + δ − 1, and q = Θ(n3) for an odd q [17].
For the case of δ = 2, constructions for MR codes were
provided for finite fields with size q = Θ(kh−1) [14]. For
the case r = 2, the existence of MR codes was proved
in [3] using a field of size q = Θ(nh−1). For general δ
and h, a construction of MR codes with flexible parameters
was introduced based on Gabidulin codes [9], which requires
a field with size q = Θ((r + δ − 1)nr/(r+δ−1)). Addition-
ally, MR codes were constructed over finite fields with size
q = Θ((r + δ − 1)nhδ−1) and q = Θ(max( n

r+δ−1 , (r +
δ − 1)h+δ−1)h) [12]. In [18], MR codes were constructed
with q = Θ(max( n

r+δ−1 , (2r)h+δ−1)min( n
r+δ−1 ,h)) and

q = Θ(max( n
r+δ−1 , (2r)r+δ−1)min( n

r+δ−1 ,h)), respectively.
Recently, based on linearized Reed-Solomon codes, MR codes
were constructed with q = Θ(max(r + δ − 1, n

r+δ−1 )r) [32],
which is independent of the number of global parity-check
symbols h, thus outperforming other known constructions
when h is relatively large, namely, h � r. In [20], the authors
construct MR codes with optimal repairing bandwidth inside
repair sets. The parameters of MR codes from the known
constructions, as well as a new one of this paper, are listed
in Table I.

However, there is still an asymptotic gap between the known
lower bounds on the minimum field size of MR codes [17] and
the known constructions. The main contribution of this paper
is a new construction of MR codes over small finite fields
when h is relatively small, namely, h < r. Our construction
is inspired by the construction in [32], and we also use
linearized Reed-Solomon codes, yielding MR codes with field

size Θ(max{r + δ − 1, n
r+δ−1}h). Compared with the known

constructions in [9], [12], [18], [32], our construction generates
MR codes with a smaller field size. In particular, our MR
codes have order-optimal field size, asymptotically matching
the lower bound in [17] when r + δ − 1 = Θ(

√
n) and

h � min{ n
r+δ−1 , δ + 1}. Our construction also answers an

open problem from [17], by providing MR codes over a field
with even (or odd) characteristic. We would like to comment
that shortly after we published our results, we learned that [16]
have independently obtained a similar construction.

The remainder of this paper is organized as follows.
Section II introduces basic notation and definitions of LRCs
and MR codes, known bounds, as well as required facts
on linearized Reed-Solomon codes. Section III presents our
construction of MR codes. Section IV concludes this paper by
summarizing and comparing our codes with the known codes,
and discussing important cases.

II. PRELIMINARIES

Let us introduce the notation, definitions, and known results
used throughout this paper. For a positive integer n, we denote
[n] � {1, 2, · · · , n}. If q is a prime power, let Fq denote the
finite field with q elements.

An [n, k]q linear code C over Fq is a k-dimensional subspace
of F

n
q with a k × n generator matrix G = (g1,g2, · · · ,gn),

where gi is a column vector of length k for all i ∈ [n].
Specifically, C is called an [n, k, d]q linear code if the min-
imum Hamming distance of C is d. For an m × n matrix
A = (A1, A2, . . . , An) ∈ F

m×n
q and I ⊆ [n], let A|I

denote the projection of A upon columns specified by I , i.e.,
A|I = (Ai)i∈I . For any codeword C = (c1, c2, . . . , cn) ∈ C,
we say that ci, i ∈ [n], is the ith code symbol.
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Definition 1 ([15], [36]): The ith code symbol of an
[n, k, d]q linear code C is said to have (r, δ)-locality if there
exists a subset Si ⊆ [n] (an (r, δ)-repair set) such that

• i ∈ Si and |Si| � r + δ − 1; and
• The minimum Hamming distance of the punctured code

C|Si obtained by deleting the code symbols cj (j ∈ [n] \
Si) is at least δ.

Furthermore, an [n, k, d]q linear code C is said to have infor-
mation (r, δ)-locality (denoted as (r, δ)i-locality) if there exists
a k-subset I ⊆ [n] with rank(G|I) = k such that for each
i ∈ I , the ith code symbol has (r, δ)-locality, and all symbol
(r, δ)-locality (denoted as (r, δ)a-locality) if all the n code
symbols have (r, δ)-locality.

