
4422 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Sequence Reconstruction for
Limited-Magnitude Errors

Hengjia Wei and Moshe Schwartz , Senior Member, IEEE

Abstract— Motivated by applications to DNA storage, we study
reconstruction and list-reconstruction schemes for integer vectors
that suffer from limited-magnitude errors. We characterize the
asymptotic size of the intersection of error balls in relation to
the code’s minimum distance. We also devise efficient reconstruc-
tion algorithms for various limited-magnitude error parameter
ranges. We then extend these algorithms to the list-reconstruction
scheme, and show the trade-off between the asymptotic list size
and the number of required channel outputs. These results apply
to all codes, without any assumptions on the code structure.
Finally, we also study linear reconstruction codes with small
intersection, as well as show a connection to list-reconstruction
codes for the tandem-duplication channel.

Index Terms— Reconstruction codes, list-reconstruction codes,
limited-magnitude errors, integer codes.

I. INTRODUCTION

THE sequence-reconstruction problem, which was first
introduced by Levenshtein [17], considers a paradigm in

which a sequence from some set is transmitted multiple times
over a channel and the receiver needs to recover the transmitted
sequence from the received sequences. It was originally moti-
vated by the communication scenario where the only feasible
strategy to combat errors is repeated transmission. Recently,
it has been observed that this problem has a natural connection
to DNA-based data storage systems. In such systems, the DNA
strands are expected to be replicated many times, whether due
to biological processes when in-vivo storage is used, or due to
chemical processes in synthesis or sequencing when in-vitro
storage is used. The user usually gets many noisy reads of the
stored DNA strand when retrieving the data. Recovering the
original DNA strand from its multiple noisy reads is therefore
a sequence-reconstruction problem.

For a sequence x, the error ball of x is the set of all possible
outputs with x being transmitted through the channel. Clearly,
the number of different channel outputs required to recover
the transmitted sequence must be larger than the maximum
intersection between the error balls of any two possible trans-
mitted sequences [17]. One goal of the reconstruction problem

Manuscript received August 22, 2021; revised February 27, 2022; accepted
March 8, 2022. Date of publication March 14, 2022; date of current version
June 15, 2022. This work was supported in part by the Israel Science
Foundation (ISF) under Grant 270/18. (Corresponding author: Hengjia Wei.)

Hengjia Wei is with the Peng Cheng Laboratory, Shenzhen 518000, China
(e-mail: hjwei05@gmail.com).

Moshe Schwartz is with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Beer Sheva 8410501, Israel (e-mail:
schwartz@ee.bgu.ac.il).

Communicated by A. Thangaraj, Associate Editor for Coding and Decoding.
Digital Object Identifier 10.1109/TIT.2022.3159736

is to determine the maximum intersection of two balls where
the distance between their centers is at least some prescribed
value. A significant number of papers has been devoted to
determining this value for various error models, including
substitutions, deletions, insertions, transpositions, and tandem-
duplications [5], [12], [17], [18], [20], [31]. Additionally,
a graph-theoretical approach was studied in [14], [17], and [15]
to solve this problem in a more general metric distance.

Apart from determining the maximum intersection of two
balls, other research directions have been considered as well.
Refs. [1], [28] proposed efficient reconstruction algorithms
to combat substitutions. Reconstruction codes have been
designed to recover the transmitted sequences from a given
number of sequences corrupted by tandem-duplications [31]
or a single edit error [3]. Yaakobi and Bruck extended this
problem in the context of associative memories [28] and
introduced the notion of uncertainty of an associative memory
for information retrieval, the value of which is equal to the
maximum intersection of multiple error balls. In the context
of sequence reconstruction, a closely related problem is to
construct a list from multiple received noisy sequences such
that the transmitted sequence is included in the list. The trade-
off between the size of the minimum list (the number of balls)
and the number of different received noisy sequences (the
maximum intersection / uncertainty) has been analyzed for
substitutions [10] and for tandem-duplications [32].

This paper focuses on limited-magnitude errors, which
could be found in several applications, including high-density
magnetic recording channels [13], [16], flash memories [4],
and some DNA-based storage systems [9], [27]. In all of these
applications, information is encoded as vectors of integers,
and these vectors are affected by noise that may increase
or decrease entries of the vectors by a limited amount. For
instance, in a new inexpensive enzymatic method of DNA
synthesis [9], the information is first encoded as sequences
of the form ((a1, u1), (a2, u2), . . . , (an, un)), where ai ∈
{A, T,C,G}, ui ∈ Z for 1 � i � n, and ai �= ai+1 for
1 � i � n−1. Each pair (ai, ui) represents a run of ai whose
length is controlled1 by ui. In the molecule-synthesis process,
the corresponding DNA strings which consist of n runs are
synthesized. Due to variability, the length of each run might
be shorter or longer than planned, usually by a limited amount.

1To combat minor variations, the set of positive integers is partitioned into
several intervals, and the length of the i-th run could take any value from the
interval identified by ui.

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8136-1489
https://orcid.org/0000-0002-1449-0026

WEI AND SCHWARTZ: SEQUENCE RECONSTRUCTION FOR LIMITED-MAGNITUDE ERRORS 4423

The design of codes combating such errors, or equivalently,
the packing/tiling of the corresponding errors balls, has been
extensively researched, see e.g., [2], [7], [8], [11], [22]–[26],
[29], [30], [33]–[35], and the many references therein.

In this paper, we study the reconstruction problem with
respect to limited-magnitude errors. We first propose a new
kind of distance to capture the capability of correcting limited-
magnitude errors. Then for any code C of distance at least
a prescribed value, we present both an upper bound and a
lower bound on the size of the maximum intersection of
any two error balls centered at the codewords of C. In this
way, we characterize the trade-off between this value and
the number of excessive errors that the code C cannot cope
with. Moreover, we study this reconstruction problem in a
group-theoretical approach. In the channel that introduces
a single limited-magnitude error, we design two classes of
reconstruction codes which both have densities significantly
larger than that of the normal error-correcting codes, at the cost
of requiring one or two more received sequences. We present
two efficient algorithms to reconstruct a transmitted codeword
from any given code. Finally, we modify our reconstruction
algorithms to accommodate the requirement of list decoding
when the number of received sequences is less than the
maximum intersection. Additionally, we show that one of
our reconstruction algorithm could be used in the context of
tandem duplications.

The paper is organized as follows. Section II provides
notation and basic known results used throughout the paper.
In Section III we study the maximum intersection and present a
few upper bounds and lower bounds. In Section IV, we design
codes that can recover the sequence from two or three received
sequences. Section V presents two efficient reconstruction
algorithms. Section VI studies the list decoding problem
with multiple received sequences. Section VII discusses the
reconstruction algorithm for tandem duplications.

II. PRELIMINARIES

Let Z denote the ring of integers and N denote the set
of natural numbers. Throughout the paper we let n and t
be integers such that n � t � 1. We further assume k+

and k− are non-negative integers such that k+ � k− � 0.
For integers a � b we define [a, b] � {a, a + 1, . . . , b}
and [a, b]∗ � [a, b] \ {0}. Vectors will be written using bold
lower-case letters. If v = (v1, . . . , vn) is a vector, we shall
conveniently use v[i] to denote its i-th entry, namely, v[i] � vi.

For an integer vector v ∈ Z
n, if t of its entries suffer

an increase by as much as k+, or a decrease by as much
as k−, we say v suffers t (k+, k−)-limited-magnitude errors.
We define the (n, t, k+, k−)-error-ball as

B(n, t, k+, k−) � {x = (x1, x2, . . . , xn) ∈ Z
n |

− k− � xi � k+ and wt(x) � t}, (1)

where wt(x) denotes the Hamming weight of x. Thus,
the translate v + B(n, t, k+, k−) is the error ball centered
at the vector v. If the values of k+ and k− can be inferred
from the context, we simply denote it as Bt(v) to emphasize
its center and radius.

The size of the ball B(n, t, k+, k−) will appear throughout
this work. It is closely related to the size of a ball in the
Hamming metric, which over an alphabet of size q, and with
radius t, is

Vq(n, t) �
t∑

i=0

(
n

i

)
(q − 1)i.

Using this notation, the size of B(n, t, k+, k−) is given by

|B(n, t, k+, k−)| = Vk++k−+1(n, t).

An error-correcting code in this setting is a packing of Z
n

by B(n, t, k+, k−), that is, a subset C ⊆ Z
n such that for any

two distinct vectors x,y ∈ C, the balls x + B(n, t, k+, k−)
and y+B(n, t, k+, k−) are disjoint. The largest integer t with
this property is the unique-decoding radius of C (with respect
to (k+, k−)-limited-magnitude errors).

Throughout this paper, we use these two notions of
error-correcting code and packing interchangeably. The fol-
lowing distance,2 d�, allows to determine the number of
(k+, 0)-limited-magnitude errors that a code could correct.

Definition 1 ([4]): For x,y ∈ Z
n, define

N(x,y) � |{i;x[i] > y[i]}|.
The distance d� between x and y is defined as

d�(x,y)

�
{
n+ 1, maxi{|x[i]− y[i]|} > �,

max{N(x,y), N(y,x)}, otherwise.

Proposition 2 ([4]): A code C ∈ Z
n can correct e (k+, 0)-

limited-magnitude errors if and only if dk+(x,y) � e+ 1 for
all distinct x,y ∈ C.

If the number of errors, t, exceeds the unique-decoding
radius, e, of C, the error balls of radius t centered at the
codewords might intersect. For any two distinct vectors x,y ∈
Z

n, let N(x,y; t, k+, k−) be the size of the intersection of the
two balls x + B(n, t, k+, k−) and y + B(n, t, k+, k−), i.e.,

N(x,y; t, k+, k−)

� |(x + B(n, t, k+, k−)) ∩ (y + B(n, t, k+, k−))| .
Given a code C ⊆ Z

n, let N(C; t, k+, k−) be the size of the
maximum intersection of any two balls centered at different
codewords of C, that is,

N(C; t, k+, k−)

� max
x,y∈C
x �=y

{N(x,y; t, k+, k−)}

= max
x,y∈C
x �=y

{|(x + B(n, t, k+, k−)) ∩ (y + B(n, t, k+, k−))|}.

