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On the Generalized Covering Radii of
Reed-Muller Codes

Dor Elimelech , Graduate Student Member, IEEE, Hengjia Wei , and Moshe Schwartz , Senior Member, IEEE

Abstract— We study generalized covering radii, a fundamental
property of linear codes that characterizes the trade-off between
storage, latency, and access in linear data-query protocols such
as PIR. We prove lower and upper bounds on the generalized
covering radii of Reed-Muller codes, as well as finding their
exact value in certain extreme cases. With the application to
linear data-query protocols in mind, we also construct a covering
algorithm that gets as input a set of points in space, and find
a corresponding set of codewords from the Reed-Muller code
that are jointly not farther away from the input than the upper
bound on the generalized covering radius of the code. We prove
that the algorithm runs in time that is polynomial in the code
parameters.

Index Terms— Reed-Muller codes, generalized covering radius,
covering algorithm.

I. INTRODUCTION

THE generalized covering radius has recently been pro-
posed [10] as a new fundamental property of linear

codes, generalizing the classical notion of a covering radius.
As a motivating application, these radii characterize a trade-off
between storage, latency, and access complexities in linear
data-query protocols, a prime example of which is the PIR
(Private Information Retrieval) protocol. Several equivalent
definitions of the generalized covering radii were given in [10],
showing their combinatorial, geometric, and algebraic aspects.
It has also been observed that there is an intriguing similarity
between the generalized covering radii and the well known
generalized Hamming weights of linear codes [29], hinting at
a deeper theory and perhaps additional applications of these
parameters that are yet to be revealed.

A crucial part in our understanding of any fundamental
parameter of codes, is the values that it takes in specific
examples and in parametric families of codes. In [10], the
generalized covering radius hierarchy was found only for
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Hamming codes and shortened Hamming codes, whereas the
remaining results did not pertain to specific code families.
The Hamming code, in its extended version, is a specific
case of the famous family of Reed-Muller codes, which is
one of the most studied families of linear error-correcting
codes. Reed-Muller codes have been extensively studied in
the recent decades due to their practical applications and
fascinating relations with various mathematical objects. Reed-
Muller codes were recently proved to achieve asymptotically
the capacity of erasure channels [17]. They have long been
conjectured to achieve Shannon’s capacity on symmetric chan-
nels, and a recent paper [3] took a step towards a proof of
this conjecture, by showing a polarization property in Reed-
Muller codes. Other applications of Reed-Muller codes include
locally decodable codes [30], probabilistic proof systems [1],
sequence design for wireless communications [8], [9], [23],
[26], and Boolean functions [4], [18], [21]. For a recent survey,
the readers are referred to [2].

While many aspects of Reed-Muller codes have been inves-
tigated, of particular interest to us is the (regular) covering
radius. Its relation to the maximum nonlinearity of Boolean
functions motivated many of the papers on the subject. The
covering radius of Reed-Muller codes has been studied in
different settings [5], [7], [13]–[16], [20], [22], [24], [25].
However, despite decades of research on the subject, the exact
covering radius of Reed-Muller codes is mostly unknown,
except for a handful of specific cases, and many papers
resorted to finding lower and upper bounds.

The goal of this paper is to explore the generalized covering
radii of Reed-Muller codes. Our main contributions are the
following:

1) We prove lower and upper bounds on the generalized
covering radii of Reed-Muller codes, RM(r, m), in var-
ious asymptotic regimes of its parameters: constant
r, constant m − r, constant r/m, and constant rate,
where r = m

2 + Θ(
√

m). We also find the exact t-th
generalized covering radius of (r, m) in simple cases,
r ∈ {0, m−2, m−1, m}. These results are summarized
in Table I and Table II.

2) Motivated by the application for linear data-querying
protocols, we construct a t-covering algorithm for Reed-
Muller codes. Loosely speaking, given t vectors in
the space, the algorithm finds t codewords that are
jointly not farther away from the given points than the
best upper bound that we have on the t-th generalized
covering radius of the code. We analyze the run-time
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complexity of the algorithm and show it is polynomial
in the code parameters.

The paper is organized as follows: Preliminaries and nota-
tions are presented in Section II. Section III is devoted to the
derivation of bounds on the generalized covering radii of Reed-
Muller codes. In Section IV we discuss the implications of the
bounds on Reed-Muller codes to bounds on general codes. The
construction of our covering algorithm and its analysis are in
Section V. We conclude with a discussion of the results and
some open questions in Section VI.

II. PRELIMINARIES

We use lower-case letters, v, to denote scalars, overlined
lower-case letters, v, to denote vectors, and either bold lower-
case letters, v, or upper-case letter, V , to denote matrices.
Whether vectors are row vectors or column vectors is deduced
from context.

Let Fq denote the finite field of size q. For n ∈ N, we define
[n] � {1, . . . , n}, and denote by

(
[n]
t

)
the set of all subsets

of [n] of size t. For a vector v = (v1, . . . , vn) ∈ F
n
q , the

support of v is defined as supp(v) � {i ∈ [n]|vi �= 0},
and its Hamming weight is defined as wt(v) � |supp(v)|.
The Hamming distance between v, v′ ∈ F

n
q is then defined as

d(v, v′) � wt(v′ − v).
We say C is an [n, k, d]q linear code if C ⊆ F

n
q is

a k-dimensional vector space, and the minimum Hamming
distance between distinct codewords is d. The code C may be
specified using a k × n generator matrix G ∈ F

k×n
q , whose

row space is C, or by an (n − k) × n parity-check matrix
H ∈ F

(n−k)×n
q , whose null space is C. The dual code of C,

denoted C⊥, is the code whose generator matrix is H , and
parity-check matrix is G, namely,

C⊥ �
{

v ∈ F
n
q

∣∣ ∀c ∈ C, v · c = 0
}

.

The dual code, C⊥, is an [n, n − k, d′]q code. We say d′ is
the dual distance of C.

For any vector v ∈ F
n
q , the distance between v and the code

C is defined as

d(v, C) � min
c∈C

d(c, v).

The covering radius of C, denoted R(C), is then defined as

R(C) � max
v∈Fn

q

d(v, C).

It is therefore the minimum radius at which balls centered at
the codewords of C cover the entire space F

n
q . A generalization

of this property will be presented shortly when we introduce
the generalized covering radii of C. Later, we shall also make
use of a connection between the covering radius of C, and
the dual distance of C. To that end we recall the definition of
Krawtchouk polynomials,

Kk(x; n, q) �
k∑

j=0

(−1)j

(
x

j

)(
n− x

k − j

)
(q − 1)k−j ,

where (
x

j

)
� x(x − 1) . . . (x− j + 1)

j!
. (1)

We further denote the minimal root of Kk(x; n, q) by

x(k, n; q) � min{x ∈ R|Kk(x; n, q) = 0}.
Lemma 1: [28, Theorem 3.3] Let C be an [n, k]q code with

dual distance d′. Then

R(C) �
{

x(u, n− 1; q) d′ = 2u− 1,

x(u, n; q) d′ = 2u.