An upper bound on the minimum Hamming distance of
linear codes with (r, δ)i-locality was derived as follows (for
δ = 2 in [15], and for general δ in [36]):

Lemma 1 ([15], [36]): For an [n, k, d]q code C with
(r, δ)i-locality,

d � n − k + 1 −
(⌈

k

r

⌉
− 1
)

(δ − 1). (1)

A linear code with information (r, δ)i-locality (or (r, δ)a-
locality) is said to be optimal if its minimum Hamming
distance achieves the bound in (1).

Definition 2: Let C be an [n, k, d]q code with (r, δ)a-
locality, and define S � {Si : i ∈ [n]}, where Si is an
(r, δ)-repair set for coordinate i. The code C is said to be a
maximally recoverable (MR) code if S is a partition of [n],
and for any Ri ⊆ Si such that |Si \Ri| = δ−1, the punctured
code C|∪1�i�nRi is an MDS code.

Of particular interest are MR codes for which S is a
partition of [n] with equal-size parts.

Definition 3: Let C be an [n, k, d]q MR code, as in
Definition 2. If each Si ∈ S is of size |Si| = r + δ − 1,
then r + δ − 1|n. Define

m � n

r + δ − 1
, h � mr − k.

Then C is said to be an (n, r, h, δ, q)-MR code.
We note that in general, MR codes need not have repair sets

of equal size, nor do the repair sets have to form a partition
of [n]. In this paper we choose to follow the more restrictive
definition from [14], [15].

We also note that it is easy to verify that (n, r, h, δ, q)-MR
codes are optimal [n, k, d]q LRCs with (r, δ)a-locality. We can
regard each codeword of an (n, r, h, δ, q)-MR code, as an m×
(r + δ − 1) array, by placing each repair set in S as a row.
When viewed in this way, (n, r, h, δ, q)-MR codes match the
definition of partial MDS (PMDS) codes, as defined in [1],
where in a codeword, each entry of the array corresponds to
a sector, and each column of the array corresponds to a disk.

For the sake of completeness, we would like to mention that
aside from PMDS codes, there are other codes with locality
that can recover from predetermined erasure patterns beyond
the minimum Hamming distances [8], [13], [27], [35]. As an
example, sector-disk (SD) codes [35] with (r, δ)a-locality can
correct δ−1 disk erasures together with any additional h sector

erasures, where h denotes the number of global parity-check
symbols.

One interesting problem arising from the definition of MR
codes is to determine the minimum alphabet size for fixed n,
r, h, and δ. For the case h = 1, it is easy to check that an
(n, r, 1, δ, q)-MR code is an optimal LRC with (r, δ)a-locality
and d = δ + 1, where (r + δ − 1)|n and k = rn

r+δ−1 − 1.
For this case, the field size requirement may be as small as
q = Θ(r + δ − 1), which is asymptotically optimal for the
simple reason that the punctured code over any repair set
together with the only global parity check is an [r+δ, r, δ+1]q
MDS code when (r + δ − 1)|n. For the case h � 2, in [17],
the following asymptotic lower bounds on the field size are
derived. We emphasize that here, and throughout the paper,
we assume h and δ are constants.

Lemma 2 ([17, Theorem I.1]): Let h � 2 and C be an
(n, r, h, δ, q)-MR code. If m � n

r+δ−1 � 2, then

q = Ω(nrε),

where ε = min{δ − 1, h − 2� h
m�}/� h

m�, and h and δ
are regarded as constants. The above lower bound may be
simplified as

1) If m � h:

q = Ω
(
nrmin{δ−1,h−2}

)
.

2) If m � h, m|h, and δ − 1 � h − 2h
m :

q = Ω
(
n1+ m(δ−1)

h

)
.

3) If m � h, m|h, and δ − 1 > h − 2h
m :

q = Ω
(
nm−1

)
.

Definition 4: An (n, r, h, δ, q)-MR code is order-optimal if
it attains one of the bounds of Lemma 2 asymptotically for
h � 2, or if it has q = Θ(r + δ − 1) for h = 1.