In Section III we shall first extend the definition of d� to
capture the error-correcting capability for k− > 0, then give
some upper bounds and lower bounds on N(C; t, k+, k−) for
any code C of distance at least a prescribed value. In this way,
we show that for any fixed integers t and e with t > e, a code
C can correct up to e (k+, k−)-limited-magnitude errors if

2Note that although d� is referred to as a distance in [4] and here, it does
not satisfy the triangle inequality.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

4424 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

and only if the maximum intersection N(C; t, k+, k−) has size
Θ(nt−e−1).

A. Lattice Code/Packing and Group Splitting

Let G be a finite Abelian group, where + denotes the group
operation. For m ∈ Z and g ∈ G, let mg denote g+g+ · · ·+g
(with m copies of g) when m > 0, which is extended in the
natural way to m � 0, i.e., the sum of |m| copies of −g (the
additive inverse of g in G).

A lattice is an additive subgroup Ι of Z
n. Throughout the

paper we shall assume lattices are non-degenerate, namely,
the quotient group Z

n/Ι is a finite group. The density of
Ι is defined as |Zn/Ι|−1. Let G be an Abelian group and
s = (s1, s2, . . . , sn) be a sequence of Gn. Define

Ι � {x ∈ Z
n;x · s = 0}.

Then Ι is a lattice. Conversely, every lattice Ι ⊆ Z
n

can be represented in this form with some sequence s over
some Abelian group G: Let G be the quotient group, i.e.,
G = Z

n/Ι. Let φ : Z
n → G be the natural homo-

morphism, namely the one that maps any x ∈ Z
n to the

coset of Ι in which it resides. Let ei be the i-th unit
vector in Z

n and set si � φ(ei) for all 1 � i � n and
s � (s1, s2, . . . , sn). Then s is a vector over the Abelian group
G and Ι = kerφ = {x ∈ Z

n;x · s = 0}. Note that if we treat
Ι as a code, the vector s plays the role of a “parity-check
matrix”.

A lattice code correcting t (k+, k−)-limited magnitude
errors is equivalent to a lattice packing of Z

n with
B(n, t, k+, k−). Their connection to group splitting for t =
1 has been observed in [21]. For an excellent treatment and
history, the reader is referred to [25] and the many references
therein. Recently, an extended definition of group splitting
was proposed [26] in connection with lattice packings of
B(n, t, k+, k−) with t > 1, i.e., lattice codes that correct
multiple errors.

Definition 3 ([26]): Let G be a finite Abelian group. Let
M ⊆ Z \ {0} be a finite set, and s = (s1, s2, . . . , sn) ∈ Gn.
If the elements e·s, where e ∈ (M∪{0})n and 1 � wt(e) � t,
are all distinct and non-zero in G, we say the set M partially
t-splits G with a splitter vector s, denoted

G � M �t s.

In our context of (k+, k−)-limited-magnitude errors,
we need to take M � [−k−, k+]∗. The following theorem
shows the equivalence of partial t-splittings with M and lattice
packings of B(n, t, k+, k−).

Theorem 4 ([26]): Let Ι ⊆ Z
n be a lattice. Let G = Z

n/Ι.
Set s � (φ(e1), φ(e2), . . . , φ(en)), where φ : Z

n → G is the
natural homomorphism. Then B(n, t, k+, k−) lattice packs Z

n

by Ι if and only if G � [−k−, k+]∗ �t s.
Recall that the sequence s plays the role of “parity-check

matrix”. Then the elements e · s, where e ∈ (M ∪ {0})n and
1 � wt(e) � t, correspond to the syndromes. Theorem 4 tells
us that the code Ι can correct limited-magnitude errors if and
only if the syndromes are distinct.

Example 5: Consider the ball B(2, 1, 3, 2). Let Ι be a lattice
of Z

2 generated by (4, 1) and (3, 5). Then Z
n/Ι ∼= Z17

and Ι = {x ∈ Z
2;x · s = 0} with s = (4, 1). The

ball size is |B(2, 1, 3, 2)| = 11, comprising of the no-error
case, and ten distinct error scenarios. The ten syndromes are
1, 2, 3, 4, 8, 9, 12, 13, 15, 16, which are pairwise distinct. Thus,
the ball B(2, 1, 3, 2) lattice packs Z

2 by Ι.

III. MAXIMUM INTERSECTION OF TWO ERROR BALLS

In this section we study the size of the maximum intersec-
tion N(C; t, k+, k−) for any given code C ⊆ Z

n. This is an
essential component in analyzing reconstruction codes since it
determines the number of distinct channel outputs needed for
the reconstruction to be successful. We first look at the case
of C = Z

n.
Theorem 6: For any n, t, k+, k− with t � n and 0 � k− �

k+, we have that

N(Zn; t, k+, k−) =
t−1∑
i=0

(
n− 1
i

)
(k+ + k−)i+1

= (k+ + k−)Vk++k−+1(n− 1, t− 1).

Proof: Consider the two words x = (0, 0, 0, . . . , 0) and
y = (1, 0, 0, . . . , 0) in Z

n. Then it is easy to see that the
intersection of the two balls centered at x and y has size
(k+ + k−)

∑t−1
i=0

(
n−1

i

)
(k+ + k−)i.

Denote N � (k+ + k−)
∑t−1

i=0

(
n−1

i

)
(k+ + k−)i. In the

following, we shall show that N(Zn; t, k+, k−) � N by
giving a decoding algorithm based on the majority rule. Fix
an arbitrary vector x ∈ Z

n. Suppose that z1, z2, . . . , zN+1 ∈
x + B(n, t, k+, k−). For each i ∈ [1, n], define the multiset

Zi � {z1[i], z2[i], . . . , zN+1[i]}.
Let mi be the smallest element of Zi and Mi be the largest
element of Zi. If Mi − mi = k+ + k−, necessarily x[i] =
mi + k−. Otherwise, Mi − mi < k+ + k− and there are
at most k+ + k− distinct elements in Zi. For each mi �
a � Mi, if a �= x[i], then the number of zj’s such that
zj [i] = a is at most

∑t−1
i=0

(
n−1

i

)
(k+ + k−)i. Since N + 1 =

(k+ + k−)
∑t−1

i=0

(
n−1

i

)
(k+ + k−)i + 1, x[i] must be the most

frequently occurring element of Zi. �
We now move on to study the case where C ⊆ Z

n is a code
of distance at least a prescribed value. We first consider the
case of k− = 0.

Lemma 7: Let δ � t � n. For any two vectors x,y ∈ Z
n

with dk+(x,y) = δ � n, we have that

t−δ∑
i=0

(
n− 2δ
i

)
(k+)i � N(x,y; t, k+, 0)

�
t−δ∑
i=0

(
n− δ
i

)
(k+)i

t−i∑
k=δ+i−t

(
δ

k

)
(k+ − 1)δ−k. (2)

Proof: Assume that N(x,y) = δ and N(y,x) = δ′ with
δ′ � δ, where N(x,y) � |{i;x[i] > y[i]}|. Let z be an
element in Bt(x)∩Bt(y). Denote by i the number of positions
where x and y agree but differ from z. Denote by j the number
of positions where x and z agree but differ from y. Since

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: SEQUENCE RECONSTRUCTION FOR LIMITED-MAGNITUDE ERRORS 4425

k− = 0, in these positions the components of x must be larger
than those of y. Thus,

0 � j � δ. (3)

Denote by k the number of positions where y and z agree but
differ from x. In these positions the components of y must be
larger than those of x, and so,

0 � k � δ′. (4)

There are (δ − j) + δ′ + i positions where x and z differ and
δ + (δ′ − k) + i positions where y and z differ. Hence,

0 � δ − j + δ′ + i � t, (5)

0 � δ + δ′ − k + i � t. (6)

Combine (4) and (6) to get

0 � i � t− δ.
Combine (3)–(6) to get

δ + δ′ + i− t � j � t− i,
where the first inequality comes from (5) and the second
inequality is obtained by combining (3), (4) and (6). Similarly,
we have

δ + δ′ + i− t � k � t− i.
Hence, the number of choices for z is at least

t−δ∑
i=0

(
n− δ − δ′

i

)
(k+)i;

and at most
t−δ∑
i=0

(
n− δ − δ′

i

)
(k+)i

t−i∑
j=δ+δ′+i−t

(
δ

j

)

×
t−i∑

k=δ+δ′+i−t

(
δ′

k

)
(k+ − 1)δ+δ′−j−k. (7)

Thus, we just proved the lower bound, since
(
n−δ−δ′

i

)
�(

n−2δ
i

)
. In the following, we show that (7) is decreasing with

δ′. Note that (7) is achieved only when |x[i] − y[i]| � 1 for
all 1 � i � n. W.l.o.g., we assume that

x = (1, 1, . . . , 1︸ ︷︷ ︸
δ

, 0, 0, . . . , 0︸ ︷︷ ︸
δ′

, 0, 0, . . . , 0︸ ︷︷ ︸
n−δ−δ′

),

and

y = (0, 0, . . . , 0︸ ︷︷ ︸
δ

, 1, 1, . . . , 1︸ ︷︷ ︸
δ′

, 0, 0, . . . , 0︸ ︷︷ ︸
n−δ−δ′

).

Let

y′ = (0, 0, . . . , 0︸ ︷︷ ︸
δ

, 1, 1, . . . , 1︸ ︷︷ ︸
δ′−1

, 0, 0, . . . , 0︸ ︷︷ ︸
n−δ−δ′+1

).

We are going to show that

|Bt(x) ∩Bt(y)| � |Bt(x) ∩Bt(y′)| . (8)

For any z ∈ (Bt(x) ∩ Bt(y)) \ (Bt(x) ∩ Bt(y′)), we have
that z[δ + δ′] ∈ [1, k+]. Furthermore, since z ∈ Bt(y) and
z �∈ Bt(y′), necessarily z[δ + δ′] = 1.

Let z′ be the vector obtained from z by changing z[δ + δ′]
from ‘1’ to ‘0’. Then it is easy to verify that z′ ∈ Bt(x),
z′ ∈ Bt(y′) and z′ �∈ Bt(y). Hence,

z′ ∈ (Bt(x) ∩Bt(y′)) \ (Bt(x) ∩Bt(y)).

