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Abstract—It is now well known that the performance of a linear
code under iterative decoding on a binary erasure channel (and
other channels) is determined by the size of the smallest stopping
set in the Tanner graph for . Several recent papers refer to
this parameter as the stopping distance of . This is somewhat
of a misnomer since the size of the smallest stopping set in the
Tanner graph for depends on the corresponding choice of a
parity-check matrix. It is easy to see that , where is the
minimum Hamming distance of , and we show that it is always
possible to choose a parity-check matrix for (with sufficiently
many dependent rows) such that = . We thus introduce a new
parameter, the stopping redundancy of , defined as the minimum
number of rows in a parity-check matrix for such that the
corresponding stopping distance ( ) attains its largest possible
value, namely, ( )= . We then derive general bounds on the
stopping redundancy of linear codes. We also examine several
simple ways of constructing codes from other codes, and study the
effect of these constructions on the stopping redundancy. Specifi-
cally, for the family of binary Reed–Muller codes (of all orders),
we prove that their stopping redundancy is at most a constant
times their conventional redundancy. We show that the stopping
redundancies of the binary and ternary extended Golay codes are
at most 34 and 22, respectively. Finally, we provide upper and
lower bounds on the stopping redundancy of MDS codes.

Index Terms—Erasure channels, Golay codes, iterative de-
coding, linear codes, maximum distance separable (MDS) codes,
Reed–Muller codes, stopping sets.

I. INTRODUCTION

THE recent surge of interest in the binary erasure channel
(BEC) is due in large part to the fact that it is the prime

example of a channel over which the performance of iterative
decoding algorithms can be analyzed precisely. In particular, it
was shown by Di, Proietti, Telatar, Richardson, and Urbanke [7]
that the performance of a low-density parity-check code (and,
in fact, any linear code) under iterative decoding on the BEC
is completely determined by certain combinatorial structures
called stopping sets. A stopping set in a code is a subset
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of the variable nodes in a Tanner graph for such that all the
neighbors of are connected to at least twice. The size of the
smallest stopping set was termed the stopping distance of in a
number of recent papers [14], [19]. The stopping distance plays
an important role in understanding the performance of a code
under iterative decoding over the BEC, akin to the role played
by the minimum Hamming distance for maximum-likelihood
and/or algebraic decoding. Just as one would like to maximize
the minimum distance if maximum-likelihood or algebraic de-
coding is to be used, so one should try to maximize the stopping
distance in the case of iterative decoding.

There is, however, an important difference between the min-
imum distance and the stopping distance . While the former
is a property of a code , the latter depends on the specific
Tanner graph for or, equivalently, on the specific choice of
a parity-check matrix for . In order to emphasize this, we
will henceforth use to denote the stopping distance and

to denote the minimum distance.
In algebraic coding theory, a parity-check matrix for

a linear code usually has linearly independent
rows. However, in the context of iterative decoding, it has been
already observed in [20], [24], and other papers that adding
linearly dependent rows to can be advantageous. Certainly,
this can increase the stopping distance . Thus, throughout
this paper, a parity-check matrix for should be understood
as any matrix whose rows span the dual code . Then the
redundancy of may be defined as the minimum number
of rows in a parity-check matrix for . Analogously, we define
the stopping redundancy of as the minimum number of
rows in a parity-check matrix for such that .
This work may be thought of as the first investigation of the
tradeoff between the parameters and .

In the next section, we first show that the stopping redundancy
is well defined. That is, given any linear code , it is al-

ways possible to find a parity-check matrix for such that
. In fact, the parity-check matrix consisting of all

the nonzero codewords of the dual code has this property.
Hence, for all binary linear codes. We then
show in Section II that if , then any parity-check ma-
trix for satisfies , so in this
case. The main result of Section II is an extension of this simple
observation to a general upper bound on the stopping redun-
dancy of binary linear codes (Theorem 4). We also derive in
Section II a general lower bound on the stopping redundancy of
linear codes (Theorem 5).

In Section III, we study several simple ways of constructing
codes from other codes, such as the direct-sum construction and
code extension by adding an overall parity check. We investigate
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the effect of these constructions on the stopping redundancy. It
should be pointed out that although we have focused our discus-
sion on binary codes in Sections II and III, most of the results
therein extend straightforwardly to linear codes over an arbitrary
finite field.