A. The Generalized Covering Radii

The generalized covering radii of a linear code were
introduced in [10]. They have several equivalent definitions,
which we bring here and use interchangeably. We begin with
a geometric definition. Consider the set of matrices F

t×n
q ,

in which we have a generalized notion for the Hamming
weights. For a matrix v ∈ F

t×n
q , with row vectors denoted

by vi, the t-weight is defined to be

wt(t)(v) �

∣∣∣∣∣∣
⋃

i∈[t]

supp(vi)

∣∣∣∣∣∣ .
The t-weight naturally induces a metric on F

t×n
q by

d(t)(v,u) � wt(t)(v − u),

for all v,u ∈ F
t×n
q . Let B

(t)
r (v) denote the ball of radius r

centered in v ∈ F
t×n
q , with respect to the metric d(t), namely

B(t)
r (v) �

{
v′ ∈ F

t×n
q

∣∣ d(t)(v,v′) � r
}

.

Since this metric is translation invariant, the volume of the
ball does not depend on the choice of its center. We denote
this volume by

Vqt,n,r �
∣∣∣B(t)

r (v)
∣∣∣ =

r∑
i=0

(
n

i

)
(qt − 1)i, (2)

which is exactly the size of a ball of radius r in F
n
qt using the

Hamming metric. We now have the following definition for
the t-th generalized radius:

Definition 2: Let C be an [n, k]q linear code. Then for every
t ∈ N, we define the t-th generalized covering radius, denoted
by Rt(C), to be the minimal integer r such that the balls of
radius r centered at

Ct �

⎧⎪⎨
⎪⎩
⎡
⎢⎣
c1

...
ct

⎤
⎥⎦ ∈ F

t×n
q

∣∣∣∣∣∣∣ ∀i ∈ [t], ci ∈ C

⎫⎪⎬
⎪⎭ , (3)

cover F
t×n
q , i.e., ⋃

c∈Ct

B(t)
r (c) = F

t×n
q .

One can easily see that R1(C) = R(C) is indeed the regular
covering radius of the code C. Let us now turn to an equivalent
definition via the parity-check matrix of a code. Assume C is a
linear [n, k]q code with a (full-rank) parity-check matrix H ∈
F

(n−k)×n
q . Let the columns of H be denoted by h1, . . . , hn.

Then for I ∈ ([n]
t

)
, 1 � t � n, we denote the linear span of
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{hi}i∈I by �HI�. We have the following equivalent definition
for the t-th generalized covering radius of C:

Definition 3: The t-th covering radius of C, denoted by
Rt(C), is the smallest integer r such that for any t vec-
tors v1, . . . , vt ∈ F

n−k
q , there exists I ∈ (

[n]
r

)
such that

{v1, . . . , vt} ⊆ �HI�.
The final equivalent definition that we recall for the gener-

alized covering radius is algebraic in nature:
Definition 4: Let C ⊆ F

n
q be a linear code with a generator

matrix G ∈ F
k×n
q and a parity-check matrix H ∈ F

(n−k)×n
q .

Let Ct be the code over Fqt , with generator matrix G and
parity-check matrix H , namely,

Ct �
{

uG| u ∈ F
k
qt

}
=
{

v ∈ F
n
qt

∣∣Hcᵀ = 0ᵀ}
. (4)

The t-th covering radius is defined to be

Rt(C) � R1(Ct),

where R1(Ct) is the (regular, first) covering radius of Ct.
According to Definition 4, the problem of finding the t-th

covering radius of a code C ⊆ F
n
q , is equivalent to finding the

regular covering radius of Ct defined over Fqt . Since the code
Ct will be used many times, we briefly show that, unlike the
covering radius, its minimum distance does not change.

Lemma 5: Let C be an [n, k, d]q code. Then for any t ∈ N,
the code Ct of (4) is an [n, k, d]qt code.

Proof: The fact that Ct has length n is trivial. Let H ∈
F

(n−k)×n
q be parity-check matrix for C. Since a set of vectors

from F
n
q is linearly independent over Fq if and only if it is

linearly independent over Fqt , the matrix H has the same rank
over Fqt , and its null-space, Ct, has dimension k. Finally, it is
well known that the minimum distance d of C is the minimal
number of columns of H that are linearly dependent. By the
same argument as before, this number does not change when
considering columns of H and linear dependence over Fqt .
Hence, the minimum distance of Ct is also d.

The generalized covering radius has a subadditivity property
that proves to be useful for establishing many of the results
in this work:

Lemma 6: [10, Proposition 15] Let C be an [n, k]q code.
Then for all t1, t2 ∈ N,

Rt1+t2(C) � Rt1(C) + Rt2(C).

In particular, Rt(C) � tR1(C) for all t ∈ N.
A simple ball-covering argument is used in the following

lemma.
Lemma 7: For an [n, k]q code C and t ∈ N,

logqt

(
Vqt,n,Rt(C)

)
� n− k.

Proof: Recalling (4), consider the code Ct over Fqt ,
generated by the same generator matrix as C. Clearly, Ct

has the same dimension and length as C. By the standard
ball-covering argument (see [6, Theorem 6.2.1]),

logqt

(
Vqt,n,R1(Ct)

)
� n− k.

By Definition 4, R1(Ct) = Rt(C), and we conclude.
Since we shall be interested in asymptotic results, we recall

facts about the asymptotics of binomial coefficients as well as

the volume of balls in the Hamming metric. Let Hq(x) denote
the q-ary entropy function,

Hq(x) � x logq(q − 1)− x logq(x)− (1− x) logq(1− x).

A useful Taylor expansion near the entropy function’s maxi-
mum was presented in [12, Proposition 3.3.5], showing that,
as �→ 0,

Hq

(
1− 1

q
− �

)
= 1− �2q2

2(q − 1) ln q
(1 + o(1)). (5)

For any real 0 < α < 1, such that αn ∈ N, it is known (e.g.,
see [19, Ch. 10, Lemma 7]) that

1√
8nα(1−α)

2nH2(α) �
(

n

αn

)
� 1√

2πnα(1− α)
2nH2(α), (6)

and this holds for n ∈ R, n > 1 (recall the definition of the
binomial in (1), and see [11, p. 482]). As for the Hamming
ball, it is well known (see [19, Ch. 10, Corollary 9] and [12,
Proposition 3.3.1]) that for q � 2, and α � 1− 1

q ,

1√
8nα(1− α)

qnHq(α) � Vq,n,αn � qnHq(α). (7)

B. Reed-Muller Codes

Reed-Muller codes have been extensively studied (e.g.,
see [19], and the many references therein). We recall the
relevant definitions and properties needed for this paper. For
m ∈ N and 0 � r � m, the r-th order Reed-Muller code,
denoted by RM(r, m), is a binary linear [n, k] code with
parameters

n = 2m, k =
r∑

i=0

(
m

i

)
. (8)

Reed-Muller codes have multiple equivalent definitions, and
one that will be useful for our needs is a recursive definition,
given by the (u, u + v) construction. Assume C1 and C2 are
[n, k1]q and [n, k2]q codes, respectively. The (u, u + v) con-
struction uses C1 and C2 to produce a code

C = { (u, u + v)|u ∈ C1, v ∈ C2} .
As a base for the recursion, we define

RM(0, m) �
{
0, 1
}

,

i.e., the repetition code. Additionally, we define

RM(m, m) � F
2m

2 ,

i.e., the entire set of binary vectors of length 2m. Finally,
for 1 � r � m − 1, we define RM(r, m) to be the code
produced by the (u, u + v) construction using RM(r, m− 1)
and RM(r − 1, m− 1).

Reed-Muller codes are nested, namely, for all 1 � r � m,

RM(r − 1, m) ⊆ RM(r, m). (9)

Additionally, the family of Reed-Muller code is closed under
code duality, and in particular

RM(r, m)⊥ = RM(m− r − 1, m).
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This implies that

dim (RM(r, m)) = 2m − dim (RM(m− r − 1, m)) . (10)

To avoid cumbersome notation, we denote the t-th general-
ized covering radius of the r-th order Reed-Muller code by

Rt(r, m) � Rt(RM(r, m)).