Note that for different choices of z, z′ are pairwise distinct.
Therefore, we have proved (8), and so (7) is decreasing with δ′.
The upper bound in (2) follows from (7) by taking δ′ = 0. �

Remark: The lower bound in (2) can be attained if
N(x,y) = N(y,x) = δ and x[i]− y[i] ∈ {k+, 0,−k+} for
all 1 � i � n; the upper bound in (2) can be attained if
N(y,x) = 0 and x[i]− y[i] ∈ {0, 1} for all 1 � i � n.

With Lemma 7 in hand, we can bound the intersection of
balls around codewords in a general code, and with k− = 0.

Lemma 8: Let δ � t � n, and C ⊆ Z
n be a code with

minimum distance dk+(C) = δ. Then

t−δ∑
i=0

(
n− 2δ
i

)
(k+)i � N(C; t, k+, 0)

�
t−δ∑
i=0

(
n− δ
i

)
(k+)i

t−i∑
k=δ+i−t

(
δ

k

)
(k+ − 1)δ−k.

Proof: It suffices to show that the upper bound in (2) is
decreasing with δ. The proof is the same as that in the proof
of Lemma 7. According to the remark after Lemma 7, w.l.o.g,
we assume that

x = (1, 1, . . . , 1︸ ︷︷ ︸
δ

, 0, 0, . . . , 0︸ ︷︷ ︸
n−δ

),

and

y = (0, 0, . . . , 0︸ ︷︷ ︸
δ

, 0, 0, . . . , 0︸ ︷︷ ︸
n−δ

).

Let

x′ = (1, 1, . . . , 1︸ ︷︷ ︸
δ−1

, 0, 0, . . . , 0︸ ︷︷ ︸
n−δ+1

).

For any z ∈ (Bt(x)∩Bt(y))\ (Bt(x′)∩Bt(y)), we have that
z[δ] = 1. Let z′ be the vector obtained from z by changing z[δ]
from ‘1’ to ‘0’. Then z′ ∈ (Bt(x′)∩Bt(y))\(Bt(x)∩Bt(y)).
Hence, |Bt(x) ∩Bt(y)| � |Bt(x′) ∩Bt(y)|. �

Theorem 9: Let δ, t and k+ be fixed integers such that 1 �
δ � t � n. For any code C ⊆ Z

n, N(C; t, k+, 0) = Θ(nt−δ) if
and only of C can correct up to δ−1 (k+, 0)-limited-magnitude
errors.

Proof: According to Theorem 6 and Lemma 8,
N(C; t, k+, 0) = Θ(nt−δ) if and only if dk+(C) =
δ. Combining this with Proposition 2, the theorem is
proved. �

Now, we direct our attention to the case of k− > 0. We first
extend the distance dk+ from Definition 1.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

4426 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Definition 10: For x,y ∈ Z
n, we define

Nk−(x,y) � |{i; 0 < |x[i]− y[i]| � k−}| ,
Nk+,k−(x,y) � |{i; k+ < |x[i]− y[i]| � k+ + k−}| ,
Mk+,k−(x,y) � |{i; k− < x[i]− y[i] � k+}| ,

where we note that Mk+,k−(x,y) and Mk+,k−(y,x) are not
necessarily the same.

If maxi{|x[i]−y[i]|} > k++k−, define the distance dk+,k−
between x and y to be n+ 1; otherwise, the distance dk+,k−
is defined as

dk+,k−(x,y)

�
⌈

1
2

max(Nk−(x,y)

− ∣∣Mk+,k−(x,y) −Mk+,k−(y,x)
∣∣ , 0)

⌉

+ max
(
Mk+,k−(x,y),Mk+,k−(y,x)

)
+Nk+,k−(x,y).

It is worth noting that when k− = 0, the distance dk+,0

defined above coincides with the distance dk+ in Definition 1.
Proposition 11: A code C ⊆ Z

n can correct t (k+, k−)-
limited-magnitude errors if and only if dk+,k−(x,y) � t+1 for
all distinct x,y ∈ C.

Proof: (⇐) Let x,y ∈ C be two codewords, and let
e, e′ ∈ B(n, t, k+, k−) be two error vectors, such that x �= y
or e �= e′. Assume to the contrary that x + e = y + e′. Then
x − y = e′ − e, and so dk+,k−(x,y) = dk+,k−(e, e′). Let
n1 = Nk−(e, e′), n2 = Nk+,k−(e, e′), m1 = Mk+,k−(e, e′),
and m2 = Mk+,k−(e′, e). W.l.o.g., assume that m1 � m2.
Since both e, e′ have Hamming weight at most t and e, e′ ∈
[−k−, k+]n, then

m1 + n2 � t.

Next, let N1 � {i; 0 < |e[i]− e′[i]| � k−}. Consider the two
subsets

P1 � {i; e[i] �= 0} ∩N1,

P2 � {i; e′[i] �= 0} ∩N1.

Since e[i] �= e′[i] for each i ∈ N1, necessarily N1 = P1 ∪P2.
Furthermore, we have |P1|+m1+n2 � t and |P2|+m2+n2 �
t, as wt(e),wt(e′) � t. Thus,

n1 + (m1 + n2) + (m2 + n2)
� |P1|+ |P2|+ (m1 + n2) + (m2 + n2) � 2t.

Hence, dk+,k−(e, e′) = �max{n1 −m1 +m2, 0}/2�+m1 +
n2 � t, which contradicts that dk+,k−(x,y) � t+ 1.

(⇒) Suppose that there are two distinct codewords x,y ∈
C such that dk+,k−(x,y) � t. Since dk+,k− is symmetric,
assume w.l.o.g. that Mk+,k−(x,y) � Mk+,k−(y,x). Denote,

N1 � {i; 0 < |x[i]− y[i]| � k−},
N2 � {i; k+ < |x[i]− y[i]| � k+ + k−},
M1 � {i; k− < x[i]− y[i] � k+},
M2 � {i; k− < y[i]− x[i] � k+}.

Take an arbitrary subset N′
1 ⊆ N1 of size

� 12 max{Nk−(x,y) + Mk+,k−(x,y) − Mk+,k−(y,x), 0}�.
Let e be the vector with support set N′

1 ∪ N2 ∪M2, where
e[i] = y[i]− x[i] when i ∈ N′

1 ∪M2, e[i] = y[i]− x[i]− k−
when y[i] − x[i] > k+ and e[i] = y[i] − x[i] + k+ when
y[i] − x[i] < −k+. Let e′ be the vector with support set
(N1 \ N′

1) ∪ N2 ∪ M1, where e′[i] = x[i] − y[i] when
i ∈ (N1 \N′

1) ∪M1, e′[i] = −k− when y[i]− x[i] > k+ and
e′[i] = k+ when y[i]− x[i] < −k+.

It follows that e′ = x − y + e, i.e., x + e = y + e′, and
e, e′ ∈ [−k−, k+]n. In the following, we verify that both e
and e′ have Hamming weight at most t, which contradicts the
fact that C can correct t (k+, k−)-limited-magnitude errors.
The vector e has Hamming weight

|N′
1 ∪M2 ∪N2|

=
⌈

1
2

max(Nk−(x,y) +Mk+,k−(x,y) −Mk+,k−(y,x), 0)
⌉

+Mk+,k−(y,x) +Nk+,k−(x,y)
= dk+,k−(x,y) � t.

For the vector e′, if Nk−(x,y) + Mk+,k−(x,y) −
Mk+,k−(y,x) � 0, then it has Hamming weight

|(N1 \N′
1) ∪M1 ∪N2|

� Nk−(x,y) +Mk+,k−(x,y) +Nk+,k−(x,y)
� Mk+,k−(y,x) +Nk+,k−(x,y)
= dk+,k−(x,y) � t.

Otherwise, it has Hamming weight

|(N1 \N′
1) ∪M1 ∪N2|
� 1

2
(
Nk−(x,y) −Mk+,k−(x,y) +Mk+,k−(y,x)

)
+Mk+,k−(x,y) +Nk+,k−(x,y)

=
1
2
(
Nk−(x,y) +Mk+,k−(x,y) −Mk+,k−(y,x)

)
+Mk+,k−(y,x) +Nk+,k−(x,y)

� dk+,k−(x,y) � t.

�
Lemma 12: Let x = (x1, x2, . . . , xn) and y =

(y1, y2, . . . , yn) be two vectors of Z
n. Denote x′ �

(y1, x2, . . . , xn) and y′ � (x1, y2, . . . , yn). If |x1 − y1| � k−
or |x1 − y1| > k+, then

|Bt(x) ∩Bt(y)| = |Bt(x′) ∩Bt(y′)|.
Proof: We shall show that the size of Bt(x) ∩Bt(y) is

no more than that of Bt(x′) ∩Bt(y′). Then the equality holds
by switching {x,y} and {x′,y′}. Let z = (z1, z2, . . . , zn) be
an arbitrary vector of Bt(x) ∩Bt(y). Denote

z′ �

⎧⎪⎨
⎪⎩

z if z1 /∈ {x1, y1},
(y1, z2, z3, . . . , zn) if z1 = x1,

(x1, z2, z3, . . . , zn) if z1 = y1.