We continue in Section IV with an in-depth analysis of
the well-known construction, and in particular its
application in the recursive definition [17, p. 374] of binary
Reed–Muller codes. By slightly modifying this construction,
we establish a strong upper bound on the stopping redundancy
of Reed–Muller codes of arbitrary orders. Specifically, we
prove that if is a Reed–Muller code of length and order ,
then . Thus, for any constant , we
have an increase in redundancy by only a constant factor.

In Section V, we study the extended binary Golay
code and the extended ternary Golay code .
We prove that and by providing
specific parity-check matrices for these codes. We take
as a test case, and compare the performance of three different
decoders: a maximum-likelihood decoder, an iterative decoder
using the conventional double-circulant parity-check
matrix of [17, p. 65] and an iterative decoder using the
parity-check matrix with maximum stopping distance. In each
case, exact analytic expressions for the probability of decoding
failure are derived using a computer program.

In Section VI, we consider MDS codes over with .
It is easy to extend the general bounds of Section II to -ary
codes. However, in Section VI, we establish much better upper
and lower bounds on the stopping redundancy of MDS codes.
Notably, all these bounds are independent of the field size .

This paper only scratches the surface of the many interesting
and important questions that arise in the investigation of the
stopping redundancy. We conclude in Section VII with a brief
discussion and a list of open problems.

II. GENERAL BOUNDS

We begin with rigorous definitions of the stopping distance
and the stopping redundancy. Let be a binary linear code
and let be a parity-check matrix for . The cor-
responding Tanner graph for is a bipartite graph with each
column of represented by a variable node and each row of
represented by a check node in such a way that the th variable
node is connected to the th check node if and only if .
As already mentioned, a stopping set in is a subset of the
variable nodes such that all the check nodes that are neighbors
of a node in are connected to at least two nodes in . We
dispense with this graphical representation of stopping sets in
favor of an equivalent definition directly in terms of the under-
lying parity-check matrix . Thus, we say that a stopping set is
a set of columns of with the property that the projection of
onto these columns does not contain a row of weight one.1 The
resulting definition of the stopping distance—the smallest size

1This explains why stopping sets stop the progress of an iterative decoder.
A row of weight one—equivalently, a check node of degree one—would de-
termine unambiguously an erased symbol. However, if an entire stopping set is
erased, then all the neighboring check nodes are connected to these erasures at
least twice, and thus form an underconstrained system of linear equations. In
this case, an iterative decoder has no way of determining the erased values.

of a stopping set—bears a striking resemblance to the definition
of the minimum Hamming distance of a linear code.

Recall that the minimum distance of a linear code can be
defined as the largest integer such that every or
less columns of are linearly independent. For binary codes,
this is equivalent to saying that is the largest integer such
that every set of or less columns of contains at least
one row of odd weight.

Definition 1: Let be a linear code (not necessarily binary)
and let be a parity-check matrix for . Then the stopping
distance of is defined as the the largest integer such
that every set of or less columns of contains at least
one row of weight one.

The following corollary is an immediate consequence of jux-
taposing the definitions of and above.

Corollary 1: Let be a linear code and let be an arbitrary
parity-check matrix for . Then .

Indeed, it is well known [7], [9], [14] that the support of
every codeword is a stopping set, which is another way to see
that regardless of the choice of . Thus, given a
linear code , the largest stopping distance one could hope for
is , no matter how cleverly the Tanner graph for is con-
structed. The point is that this bound can be always achieved
by adding dependent rows to (see Theorem 2). This makes
the notion of the stopping distance, as a property of a code ,
somewhat meaningless: without restricting the number of rows
in a parity-check matrix for , we cannot distinguish between
the stopping distance and the conventional minimum distance.
This observation, in turn, leads to the following definition.

Definition 2: Let be a linear code with minimum Ham-
ming distance . Then the stopping redundancy of is de-
fined as the the smallest integer such that there exists a
parity-check matrix for with rows and .

The following theorem shows that the stopping redundancy
is, indeed, well defined.

Theorem 2: Let be a linear code, and let denote the
parity-check matrix for consisting of all the nonzero code-
words of the dual code . Then .

Proof: Let denote the matrix consisting of
all the codewords of . It is well known (cf. [17, p. 139]) that

is an orthogonal array of strength . This means
that any set of columns of contains all the
vectors of length among its rows, each vector appearing the
same number of times. In particular, any set of or less
columns of contains all the vectors of weight one among
its rows. Clearly, the all-zero row can be removed from to
obtain , while preserving this property.