A. The Sum-Rank Metric and Linearized
Reed-Solomon Codes

We turn to introduce some necessary definitions for lin-
earized Reed-Solomon codes, which form the main tool used
in this paper. We first recall the definition of the sum-rank
metric as defined in [34] and [31].

Definition 5 ([31]): Let Fq be a subfield of Fq1 and N ,
Li for 1 � i � g, be positive integers with N =

∑g
i=1 Li.

Let C = (C1, C2, . . . , Cg) ∈ F
N
q1

, where Ci ∈ F
Li
q1

for
1 � i � g. The sum-rank weight in F

N
q1

, with length partition
(L1, L2, . . . , Lg), is defined as

wtSR(C) =
g∑

i=1

rankq(Ci),

where rankq(Ci) denotes the rank of Ci ∈ F
Li
q1

over Fq.
Furthermore, for C, C ′ ∈ F

N
q1

, define the sum-rank distance
as

dSR(C, C ′) = wtSR(C − C′).
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For a code C ⊆ F
N
q1

, with length partition (L1, L2, . . . , Lg)
as before, we define the minimum sum-rank distance by

dSR(C) = min
{
dSR(C, C ′) : C, C ′ ∈ C, C �= C ′} .

In an analogy with the Hamming metric, there is also a
Singleton bound for the sum-rank metric codes.

Lemma 3 ([31]): Let q1 = qm and C ⊆ F
N
q1

. Then we have

|C| � qm(N−dSR(C)+1).

Similar to MDS codes, codes that attain the above Singleton
bound with equality are called maximum sum-rank distance
(MSRD) codes [31].

This general definition of the sum-rank metric includes the
Hamming metric as a special case when the length partition
is g = N and L1 = L2 = · · · = Ln = 1. It also includes
the rank metric as a special case when the length partition is
g = 1 and L1 = N . In what follows, we introduce one class
of MSRD codes called linearized Reed-Solomon codes [31].

Let Fq ⊆ Fq1 and define σ : Fq1 → Fq1 as

σ(α) � αq.

For any α ∈ Fq1 and i ∈ N, define

Normi(α) � σi−1(α) · · ·σ(α)α.

The Fq-linear operator Di
α : Fq1 → Fq1 is defined by

Di
α(β) � σi(β)Normi(α).

Let α ∈ Fq1 , and let B = (β1, β2, · · · , βL) ∈ F
L
q1

. For i ∈
N ∪ {0} and k, � ∈ N, where � � L, define the matrices

D(αi,B, k, �)

�

⎛
⎜⎜⎜⎝

β1 β2 · · · β�

D1
αi(β1) D1

αi(β2) · · · D1
αi(β�)

...
...

...
Dk−1

αi (β1) Dk−1
αi (β2) · · · Dk−1

αi (β�)

⎞
⎟⎟⎟⎠∈ F

k×�
q1

. (2)

The matrix defined by (2) satisfies the following column
linearity:

Proposition 1: With the setting as in (2), for any A ∈ F
�×�1
q

we have

D(αi,B, k, �)A = D(αi,B|[�]A, k, �1).

Proof: Write B|[�]A = (β′
1, β

′
2, . . . , β

′
�1

). Then, by (2),

D(αi,B, k, �)A

=

⎛
⎜⎜⎜⎝

β1 β2 · · · β�

D1
αi(β1) D1

αi(β2) · · · D1
αi(β�)

...
...

...
Dk−1

αi (β1) Dk−1
αi (β2) · · · Dk−1

αi (β�)

⎞
⎟⎟⎟⎠A

=

⎛
⎜⎜⎜⎝

β′
1 β′

2 · · · β′
�1D1

αi(β′
1) D1

αi(β′
2) · · · D1

αi(β′
�1

)
...

...
...

Dk−1
αi (β′

1) Dk−1
αi (β′

2) · · · Dk−1
αi (β′

�1
)

⎞
⎟⎟⎟⎠

= D(αi,B|[�]A, k, �1).