If z1 /∈ {x1, y1}, it is easy to see that z′ ∈ Bt(x′) ∩ Bt(y′).
If |x1 − y1| > k+, we cannot have z1 ∈ {x1, y1}. However,
if z1 ∈ {x1, y1}, necessarily |x1−y1| � k+, and so, according

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: SEQUENCE RECONSTRUCTION FOR LIMITED-MAGNITUDE ERRORS 4427

to the lemma’s condition we have |x1 − y1| � k−. Then it is
verifiable again that z′ belongs to Bt(x′) ∩ Bt(y′). Noting
that the map that sends z to z′ is injective, we get |Bt(x) ∩
Bt(y)| � |Bt(x′) ∩Bt(y′)|. �

Lemma 13: Let x = (x1, x2, . . . , xn) and y =
(y1, y2, . . . , yn) be two vectors of Z

n with x1 < y1. Denote
y′ � (y1 − 1, y2, . . . , yn). Then

|Bt(x) ∩Bt(y)| � |Bt(x) ∩Bt(y′)|.
Proof: Let z = (z1, z2, . . . , zn) be an arbitrary vector

of (Bt(x) ∩ Bt(y)) \ (Bt(x) ∩ Bt(y′)). Since x1 < y1,
we necessarily have z1 = y1 and the Hamming distance
between y and z is exactly t. Let z′ = (y1−1, z2, z3, . . . , zn).
Then z′ ∈ Bt(y′) as z ∈ Bt(y), but z′ /∈ Bt(y) since y
and z′ are of Hamming distance t + 1 apart. Furthermore,
noting that x1 < y1 = z1, we have z′ ∈ Bt(x). Hence,
z′ ∈ (Bt(x) ∩ Bt(y′)) \ (Bt(x) ∩ Bt(y)). Note that for
different choices of z, the resulting z′ are pairwise distinct.
Thus, we completed the proof. �

Lemma 14: Assume that δ � t � n and 0 < k− � k+. For
any two vectors x,y ∈ Z

n with dk+,k−(x,y) = δ, we have
that

t−δ∑
i=0

(
n− 2δ
i

)
(k+ + k−)i � N(x,y; t, k+, k−)

�
t−δ∑
i=0

(
n

i

)
(k+ + k−)i+2δ. (9)

Proof: Let n1 = Nk−(x,y), n2 = Nk+,k−(x,y),
m1 = Mk+,k−(x,y), and m2 = Mk+,k−(y,x). According
to Lemma 12 and Lemma 13, the maximal intersection is
achieved if x and y have the following form:

x = (0, 0, . . . , 0︸ ︷︷ ︸
n1

, 0, 0, . . . , 0︸ ︷︷ ︸
n2

, k− + 1, k− + 1, · · · , k− + 1︸ ︷︷ ︸
m1

,

0, 0, . . . , 0︸ ︷︷ ︸
m2

, 0, 0, . . . , 0︸ ︷︷ ︸
n′

)

and

y = (1, 1, . . . , 1︸ ︷︷ ︸
n1

, k+ + 1, . . . , k+ + 1︸ ︷︷ ︸
n2

, 0, 0, . . . , 0︸ ︷︷ ︸
m1

,

k− + 1, · · · , k− + 1︸ ︷︷ ︸
m2

, 0, 0, . . . , 0︸ ︷︷ ︸
n′

).

where n′ = n − n1 − n2 −m1 −m2. Partition the positions
into the following five intervals:

I1 = [1, n1],
I2 = [n1 + 1, n1 + n2],
I3 = [n1 + n2 + 1, n1 + n2 +m1],
I4 = [n1 + n2 +m1 + 1, n1 + n2 +m1 +m2],
I5 = [n− n′ + 1, n].

Let z be an element in the intersection of the two balls
Bt(x) and Bt(y). Obviously, x and z can have the same
components only in the positions belonging to I1∪I3∪I5, and
y and z can have the same components only in the positions
belonging to I1∪I4∪I5. Denote by i the number of positions

where x and y agree but differ from z; so all these i positions
come from I5. Denote

j = |{� ∈ I1; z[�] = x[�]}| ,
k = |{� ∈ I1; z[�] = y[�]}| ,
r = |{� ∈ I3; z[�] = x[�]}| ,
s = |{� ∈ I4; z[�] = y[�]}| .

Then we have j + k � n1, r � m1, s � m2, n1 − j + n2 +
m1− r+m2 + i � t, and n1−k+n2 +m1 +m2− s+ i � t.
Hence,

i � min
{
t−

⌈
n1 +m1 +m2

2

⌉
− n2, t−m1 − n2,

t−m2 − n2

}
= t−max

{⌈
n1 +m1 +m2

2

⌉
+ n2,m1 + n2,m2 + n2

}
= t−dk+,k−(x,y).

Thus, the number of choices of z is at most

t−δ∑
i=0

(
n′

i

)
(k+ + k−)i

∑
j

(
n1

j

)

×
∑

k

(
n1 − j
k

)
(k+ + k− − 2)n1−j−k(k−)n2

×
∑

r

(
m1

r

)∑
s

(
m2

s

)
(k+)m1+m2−r−s

�
t−δ∑
i=0

(
n′

i

)
(k+ + k−)i+n1(k−)n2(k+ + 1)m1+m2

<
t−δ∑
i=0

(
n

i

)
(k+ + k−)i+2δ .

For the lower bound, we have that

N(x,y; t, k+, k−) �
t−δ∑
i=0

(
n′

i

)
(k+ + k−)i

�
t−δ∑
i=0

(
n− 2δ
i

)
(k+ + k−)i.

�
Theorem 15: Let k+, k−, t and δ be fixed integers such

that 0 < k− � k+ and 1 � δ � t. For any code C ⊆ Z
n,

N(C; t, k+, k−) = Θ(nt−δ) if and only if C can correct up to
δ − 1 (k+, k−)-limited-magnitude errors.

Proof: According to Lemma 14, N(C; t, k+, k−) =
Θ(nt−δ) if and only if dk+,k−(C)=δ. Combining this with
Proposition 11, the theorem is proved. �

IV. SINGLE-ERROR LATTICE RECONSTRUCTION CODES

In this section, we study the design of reconstruction codes
from a given number received sequences. In other words,
given a positive integer N , we would like to construct a
code C ⊆ Z

n such that N(C; t, k+, k−) � N . Since the
general problem seems to be involved, we focus on the case

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

4428 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

of lattice codes in the channel which introduces a single
(k+, k−)-limited-magnitude error. Theorem 6 shows that if
N � k+ + k−, we can take the whole space Z

n as our code,
and its density is 1. In the other extremal case of N = 0,
Theorem 4 and Definition 3 imply a sphere-packing bound
on the density. That is, any lattice code correcting a single
error should have density at most (n(k+ + k−)+1)−1, which
is O(1/n).

In the following, we study the case of N = 1, and since
lattice codes are in question, we base our approach on group
splitting.

Lemma 16: Assume that 1 � k− � k+. Let Ι ⊆ Z
n be a

lattice. Define G = Z
n/Ι, and si = φ(ei) for 1 � i � n,

where φ : Z
n → G is the natural homomorphism. Let

s = (s1, s2, . . . , sn) and so Ι = {x ∈ Z
n;x · s = 0}.

Then N(Ι; 1, k+, k−) � 1 if and only if all the following
hold:
(C1) asi �= 0 for all 1 � i � n and a ∈ [−k−, k+]∗.
(C2) asi �= bsi for all 1 � i � n and all distinct a, b ∈

[−k−, k+]∗, except |a− b| = k+ + k−.
(C3) asi �= bsj for all 1 � i < j � n and all a, b ∈

[−k−, k−]∗.

Proof: We first show that if N(Ι; 1, k+, k−) � 1, then
the conditions hold.

1) For (C1), w.l.o.g., suppose to the contrary that as1 =
0 for some a ∈ [−k−, k+]∗. Then both the vectors
x = (0, 0, . . . , 0) and y = (a, 0, . . . , 0) belong to Ι.
If a � k−, then {x,y} ⊆ B1(x)∩B1(y); otherwise, the
intersection contains (a, 0, . . . , 0) and (a− 1, 0, . . . , 0).

2) For (C2), w.l.o.g., suppose to the contrary that as1 = bs1
for some a, b ∈ [−k−, k−]∗ with b > a and |a − b| <
k+ + k−. Consider the two codewords x = (0, 0, . . . , 0)
and y = (b−a, 0, . . . , 0). Since 1 � b−a � k++k−−1,
then b − a − k−, b − a − k− + 1 ∈ [−k−, k+]. Hence,
the intersection B1(x) ∩ B1(y) contains two vectors
(b − a − k−, 0, . . . , 0) and (b − a − k− + 1, 0, . . . , 0),
a contradiction.

3) For (C3), suppose to the contrary that asi = bsj for
some 1 � i < j � n and a, b ∈ [−k−, k−]∗. W.l.o.g.,
we assume that i = 1 and j = 2. Then both the vectors
x = (0, 0, . . . , 0) and y = (a,−b, 0, . . . , 0) belong to
Ι as x · s = y · s = 0. However, the intersection
B1(x) ∩B1(y) contains two vectors (a, 0, 0, . . . , 0) and
(0,−b, 0, . . . , 0), which contradicts N(Ι; 1, k+, k−) � 1.

Now, we show the other direction. Assume that x,y ∈ Ι,
x �= y, with B1(x)∩B1(y) �= ∅. Then x+aei = y+ bej for
some 1 � i, j � n and a, b ∈ [−k−, k+]. Hence, asi−bsj =
(aei−bej)·s = (y−x)·s = 0, and so asi = bsj . We consider
the following two cases.

1) If i �= j, according to (C1) and (C3), necessarily a, b �=
0 and max{a, b} > k−. W.l.o.g., assume that i = 1, j =
2, and b > k−. Then if x = (x1, x2, . . . , xn), we have
y = (x1 + a, x2 − b, x3, . . . , xn). Since b > k−, the
intersection of the two balls only contains a unique vector,
i.e., (x1 + a, x2, . . . , xn).

2) If i = j, according to (C1) and (C2), necessarily |b −
a| = k+ + k−. W.l.o.g., assume that i = j = 1 and

b− a = k+ + k−. Then if x = (x1, x2, . . . , xn), we have
y = (x1 − (k+ + k−), x2, . . . , xn). Thus the intersection
only contains the vector (x1 − k−, x2, x2, . . . , xn).

�
Corollary 17: Assume that 1 � k− � k+. Let Ι ⊆ Z

n be
a lattice code such that N(Ι; 1, k+, k−) � 1. Then

|Zn/Ι|

�
{

max{2nk− + 1, k+ + k−}, if k+ > k−,

max{n(k+ + k− − 1) + 1, k+ + k−}. if k+ = k−.

Proof: Note that the conditions (C1)–(C3) are equivalent
to the following two conditions:
(C1’) asi �= bsi for all 1 � i � n and all distinct a, b ∈

[−k−, k+ − 1].
(C2’) asi �= bsj for all 1 � i < j � n and all a, b ∈

[−k−, k−], except a = b = 0.

For any x ∈ Z
n, we can think of x · s as a syndrome. Thus,

the elements of Ι are exactly those with the 0 syndrome, and
the elements of a coset v+Ι are exactly those with syndrome
v · s. Hence,

|Zn/Ι| � |{asi; a ∈ [−k−, k+], 1 � i � n}| .