Theorem 2 also provides a trivial upper bound on the stop-
ping redundancy. In particular, it follows from Theorem 2 that

for any binary linear code . This bound holds
with equality in the degenerate case of the single parity-check
code. The next theorem determines exactly for all binary
linear codes with minimum distance .
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Theorem 3: Let be a binary linear code with minimum dis-
tance . Then any parity-check matrix for satisfies

, and therefore .

Proof: If contains an all-zero column, then it is obvious
that . Otherwise , since then every
single column of must contain a row of weight one. Now,
if , then every two columns of are distinct. This
implies that these two columns must contain either the row
or the row (or both). Hence, .

The following theorem, which is our main result in this sec-
tion, shows that Theorem 3 is, in fact, a special case of a general
upper bound on the stopping redundancy of linear codes.

Theorem 4: Let be a binary linear code with minimum
distance . Then

(1)

Proof: We first prove a slightly weaker result, which is
conceptually simpler. Namely, let us show that

(2)

Let be an arbitrary parity-check matrix for with lin-
early independent rows. Construct another parity-check matrix

whose rows are all the linear combinations of rows of ,
for all . Clearly, the number of rows of

is given by the right-hand side of (2). Now let , respec-
tively , denote a matrix consisting of some columns of ,
respectively the corresponding columns of . Observe that
for all , the columns of are linearly indepen-
dent. This implies that the row-rank of is , and therefore,
some rows of must form a basis for . Hence, the
nonzero linear combinations of these rows of generate all
the nonzero vectors in , including all the vectors of weight
one. But for , the nonzero linear combi-
nations of any rows of are among the rows of by con-
struction. This proves that and establishes (2).

To transition from (2) to (1), observe that we do not need to
have all the nonzero vectors of among the rows of ; it
would suffice to have at least one vector of weight one. Given a
set and a positive integer , let denote the set of all
vectors obtained as a linear combination of at most vectors
from . Define as the smallest integer with the property
that for any basis of , the set contains at least one
vector of weight one. Then in the construction of , it would
suffice to take all the linear combinations of at most
rows of . Clearly, for all (in fact,
for all ), and the theorem follows.

The bound of (1), while much better than ,
is still too general to be tight for most codes. Nevertheless, we
can conclude from Theorem 4 that when is a constant, the
stopping redundancy is only polynomial in the (conventional)
redundancy and, hence, in the length of the code.

In the next theorem, we provide a general lower bound on the
stopping redundancy of linear codes.

Theorem 5: Let be an arbitrary linear code of length . For
each , define

(3)

Then

for

Proof: Let be a parity-check matrix for and let be
an arbitrary set of column indices. We say that is an -set.
We also say that a row of covers if the projection of
onto has weight one. If , then each of the
-sets must be covered by at least one row of the parity-check

matrix, for all . Any single row of of
weight covers exactly

(4)

-sets. It is not difficult to see that the expression in (4) increases
monotonically as decreases until reaches its max-
imum at . But for all rows

of . Thus, each row of covers at most -sets,
where is defined in (3), and the theorem follows.

Is there an asymptotically good sequence of linear codes
such that the stopping redundancy grows

only polynomially fast with the length? The answer to this
question is unknown at the present time. However, if the dual
sequence is also asymptotically good, we can use
Theorem 5 to settle this question in the negative.

Corollary 6: Let be an infinite sequence of linear
codes of strictly increasing length and fixed rate ,
with , such that for all , with .
If also for all , with , then

where and
is the binary entropy function.

Proof: We apply the bound of Theorem 5 with the size of
an -set given by . It is easy to see that if
and for all , then the maximum in (3) is attained
at for all sufficiently large . Thus,

where and the
second inequality follows from well-known bounds [17, p. 309]
on binomial coefficients in terms of .

We observe that the function defined in the proof
of Corollary 6 is always positive, and therefore indeed
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grows exponentially with the length . Note that several well-
known families of asymptotically good codes (for example, the
self-dual codes [16]) satisfy the condition of Corollary 6.

III. CONSTRUCTIONS OF CODES FROM OTHER CODES

In this section, we examine several simple ways of con-
structing codes from other codes. While for most such con-
structions, it is trivial to determine the redundancy of the re-
sulting code, we find it considerably more difficult to determine
the resulting stopping redundancy, and resort to bounding it.

We start with two simple examples. The first example (The-
orem 7) is the well-known direct-sum construction or, equiva-
lently, the construction. The second one (Theorem 8) is
the construction, or concatenation of a code with itself.