Definition 6 ([31]): For positive integers N , M , L, and g,
let N = L1+L2+ · · ·+Lg, g � q−1, and 1 � Li � L � M .
Set Fq1 = FqM . Let B be a sequence of elements that
are linearly independent over Fq. Then the linearized Reed-
Solomon code with dimension k, primitive element γ ∈ FqM ,
and basis B, is the linear code Cσ

L,k(B, γ) ⊆ F
N
qM with

generator matrix

D =
(
D(γ0,B, k, L1), D(γ1,B, k, L2),

· · · , D(γg−1,B, k, Lg)
)

k×N
.

We comment that Definition 6 is a narrow-sense linearized
Reed-Solomon code, which suffices for this paper. For a more
general definition of linearized Reed-Solomon code the reader
is referred to [31]. We also point out that linearized Reed-
Solomon codes are MSRD codes [31]. For more details on
sum-rank metric codes and their applications to LRCs, the
reader may refer to [32].

Let diag(W1, W2, · · · , Wg) denote the block-diagonal
matrix, whose main-diagonal blocks are W1, W2, · · · , Wg , i.e.,

diag(W1, W2, · · · , Wg) =

⎛
⎜⎜⎜⎝

W1 0 · · · 0
0 W2 · · · 0
...

...
. . .

...
0 0 · · · Wg

⎞
⎟⎟⎟⎠ .

Since linearized Reed-Solomon codes are MSRD codes, the
dimension k of the code C is k = N − dSR(C) + 1. When it
comes to correcting erasures, if the non-erased part has sum-
rank weight at least k, the code can correctly recover the
codeword. This is more formally described in the following
lemma from [32].

Lemma 4 ([32]): Let g � q − 1, and let Cσ
L,k(B, γ) be

the [N, k, N − k + 1]qM linearized Reed-Solomon code from
Definition 6, with N = L1 + L2 + · · · + Lg, and 1 � Li �
L � M . Then for all integers ni � 1, and all matrices Wi ∈
F

Li×ni
q , i ∈ [g], satisfying

g∑
i=1

rank(Wi) � k,

there exists a decoder

Dec : Cσ
L,k(B, γ) diag(W1, W2, · · · , Wg) → Cσ

L,k(B, γ)

such that

Dec(C diag(W1, W2, · · ·, Wg))= C for any C∈ Cσ
L,k(B, γ),

where

Cσ
L,k(B, γ) diag(W1, W2, · · · , Wg)

�{C diag(W1, W2, · · · , Wg) : C ∈ Cσ
L,k(B, γ)}.

Furthermore, when we analyze the case in which the non-
erased part has sum rank less than k, we arrive at the following
property of generator matrices for linearized Reed-Solomon
codes, which is a direct application of the previous lemma.

Theorem 1: Let g � q − 1, and D be generator matrix
of a linearized Reed-Solomon code from Definition 6 with
N = L1 + L2 + · · · + Lg, and 1 � Li � L � M . For all
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integers ni � 1 and all matrices Wi ∈ F
Li×ni
q , for i ∈ [g],

satisfying
g∑

i=1

rank(Wi) � k,

we have

rank(D diag(W1, W2, . . . , Wg))

= rank((D(γ0,B, k, L1)W1, D(γ1,B, k, L2)W2,

· · · , D(γg−1,B, k, Lg)Wg))
=k.

For the case
g∑

i=1

rank(Wi) < k,

we have

rank(D diag(W1, W2, . . . , Wg))
= rank((D(γ0,B, k, L1)W1, D(γ1,B, k, L2)W2,

· · · , D(γg−1,B, k, Lg)Wg))

=
g∑

i=1

rank(Wi).

Proof: The first claim is exactly Lemma 4. For the second
one, we assume to the contrary that there exist Wi ∈ F

Li×ni
q ,

for all i ∈ [g], with

g∑
i=1

rank(Wi) < k,

and

rank(D diag(W1, W2, . . . , Wg)) <

g∑
i=1

rank(Wi), (3)

where we apply a fact that rank(D diag(W1, W2, . . . , Wg)) �
rank(diag(W1, W2, . . . , Wg)) =

∑g
i=1 rank(Wi). Note that

there exist W ′
i ∈ F

Li×n′
i

q for all i ∈ [g], such that
rank(W ′

i ) = n′
i,

g∑
i=1

rank(W ′
i ) = k −

g∑
i=1

rank(Wi),

and
g∑

i=1

rank(Wi, W
′
i ) = k.