The following fundamental property of Rt(r, m) will be used
frequently in this work:

Proposition 8: For all m, t ∈ N, and 1 � r � m− 1,

Rt(r, m) � Rt(r − 1, m− 1) + Rt(r, m− 1).

Proof: The claim follows from the (u, u+v) construction
of Reed-Muller codes. In [10, Proposition 24] it is proved that
if a code C is produced using the (u, u+v) construction with
C1 and C2, then Rt(C) � Rt(C1) + Rt(C2).

III. BOUNDS

Our main results are presented in this section. We prove
bounds on the generalized covering radii of Reed-Muller
codes, RM(r, m), in different asymptotic regimes, as m→∞:

• r is constant.
• m− r is constant.
• r/m is constant.
•
∑r

i=0

(
m
i

)
/2m is constant.

Upper bounds will be derived using two main strategies: The
first is by considering the upper bounds from [7] and using
the subadditivity formula from Lemma 6. The second strategy
involves the use of the recursive formula from Proposition 8
and analysis of the base cases. Our lower bounds will essen-
tially be the well known ball-covering lower bound (over the
field F2t ), analyzed separately for each of the different cases.

A. The Case Where r Is Constant

In this parameter regime, the Reed-Muller codes have
vanishing asymptotic rate, and high covering radius. We first
consider the extreme case of RM(0, m), which is none other
than the repetition code. In this simple case we can determine
the generalized covering radii exactly.

Proposition 9: For all m, t ∈ N,

Rt(0, m) = 2m − �2m−t�.
Proof: The Reed-Muller code C = RM(0, m) is the

binary repetition code of length 2m, namely, its generator
matrix is G = (1, 1, . . . , 1). Thus, Ct of (4) is just the 2t-ary
repetition code of the same length. Given a vector v ∈ F

2m

2t ,
the closest codeword of Ct to v is c = (c, c, . . . , c) ∈ Ct

where c ∈ F2t is the symbol appearing the most times in v.
By simple averaging, there exists a symbol appearing at least
�2m−t� times in v, giving us Rt(0, m) � 2m − �2m−t�. For
the lower bound, define � � min{t, m}, and let v ∈ F

2m

2t

be a vector with 2� different symbols, such that each symbol
appears exactly 2m−� times. Clearly, we have

d(v, RM(0, m)) = 2m − 2m−� � 2m − �2m−t�.
This proves the lower bound.

For the more general cases of RM(r, m) with r � 1,
we provide separate upper and lower bound on the generalized
covering radii. The upper bounds are proved by induction on
r. The base case of RM(1, m) is proved first.

Lemma 10: For all m, t ∈ N,

Rt(1, m) �
(

1− 1
2t

)
2m −

√
2t − 1
2t

2m/2.

Proof: Denote C = RM(1, m). It is well known that
C⊥ = RM(m− 2, m) is the extended binary Hamming code
(see [19, Ch. 13]), and hence the dual distance of C is d′ = 4.
By Lemma 5, d′ = 4 is the dual distance of Ct of (4) as well.
By Lemma 1, the covering radius of Ct is upper bounded by

Rt(C) = R1(Ct) � x(2, 2m; 2t),

i.e., the smallest root of the Krawtchouk polynomial
K2(x; 2m, 2t). Since

K2(x; q, n) =
1
2

(
q2x2 − q(2qn− q − 2n + 2)x

+ (q − 1)2n(n− 1)
)
,

it follows that

x(2, n; q) =
(

1− 1
q

)
n− 1

2
+

1
q
−
√

(4q − 4)n + (q − 2)2

2q

�
(

1− 1
q

)
n−

√
(q − 1)n

q
.

Plugging in n = 2m and q = 2t, we obtain the desired result.

We can now prove the general upper bound on Rt(r, m) for
r � 1.

Theorem 11: For all m, t ∈ N, 1 � r � m,

Rt(r, m) �
(

1− 1
2t

)
2m −

√
2t − 1
2t

(1 +
√

2)r−12m/2

+ O(mr−2).

where we consider r and t to be constants.
Proof: We prove the claim by induction on r. Lemma 10

shows the claim holds for r = 1, and for all m ∈ N. Assume
that the claim holds for all � � r − 1, and all m ∈ N.
We now show that it holds for r as well. By repeatedly using
Proposition 8 and the induction hypothesis, we have,

Rt(r, m)
� Rt(r, m− 1) + Rt(r − 1, m− 1)

� Rt(r, m− 1) +
(

1− 1
2t

)
2m−1

−
√

2t − 1
2t

(1 +
√

2)r−22(m−1)/2 + O(mr−3)

...

� Rt(r, r) +
m−1∑
i=r

((
1− 1

2t

)
2i

−
√

2t − 1
2t

(1 +
√

2)r−22i/2 + O(mr−3)

)
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� Rt(r, r) +
(

1− 1
2t

)m−1∑
i=0

2i

−
√

2t − 1
2t

(1 +
√

2)r−2
m−1∑
i=r

2i/2 + O(mr−2)

=
(

1− 1
2t

)
2m −

√
2t − 1
2t

(1 +
√

2)r−1
(
2m/2 − 2r/2

)
+ O(mr−2)

=
(

1− 1
2t

)
2m −

√
2t − 1
2t

(1 +
√

2)r−12m/2 + O(mr−2).

Here we also use the fact Rt(r, r) = 0, since RM(r, r) = F
2r

2 ,
and so1 RM(r, r)t = F

2r

2t , whose covering radius is 0.
The corresponding lower bound on Rt(r, m) is proved next.

It is obtained by carefully considering both a ball-covering
argument, and the upper bound we just proved.

Theorem 12: For all m, t ∈ N, 1 � r � m,

Rt(r, m) �
(

1− 1
2t

)
2m (11)

−
√

2t(2t − 1) ln 2
2t
√

r!
mr/22m/2(1 + o(1)),

where we consider r and t to be constants.
Proof: By Lemma 7, we have that

log2t

(
V2t,2m,Rt(r,m)

)
� 2m −

r∑
i=0

(
m

i

)

= 2m − mr

r!
(1 + o(1)).

According to Theorem 11,

Rt(r, m)
2m

= 1− 1
2t
− o(1), (12)

and in particular, for all large enough m,

Rt(r, m)
2m

< 1− 1
2t

.

Using (7),

log2t

(
V2t,2m,Rt(r,m)

)
� 2mH2t

(
Rt(r, m)

2m

)
.

Combining the two inequalities above, we have

2mH2t

(
Rt(r, m)

2m

)
� 2m − mr

r!
(1 + o(1)). (13)

Denote y � 1−1/2t−Rt(r, m)/2m. Then y = o(1) by (12),
and y > 0 for all large enough m. Thus, by (5) we have

H2t

(
Rt(r, m)

2m

)
= H2t

(
1− 1

2t
− y

)
= 1− cy2(1 + o(1)),

where c = 22t

2t(2t−1) ln 2 . Hence,

1− cy2(1 + o(1)) � 1− mr

2mr!
(1 + o(1)),

1Recall that RM(r, m)t is the code over F2t that is generated by the
generating matrix of RM(r, m) (see Definition 4).

and so,

y � mr/2

2m/2
√

r! · c (1 + o(1)).