Theorem 7: Let be binary
linear codes, respectively. Then
is an code with

(5)

Proof: Let be an arbitrary parity-check
matrix for with , and let be an arbitrary

parity-check matrix for with . Then

is a parity-check matrix for . Assume without loss of gener-
ality (w.l.o.g.) that , so . Label the columns
of by , and let be an arbitrary set of at
most column indices. If ,
then the fact that implies that there is a row
of weight one in the projection of onto . Otherwise,

, and the same conclusion
follows from .

Theorem 8: Let be an binary linear code. Then
the code is a code with

(6)

Proof: Let be a parity-check matrix for
with . Construct a parity-check matrix for as

where is the identity matrix. Label the columns of
by and assume to the contrary there exists a
set such that and there is
no row of weight one in the projection of onto . Let
denote this projection. First, note that the two identity matrices
in imply that if , then also is in , since,
otherwise, contains a row of weight one. It follows that

. But , so the top part of
implies that , otherwise,

again contains a row of weight one. By the first observation, we
now conclude that , a contradiction.

Here is an interesting observation about Theorems 7 and 8. It
follows from (5) and (6) that if the constituent codes are optimal,

in the sense that their stopping redundancy is equal to their re-
dundancy, then the resulting code is also optimal. This indicates
that the bounds in (5) and (6) are tight.

In contrast, the innocuous construction of extending a linear
code by adding an overall parity check [17, p. 27] appears to
be much more difficult to handle. The next theorem deals only
with the special case where .

Theorem 9: Let be an binary linear code. Then
the extended code is an code with

Proof: Let be an arbitrary parity-check matrix
for . We construct a parity-check matrix for as follows:

where is the bitwise complement of , while and are
the all-zero and the all-one column vectors, respectively. Label
the columns in by and let be a subset
of with . In fact, it would suffice to
consider the case where and ; all other
cases easily follow from the fact that by Theorem 3.

Let and denote the projections of and , re-
spectively, on the three positions in . If contains a row
of weight one, we are done. If contains a row of weight
two, we are also done—then the corresponding row in has
weight one. But otherwise, the only rows in are and

, which means that the three columns in are identical,
a contradiction since .

The construction in Theorem 9 is not optimal. For example,
if is the extended Hamming code, it produces a
parity-check matrix for with six rows. But is also the
Reed–Muller code for which we give in the next sec-
tion a parity-check matrix with and only five rows.

IV. REED–MULLER CODES

We now focus on the well-known construction,
in particular in connection with the recursive definition of bi-
nary Reed–Muller codes. Our goal is to derive a constructive
upper bound on the stopping redundancy of —the bi-
nary Reed–Muller code of order and length .

We begin by recalling several well-known facts. The reader is
referred to [17, Ch. 13] for a proof of all these facts. First, for all

, the dimension of is
and its minimum distance is . Let be a gener-
ator matrix for . Then, using the construction,

can be defined recursively, as follows:

(7)

with the recursion in (7) being bootstrapped by
and for all . By convention, the code

is the set for all . Then

(8)
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for all and all . It follows from (8) that
is a parity-check matrix for , a code

with minimum distance . Hence, every columns
of are linearly independent.

Our objective in what follows is to construct an alternative
parity-check matrix for
such that . Then the number of rows in

gives an upper bound on the stopping redundancy of
(and the number of rows in is

an upper bound on the stopping redundancy of ). Here
is the recursive construction that we will use.

Recursive Construction A: For all positive integers and
for all , we define

(9)

with the recursion in (9) being bootstrapped as follows: for all
, the matrices

are defined by

(10)

(11)

(12)

Proposition 10: is a generator matrix for
and, hence, a parity-check matrix for .

Proof: The proof is by induction on and . Equations
(10) to (12) establish the induction base. For the induction step,
we need to prove that (9) generates , assuming that

generates and gener-
ates . It follows immediately from (7) that
already generates . Thus, it would suffice to show that
all the rows of belong to . To this end, we write

(13)

where and . Observe
that each row of can be written as

where . The fact that follows immedi-
ately from (13) for . The fact that also
follows from (13) in conjunction with the well-known fact that

(take and ). Hence, all the rows of
belong to , and the induction step is complete.

It remains to show that the stopping distance of is
indeed . We again prove this by induction on and .
Let us first establish the induction base. Trivially, the stopping
distance of is , since by (12).

Lemma 11: The stopping distance of is .