By the first claim,

rank(D diag((W1, W
′
1), (W2, W

′
2), . . . , (Wg, W

′
g))) = k.

But now, combining this with (3), we get

rank(D diag(W ′
1, W

′
2, . . . , W

′
g))

>

g∑
i=1

n′
i = rank(diag(W ′

1, W
′
2, . . . , W

′
g)),

which is a contradiction. Thus, the desired result follows.

III. CODE CONSTRUCTION

In this section, we describe a construction for (n, r, h, δ, q)-
MR codes. The main idea of our construction is to use gen-
erator matrices of linearized Reed-Solomon codes for global
parity-check symbols of MR codes.

Throughout this section, we use the (δ − 1) × (r + δ − 1)
matrix

P1 �

⎛
⎜⎜⎜⎝

1 1 · · · 1
α1 α2 · · · αr+δ−1

...
...

...
αδ−2

1 αδ−2
2 · · · αδ−2

r+δ−1

⎞
⎟⎟⎟⎠∈ F

(δ−1)×(r+δ−1)
q ,

(4)

and the h × (r + δ − 1) matrix

P2 �

⎛
⎜⎜⎜⎝

αδ−1
1 αδ−1

2 . . . αδ−1
r+δ−1

αδ
1 αδ

2 . . . αδ
r+δ−1

...
...

...
αδ+h−2

1 αδ+h−2
2 · · · αδ+h−2

r+δ−1

⎞
⎟⎟⎟⎠∈ F

h×(r+δ−1)
q ,

(5)

where αi ∈ Fq \ {0}, and αi �= αj for i �= j. Let
γ1, γ2, . . . , γh ∈ Fqh form a basis of Fqh over Fq . Define
Γ � (γ1, γ2, . . . , γh) ∈ F

h
qh , and

β � (β1, β2, . . . , βr+δ−1) = ΓP2 ∈ F
r+δ−1
qh , (6)

namely, each column of P2 is translated to an element of Fqh .
Construction A: For m ∈ N, let C be the linear code with

length n over Fqh given by the parity-check matrix

H �⎛
⎜⎜⎜⎜⎜⎝

P1 0 · · · 0
0 P1 · · · 0
...

...
. . .

...
0 0 · · · P1

D(γ0, β, h, a) D(γ1, β, h, a) · · · D(γm−1, β, h, a)

⎞
⎟⎟⎟⎟⎟⎠ ,

(7)

where γ ∈ Fqh is a primitive element and a = r + δ − 1.
Theorem 2: Let q � max{r + δ, m + 1}. Then the code C

from Construction A is an (n = m(r + δ− 1), r, h, δ, qh)-MR
code with the minimum Hamming distance d = (�h

r �+1)(δ−
1) + h + 1.

Proof: To simplify the notation, let us denote the ((i −
1)(r+δ−1)+j)th coordinate by the pair (i, j), where i ∈ [m]
and j ∈ [r + δ − 1]. Using this notation, the ith repair set is
given by Si = {(i, j) : j ∈ [r + δ − 1]}, for i ∈ [m].

Recall from (4) that P1 is a Vandermonde matrix. Therefore,
by (7), C|Si is a subcode of an [r + δ − 1, r, δ]q MDS code,
which implies that the code C has (r, δ)a-locality. We shall
now prove the code can recover from all erasure patterns E =
{Ei1 , Ei2 , . . . , Eit} such that Ei�

⊆ Si�
, |Ei�

| � δ, and

t∑
�=1

|Ei�
| − t(δ − 1) � h, (8)

namely, C is an (n, r, h, δ, qh)-MR code.
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For � ∈ [t], assume Ei�
= {(i�, j1), (i�, j2), . . . ,

(i�, j|Ei�
|)}, and the columns of P1 are denoted by P1 =

(P1,1, P1,2, . . . , P1,r+δ−1). Define the projections of P1 and
D(γi−1, β, h, r + δ − 1) onto the erased coordinates as

P1|Ei�
� (P1,j1 , P1,j2 , · · · , P1,j|Ei�

|),

and

D(γi−1, β, h, r + δ − 1)|Ei�

�

⎛
⎜⎜⎜⎜⎝

βj1 βj2 · · · βj|Ei�
|

D1
γi−1(βj1) D1

γi−1(βj2) · · · D1
γi−1(βj|Ei�

|)
...