The conclusion follows since Rt(r, m) = (1 − 1/2t − y)2m.

The lower and upper bounds from Theorem 11 and Theo-
rem 12 show that for fixed r, where the rate tends to 0 when
m → ∞, the normalized t-covering radius tends to 1 − 1

2t

(with respect to the length of the code). Furthermore, it follows
that Rt(r, m) is smaller than

(
1− 1

2t

)
2m by an amount of

2m/2(1+o(1)), where the o(1) in the exponent represents the
gap between our lower and upper bounds.

B. The Case Where m− r Is Constant

The opposite case to the one studied in the previous section,
is that of Reed-Muller codes RM(r, m) with m − r being
constant. These codes have a high rate and a vanishing normal-
ized covering radius. As we show shortly, in this asymptotic
regime, the t-th generalized covering radius is approximately
linear in t. We begin, however, with the two extreme cases
of RM(m− 1, m) and RM(m− 2, m).

Proposition 13: For all m, t ∈ N,

Rt(m, m) = 0,

Rt(m− 1, m) = 1,

Rt(m− 2, m) = min {t, m}+ 1.

Proof: The case of Rt(m, m) is trivial since RM(m, m) =
F

2m

2 . For the next case, RM(m−1, m) is the binary [2m, 2m−
1, 2] parity code. Its parity-check matrix is H1 = (1, 1, . . . , 1).
Then, by directly using Definition 3, we get that for all t ∈ N,
Rt(m− 1, m) = 1.

Finally, RM(m − 2, m) is the binary [2m, 2m −m − 1, 4]
extended Hamming code. A parity-check matrix for this code
is the (m+1)×2m matrix H2 containing all the binary column
vectors that start with a 1. Let ei denote the i-th standard unit
column vector. We again use Definition 3 directly: for any
1 � t � m, we contend that the set {e2, e3, . . . , et+1} cannot
be spanned by t columns of H2. That is because �e2, . . . , et+1�
is a t-dimensional vector space, all of whose vectors contain a
0 in the first coordinate. However, the span of any t columns
from H2 is, at best, a t-dimensional vector space, but whose
vectors’ first coordinate is not always 0. Thus, Rt(m−2, m) �
t + 1. However, given any set of t column vectors of length
m + 1, {v1, . . . , vt}, the set is spanned by the t + 1 vectors
{v′

1, v
′
2, . . . , v

′
t, e1} where v′i = vi if the first coordinate of vi

is 1 and v′
i = vi + e1 otherwise. Clearly, {v′1, v′2, . . . , v′t, e1}

are all columns of H , and therefore, Rt(m − 2, m) � t + 1.
Combining the two bounds we get that Rt(m−2, m) = t+1,
for all t � m. Finally, for t > m the claim is trivial since
rank(H2) = m + 1, and any set of column vectors of length
m+1 can be spanned by m+1 linearly independent columns
of H2.

Turning to the more general case of RM(m−s, m), we first
prove a technical lemma. The proof of this lemma is primarily
based on the estimation of binomial coefficients by Stirling’s
approximation.
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Lemma 14: Let t ∈ N be a constant, and r = o (2m). Then

log2t (V2t,2m,r) =
mr

t
−O(r log(r)).

Proof: Since r = o (2m), for sufficiently large m we have
that r < 2m−1, and therefore(

2m

i

)
(2t − 1)i �

(
2m

i + 1

)
(2t − 1)i+1,

for all 0 � i � r. It follows that(
2m

r

)
2r(t−1) � V2t,2m,r (14)

=
r∑

i=0

(
2m

i

)
(2t − 1)i � (r + 1)

(
2m

r

)
2rt.

By Stirling’s approximation (e.g., see [11, p. 251]),(
2m

r

)r

�
(

2m

r

)
�
(

e
2m

r

)r

.

Applying log2t and simplifying we obtain,

mr

t
−r log2t (r)� log2t

(
2m

r

)
� mr

t
− r log2t

(r

e

)
. (15)

Combining (14) and (15) we have

log2t (V2t,2m,r) � log2t

(
(r + 1)

(
2m

r

)
2rt

)

� log2t(r + 1) +
mr

t
− r log2t

(r

e

)
+ r

=
mr

t
−O(r log(r)).

Similarly,

log2t (V2t,2m,r) � log2t

((
2m

r

)
2r(t−1)

)

� mr

t
− r log2t (r) +

r(t − 1)
t

=
mr

t
−O(r log(r)).

We can now state the main bounds for this asymptotic
regime.

Theorem 15: For all m, t ∈ N, 3 � s � m,

t

(s− 1)!
ms−2 + O(ms−3 log(m))

� Rt(m− s, m)

� t

(s− 2)!
ms−2 + O(ms−3),

where we consider s and t to be constants.
Proof: In [7, Section 3] it is proved for the (first) covering

radius that

R1(m− s, m) � ms−2

(s− 2)!
+ O(ms−3).

Combining this with Lemma 6, the upper bound follows
immediately.

Having proven the upper bound, we see that Rt(m−s, m) =
o(2m). Thus, by Lemma 14,

log2t

(
V2t,2m,Rt(m−s,m)

)
=

mRt(m− s, m)
t

−O(ms−2 log(m)).

Combining this with the ball-covering argument from
Lemma 7 and (10), it follows that

mRt(m− s, m)
t

−O(ms−2 log(m))

= log2t

(
V2t,2m,Rt(m−s,m)

)
� 2m − dim (RM(m− s, m))

= dim (RM(s− 1, m)) =
s−1∑
i=0

(
m

i

)

�
(

m

s− 1

)
� ms−1

(s− 1)!
−O(ms−2).

After rearranging we get the claim.
We note that the ratio between the upper and lower bounds

from Theorem 15 tends to s − 1 when m tends to infinity.
In particular, this implies that for fixed s, Rt(m − s, m) =
Θ(ms−2).

C. The Case Where r/m Is Constant

The next asymptotic regime we study is when r/m = α is
constant. For technical reasons, we divide the discussion into
two different cases: 1

2 < α < 1, and 0 < α < 1
2 . We begin

with the range 1
2 < α < 1.

Theorem 16: For all m, t ∈ N and 1
2 < α < 1,

t ·
√

1− α

8(αm)3
· 2mH2(α) · (1 + o(1))

� Rt(αm, m)

� t · 4H2(α) · 2mH2(α) · (1 + o(1)),

where we consider t and α to be constants.
Proof: In [6, Theorem 9.4.25] it is proved that for 1

2 <
α < 1, the (first) covering radius satisfies

R1(αm, m) � 4H2(α) · 2mH2(α) · (1 + o(1)).

By applying the subadditivity property from Lemma 6 we
immediately obtain the claimed upper bound.

For the lower bound, as in the proof of Theorem 15,

log2t

(
V2t,2m,Rt(αm,m)

)
� dim (RM((1− α)m− 1, m)) =

(1−α)m−1∑
i=0

(
m

i

)

�
(

m

(1− α)m− 1

)
=

(1− α)m
αm + 1

(
m

(1 − α)m

)

=
1− α

α

(
m

(1 − α)m

)
(1 + o(1))

�
√

1− α

8mα3
· 2mH2(α) · (1 + o(1)),
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where the last inequality follows from (6). By the upper bound
presented above, Rt(αm, m) = o(2m), and Lemma 14 may
be applied to obtain

mRt(αm, m)
t

(1 + o(1)) = log2t(V2t,2m,Rt(αm,m))

�
√

1− α

8mα3
· 2mH2(α) · (1 + o(1)).