Proof: The proof is by induction on . Start with , in
which case we have , as desired. For the induc-
tion step, observe that

The situation here is exactly the same as the one we had in the
proof of Theorem 8, and the result follows in the same manner.
As in Theorem 8, assume to the contrary that there exists a set

such that and there is
no row of weight one in the projection of on .
Then implies that is in . Hence,

. But the stopping distance of
is by induction hypothesis, which im-

plies that . By the earlier observation,
this means that , a contradiction.

Proposition 12: The stopping distance of is
for all positive integers and for all ,

Proof: The proof is by induction on and . Lemma 11 in
conjunction with the fact that the stopping distance of
is establish the induction base. For the induction step, assume
that is a set of column indices such that

. We distinguish between three easy cases.

Case 1: .
Then . By induction hypoth-
esis, the stopping distance of is . Hence, the
top row in (9) implies that the projection of onto con-
tains a row of weight one.

Case 2: .
By induction hypothesis, has a stopping distance
of . Hence, the bottom row in (9) implies that the projection
of onto contains a row of weight one.

Case 3: .
Then , and we
are in a case that is symmetric to either Case 2 or Case 1.

The remaining task is to compute the number of rows in the
matrix . We denote this number as .

Lemma 13: For all , the number of rows
in is given by

Proof: Consider the following generating function:

Note that for all , in view
of (11). Hence, . Using the recursion

, which follows immedi-
ately from (9), along with this initial condition, we obtain

(14)
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Upon rearranging, (14) becomes

(15)

The lemma now follows by observing that is the coeffi-
cient of in (15).

We are now in a position to summarize the results of this
section in the following theorem.

Theorem 14: For all and all ,
the stopping redundancy of is upper-bounded by

(16)

Proof: Follows immediately from (8), Proposition 10,
Proposition 12, and Lemma 13.

To see how far the bound of Theorem 14 is from the (con-
ventional) redundancy of Reed–Muller codes, we first need the
following technical lemma.

Lemma 15: For all positive integers and ,
we have

(17)

Proof: Denote the sum by . Using the
recursion, we obtain

and recognize the second term above as . The
result now follows by induction on and .

Using Lemma 15, we can establish a relation between the re-
dundancy of Reed–Muller codes and their stopping redundancy.
For this, it will be more convenient to work with the dual code

. Recall that . Comparing this
to the bound on in Theorem 14, we find that

where the second inequality follows from (17). Therefore, for
any fixed order , the stopping redundancy of is at
most the redundancy of times a constant. Alterna-
tively, if we take , then Theorem 14 implies that

. Thus, for any fixed , the increase in
redundancy is by a constant factor.

V. GOLAY CODES

The binary Golay code is arguably the most
remarkable binary block code. It is often used as a benchmark
in studies of code structure and decoding algorithms.

There are several “canonical” parity-check matrices for ,
see [3], [4], [23] and other papers. Our starting point is the sys-

TABLE I
TWO PARITY-CHECK MATRICES FOR THE (24; 12;8) GOLAY CODE G

tematic double-circulant matrix given in MacWilliams and
Sloane [17, p. 65] and shown in Table I. It can be readily veri-
fied that , which means that achieves only half
of the maximum possible stopping distance. Curiously, the stop-
ping distance of the two “trellis-oriented” parity-check matrices
for , given in [23, p. 2060] and [3, p. 1441], is also .

Computing the general bounds of Theorems 4 and 5 for the
special case of produces the extremely weak result

Having tried several methods to construct a parity-check matrix
for with stopping distance , our best result was achieved
using a greedy (lexicographic) computer search. Specifically,
with the 4095 nonzero vectors of listed lexicographically,
we iteratively construct the parity-check matrix , at each
iteration adjoining to the first vector on the list with the
highest score. Each vector receives points to its score for each
yet uncovered -set it covers, where (cf. The-
orem 5). The resulting matrix is given in Table I. Since has
only 34 rows and , it follows that the stopping re-
dundancy of is at most .

To evaluate the effect of increasing the stopping distance, it
would be interesting to compare the performance of iterative
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TABLE II
NUMBER OF UNDECODABLE ERASURE PATTERNS BY

WEIGHT w IN THREE DECODERS FOR G

decoders for based on or , respectively. As a base-
line for such a comparison, it would be also useful to have the
performance of a maximum-likelihood decoder for . In what
follows, we give analytic expressions for the performance of the
three decoders on the BEC.