The bound now follows by (C1’) and (C2’). �
From the bound above, we can see that if k− > 0 and

k+, k− are fixed, any lattice code with N(Ι; 1, k+, k−) �
1 has density at most O(1/n), which is asymptotically the
same as the case of N(Ι; 1, k+, k−) = 0.

For k− = 0, however, it is much different. There are codes
with N(Ι; 1, k+, 0) � 1 having constant density. This is
trivially true for k+ = 1 since then the lattice Ι = Z

n has
density 1 and it satisfies N(Zn; 1, 1, 0) = 1. For k+ � 2 we
have the following:

Lemma 18: Assume that k− = 0 and k+ � 2. Let Ι ⊆ Z
n

be a lattice. Let G � Z
n/Ι and si = φ(ei) for 1 � i �

n, where φ : Z
n → G is the natural homomorphism. Let

s = (s1, s2, . . . , sn) and so Ι = {x ∈ Z
n;x · s = 0}. Then

N(Ι; 1, k+, 0) � 1 if and only if asi �= bsi for all 1 � i � n
and all distinct a, b ∈ [0, k+ − 1].

Proof: (⇒) Suppose to the contrary that asi = bsi for
some a, b ∈ [0, k+ − 1] with b > a. W.l.o.g., assume i =
1. Consider the two codewords x = (0, 0, . . . , 0) and y =
(b − a, 0, . . . , 0). Since 1 � b − a � k+ − 1, the intersection
B1(x) ∩B1(y) contains the two vectors (b− a, 0, . . . , 0) and
(b− a+ 1, 0, . . . , 0), a contradiction.

(⇐) Assume that x,y ∈ Ι, x �= y, with B1(x) ∩B1(y) �=
∅. Then x + aei = y + bej for some 1 � i, j � n and
a, b ∈ [0, k+]. So asi−bsj = (aei− bej) · s = (y−x) · s = 0,
hence, asi = bsj . We consider the following two cases.

1) If i �= j and a, b �= 0, w.l.o.g., assume that i = 1, j =
2 and b � a. Then if x = (x1, x2, . . . , xn), we have
y = (x1 + a, x2 − b, x3, . . . , xn). Since a, b > 0, the
intersection of the two balls only contains the vector (x1+
a, x2, . . . , xn). If a = 0, then x + 0 · ei = x + 0 · ej =
x = y + bej , which is included in the case i = j, and a
symmetric argument applies to the case of b = 0.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: SEQUENCE RECONSTRUCTION FOR LIMITED-MAGNITUDE ERRORS 4429

2) If i = j, according to our condition, (a, b) = (0, k+) or
(k+, 0). In both cases, the intersection only contains one
vector, i.e., x or y respectively.

�
Corollary 19: Assume that k− = 0 and k+ � 2. Let Ι ⊆

Z
n be a lattice code such that N(Ι; 1, k+, 0) � 1. Then

|Zn/Ι| � k+.

Moreover, the bound can be attained by letting G = Zk+ and
s = (1, 1, . . . , 1), where the corresponding lattice code is

Ι =

{
(x1, x2, . . . , xn) ∈ Z

n

∣∣∣∣∣
n∑

i=1

xi ≡ 0 (mod k+)

}
.

Proof: The bound comes directly from Lemma 18. For
the code Ι, since si = 1, asi �≡ 0 (mod k+) for all
a ∈ [1, k+ − 1]. Thus, according to Lemma 18, we have
N(Ι; 1, k+, 0) � 1. �

Now, we study the case of N(Ι; 1, k+, k−) � 2 with
k− � 1. We have the following result which is similar to
the case of N(Ι; 1, k+, 0) � 1. This time, (k+, k−) = (1, 1)
is a trivial case in which we can take Ι = Z

n since
N(Zn; 1, 1, 1) = 2. The non-trivial cases are given by the
following:

Lemma 20: Assume that 1 � k− � k+ and k+ + k− � 3.
Let Ι ⊆ Z

n be a lattice. Let G � Z
n/Ι and si = φ(ei) for

1 � i � n, where φ : Z
n → G is the natural homomorphism.

Let s = (s1, s2, . . . , sn) and so Ι = {x ∈ Z
n;x · s = 0}.

Then N(Ι; 1, k+, k−) � 2 if and only if asi �= bsi for all
1 � i � n and all distinct a, b ∈ [−k−, k+ − 2].

Proof: (⇒) Suppose to the contrary that asi = bsi for
some a, b ∈ [−k−, k+ − 2]. W.l.o.g., assume that i = 1 and
b > a. Consider the two codewords x = (0, 0, . . . , 0) and y =
(b−a, 0, . . . , 0). Since 1 � b−a � k++k−−2, the intersection
B1(x) ∩ B1(y) contains three vectors (b − a − k−, 0, . . . , 0)
and (b− a− k− + 1, 0, . . . , 0) and (b− a− k− + 2, 0, . . . , 0),
a contradiction.

(⇐) Assume that x,y ∈ Ι, x �= y, with B1(x) ∩B1(y) �=
∅. Then x + aei = y + bej for some 1 � i, j � n and a, b ∈
[−k−, k+]. Hence, asi−bsj = (aei−bej)·s = (y−x)·s = 0,
and so asi = bsj . We consider the following two cases:

1) If i �= j and a, b �= 0, i.e., x and y differ in two
positions, necessarily the intersection of the two balls
contains two vectors if a, b ∈ [−k−, k−], or contains one
vector otherwise. If either a = 0 or b = 0 then the case
is covered by the following case of i = j.

2) If i = j, according to our assumption, |a − b| = k+ +
k−−1 or k+ +k−. If |a− b| = k+ +k−, the intersection
only contains one vector, and if |a− b| = k+ + k− − 1,
the intersection contains two vectors.

�
Corollary 21: Assume that 1 � k− � k+ and k++k− � 3.

Let Ι ⊆ Z
n be a lattice code such that N(Ι; 1, k+, k−) � 2.

Then

|Zn/Ι| � k+ + k− − 1.

Moreover, the bound can be attained by letting G =
Zk++k−−1 and s = (1, 1, . . . , 1), where the corresponding

code is

Ι =

{
(x1, . . . , xn) ∈ Z

n

∣∣∣∣∣
n∑

i=1

xi ≡ 0 (mod k+ + k− − 1)

}
.

V. EFFICIENT RECONSTRUCTION ALGORITHMS

In this section, we present two reconstruction algorithms
for the (k+, k−)-limited-magnitude errors. We assume nothing
about the structure of the code. In particular, we do not assume
the codes are linear, i.e., lattice codes. Since more errors
may occur in the received vectors than that are correctable
by unique decoding, our strategy is to combine the received
vectors into a single vector that is guaranteed to be within the
unique-decoding radius from the transmitted codeword, and
then use a unique decoding procedure. We thus reduce the
reconstruction problem to a classical decoding problem.

If C ⊆ Z
n is a code capable of correcting δ − 1 (k+, k−)-

limited-magnitude errors, we assume the existence of a decod-
ing function DC : Z

n → C which upon receiving a codeword
corrupted by at most δ−1 (k+, k−)-limited-magnitude errors,
is capable of finding the transmitted codeword. If there exists
an efficient test of whether a vector is in C, as in the case
of lattice codes, then a naive brute-force implementation of a
decoding procedure is possible in time complexityO(|B(n, δ−
1, k+, k−)|) = O(nδ−1) by testing all the vectors in a ball
centered at the received vector.

The first algorithm we present only works for the case of
k− = 0 and requires a few more received vectors than the
upper bound of Lemma 8. However, it is quite simple.

Theorem 22: Let C ⊆ Z
n be a code with the minimum

distance dk+(C) = δ. Denote

Na � (k+)δ
t−δ∑
i=0

(
n− δ
i

)
(k+)i + 1

= (k+)δVk++1(n− δ, t− δ) + 1.

Let y1,y2, . . . ,yNa be Na distinct vectors that come from
the same ball x + B(n, t, k+, 0) for some codeword x ∈ C.
Then we can reconstruct x from Y � {y1, . . . ,yNa} with time
complexity O(nNa + C), where C is the time complexity of
the unique-decoding algorithm of C.

Proof: Our reconstruction algorithm is summarized in
Algorithm 1. Since zi = min{y1[i],y2[i], . . . ,yNa [i]} for
each i ∈ [1, n], it is easy to see that 0 � zi − x[i] � k+.
Thus, z ∈ x + B(n, r, k+, 0) for some integer r. Assume to
the contrary that there are δ positions where all the vectors
in Y differ from x on each of these positions. However, the
number of such vectors is at most (k+)δ

∑t−δ
i=0

(
n−δ

i

)
(k+)i,

which is strictly less than Na. Thus, we can find r � δ − 1,
and z ∈ x+B(n, δ−1, k+, 0). Since C has distance δ, we can
run the unique-decoding algorithm, DC, on z to recover x. �

Remark: The number of required vectors in Algorithm 1
is larger than the upper bound of Lemma 8 by, at most,
a constant multiplicative factor, since the inner expression of∑t−i

k=δ+i−1

(
δ
k

)
(k+ − 1)δ−k in the upper bound of Lemma 8

is replaced here with kδ
+.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

4430 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Algorithm 1 Reconstruction Algorithm for k− = 0
Input: an Na-set Y = {y1,y2, . . . ,yNa} ⊆ x +
B(n, t, k+, 0) for some x ∈ C

Output: the codeword x ∈ C

1: for 1 � i � n do
2: zi ← min{y1[i],y2[i], . . . ,yNa [i]}
3: end for
4: z← (z1, z2, . . . , zn)
5: x← DC(z)
6: return x

Algorithm 2 Majority Algorithm

Input: an Nb-set Y = {y1,y2, . . . ,yNb
} ⊆ Z

n and a
threshold τ
Output: a word z ∈ (Z ∪ {?})n

1: for 1 � i � n do
2: Yi ← {y1[i],y2[i], . . . ,yNb

[i]} (multiset)
3: Mi ← Maj(Yi)
4: if 2nMi(Yi)−N > τ then
5: z[i]←Mi

6: else
7: z[i]←?
8: end if
9: end for

10: return z

In the following, we consider the case of k− > 0. Our
method is to modify the reconstruction algorithm from [1]
which was suggested for a channel with substitutions.

For a finite multiset M with elements from Z, denote ni(M)
the number of times that the element i appears in M. Denote
Maj(M) the element which appears most frequently in M.
If there is more than one such element, we take the smallest
one.