...
...

Dh−1
γi−1(βj1) Dh−1

γi−1(βj2) · · · Dh−1
γi−1(βj|Ei�

|)

⎞
⎟⎟⎟⎟⎠ . (9)

Proving that E is recoverable is equivalent to showing that the
matrix

HE �

⎛
⎜⎜⎜⎜⎜⎝

P1|Ei1
0 · · · 0

0 P1|Ei2
· · · 0

...
...

. . .
...

0 0 · · · P1|Eit

Di1,Ei1
Di2,Ei2

· · · Dit,Eit

⎞
⎟⎟⎟⎟⎟⎠

has full column rank, where Di�,Ei�
= D(γi�−1, β, h, a)|Ei�

for � ∈ [t]. Otherwise, we cannot distinguish between a
codeword C ∈ C from C+C′, where the nonzero components
of C′ is a nonzero solution of HEX = 0.

Since P1 is a Vandermonde matrix, for any E∗
i�
⊆ Ei�

with
|E∗

i�
| = δ−1, � ∈ [t], we have that P1|E∗

i�
has full rank. Denote

Ei�
= Ei�

\E∗
i�

. Thus, there exists a matrix Ai�
∈ F

|E∗
i�
|×|Ei�

|
q

such that(
P1|E∗

i�
P1|Ei�

P2|E∗
i�

P2|Ei�

)(
IE∗

i�
−Ai�

0 IE
∗
i�

)
=

(
P1|E∗

i�
0

P2|E∗
i�

Wi�

)

(10)

i.e.,

P1|Ei�
= P1|E∗

i�
Ai�

, (11)

and

Wi�
= P2|Ei�

− (P2|E∗
i�

)Ai�
, (12)

where Wi�
is an h × |Ei�

| matrix over Fq. Denote

β∗
i�

= ΓWi�
(13)

for � ∈ [t]. For τ ∈ Ei�
, write

P1,τ =
∑

a∈E∗
i�

e(i�)
a,τ P1,a (14)

with e
(i�)
a,τ ∈ Fq determined by Ai�

. Then, it follows from (6)
and (11)-(14) that

β∗
i�,τ = βτ −

∑
a∈E∗

i�

e(i�)
a,τ βa.

Note that

D(γi�−1, β, h, r + δ − 1)|Ei�

(
IE∗

i�
−Ai�

0 IE
∗
i�

)

=D(γi�−1, Γ(P2|E∗
i�

, P2|Ei�
), h, |Ei�

|)
(

IE∗
i�

−Ai�

0 IE
∗
i�

)

=D(γi�−1, Γ(P2|E∗
i�

, Wi�
), h, |Ei�

|)
=(Di�

, D(γi�−1, β∗
i�

, h, |Ei�
|)),

where the second equality holds by the linearity of Di
α(·)

(Proposition 1) and (10), and the last equality holds by (13).
This is to say that HE is equivalent with⎛
⎜⎜⎜⎜⎜⎜⎝

P1|E∗
i1

0 0 0 · · · 0 0
0 0 P1|E∗

i2
0 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · P1|E∗
it

0
Di1 D∗

i1,Ei1
Di2 D∗

i2,Ei2
· · · Dit D∗

it,Eit

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where D∗
i�,Ei�

= D(γi�−1, β∗
i�

, h, |Ei�
|) for � ∈ [t]. Recall

that P1|E∗
ij

for j ∈ [t] has full rank. Hence, HE is equivalent
with

H∗
E �⎛
⎜⎜⎜⎜⎜⎜⎝

P1|E∗
i1

0 0 0 · · · 0 0
0 0 P1|E∗

i2
0 · · · 0 0

...
...

...
...

...
...