Clearly, a maximum-likelihood decoder fails to decode (re-
cover) a given erasure pattern if and only if this pattern contains
the support of (at least one) nonzero codeword of . Let
denote the number of such erasure patterns as a function of their
weight . Then

decoding failure

where is the erasure probability of the BEC. In contrast, an
iterative decoder (based on or ) fails if and only if the
erasure pattern contains a stopping set. Thus,

decoding failure

decoding failure

where and denote the number of erasure pat-
terns of weight that contain a stopping set of and ,
respectively. It remains to compute and .

Obviously, for and for
(any 13 columns of a parity-check matrix for are

linearly dependent). For the other values of , we have

where we made use Table IV of [5] (for , we have
in the notation of [5]).

To find and , we used exhaustive computer
search. These functions are given in Table II. The resulting
probabilities of decoding failure are plotted in Fig. 1. Note that

Fig. 1. The decoding failure probability of three decoders for G : a max-
imum-likelihood decoder and iterative decoders based upon H and H .

TABLE III
TWO PARITY-CHECK MATRICES FOR THE (12; 6; 6) GOLAY CODE G

while we may add rows to to eliminate more stopping
sets, this would have negligible effect since the slope of the
performance curve is dominated by the smallest for which

.
The extended ternary Golay code is an-

other famous code. A systematic double-circulant parity-check
matrix for is given in [17, p. 510]; this matrix is denoted

in Table III. It is easy to see that , which
is again half of the maximum possible stopping distance.
Using greedy lexicographic search, we have constructed a
parity-check matrix with stopping distance and only 22
rows. This matrix is also given in Table III. The number of
undecodable erasure patterns for a maximum-likelihood de-
coder and for the iterative decoders based on and is
given in Table IV.
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TABLE IV
NUMBER OF UNDECODABLE ERASURE PATTERNS

BY WEIGHT w IN THREE DECODERS FOR G

VI. MDS CODES

The last family of codes we investigate are the MDS codes.
These codes have intricate algebraic and combinatorial structure
[17, Ch. 11]. In particular, if is an linear2 MDS code,
then the dual code is also MDS and its distance is

. Moreover, every positions in
are the support of a codeword of of weight , while every

positions support a codeword of of weight . We will
use these and other properties of MDS codes to establish sharp
upper and lower bounds on their stopping redundancy.

Theorem 16: Let be an MDS code with .
Then

(18)

Proof: The lower bound is just a special case of The-
orem 5. Taking in (3), we find that

whenever , so that . The corresponding
lower bound in Theorem 5 thus reduces to

(19)

To prove the upper bound, note that every po-
sitions support a codeword of . We take one such codeword
of for every set of positions, and use the resulting

codewords as rows of a matrix . We claim that is a parity-
check matrix for , namely, that .
Indeed, consider a set of positions, say .
For each , there is a row of of weight

such that the intersection of its support
with is . The corresponding rows of

thus contain an identity matrix on the first positions;
hence, . It remains to show that . But

2Throughout this section, we deal with linear MDS codes only. Henceforth,
whenever we say “an MDS code” we mean a linear MDS code.

this follows immediately from what we have already proved:
given any set with , there is a
corresponding set of rows of whose projection on the
positions in is the identity matrix.

Both bounds in Theorem 16 are exact if . Indeed, for
the upper and lower bounds in (18) coincide, yielding

. This reflects the degenerate case of the
MDS code , whose dual is the repetition code .
Indeed, any codeword of can serve as a parity-check
matrix for with . In the case of the rep-
etition code itself, the bounds in (18) reduce to

The true value is . To see this, consider
an parity-check matrix for such that the
support of the th row in is for .

Next, we use a combinatorial argument to show that is
the only case where the lower bound of Theorem 18 is exact.

Theorem 17: Let be an MDS code with .
Then

(20)

Proof: Assume to the contrary that there is a parity-check
matrix for with and at most rows.
As in Theorem 5, we say that a given set with

is an -set, and that a row of covers an -set if the
projection of on has weight one. The number of -sets
covered by a single row of weight is

(21)

The total number of -sets is and every one of them
must be covered by at least one row of . But

(22)

in view of (21). It now follows from (22) that there are exactly
rows in , all of weight , and that each

-set is covered by exactly one row of . The latter con-
dition is equivalent to saying that each (complementary) set of

positions is contained in the support of ex-
actly one row of . In other words, the supports of the rows of
form an Steiner system.3 Such a Steiner system
may or may not exist. If it does not exist we are done, but in
many known cases (e.g., , etc.)
it does; hence, we must proceed to establish another contradic-
tion. To this end, consider a -set which is the comple-
ment of the support of a given row of . As , this

3An S(t; k; v) Steiner system is a set of k-subsets of f1; 2; . . . ; vg, called
blocks, so that each t-subset of f1;2; . . . ; vg is contained in exactly one block.
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-set must be covered by some other row of , say .
But then

The above means that there is a set of positions that is
contained in two different blocks of the Steiner
system, a contradiction.