Let C ⊆ Z
n be a code with dk+,k−(C) = δ. Let x ∈ C be a

codeword and Y be a subset of x + B(n, t, k+, k−) with Nb

vectors, where

Nb �
t−δ∑
i=0

(
n

i

)
(k+ + k−)i+2δ + 1

= (k+ + k−)2δVk++k−+1(n, t− δ) + 1. (10)

Denote

τ �
(

1− 2
δ

)
Nb +

2
δ

t−δ∑
i=0

(
n− δ
i

)
(k+ + k−)i+δ

=
(

1− 2
δ

)
Nb +

2(k+ + k−)δ

δ
Vk++k−+1(n− δ, t− δ).

(11)

It is easy to check that τ < Nb.
We apply the following majority algorithm (Algorithm 2)

with threshold τ on Y to get an estimate z of x. The returned
estimate may also contain the symbol ? which indicates an
erasure.

We have the following upper bounds on the number of errors
and erasures in the estimate z.

Lemma 23: Let Y ⊆ x + B(n, t, k+, k−) be an Nb-set,
x ∈ Z

n, and let z be the output of Algorithm 2 when run
on Y with τ from (11). Then z contains at most δ − 1 errors
compared with x, that is,

|{i ∈ [1, n];x[i] �= z[i], z[i] ∈ Z}| � δ − 1.

Proof: Suppose to the contrary that there are at least δ
errors. W.l.o.g., we assume that the first δ symbols of z are
erroneous. Let M � [−k−, k+]∗. For each i ∈ [1, n] and
k ∈M , let

ek
i = |{� ∈ [1, Nb];y�[i] = x[i] + k}| .

Then there is an error in the i-th position of z only if there is
a k ∈M such that 2ek

i −Nb > τ . It follows that

δ∑
i=1

∑
k∈M

ek
i > δ

Nb + τ

2

= (δ − 1)Nb +
t−δ∑
i=0

(
n− δ
i

)
(k+ + k−)i+δ.

(12)

On the other hand, there are at most
∑t−δ

i=0

(
n−δ

i

)
(k+ +

k−)i+δ vectors in Y that can have erroneous components in
all of the first δ positions. For the other vectors in Y, each has
at most δ − 1 errors in the first δ positions. Therefore,

δ∑
i=1

∑
k∈M

ek
i � δ

t−δ∑
i=0

(
n− δ
i

)
(k+ + k−)i+δ

+ (δ − 1)

(
Nb −

t−δ∑
i=0

(
n− δ
i

)
(k+ + k−)i+δ

)

= (δ − 1)Nb +
t−δ∑
i=0

(
n− δ
i

)
(k+ + k−)i+δ,

which contradicts (12). �
Lemma 24: Let Y ⊆ x + B(n, t, k+, k−) be an Nb-set,

x ∈ Z
n, and let z be the output of Algorithm 2 when run on

Y with τ from (11). Then z contains at most 2tδ erasures.
Proof: Let ek

i be as in the proof of Lemma 23. Noting
that z[i] = x[i] if and only if Nb−2

∑
k∈M ek

i > τ , there is an
erasure on the i-th positions only if

∑
k∈M ek

i � Nb−τ
2 . Since

each vector y� has at most t errors, the number of erasures is
at most

2tNb

Nb − τ =
2tNb

2
δ

(
Nb −

∑t−δ
i=0

(
n−δ

i

)
(k+ + k−)i+δ

)
� 2tNb

2
δ (Nb −Nb/(k+ + k−)δ)

� 2tδ.

�
Now we can present our reconstruction process in

Algorithm 3.
Theorem 25: Let C ⊆ Z

n be a code with the minimum
distance dk+,k−(C) = δ. Let Nb and τ be defined as in
(10) and (11). Let Y = {y1,y2, . . . ,yNb

} be a set of Nb

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: SEQUENCE RECONSTRUCTION FOR LIMITED-MAGNITUDE ERRORS 4431

Algorithm 3 Reconstruction algorithm for k− > 0
Input: an Nb-set Y = {y1,y2, . . . ,yNb

} ⊆ x +
B(n, t, k+, k−) for some x ∈ C, and a threshold τ
Output: the codeword x ∈ C

1: z ← the output of Algorithm 2 with Y and τ being the
input

2: E← {i ∈ [1, n]; z[i] =?}
3: U ← {u ∈ Z

n;u[i] = z[i] for all i �∈ E and u[i] ∈
[y1[i]− k+,y1[i] + k−] for all i ∈ E}

4: for u ∈ U do
5: x← DC(u)
6: if Y ⊆ x + B(n, t, k+, k−) then
7: return x
8: end if
9: end for

vectors coming from the same ball x+B(n, t, k+, 0) for some
codeword x ∈ C. Then we can reconstruct x by applying
Algorithm 3 on Y and τ with time complexity O(nNb + C),
where C is the time complexity of the unique-decoding
algorithm of C.

Proof: Let U be defined as in Algorithm 3. According
to Lemma 23, there is a vector u ∈ U such that u ∈ x +
B(n, δ − 1, k+, k−). Thus we could apply the decoder DC of
C to each vector of U to obtain a subset S ⊆ C which contains
x. Finally, since |Y| = Nb > N(C; t, k+, k−), the vector x
can be identified from S by checking each codeword c ∈ S

whether Y ⊆ c + B(n, t, k+, k−).
Let us analyze the time complexity of Algorithm 3. The

complexity of Step 1 is O(nNb). According to Lemma 24,
the decoding loop starting in Step 4 takes at most (k+ +k− +
1)2tδ rounds, which is independent of n. The complexity of
checking the condition in Step 6 is also O(nNb). So the total
time complexity of this algorithm is O(nNb + C). �

VI. LIST DECODING WITH MULTIPLE

RECEIVED SEQUENCES

For a code C ⊆ Z
n with minimum distance dk+,k−(C) = δ,

denote f � t− δ + 1, that is, the number of excessive errors
that C cannot cope with. Let Y = {y1,y2, . . . ,yN} be a subset
of x + B(n, t, k+, k−) for some x ∈ C. In Section III and
Section V, we have shown that x can be recovered from Y if

N >

{
(k+)δVk++1(n− δ, f − 1), if k− = 0,

(k+ + k−)2δVk++k−+1(n, f − 1), otherwise.
(13)

In this section, we introduce another degree of freedom
into our setting, which is the decoder’s ability to return a
list of codewords instead of a single one. We show that by
doing so, the decoder requires substantially fewer vectors
from the channel, compared with (13). We shall modify the
reconstruction algorithms in Section V to produce a list of
candidates L which contains the transmitted codeword x.
We first look at the case of k− = 0.

Theorem 26: Let C ⊆ Z
n be a code with the minimum

distance dk+(C) = δ. Let x ∈ C be a codeword and

Y = {y1,y2, . . . ,yN} be an N -subset of x + B(n, t, k+, 0).
If

N > (k+)δ+aVk++1(n− δ − a, f − 1− a),
where 0 � a � f − 1, then we can decode to get a list L ⊆ C

containing x with size

|L| � Vk++1(n, a).

Moreover, the time complexity of the decoding is O(nN +
naC), where C is the time complexity of the decoding
algorithm of C.

Proof: Let z ∈ Z
n be defined by z[i] =

min{y1[i],y2[i], . . . ,yN [i]} for each i ∈ [1, n]. Since N >
(k+)δ+aVk++1(n− δ−a, f −1−a), similarly to the proof of
Theorem 22, we can show that z ∈ x+B(n, δ−1+a, k+, 0).
Then there is a vector u ∈ z − B(n, a, k+, 0) such that
u ∈ x + B(n, δ− 1, k+, 0). Thus we may apply the decoding
of C on each vector of z−B(n, a, k+, 0) to get the list L, i.e.,

L � {DC(u);u ∈ z−B(n, a, k+, 0)}.
It also follows that |L| � Vk++1(n, a). The claimed complex-
ity follows from the fact that Vk++1(n, a) = O(na). �

Now we study the case of k− > 0. Let 0 � a � f − 1 =
t− δ. Assume that

N � (k+ + k−)δ+a+1Vk++k−+1(n− δ − a, f − 1− a) + 1.
(14)

Denote

τ �
(

1− 2
δ + a

)
N

+
2

δ + a

t−δ−a∑
i=0

(
n− δ − a

i

)
(k+ + k−)i+δ+a. (15)

Given an N -set Y = {y1,y2, . . . ,yN} ⊆ x +
B(n, t, k+, k−) for some vector x, we first apply Algorithm 2
with threshold τ on it to obtain an estimate z of x. Similar to
Lemma 23 and Lemma 24, we have the following result on z.
The proofs are the same as those in Section V and we omit
here.

Lemma 27: Let Y ⊆ x + B(n, t, k+, k−) be an N -set, x ∈
Z

n, and let z be the output of Algorithm 2 when run on Y

with τ from (15). Then z contains at most δ + a − 1 errors
compared with x, and at most 2t(δ + a) erasures.

Proof: The proof is the same as those of Lemma 23 and
Lemma 24. �

Our list decoding algorithm is presented in Algorithm 4.
Theorem 28: Let C ⊆ Z

n be a code with the minimum
distance dk+,k−(C) = δ. Let N and τ be defined as in
(14) and (15). Let Y = {y1,y2, . . . ,yN} be a set of N
vectors contained in the same ball x+B(n, t, k+, 0) for some
codeword x ∈ C. Then we can decode a list L containing x
by applying Algorithm 4 on Y and τ , where

|L| � (k+ + k− + 1)2t(δ+a)Vk++k−+1(n, a).