0 0 0 0 · · · P1|E∗
it

0
0 D∗

i1,Ei1
0 D∗

i2,Ei2
· · · 0 D∗

it,Eit

⎞
⎟⎟⎟⎟⎟⎟⎠

,

where D∗
i�,Ei�

= D(γi�−1, β∗
i�

, h, |Ei�
|) for � ∈ [t]. Then, HE

has full column rank if and only if

(D∗
i1,Ei1

, D∗
i1,Ei1

, · · · , D∗
i1,Ei1

)

=(D(γi1−1, β∗
i1 , h, |Ei1 |), D(γi2−1, β∗

i2 , h, |Ei2 |),
· · · , D(γit−1, β∗

it
, h, |Eit |))

has full column rank. Note from (4) and (5), that
(

P1
P2

)
forms

an (h + δ − 1) × (r + δ − 1) Vandermonde matrix. Clearly,
|Ei�

| � min{h + δ − 1, r + δ − 1} for � ∈ [t], which means

rank

(
P1|E∗

i�
P1|Ei�

P2|E∗
i�

P2|Ei�

)
= |E∗

i�
| + |Ei�

|,

and rank(P1|E∗
i�

) = |E∗
i�
|. Thus, (10) implies rank(Wi�

) =
|Ei�

| for � ∈ [t]. Now, according to (2), (13) and the linearity
of Di

α(·), we have

rank((D(γi1−1, β∗
i1 , h, |Ei1 |), D(γi2−1, β∗

i2 , h, |Ei2 |),
· · · , D(γit−1, β∗

it
, h, |Eit |)))

= rank((D(γi1−1, Γ, h, h)Wi1 , D(γi2−1, Γ, h, h)Wi2 ,

· · · , D(γit−1, Γ, h, h)Wit))
= rank((D(γ0, Γ, h, h)W ′

1, D(γ1, Γ, h, h)W ′
2,

· · · , D(γm−1, Γ, h, h)W ′
m)), (15)
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where

W ′
i �

{
Wi, if i ∈ {i� : � ∈ [t]},
0, otherwise.

(16)

We observe that

(D(γ0, Γ, h, h), D(γ1, Γ, h, h), · · · , D(γm−1, Γ, h, h))

can be regarded as the generator matrix of a linearized
Reed-Solomon code with parameters [mh, h]qh according to
Definition 6. Then, applying Theorem 1 to (15) and (16), we
conclude that

rank((D(γi1−1, β∗
i1 , h, |Ei1 |), D(γi2−1, β∗

i2 , h, |Ei2 |),
· · · , D(γit−1, β∗

it
, h, |Eit |)))

=
m∑

i=1

rank(W ′
i )

=
t∑

�=1

rank(Wi�
)

=
t∑

�=1

|Ei�
|,

which means H∗
E has full rank, i.e., HE has full rank for all

possible E that satisfy (8). Therefore, C can recover all the
erasure patterns required by MR codes.

Having reached this point, the desired result follows from
the fact that MR codes are optimal LRCs. Hereafter, for
the sake of completeness, we derive the minimum Hamming
distance for the reader’s convenience. We know the code C
can recover from any erasure pattern that affects at most
δ − 1 coordinates in each repair set, and any additional h
erased positions. Let us consider the other erasure patterns,
obviously where all the affected repair sets have at least δ
erasures each. In particular, we consider the minimal erasure
configurations, namely, configurations in which the removal
of any one erasure makes it recoverable. Assume that a
repair sets are affected. Then, the total number of erasures is
a(δ−1)+h+1, where the h+1 erasures are distributed among
the a affected repair sets, i.e., it requires a(δ − 1) + h + 1 �
a(r + δ − 1) and thus

a �
⌈

h + 1
r

⌉
=
⌊

h

r

⌋
+ 1.

Therefore, a lower bound on the Hamming distance of C is

d �
(⌊

h

r

⌋
+ 1
)

(δ − 1) + h + 1.