Example: The hexacode is a remarkable MDS
code over . It is unique up to monomial equiv-
alence and self-dual under the Hermitian inner product (so the
conjugate of a parity-check matrix for is a generator ma-
trix for ). The upper and lower bounds in (18) imply that

. Using one of the covering designs (see below)
in [10], we construct the following parity-check matrix:

(23)

for . It can be easily verified by hand that , and
therefore . Finally, the lower bound of Theorem 17
proves that . Thus, (20) is exact in this case.

In general, it follows from the Proof of Theorem 17 that if is
an MDS code and is a parity-check matrix for with

, then the supports of rows of weight in form
a covering design. A covering design
is collection of subsets of size of , called blocks,
such that every subset of of size is contained in
at least one block (changing “at least one” to “exactly one” thus
makes this a Steiner system). The smallest number of blocks
in a covering design is usually denoted by
and called the covering number (see [11], [18], and references
therein). Thus, if is an MDS code, then

(24)

The best general lower bound on the covering number dates
back to the work of Schönheim [21], who showed in 1964 that

. For the special case
of (24), this proves that

(25)

Notice that if we ignore all the ceilings in (25), then we re-
cover precisely the lower bound in (18). Hence (25) is always at
least as strong as the lower bound of Theorem 16. An alternative
bound on the covering number is due to de Caen [6] (see also
[10, p. 270]). In our case, this bound reduces to

(26)

This is better than the lower bound of Theorem 16 if and only
if . Note that Theorem 17 is sometimes
stronger than both (25) and (26), for example, in those cases
where and an Steiner system exists.

We can now summarize most of the results in this section as
follows. If is an MDS code over with , the
the stopping redundancy of is in the range

(see the Appendix for a proof of the upper bound). These bounds
are reasonably close and, notably, do not depend on the size of
the field. Determining the stopping redundancy of MDS codes
exactly appears to be a difficult combinatorial problem. In view
of (24), it is likely to be at least as difficult as the problem of
determining the covering number .

VII. DISCUSSION AND OPEN PROBLEMS

This paper only scratches the surface of the many interesting
and important problems that arise in the investigation of stop-
ping redundancy. The importance of stopping sets is well under-
stood in the case of the BEC. However, the concept of stopping
redundancy is new. Fig. 1 clearly demonstrates that it is the stop-
ping sets of size strictly less than the minimum distance that are
responsible for the performance gap between maximum-likeli-
hood and iterative decoding. Thus, eliminating such stopping
sets is what we need to do, and the stopping redundancy is the
relevant figure of merit.

It would be extremely interesting to understand how relevant
stopping redundancy is for other channels. In this regard, it is
worth mentioning the following observation of Feldman [9, p.
176]. In the general framework of LP decoding, the support of
any pseudocodeword is a stopping set for any channel. Thus,
the stopping redundancy might be the relevant figure of merit in
this, very general, context as well.

It is interesting to note that although we have defined and
studied the stopping redundancy as a property of linear codes,
it turns out to be closely related to a number of well-known
combinatorial structures. Steiner systems and covering designs
were already discussed in Section VI. A combinatorial structure
equivalent to a covering design is the Turán system. For more
information on this, we refer the reader to [13], [18], [22]. An-
other combinatorial concept that is very closely related to stop-
ping redundancy is that of -locally-thin families. A family
of subsets of the set is said to be -locally-thin if
given any distinct subsets in , there is at least one element

that is contained in exactly one of them. The
central problem in the study of -locally-thin families is to de-
termine , defined as the maximum cardinality of a -lo-
cally-thin family of subsets of . In particular, one
would like to determine the sequence

(27)

But is also the maximum number of columns in a bi-
nary matrix with rows, distinct columns, and no stopping
set of size . Hence, results on stopping redundancy might be
relevant in the study of locally-thin families, and vice versa. For
example, our construction in Section IV produces a parity-check
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matrix for the Reed–Muller code of length ,
distance , and stopping redundancy , thereby
showing that . We point out that estimating is a
notoriously difficult task. In fact, it is not even known whether

and whether decreases monotonically with . For
much more on this, see [1], [2], [15], and references therein.