The time complexity is O(Nn + naC), where C is the time
complexity of the decoding algorithm of C.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

4432 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

Algorithm 4 List decoding algorithm

Input: an N -set Y = {y1,y2, . . . ,yN} ⊆ x +
B(n, t, k+, k−) for some x ∈ C, and a threshold τ
Output: a set L ⊆ C such that x ∈ L

1: z ← the output of Algorithm 2 with Y and τ being the
input

2: E← {i ∈ [1, n]; z[i] =?}
3: U ← {u ∈ Z

n;u[i] = z[i] for all i �∈ E and u[i] ∈
[y1[i]− k+,y1[i] + k−] for all i ∈ E}

4: V← ⋃
u∈U (u−B(n, a, k+, k−))

5: L← {DC(v);v ∈ V}
6: return L

Proof: Let U be defined as in Algorithm 4. According to
Lemma 27, there is a vector u ∈ U such that u ∈ x+B(n, δ+
a − 1, k+, k−). Since V =

⋃
u∈U (u−B(n, a, k+, k−)),

we can find a vector v ∈ V such that v ∈ x + B(n, δ −
1, k+, k−). Thus we can apply the decoder DC of C to each
vector of V to obtain a subset L ⊆ C which contains x.
Moreover, the size of list

|L| � |V| � |U|Vk++k−+1(n, a)

� (k+ + k− + 1)2t(δ+a)Vk++k−+1(n, a),

where the last inequality holds as Lemma 27 implies that |U| �
(k+ + k− + 1)2t(δ+a).

Let us analyze the time complexity of Algorithm 4.
The complexity of Step 1 is O(nN). The upper bound
on |L| also bounds the number of times we run DC,
hence, we use the unique-decoder for C at most O(na)
times. Thus, the total time complexity of this algorithm is
O(nN + naC). �

In [10], the trade-off between the size of the min-
imum list and the number of different received noisy
sequences has been analyzed for substitutions. Modifying
the approach therein, we could give another list-decoding
algorithm which reduces simultaneously the value of N and
the size of L in Theorem 28, at the cost of the time
complexity. We require the following q-ary Sauer-Shelah
lemma.

Lemma 29 ([6]): For all integers q, n, c with c � n, for any
set S ⊆ [0, q − 1]n, if |S| > Vq(n, c − 1), then there exists
some set of coordinates U ⊆ [1, n] with |U | = c such that for
every u ∈ [0, q − 1]U , there exists some v ∈ S such that u
and v|U differ in every position.

Remark: The original condition in [6] is |S| > 2((q −
1)n)c−1. However, even if we replace it with |S| >
Vq(n, c− 1), the proof still works and so the conclusion still
holds.

Theorem 30: Let C ⊆ Z
n be a code with dk+,k−(C) =

δ. Let x ∈ C be a codeword and Y = {y1,y2, . . . ,yN}
be a subset of x + B(n, t, k+, k−) of size N . If N >
Vk++k−+1(n, f − 1 − a) where 0 � a � f − 1, then we
can decode to get a list L containing x with size

|L| � (k+ + k− + 1)2(f−a)Vk++k−+1(n− f + a, a).

Proof: For each i ∈ [1, n], define

mi � min{y[i];y ∈ Y},
Mi � max{y[i];y ∈ Y},
Ki � [min{mi,Mi − k+},max{Mi,mi + k−}].

Then |Ki| � k+ + k− + 1 for all i ∈ [1, n]. Furthermore,
we have

x ∈ K1 ×K2 × · · · ×Kn

and

y� ∈ K1 ×K2 × · · · ×Kn

for every � ∈ [1, N]. Since N > Vk++k−+1(n, f − 1 − a),
according to Lemma 29, there is a subset U ⊆ [1, n] of size
f − a and a vector y�0 ∈ Y such that x differs from y�0 in
every position of U .

Let Y′ be a minimal subset of Y such that for every y ∈ Y

there is a vector y′ ∈ Y′ with y and y′ being the same on
U . Then |Y′| � (k+ + k− + 1)|U|, and there is also a vector
y∗ ∈ Y′ such that x differs from y∗ in every position of U .
Let

D �
⋃

y′∈Y′
{z ∈ y′ − B(n, f,k+, k−) |

z[i] �= y′[i] for every i ∈ U}.
Since y′ ∈ x+B(n, t, k+, k−) for all y′ ∈ Y′ and f = t−δ+1,
there is a vector z∗ ∈ D such that z∗ and x agree in every
position of U and z∗ ∈ x + B(n, δ − 1, k+, k−). Let

L = {DC(z); z ∈ D},
where DC is the decoder of C. Then x ∈ L and the size

|L| � |D| � |Y′|(k+ + k−)|U|Vk++k−+1(n− |U |, f − |U |)
< (k+ + k− + 1)2(f−a)Vk++k−+1(n− f + a, a).

�
To the best of our knowledge, there is no efficient algorithm

to identify the subset U in the Sauer-Shelah lemma. A brute-
force algorithm requires O(nf−aN) comparisons. Thus the
total time complexity of the decoding is O(nf−aN + naC),
whereas the complexity of Algorithm 4 is O(nN + naC).

Theorem 30 requires at least Vk++k−+1(n, f − 1 − a) +
1 distinct received sequences to obtain a list of size O(na).
A natural question that arises is whether this requirement
is tight? The following lemma, modified from [10, Lemma
32], shows that it is almost tight. The lemma shows that if
N � Vk++k−(n, f − 1 − a), there is a code C ⊆ Z

n, and
a list L ⊆ C of size Ω(na+1) such that Y ⊆ ⋂

u∈L(u +
B(n, t, k+, k−)), i.e., Y is in the intersection of too many balls
around codewords.

Lemma 31: Assume that (k+, k−) �= (1, 0). Let N �
Vk++k−(n, f − a), where 0 � a � f and n � 2e + a + 1.
Then there is a set of vectors Y ⊆ Z

n with |Y| = N and a
code C ⊆ Z

n of size

|C| � na

(e+ a)a
∑e

i=0

(
e+a

i

) ,

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

WEI AND SCHWARTZ: SEQUENCE RECONSTRUCTION FOR LIMITED-MAGNITUDE ERRORS 4433

such that

• C can correct e (k+, k−)-limited-magnitude errors; and
• Y ⊆ ⋂x∈C (x + B(n, t, k+, k−)).

Proof: Let S = {v ∈ [−k−, k+−1]n; wt(v) � f−a} and
Y be an arbitrary subset of S with |Y| = N . Let C ⊆ {−1, 0}n
be a binary code with minimum Hamming distance 2e+2 and
constant weight e+a. The lower bound on the size of C comes
from the Gilbert-Varshamov bound, details of which can be
found in the proof of [10, Lemma 32]. Since C can correct e
substitutions, it also can correct the same number of (k+, k−)-
limited-magnitude errors. Noting that e+a+f−a = t, we have
that Y ⊆ ⋂x∈C (x + B(n, t, k+, k−)) . �

VII. RECONSTRUCTION FOR UNIFORM

TANDEM DUPLICATIONS

In this section, we show that our reconstruction algorithm
for (k+, 0)-limited-magnitude errors (Algorithm 1) can also be
used for tandem duplications, which create a copy of a block
of the sequence and insert it in a tandem manner, i.e., next to
the original. For example, after a tandem duplication of length
3, the sequence 01032 may become 01031032, where the copy
is underlined.

The design of reconstruction codes against t tandem dupli-
cations of the same length k was studied in [31]. Such a
code could be decomposed into a family of subcodes Cx’s,
so that the codewords from the same subcode shares the
same root x. This vector x could be computed from the
codeword in linear time and is robust against any number of
tandem duplications of the same length k. Thus, for any two
codewords u and u′ from different subcodes, they are always
distinguishable from each other no matter how many tandem
duplications of length k affect them. Thus, in order to study
the decoding/reconstruction problem for tandem duplications,
it suffices to consider the corresponding problem for the code
of Cx.

Under certain mapping ψx, each subcode Cx can be embed-
ded into the simplex Δm(x)+1

r(x) , where m(x) and r(x) are some
integers determined by x, and

Δm
r �

{
x = (x1, x2, . . . , xm+1) ∈ N

m+1

∣∣∣∣∣
m+1∑
i=1

xi = r

}
.

A tandem duplication of length k in u corresponds to an addi-
tion of a unit vector ej ∈ N

m(x)+1 to ψx(u). Thus, in order
to design a reconstruction code with maximum intersection
less than N , it is required that for any two distinct codewords
u,u′ ∈ Cx, it always holds that d�1(ψx(u), ψx(u′)) � 2δ,
where δ is the minimum integer such that

(t−δ+m(x)
m(x)

)
< N .

For more details on the code construction and its relation to
constant-weight integer codes in the Manhattan metric, the
reader may refer to [31, Section III]. Note that the notation
N in this section represents the number of reads, while the
same notation in [31, Section III] represents the designed size
of maximum intersection.

For a vector x ∈ N
m+1, let

B+
t (x) �

{
y ∈ N

m+1
∣∣∣ yi � xi for all 1 � i � m+ 1,

and
m+1∑
i=1

(yi − xi) � t

}
.

Then the reconstruction problem for the code in
[31, Section III] can be reduced as follows: Given a
code C ⊆ Δm+1

r and a set of vectors Y = {y1,y2, . . . ,yN}
such that Y ⊆ B+

t (x) for some x ∈ C, we would like to
reconstruct x from Y. To this end, we use the same decoding
process as Algorithm 1. Let z = (z1, z2, . . . , zm+1) where
zi = min{y1[i], zy[i], . . . ,yN [i]} for each i ∈ [1,m + 1].
It is easy to see that x[i] � zi for each i ∈ [1,m + 1].
Thus, z ∈ B+

r (x) for some integer r. If r � δ, then there
exist some positions i1, i2, . . . , iτ and some positive integers
δ1, δ2, . . . , δτ such that

∑τ
j=1 δj = δ and y�[ij] − x[ij] � δj

for each j ∈ [1, τ] and � ∈ [1, N]. However, since
N >

(
m+t−δ

m

)
, it is impossible. Hence, r < δ and we may

run the decoding algorithm of C on z to recover x.

VIII. CONCLUSION

In this paper, we studied reconstruction and
list-reconstruction schemes for integer vectors that suffer from
limited-magnitude errors. In Section III we characterized
the asymptotic size of the maximum intersection of error
balls in relation to the code’s minimum distance. Similar
problems have been researched for substitutions, insertions
and deletions: Levenshtein [17] determined the exact size
of the maximum intersection of substitution balls around
two words at a given Hamming distance d. Sala et al. [20]
gave an exact formula for the maximum number of common
supersequences shared by sequences at a certain edit distance.
Recently, Pham et al. [19] provided an asymptotically exact
solution for codes which can correct deletions. Interestingly,
for all of these four types of errors, the maximum intersection
is always Θ(nf−1), where f is the number of excessive
errors that the code cannot cope with. We note that the
lower and upper bounds presented in Section III differ by a
multiplicative factor. It would be interesting to narrow this
gap down.