By rearranging we obtain the desired lower bound.
The upper bound and the lower bound from Theorem 16

differ from one another by a factor of Θ(m2/3), and therefore
the ratio between them tends to infinity. Despite that, much
of the asymptotic behavior is revealed, as it shows that the
t-covering radius in this case is 2m(H2(α)+o(1)). In particular,
the relative t-covering radius with respect to the length of the
code vanishes as m→∞.

We now move on to the range 0 < α < 1
2 . We begin with

two lemmas, laying the groundwork for the bounds. The first
lemma is a weaker, more general version of an upper bound
on Rt(r, m).

Lemma 17: For all m, t ∈ N, 1 � r � m,

Rt(r, m) �
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
m

r

)
.

Proof: We prove the claim by induction on m. We first
observe that the claim holds in the extreme cases where r =
1 and r = m. Since 2m/2 � m =

(
m
1

)
for any m ∈ N,

by Lemma 10 we have

Rt(1, m) �
(

1− 1
2t

)
2m −

√
2t − 1
2t

2
m
2

�
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
m

1

)
.

In the case where r = m, RM(m, m) = F
2m

2 , and thus
Rt(m, m) = 0 and the claim holds. In particular, this proves
the claim for m = 1, 2, serving as the induction base.

Assume the claim holds for m − 1, and we now prove it
holds for m. We already know the claim holds for Rt(1, m)
and Rt(m, m). Thus, we only need to show it holds for 2 �
r � m− 1. By Proposition 8 and the induction hypothesis,

Rt(r, m) � Rt(r − 1, m− 1) + Rt(r, m− 1)

�
(

1− 1
2t

)
2m−1 −

√
2t − 1
2t

(
m− 1
r − 1

)

+
(

1− 1
2t

)
2m−1 −

√
2t − 1
2t

(
m− 1

r

)

=
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
m

r

)
,

thus completing the induction step.
The next technical lemma proves the limit of

Rt(αm, m)/2m.
Lemma 18: Let 0 < α < 1

2 be a constant. Then

lim
m→∞

Rt(αm, m)
2m

= 1− 1
2t

.

Proof: Using Lemma 7 and (7), we have

log2t

(
V2t,2m,Rt(αm,m)

)
� 2m −

αm∑
i=0

(
m

i

)
(16)

� 2m − 2mH2(α)

= 2m
(
1− 2−m(1−H2(α))

)
.

Assume to the contrary that Rt(αm, m) � μ2m for some
μ < 1 − 1

2t and infinitely many values of m. In that case,
by (16) and (7),

H2t(μ)2m � log2t

(
V2t,2m,Rt(r,m)

)
� 2m

(
1− 2−m(1−H2(α))

)
.

That is,

H2t(μ) � 1− 2−m(1−H2(α)).

Since α < 1
2 , we have H2(α) < 1, and therefore taking m→

∞ we get H2t(μ) � 1. That is a contradiction as μ < 1− 1
2t .

This proves that

lim inf
m→∞

Rt(αm, m)
2m

� 1− 1
2t

.

From the upper bound presented in Lemma 17 we have

lim sup
m→∞

Rt(αm, m)
2m

� 1− 1
2t

.

Combining these two inequalities we have claim.
Using the previous two lemmas, we can now state the bound

on Rt(αm, m).
Theorem 19: For all m, t ∈ N, and 0 < α < 1

2 ,(
1− 1

2t

)
2m −

√
2t(2t − 1) ln 2

2t
· 2 m

2 (1+H2(α)) · (1 + o(1))

� Rt(αm, m)

�
(

1− 1
2t

)
2m −

√
2t − 1
2t

· 1√
8mα(1− α)

· 2mH2(α),

where t and α are constants.
Proof: The upper bound follows immediately from (6) and

Lemma 17. We turn to prove the lower bound. By Lemma 7
and (7) again,

2mH2t

(
Rt(αm, m)

2m

)
� log2t

(
V2t,m,Rt(αm,m)

)
(17)

� 2m − 2mH2(α).

Since Lemma 17 implies Rt(αm, m) <
(
1− 1

2t

)
2m,

we denote y � 1−1/2t−Rt(αm, m)/2m > 0. By Lemma 18,
y = o(1). In a similar fashion to the proof of Theorem 12,
by (5) we have

H2t

(
Rt(αm, m)

2m

)
= 1− cy2(1 + o(1)),

where c = 22t

2t(2t−1) ln 2 . Substituting this back into (17) we get

1− cy2(1 + o(1)) � 1− 2m(H2(α)−1),
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and therefore,

y � c−
1
2 2

m
2 (H2(α)−1)(1 + o(1)).

Since Rt(αm, m) = (1− 1/2t− y)2m, we reach the claimed
lower bound.

In the region 0 < α � 1 − 1√
2

, we follow a similar
procedure to that of [7], in order to improve the upper bound
of Theorem 19. The following lemma is a sharpening of
Lemma 17, requiring more involved work.

Lemma 20: For all m, t ∈ N, 2 � r � m
2+

√
2

, and m � 3,

Rt(r, m) �
(

1− 1
2t

)
2m −

√
2t − 1
2t

(
1 +
√

2
)r−1

2
m−1

2

+
√

2t − 1
2t 4
√

2
r

(
m

r

)
.

Proof: Like the proof of Lemma 17, we proceed by
induction on m. Throughout this proof we denote the constant√

2t−1
2t by c. As base cases we shall consider both the case of

m = �(2 +
√

2)r� and r � 2, as well as the case of r = 2 for
all m.

Assume that m = �(2+
√

2)r� and r � 2. We first observe
that

H2

(
1

2 +
√

2

)
=

1
2

+
1

2 +
√

2
log2

(
1 +
√

2
)

. (18)

Additionally, by simply monotonicity, as well as (6) and the
comment following it,

(
m

r

)
=
(�r (2 +

√
2
)�

r

)
(19)

�
(

r
(
2 +
√

2
)

r

)
�

4
√

2√
8r

2r(2+
√

2)H2

�
1

2+
√

2

�
.

We now have the following sequence of inequalities proving
the first base case,

Rt(r, m)
(a)

�
(

1− 1
2t

)
2m

(b)

�
(

1− 1
2t

)
2m

− c

(
1

1 +
√

2
−
√

r√
8

)
2r log2(1+

√
2)+ r

2 (2+
√

2)

(c)
=
(

1− 1
2t

)
2m − c

1 +
√

2
(1 +

√
2)r2

r
2 (2+

√
2)

+
cr√
8r

2r(2+
√

2)H2

�
1

2+
√

2

�

(d)

�
(

1− 1
2t

)
2m−c(1+

√
2)r−12

m−1
2 +

cr
4
√

2

(
m

r

)
,

where (a) follows from Lemma 17, (b) follows since for all
r � 2 we have 1

1+
√

2
�

√
r√
8

, (c) follows from (18), and (d)
follows since m = �(2 +

√
2)r� as well as by (19).

We now check that the claim holds for the second base case,
where r = 2. We observe that,

Rt(2, m)
(a)

�
m−1∑
i=2

Rt(1, i)

(b)

�
(

1− 1
2t

)(m−1∑
i=2

2i

)
− c

m−1∑
i=2

(
√

2)i

�
(

1− 1
2t

)
2m − c

m−1∑
i=2

(
√

2)i

=
(

1− 1
2t

)
2m−c

(
(1+
√

2)2
m
2 − 2√

2− 1

)
,

where (a) follows by repeated application of Proposition 8 and
the fact that Rt(2, 2) = 0, and (b) follows from Lemma 10.
We note that the base case is proved when

(1 +
√

2)2
m
2 − 2√

2− 1
� (1 +

√
2)2

m−1
2 − 1

4
√

2
· 2 ·

(
m

2

)
,

(20)

is satisfied. Indeed, one can easily check that (20) holds for
all m � �(2 +

√
2)2� = 7.