We have concluded the original version of this paper with
a variety of research questions related to our results. Although
some of these questions have been since answered (see below),
we repeat them here. In Section II, we derived upper and lower
bounds on the stopping redundancy of general binary linear
codes. Can these general bounds be improved? In particular,
is there an asymptotically good family of codes such that their
stopping redundancy grows only polynomially fast with their
length? In Section III, we have examined only a small sample of
the multitude of known ways of combining codes to construct
other codes. What can be said of the stopping redundancy of
other constructions, in particular constructions involving non-
binary alphabets, such as concatenated/multilevel coding? In
Sections IV and V, we investigated the Reed–Muller codes and
the Golay codes. Are the constructions provided therein op-
timal? In particular, is it true that ? It appears that
proving lower bounds on the stopping redundancy, even for spe-
cific codes such as , is quite difficult. Finally, in Section VI,
we considered MDS codes. We conjecture that the stopping re-
dundancy of an MDS code over does not depend
on the code, but only on its parameters and . In other words,
any two MDS codes have the same stopping redun-
dancy. If this conjecture is true, then it should be possible, in
principle, to determine the stopping redundancy of an
MDS code as a function of and . However, this appears to be
a difficult combinatorial problem.

Finally, we would like to mention two recent papers that are
directly inspired by our results, and improve upon them. Et-
zion [8] studies in detail the stopping redundancy of binary
Reed–Muller codes. He proves that the stopping redundancy
of , which is also the exteded Hamming code of
length , is . This shows that our construction in Sec-
tion IV is optimal in this case. However, it turns out that this con-
struction is not optimal for the first-order Reed–Muller codes

; Etzion [8] derives a better upper bound on the stop-
ping redundancy of these codes. Han and Siegel [13] use the
“probabilistic method” to establish upper bounds on the stop-
ping redundancy of general linear codes, which improve signif-
icantly upon our result in Theorem 4. They also prove upper
bounds on the stopping redundancy of MDS codes in terms of
Turán numbers, that are stronger than our Corollary 20.

APPENDIX

AN IMPROVED UPPER BOUND ON THE STOPPING

REDUNDANCY OF MDS CODES

In this appendix, we improve the upper bound in Theorem 16
using constant-weight codes. An constant-weight code

is a set of binary vectors of length and weight , such that
any two elements of are at distance from each other. Let

denote the largest possible cardinality of a union of
constant-weight codes, each with parameters .

Theoren 18: Let be an MDS code with .
Set . Then

(28)

Proof: We start as in the Proof of Theorem 16 by con-
structing a parity-check matrix for such that the supports4

of the rows of are all the binary vectors of length and
weight . Now let be any con-
stant-weight codes with parameters . We remove
from all the rows whose supports belong to .
Let denote the resulting matrix. Since obviously

the number of rows remaining in is given by the right-hand
side of (28), provided are chosen so as to max-
imize the cardinality of their union. We claim that .
To prove this claim, we distinguish between two cases.

Case 1: Consider a -set. As shown in the Proof of The-
orem 16, there are some rows in such that the projection
of their supports on the -set is the identity
matrix. Let denote this set of supports. Any two
elements of are at distance exactly from each other, since

. Hence, for all . As
, it follows that contains

at least one row whose support belongs to .

Case 2: Consider a -set with and assume w.l.o.g. that
this -set is . Note that contains some rows
whose supports are

for

As before, let denote this set of supports. The intersection
of each support in with the -set is , so the
projection of each of the corresponding rows of onto this
-set has weight one. Moreover, any two elements of are at

Hamming distance from each other. Hence for
all , and since , it follows that
has at least one row whose support is in .

It remains to show that . But this
follows from the fact that . Indeed, up to an appro-
priate column permutation, there is a row in such that the
intersection of its support with is .
Then, there is another row in such that the intersection of its
support with is , again up to a column
permutation. Continuing in this manner, we get a set of
rows of whose projection on the first positions is an
upper-triangular matrix with nonzero entries on the main diag-
onal. Hence, , and we are done.

Proposition 19: For all positive integers and with
and for all

(29)

4We shall regard the support of a row of H interchangeably as a subset of
f1; 2; . . . ; ng or as the corresponding binary vector of length n.
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Proof: Graham and Sloane [12, Theorem 1] construct a
partition of the set of binary vectors of length and weight
into constant-weight codes with parameters . Taking
the largest codes in such a partition proves (29).

Corollary 20: Let be an MDS code. Then

(30)

Proof: Follows immediately from Theorem 18 and Propo-
sition 19. Note that (30) coincides with (18) iff .
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