In Section IV we designed two classes of reconstruction
codes which both have densities significantly larger than that
of the normal error-correcting codes, at the cost of requiring
one or two more received sequences. Our codes only deal with
a single limited-magnitude error. The design of reconstruc-
tion codes against multiple limited-magnitude errors remains
unsolved.

We also studied the design of algorithms for the recon-
struction problem. We presented two efficient algorithms to
reconstruct a transmitted codeword from any given code, and
modified our reconstruction algorithms to accommodate the
requirement of list decoding when the number of received
sequences is less than the maximum intersection. Additionally,
we showed that one of our reconstruction algorithm could be
used in the context of tandem duplications.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

4434 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 7, JULY 2022

REFERENCES

[1] M. A. Sini and E. Yaakobi, “Reconstruction of sequences in DNA
storage,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Paris, France,
Jul. 2019.

[2] S. Buzaglo and T. Etzion, “Tilings with n-dimensional chairs and their
applications to asymmetric codes,” IEEE Trans. Inf. Theory, vol. 59,
no. 3, pp. 1573–1582, Mar. 2013.

[3] K. Cai, H. M. Kiah, T. T. Nguyen, and E. Yaakobi, “Coding for sequence
reconstruction for single edits,” IEEE Trans. Inf. Theory, vol. 68, no. 1,
pp. 66–79, Jan. 2022.

[4] Y. Cassuto, M. Schwartz, V. Bohossian, and J. Bruck, “Codes for
asymmetric limited-magnitude errors with applications to multilevel
flash memories,” IEEE Trans. Inf. Theory, vol. 56, no. 4, pp. 1582–1595,
Apr. 2010.

[5] R. Gabrys and E. Yaakobi, “Sequence reconstruction over the deletion
channel,” IEEE Trans. Inf. Theory, vol. 64, no. 4, pp. 2924–2931,
Apr. 2018.

[6] V. Guruswami, J. Hastad, and S. Kopparty, “On the list-decodability of
random linear codes,” in Proc. 42nd Annu. ACM Symp. Theory Comput.,
Cambridge MA, USA, Jun. 2010, pp. 409–416.

[7] W. Hamaker and S. Stein, “Combinatorial packings of R3 by certain
error spheres,” IEEE Trans. Inf. Theory, vol. 30, no. 2, pp. 364–368,
Mar. 1984.

[8] D. Hickerson and S. Stein, “Abelian groups and packing by semicrosses,”
Pacific J. Math., vol. 122, no. 1, pp. 95–109, 1986.

[9] S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Coding for optimized
writing rate in DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory
(ISIT), Los Angeles, CA, USA, Jun. 2020, pp. 711–716.

[10] V. Junnila, T. Laihonen, and T. Lehtilä, “On Levenshtein’s channel and
list size in information retrieval,” IEEE Trans. Inf. Theory, vol. 67, no. 6,
pp. 3322–3341, Jun. 2021.

[11] T. Kløve, J. Luo, I. Naydenova, and S. Yari, “Some codes correcting
asymmetric errors of limited magnitude,” IEEE Trans. Inf. Theory,
vol. 57, no. 11, pp. 7459–7472, Nov. 2011.

[12] E. Konstantinova, V. Levenshtein, and J. Siemons, “Reconstruc-
tion of permutations distorted by single transposition errors,” 2007,
arXiv:math/0702191.

[13] A. V. Kuznetsov and A. J. H. Vinck, “A coding scheme for single peak-
shift correction in (d,k)-constrained channels,” IEEE Trans. Inf. Theory,
vol. 39, no. 4, pp. 1440–1450, Jul. 1993.

[14] V. I. Levenshtein, E. Konstantinova, E. Konstantinov, and S. Molodtsov,
“Reconstruction of a graph from 2-vicinities of its vertices,” Discrete
Appl. Math., vol. 156, pp. 1399–1406, May 2008.

[15] V. I. Levenshtein and J. Siemons, “Error graphs and the reconstruction
of elements in groups,” J. Combinat. Theory, A, vol. 116, no. 4,
pp. 795–815, 2009.

[16] V. I. Levenshtein and A. J. H. Vinck, “Perfect (d,k)-codes capable of
correcting single peak-shifts,” IEEE Trans. Inf. Theory, vol. 39, no. 2,
pp. 656–662, Mar. 1993.

[17] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[18] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” J. Combinat. Theory, A, vol. 93, no. 2,
pp. 310–332, Feb. 2001.

[19] V. Long Phuoc Pham, K. Goyal, and H. Mao Kiah, “Sequence recon-
struction problem for deletion channels: A complete asymptotic solu-
tion,” 2021, arXiv:2111.04255.

[20] F. Sala, R. Gabrys, C. Schoeny, and L. Dolecek, “Exact reconstruction
from insertions in synchronization codes,” IEEE Trans. Inf. Theory,
vol. 63, no. 4, pp. 2428–2445, Apr. 2017.

[21] M. Schwartz, “Quasi-cross lattice tilings with applications to flash
memory,” IEEE Trans. Inf. Theory, vol. 58, no. 4, pp. 2397–2405,
Apr. 2012.

[22] M. Schwartz, “On the non-existence of lattice tilings by quasi-crosses,”
Eur. J. Combinat., vol. 36, pp. 130–142, Feb. 2014.

[23] S. Stein, “Packings ofRnby certain error spheres,” IEEE Trans. Inf.
Theory, vol. 30, no. 2, pp. 356–363, Mar. 1984.

[24] S. Stein, “The notched cube tiles Rn,” Discrete Math., vol. 80, no. 3,
pp. 335–337, 1990.

[25] S. Stein and S. Szabó, Algebra Tiling. Washington, DC, USA:
Mathematical Association of America, 1994.

[26] H. Wei, X. Wang, and M. Schwartz, “On lattice packings and cover-
ings of asymmetric limited-magnitude balls,” IEEE Trans. Inf. Theory,
vol. 67, no. 8, pp. 5104–5115, Aug. 2021.

[27] H. Wei and M. Schwartz, “Improved coding over sets for DNA-based
data storage,” IEEE Trans. Inf. Theory, vol. 68, no. 1, pp. 118–129,
Jan. 2022.

[28] E. Yaakobi and J. Bruck, “On the uncertainty of information retrieval
in associative memories,” IEEE Trans. Inf. Theory, vol. 65, no. 4,
pp. 2155–2165, Apr. 2019.

[29] S. Yari, T. Kløve, and B. Bose, “Some codes correcting unbalanced
errors of limited magnitude for flash memories,” IEEE Trans. Inf.
Theory, vol. 59, no. 11, pp. 7278–7287, Nov. 2013.

[30] Z. Ye, T. Zhang, X. Zhang, and G. Ge, “Some new results on splitter
sets,” IEEE Trans. Inf. Theory, vol. 66, no. 5, pp. 2765–2776, May 2020.

[31] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for DNA
sequences with uniform tandem-duplication errors,” IEEE Trans. Inf.
Theory, vol. 66, no. 5, pp. 2658–2668, May 2020.

[32] Y. Yehezkeally and M. Schwartz, “Uncertainty of reconstruction with
list-decoding from uniform-tandem-duplication noise,” IEEE Trans. Inf.
Theory, vol. 67, no. 7, pp. 4276–4287, Jul. 2021.

[33] T. Zhang and G. Ge, “New results on codes correcting single error of
limited magnitude for flash memory,” IEEE Trans. Inf. Theory, vol. 62,
no. 8, pp. 4494–4500, Aug. 2016.

[34] T. Zhang and G. Ge, “On the nonexistence of perfect splitter sets,” IEEE
Trans. Inf. Theory, vol. 64, no. 10, pp. 6561–6566, Oct. 2018.

[35] T. Zhang, X. Zhang, and G. Ge, “Splitter sets and K-radius sequences,”
IEEE Trans. Inf. Theory, vol. 63, no. 12, pp. 7633–7645, Dec. 2017.

Hengjia Wei received the Ph.D. degree in applied mathematics from Zhejiang
University, Hangzhou, China, in 2014.

He was a Post-Doctoral Fellow with Capital Normal University, Beijing,
China, from 2014 to 2016; a Research Fellow with the School of Physical
and Mathematical Sciences, Nanyang Technological University, Singapore,
from 2016 to 2019; and a Post-Doctoral Fellow with the School of Electrical
and Computer Engineering, Ben-Gurion University of the Negev, Israel,
from 2019 to 2022. He is currently an Associate Researcher with the Peng
Cheng Laboratory, Shenzhen, China. His research interests include combinato-
rial design theory, coding theory and their intersections. He received the 2017
Kirkman Medal from the Institute of Combinatorics and its Applications.

Moshe Schwartz (Senior Member, IEEE) received the B.A. (summa cum
laude), M.Sc., and Ph.D. degrees from the Computer Science Department,
Technion—Israel Institute of Technology, Haifa, Israel, in 1997, 1998, and
2004, respectively.

He was a Fulbright Post-Doctoral Researcher with the Department of
Electrical and Computer Engineering, University of California at San Diego,
and a Post-Doctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012–2014, he was a
Visiting Scientist at the Massachusetts Institute of Technology (MIT). He is
currently a Professor with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Israel. His research interests include
algebraic coding, combinatorial structures, and digital sequences.

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage and
the 2020 NVMW Persistent Impact Prize. He served as an Associate Editor
of coding techniques and coding theory for the IEEE TRANSACTIONS ON

INFORMATION THEORY (2014–2021), and since 2021, he has been serving
as an Area Editor of coding and decoding for the IEEE TRANSACTIONS
ON INFORMATION THEORY. He is also an Editorial Board Member for the
Journal of Combinatorial Theory: Series A since 2021.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on June 18,2022 at 12:20:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Black & White)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /ArborText
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /ComicSansMS
 /ComicSansMS-Bold
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /EstrangeloEdessa
 /EuroSig
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Helvetica
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Oblique
 /Impact
 /KozGoPr6N-Medium
 /KozGoProVI-Medium
 /KozMinPr6N-Regular
 /KozMinProVI-Regular
 /Latha
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LucidaConsole
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /MVBoli
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Webdings
 /Wingdings-Regular
 /ZapfDingbats
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 300
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 900
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