Having completed the induction base cases, assume the
claim holds for m − 1, i.e., for all 2 � r � m−1

2+
√

2
. We shall

now prove the claim also holds for m, and all 2 � r � m
2+

√
2

.

The two extreme cases, i.e., r = 2, and m = �(2 +
√

2)r�,
have already been proved in the base cases. For the remaining
values of r,

Rt(r, m)
� Rt(r − 1, m− 1) + Rt(r, m− 1)

�
(

1− 1
2t

)
2m−1 − c(1 +

√
2)r−22

m−2
2

+
c
4
√

2
(r − 1)

(
m− 1
r − 1

)
+
(

1− 1
2t

)
2m−1

− c(1 +
√

2)r−12
m−2

2 +
c
4
√

2
r

(
m− 1

r

)

�
(

1− 1
2t

)
2m − c(1 +

√
2)r−1

(
1 +

1
1 +
√

2

)
2

m−2
2

+
cr
4
√

2

((
m− 1

r

)
+
(

m− 1
r − 1

))

=
(

1− 1
2t

)
2m − c(1 +

√
2)r−12

m−1
2 +

cr
4
√

2

(
m

r

)
,

where the first inequality follows from Proposition 8, and then
we use the induction hypothesis.

Theorem 21: For all m, t ∈ N, and 0 < α < 1− 1√
2

,

Rt(αm, m) �
(

1− 1
2t

)
2m

−
√

2t − 1
2t(2 +

√
2)

2m( 1
2+α log2(1+

√
2))(1 + o(1)),

where t and α are constants.
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Proof: By Lemma 20,

Rt(αm, m)

�
(

1− 1
2t

)
2m

−
√

2t − 1
2t

(
(1 +

√
2)αm−12

m−1
2 − αm

4
√

2

(
m

αm

))

=
(

1− 1
2t

)
2m −

√
2t − 1

2t(2 +
√

2)
2m( 1

2+α log2(1+
√

2))

+ 2m(H2(α)+o(1))

=
(

1− 1
2t

)
2m

−
√

2t − 1
2t(2 +

√
2)

2m( 1
2+α log2(1+

√
2))(1 + o(1)),

where we made use of (6), and the fact that

1
2

+ α log2(1 +
√

2) > H2(α).

The bounds from Theorem 19 and Theorem 21 show that
for 0 < α < 1

2 , the t covering radius of RM(αm, m) is
smaller than

(
1− 1

2t

)
2m by a number which is exponential

in m. However, due to the gap between our lower and upper
bounds, the dependency of that exponential term in α can only
be bounded. The bound from Theorem 19 provides a bound
for this exponential term for all 0 < α < 1

2 :

2m(H2(α)+o(1)) �
(

1− 1
2t

)
2m −Rt(αm, m)

� 2m( 1
2+ 1

2 H2(α)+o(1)).

In Theorem 21 we improve the upper bound for 0 < α <
1− 1√

2
by proving that

2m( 1
2+α log2(1+

√
2)+o(1)) �

(
1− 1

2t

)
2m −Rt(αm, m).

In Figure 1, a comparison between the functions defining
the exponential term obtained in our bounds is presented.
We observe that in the point α = 1 − 1√

2
, we have 1

2 +
α log2(1 +

√
2) = H2(α) and the exponential coefficients in

our bounds meet, namely,

Rt(αm, m) �
(

1− 1
2t

)
2m − 2m( 1

2 α log2(1+
√

2)+o(1))

=
(

1− 1
2t

)
2m − 2m(H2(α)+o(1)).

D. The Case Where r = m
2 + Θ(

√
m)

We observe that whenever r = m
2 , the rate of RM(r, m)

is exactly 1
2 . Being able to track the dependence of the

generalized covering radius on the rate of the code is very
interesting, especially since the case of constant rate is perhaps
the most important regime for communications. Therefore,
we now focus on the case where the code rate is constant,
i.e., r = m

2 + Θ(
√

m).

Fig. 1. A comparison of the exponential term in the bounds from Theorem 19
and Theorem 21: (a) = 1

2
+ 1

2
H2(α), (b) = 1

2
+α log2(1+

√
2), and (c) =

H2(α).

Lemma 22: Let 0 < κ < 1 be a constant. Let r be an
integer such that

∑r
i=0

(
m
i

)
= κ2m. Then

Rt(r, m) � H−1
2t (1− κ) 2m.

Proof: Using Lemma 7, we have

log2t

(
V2t,2m,Rt(r,m)

)
� 2m −

r∑
i=0

(
m

i

)
= 2m(1− κ).

(21)

Assume to the contrary that Rt(r, m) � μ2m for some μ <
H−1

2t (1− κ) and some m. In that case, by (21) and (7),

(1− κ)2m > H2t(μ)2m � log2t

(
V2t,2m,Rt(r,m)

)
� (1− κ) 2m,

which is a contradiction.
For an upper bound, we use an asymptotic approximation of

the near central binomial coefficients, given in the following
lemma:

Lemma 23: [27, Chapter 5.4] For any sequence of integers
(km)m such that

∣∣m
2 − km

∣∣ = o(m2/3),(
m

km

)
=

2m√
1
2mπ

e−
(m−2km)2

2m (1 + o(1)).

Theorem 24: Let 0 < κ < 1 be a constant. Let r be an
integer such that

∑r
i=0

(
m
i

)
= κ2m. Then

H−1
2t (1− κ) 2m

� Rt(r, m)

�
(

1− 1
2t

)
2m −

√
2t − 1
2t

2m√
1
2mπ

e−
(m−2r)2

2m (1 + o(1)).

Proof: The lower bound follows directly from Lemma 22.
The upper bound follows from Lemma 17 and Lemma 23,
as |m− 2r| = Θ(

√
m) = o(m2/3).

We observe that in this case, the ratio between the lower and
upper bounds from Theorem 24 does not tend to 1 as m→∞.
However, our bounds show that in the case of constant rate,
the t-covering radius is in some linear dependency with the
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TABLE I

A SUMMARY OF EXACT VALUES

length of the code. That is, for any sequence (rm)m such that∑rm

i=0

(
m
i

)
= κ2m,

H−1
2t (1− κ) � lim inf

m→∞
Rt(rm, m)

2m
(22)

� lim sup
m→∞

Rt(rm, m)
2m

� 1− 1
2t

.

It remains unclear whether the limit always exists, and if it
does, what is its value. We would like to remark that even in
the case where t = 1 and r = m

2 , an answer to that intriguing
question is still unknown. As similarly to our case, the best
known lower and upper bounds (presented in [7]) exhibit an
asymptotic gap between them:

H2

(
1
2

)
� lim inf

m→∞
R1(m/2, m)

2m
� 1

4
.

Compared with (22), the upper bound above reduces from 1
2

to 1
4 .