Note from (7) that k � n− h−m(δ − 1) = mr− h which
implies

⌈
k
r

⌉
+
⌊

h
r

⌋
� m. Since C is a locally repairable code

with (r, δ)a-locality, by Lemma 1 we have

d � n − k −
(⌈

k

r

⌉
− 1
)

(δ − 1) + 1

� n − k −
(

m −
⌊

h

r

⌋
− 1
)

(δ − 1) + 1

� h +
(⌊

h

r

⌋
+ 1
)

(δ − 1) + 1.

Combining this with the lower bound on d, we obtain

d =
(⌊

h

r

⌋
+ 1
)

(δ − 1) + h + 1.

Thus, C is an (n, r, h, δ, qh)-MR code with d = (�h
r �+1)(δ−

1) + h + 1.
Corollary 1: Let q � max{r+δ, m+1} and δ � 2. If m =

Θ(q) and r = Θ(q) (implying n = Θ(q2)), then for fixed
h � min{m, δ+1} the code C generated by Construction A is
an (n = m(r+δ−1), r, h, δ, qh)-MR code with asymptotically
order-optimal field size qh = Θ(nh/2).

Proof: By our setting, the field size of the code generated
by Construction A is Θ(qh). According to Lemma 2, the field
size must be at least

Ω(nrmin{δ−1,h−2}) = Ω(m(r + δ − 1)rh−2) = Ω(qh),

where the first equality holds by h � δ + 1, and the second
one follows from m = Θ(q), r = Θ(q), and the fact that
h, δ are regarded as constants. Thus, the code C generated
by Construction A has asymptotically order-optimal field size
Θ(qh).

Example 1: Let r = 2, δ = 2, q = 4, and m = 3.
By Construction A and Theorem 2, an (n = 9, r = 2, h =
2, δ = 2, q2 = 16)-MR code can be given by the following
parity-check matrix⎛

⎜⎜⎜⎜⎝
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
α6 α9 α10 α7 α10 α11 α8 α11 α12

α10 α7 α11 α0 α12 α1 α5 α2 α6

⎞
⎟⎟⎟⎟⎠ ,

where α is a primitive element of F16.

IV. CONCLUDING REMARKS

In this paper, we introduced a construction of maximally
recoverable codes with uniform-sized disjoint repair sets,
also known as partial MDS (PMDS) codes. Our construction
is based on linearized Reed-Solomon codes, and it yields
maximally recoverable codes with field size Θ((max{r + δ−
1, n

r+δ−1})h), where h and δ are constants. Compared with
known constructions, our construction can generate maximally
recoverable codes with a smaller field size in certain cases.
In some particular regimes, described in Corollary 1, the con-
struction produces code families with order-optimal field size.
For more details about parameters for MR codes, a summary
of the results in comparison with known constructions is given
in Table I, where q and q1 are prime powers, and m = n

r+δ−1 .
We would like to highlight some interesting cases from

Table I. In [17], a construction for (n, r, 3, δ, q)-MR codes was
provided, achieving q = Θ(n3), but only for odd characteris-
tic. Finding a comparable construction for even characteristic
was left as an open question. Here, Construction A provides
an answer to this question, since our construction does not
impose a restriction on the parity of the field characteristic,
and it achieves the same order q = Θ(n3).

Another case we would like to point out involves the
asymptotic regime where r = Θ(n). In this regime, our
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construction achieves a field size of q = Θ(nh). For odd q
or δ > 2, this improves upon the best known construction
from [12], which achieves q = Θ(nhδ). When δ = 2, q is
even, and r = Θ(n), the best known result is still the one in
[14] with q = Θ(kh−1) = Θ(nh−1).

In addition, [12] challenged researchers to find families of
PMDS codes with smaller field sizes than max{m, (r + δ −
1)h+δ−1}h. The construction in [32] does so for the case
h < r and (r + δ − 1)h+δ−1 > m. Similarly, the construction
in [3] also improves upon [12] for the case r = 2. In this
paper, the MR codes generated by Construction A provide an
improvement over [12] for (r+δ−1)h+δ−1 > m, since in this
case max{r+ δ−1, n

r+δ−1}h < max{m, (r+ δ−1)h+δ−1}h.
The broad problem of closing the gap between the field-

size requirements of known constructions and the theoretic
bounds is still largely open. Further closing this gap, beyond
the results of this paper, is left for future work.
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