IV. APPLICATION OF THE BOUNDS TO GENERAL CODES

In this section, we show our upper bounds on the covering
radii of Reed-Muller codes may also be used for the study
of the asymptotic behaviour of generalized covering radii of
linear codes in general. Given the parameters t ∈ N, λ ∈ [0, 1]
and a prime power q, the asymptotic minimal rate of a code
over Fq with a normalized t-th generalized covering radius
of no more than λ, is denoted by κt(λ, q). Since the t-th
generalized covering radius of a direct sum of codes is the sum
of the t-th generalized covering radii of its component codes
(see [10, Prop. 25]), an [n, k]q linear code with t-th generalized
covering radius of r immediately creates an infinite family of
codes with rate k

n and normalized t-th generalized covering
radius r

n . It then follows that κt(r/n, q) � k/n. By the
monotonicity of κt(λ, q) in λ, this upper bound holds for all
λ � r/n. Thus, our upper bounds on the generalized covering
radii of Reed-Muller codes (denoted by Ut(r, m)) give the
following upper bounds:

κt(λ, 2) � dim (RM(r, m))
2m

for all λ � Ut(r, m)
2m

(23)

In Figure 2, we present the bound obtained by applying
(23) in the range 2 � m � 20, 1 � r � m, in the case
where t = 3. Each pair (r, m), results in a point depicted in
the graph. We observe that some of the points obtained in this
way improve upon the upper bound in [10, Prop. 14], which
is derived from the subadditive property, i.e.,

κt(λ, q) � 1−Hq

(λ

t

)
, (24)

where Hq(·) is the q-ary entropy function.

Fig. 2. A comparison of the bounds on κ3(ρ, 2): (a) the ball-covering lower
bound [10, Prop. 12], (b) the general upper bound [10, Prop. 14], and (c) our
upper bound obtained from the upper bound on the t-th generalized covering
radius of Reed-Muller codes.

Fig. 3. A comparison of the bounds on κ2(ρ, 2): (a) the ball-covering lower
bound [10, Prop. 12], (b) the improved upper bound [10, Thm. 22], and (c) our
upper bound obtained from the upper bound on the t-th generalized covering
radius of Reed-Muller codes.

We remark that the upper bound of (24) may be improved
using our result for general t � 2. Fixing some finite r,
we consider the sequence of codes (RM(r, m))∞m=1. The rates
of these codes obviously vanishes to 0 as m → ∞. On the
other hand, from Theorem 11,

lim
m→∞

Ut(r, m)
2m

= 1− 1
2t

.

Thus, the bounds obtained by applying (23) to RM(r, m)m

provides that

κt(λ) = 0 for all λ > 1− 2t.

That is an improvement upon (24), as H2

(
ρ
t

)
> 0 for all

1− 1
2t � λ � 1 and t � 2.

A similar comparison, with t = 2, is shown in Figure 3.
Note that the upper bound of [10, Theorem 22], which is
tailored for t = 2 and is derived by using the probabilistic
method, is stronger than (24), and so the bound of (23) offers
no improvement.

V. COVERING ALGORITHM

In this section we describe an algorithm which receives as
input a matrix v ∈ F

t×2m

2 , and returns a codeword matrix2

2Recall that RM(r, m)t is the code in F
t×n
2 comprising of all the matrices

whose rows belong in RM(r, m) (see Definition 2).
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TABLE II

A SUMMARY OF THE BOUNDS

c ∈ RM(r, m)t that is no farther away from v than the upper
bounds described in the previous section, namely

d(t)(v, c) � Ut(r, m),

where Ut(r, m) is any upper bound on Rt(r, m) from Table II.
We call this a covering algorithm, and it may be thought of as
the analogue to a decoding algorithm for an error-correcting
code.

To motivate our study of a covering algorithm, we recall the
motivating example described in [10]. We look at linear data
querying schemes, the most prominent example of which is
private information retrieval (PIR), in which the user queries
a database by linear combinations. We think of the database
as a sequence of elements x = (x1, . . . , xm) ∈ F

m
q� . The

user may query the contents of the database by providing
s = (s1, . . . , sm) ∈ F

m
q , and getting in response the linear

combination s · x =
∑m

i=1 sixi. The access complexity in
such protocols is the number of database items that need to
be read in order to compute the desired linear combination.
In a straightforward implementation, the access complexity is
the number of non-zero coefficients in s1, . . . , sm. Thus, in a
typical PIR scheme, which selects random coefficients, the
expected fraction of non-zero coefficients is 1 − 1

q , resulting
in a prohibitively high access complexity.

In order to reduce the access complexity one may
pre-compute and store some linear combinations of data
elements. If the original database is x = (x1, . . . , xm) ∈
F

m
q� , the linear combinations h1 · x, h2 · x, . . . , hn · x are

pre-computed and stored instead of the original database x,
where h1, . . . , hn ∈ F

m
q . Assume now that the database

receives a query given by s ∈ F
m
q . If we can find r � m

vectors hi1 , . . . , hir such that s ∈ �hi1 , . . . , hir �, then we
may answer the query by accessing the r pre-computed linear
combinations hi1 ·x, . . . , hir ·x, instead of accessing all the m

elements in the database, x1, . . . , xm. Considering the vectors
h1, . . . , hn as the columns of a parity-check matrix H of an
[n, n −m]q linear code C, Definition 3 guarantees that r �
R1(C) such vectors may always be found. Thus, by storing
the n pre-computed linear combinations instead of the original
database, we increased the storage, but we reduced the access
complexity since we need to access at most R1(C) elements of
the database. As an additional step, assume the database does
not answer queries individually, but instead groups together t
queries given by s1, . . . , st ∈ F

m
q . We now need the r vectors

hi1 , . . . , hir to satisfy s1, . . . , st ∈ �hi1 , . . . , hir � in order to
answer the queries. By Definition 3, r � Rt(C) such vectors
exist, and by Lemma 6, Rt(C) � tR1(C). Thus, by delay-
ing the answers to queries, namely, increasing the latency,
we have further reduced the access complexity from tR1(C)
(the access complexity of treating t queries individually)
to Rt(C).

We translate this problem into a more convenient form. Let
us write the vectors s1, . . . , st as rows of a matrix s ∈ F

t×m
q .

Since the parity-check matrix of C is a full-rank matrix, H ∈
F

m×n
q , by solving a set of linear equations we can efficiently

find a matrix v ∈ F
t×n
q such that Hvᵀ = sᵀ. We would

now like to solve the following task: Given v ∈ F
t×n
q , find

c ∈ Ct such that d(t)(v, c) � r. We observe that by finding
such c, since H(v − c)ᵀ = sᵀ, the rows of v − c describe
linear combinations of the columns of H that both result in
s1, . . . , st, and use no more than r columns. Ideally, we would
like to choose r = Rt(C).

We call such an algorithm a t-covering algorithm for C,
with radius r. It bears a resemblance to a decoding algorithm
for an error-correcting code, however some crucial differences
are to be noted. To guarantee unique decoding, standard decod-
ing algorithms assume the input is a point in the space that is
no more than 
d−1

2 � away from a codeword, where d is the
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Algorithm 1 A t-Covering Algorithm for RM(r, m) With
Radius Ut(r, m)

Function recursive(v, r)
Input : v ∈ F

t×2m

2 , r ∈ N, 1 � r � m
// Check edge cases
if r = m then return v
if r = 1 then return argminc∈RM(1,m)t d(t)(v, c)
// Use the (u, u + v) recursion

Let v1,v2 ∈ F
t×2m−1

2 s.t. v = (v1,v2)
c1 ← recursive(v1, r)
c2 ← recursive(v2 − c1, r − 1)
return (c1, c1 + c2)

Function subadditive(v, r)
Input : v ∈ F

t×2m

2 , r ∈ N, 1 � r � m
// Use subadditivity
Let vi be the i-th row of v
forall the i ∈ [t] do

ci ← recursive(vi, r)
return (cᵀ

1 , . . . , cᵀ
t )ᵀ

Function cover(v, r)
Input : v ∈ F

t×2m

2 , r ∈ N, 1 � r � m
cmin ← recursive(v, r)
c′min ← subadditive(v, r)
return argminc∈{cmin,c′

min} d(t)(v, c)

minimum distance of the code. The covering algorithm may
receive as input any point in the metric space. Additionally,
the decoding algorithm returns the closest (and only) codeword
within radius of 
d−1

2 � from the input point. In contrast, the
covering algorithm may return any codeword whose distance
from the input as it most r, and not necessarily the closest
codeword. Thus, the covering algorithm discussed here does
not perform maximum-likelihood decoding.

As we saw in Section III, computing the generalized cov-
ering radii of Reed-Muller codes is a difficult task in general.
Even for the case of t = 1, and despite having been studied
for decades, the covering radius of Reed-Muller codes is
still not fully known. Thus, finding an efficient t-covering
algorithm for RM(r, m), with radius Rt(r, m), poses a great
challenge, if only for the fact that Rt(r, m) is unknown in
general. An inefficient, brute-force implementation of such an
algorithm is trivial, yet, uninteresting.

Instead, in what follows, we devise an efficient t-covering
algorithm for RM(r, m), with radius Ut(r, m), where Ut(r, m)
is any of the upper bounds on Rt(r, m) found in this paper,
and summarized in Table II. Our approach stems from the fact
that all the bounds in Table II are derived recursively using
the (u, u + v) construction (Proposition 8) and subadditivity
(Lemma 6), as well as simple base cases.

Theorem 25: For any t, r, m ∈ N, r � m, and any v ∈
F

t×2m

2 , running c = cover(v, r), from Algorithm 1, pro-
duces c ∈ RM(r, m)t such that d(t)(v, c) � Ut(r, m). Addi-
tionally, its run-time complexity is O(t2t(2t+1)m+1(2t+1 −
1)−r + tm2m).

Proof: The algorithm clearly stops since, during the
recursive calls, either r or m strictly decrease, and the base
cases of r = 1 and r = m are eventually reached. The
returned c is clearly a codeword, stemming from the base cases
and the (u, u + v) structure of Reed-Muller codes. Finally,
d(t)(v, c) � Ut(r, m) due to Proposition 8, Lemma 6, and
the fact that all the bounds in Table II are relaxations of both
(including Theorem 15 which is based on a result from [7]).

We move on to the analysis of the run-time complexity.
We first analyze recursive(v, r), whose running time we
denote by T (t, r, m). We contend that for some constant c ∈
N,

T (t, r, m) � f(t, r, m)

� c
(
t2t(2t+1)m+1(2t+1 − 1)−r + tm2m

)
.

This proof is by induction. For the first simple base case of
r = m we have T (t, m, m) = c′, a constant, and indeed

T (t, m, m) = c′ � c
(
t2t(2t+1)m+1(2t+1 − 1)−m + tm2m

)
= f(t, m, m),

for a proper choice of c. Next, we check the base case r = 1.
In this case, a brute-force distance measurement is performed
between v and the codewords of RM(1, m)t. Each codeword
is a t × 2m matrix, and we have a total of |RM(1, m)t| =
2(m+1)t such codewords. Thus, for some constant c′,

T (t, 1, m) = c′ · t2m · 2(m+1)t

� c
(
t2t(2t+1)m+1(2t+1 − 1)−1 + tm2m

)
= f(t, 1, m),

for any c � c′. Moving on to the main recursion, assume
the claim holds for T (t, r, m − 1), for all 1 � r � m − 1,
and we prove it also holds for T (t, r, m) for all 1 � r � m.
If r = 1 or r = m, we have a base case which we have already
proved. Otherwise, the algorithm manipulates a t×2m matrix
and runs two recursive instances. Hence, for some constant c′,
and after choosing any c � c′, we have

T (t, r, m)
= c′t2m + T (t, r − 1, m− 1) + T (t, r, m− 1)

� ct2m + c
(
t2t(2t+1)m(2t+1 − 1)−r+1 + t(m− 1)2m−1

)
+ c

(
t2t(2t+1)m(2t+1 − 1)−r + t(m− 1)2m−1

)
= c

(
t2t(2t+1)m+1(2t+1 − 1)−r + tm2m

)
= f(t, r, m).

This completes the induction. To complete the proof as well,
we note that the complexity of subadditive(v, r) is always
subsumed by the complexity of recursive(v, r).

As in the previous section, we analyze three asymptotic
regimes for r and m:

Corollary 26: Let t ∈ N be a constant, let n = 2m

be the length of the code RM(r, m), and denote β �
log2

t+1
√

2t+1 − 1. Then the run-time complexity of Algo-
rithm 1 is:

• O(nt+1) when r is constant.
• O(n(t+1)(1−αβ)) when r = αm, and 0 < α < t

(t+1)β is
a constant.
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• O(n log n) when r = m − s, s is constant, or when
r = αm, and t

(t+1)β � α < 1 is a constant.
Proof: This is a straightforward application of Theo-

rem 25. The t
(t+1)β cutoff point stems from the fact that

the complexity is in fact O(n(t+1)(1−αβ) + n logn). Thus,
for α < t

(t+1)β , we have that (t + 1)(1 − αβ) > 1, and

n(t+1)(1−αβ) dominates the complexity. However, when α �
t

(t+1)β , we have that (t+1)(1−αβ) � 1 and n log n dominates
the complexity.

VI. CONCLUSION

In this work, we studied the generalized covering radii
of Reed-Muller codes, Rt(r, m). In some simple cases we
found the exact generalized covering radii (see Table I).
For most other cases we found lower and upper bounds on
the generalized covering radii (see Table II). These bounds
were found in three asymptotic regimes: r constant, m − r
constant, and r/m constant. We also constructed a t-covering
algorithm with radius no worse than the upper bounds that
we found (see Algorithm 1). We analyzed the algorithm’s
run-time complexity and showed it is polynomial in the code
parameters.

We would like to mention a couple of interesting open
questions pertaining to the results of this paper. We first
observe that, apart from the base cases, our bounds are
obtained using the (u, u + v) recursion, and subadditivity.
We suspect that for improved bounds, a different approach
may be needed, perhaps an approach that exploits the unique
geometric and combinatorial properties of Reed-Muller codes.

Another open problem concerns Algorithm 1. The edge case
of RM(1, m) is solved in the algorithm using a brute-force
approach: the distance between the input, v, and the code-
words of RM(1, m)t is measured exhaustively and naively.
However, for t = 1, the codewords of RM(1, m) form a
Sylvester-type Hadamard matrix and its complement. Thus,
by using the Walsh-Hadamard transform, an efficient measure-
ment of the distance from v to the codewords of RM(1, m) is
possible in O(n log n) time, instead of the Θ(n2) of a naive
implementation, where n = 2m is the code length. Whether a
similar approach can improve Algorithm 1 is still unknown.

Finally, and more generally, it is known that the generalized
covering radii are monotone non-decreasing in t. Thus, any
improvement in the bounds on Rt(r, m) may perhaps bring
about an improvement in the bounds on the (regular) covering
radius of Reed-Muller codes, R1(r, m). These problems, and
others, are left for future research.
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