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Optimal Locally Repairable Codes: An Improved
Bound and Constructions

Han Cai , Member, IEEE, Cuiling Fan , Ying Miao , Moshe Schwartz , Senior Member, IEEE,

and Xiaohu Tang , Senior Member, IEEE

Abstract— We study the Singleton-type bound that provides
an upper limit on the minimum distance of locally repairable
codes. We present an improved bound by carefully analyzing the
combinatorial structure of the repair sets. Thus, we show the
previous bound is unachievable for certain parameters. We then
also provide explicit constructions of optimal codes which show
that for certain parameters the new bound is sharp. Additionally,
as a byproduct, some previously known codes are shown to attain
the new bound and are thus proved to be optimal.

Index Terms— Locally repairable codes, Singleton-type bound.

I. INTRODUCTION

DUE to the ever-growing need for more efficient and scal-
able systems for cloud storage and data storage in gen-

eral, distributed storage systems (DSSs) (such as the Google
data centers and Amazon Clouds) have become increasingly
important. In a distributed storage system, a data file is
stored at a distributed collection of storage devices/nodes in a
network. Since any storage device is individually unreliable
and subject to failure, redundancy must be introduced to
provide the much-needed system-level protection against data
loss due to device/node failure.
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In today’s large distributed storage systems, where node
failures are the norm rather than the exception, designing codes
that have good distributed repair properties has become a cen-
tral problem. Several cost metrics and related tradeoffs have
been studied in the literature, for example repair bandwidth
[4], [5], disk-I/O [23], and repair locality [4], [8], [12]. In this
paper repair locality is the subject of interest.

Motivated by the desire to reduce repair cost in the design
of erasure codes for distributed storage systems, the notions
of symbol locality and locally repairable codes (LRC) were
introduced in [8] and [13], respectively. The ith coded symbol
of an [n, k] linear code C is said to have locality r if it
can be recovered by accessing at most r other symbols
in C. Alternatively, the ith code symbol with the r other
symbols form a 1-erasure correcting code. The concept was
further generalized to (r, δ)-locality by Prakash et al. [14] to
address the situation of multiple device failures. Here, the ith
coordinate, together with r + δ − 2 other coordinates, form a
code capable of correcting δ − 1 erasures. When δ = 2 this
coincides with the definition of locality.

There are two types of linear codes with (r, δ)-locality
considered in the literature. The first is information symbol
locality, pertaining to systematic linear codes whose informa-
tion symbols all have (r, δ)-locality (denoted by (r, δ)i-locality
for short). The second is of all-symbol locality (or (r, δ)a-
locality) pertaining to linear codes all of whose symbols have
(r, δ)-locality.

For any [n, k, d]q-linear code with minimum Hamming
distance d over the finite field Fq , the Singleton bound [18] is
given by

d � n− k + 1, (1)

which is one of the most classical theorems in coding theory.
This bound was generalized for locally repairable codes in [8]
(the case δ = 2) and [14] (general δ) as follows. An [n, k, d]q-
linear LRC with (r, δ)i-locality satisfies

d � n− k + 1−
��

k

r

�
− 1

�
(δ − 1). (2)

It was also proved that a class of codes known as pyramid
codes [9] achieves this bound when the alphabet is sufficiently
large, say q � n+1 and d � δ (for a weaker field-size require-
ment please refer to [3]). Since a linear code with (r, δ)a-
locality is also a linear code with (r, δ)i-locality, (2) also
presents an upper bound for the minimum Hamming distance
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of (r, δ)a codes. Other bounds for linear and nonlinear LRCs
can be found in [1], [13], [15], [16], [21], [24]. An LRC is
optimal if it has the highest minimum Hamming distance of
any code of the given parameters n, k, r, and δ. In this paper,
we focus on Singleton-type bounds (like (1) and (2) above)
and their corresponding optimal codes.

There are different constructions of LRCs that are optimal
in the sense that they achieve the Singleton-type bound in (2),
e.g., [2], [14], [17], [19], [20], [22]. Tamo et al. [22] showed
that the r-locality of a linear LRC is a matroid invariant, which
was used to prove that the minimum Hamming distance of
a class of linear LRCs achieves the Singleton-type bound.
In [20], Tamo and Barg introduced an interesting construction
that can generate optimal linear codes with (r, δ)a-locality
over an alphabet of size O(n). Under the assumption of a
sufficiently large alphabet, Song et al. [19] investigated for
which parameters (n, k, r, δ) there exists a linear LRC with
all-symbol locality and minimum Hamming distance d achiev-
ing the Singleton-type bound (2). The parameter set (n, k, r, δ)
was divided into eight different cases. In four of these cases
it was proved that there are linear LRCs achieving the bound,
in two of these cases it was proved that there are no linear
LRCs achieving the bound, and the existence of linear LRCs
achieving the bound in the remaining two cases remained an
open problem. Independently of [19], Wang and Zhang [24]
used a linear-programming approach to strengthen these result
when δ = 2. Ernvall et al. [6] presented methods to modify
already existing codes, and gave constructions for three infinite
classes of optimal vector-linear LRCs with all-symbol locality
over an alphabet of small size. Recently, Westerbäck et al.
[25] provided a link between matroid theory and LRCs that are
either linear or more generally almost affine, and derived new
existence results for linear LRCs and nonexistence results for
almost affine LRCs, which strengthened the results for linear
LRCs given in [19].

Thus, in general, the bound in (2) is not tight for LRCs
with (r, δ)a-locality, even under the assumption of having a
sufficiently large finite field. In this paper, we further study the
Hamming distance of LRCs with (r, δ)a-locality. Our approach
involves a fine detailed analysis of the structure of the repair
sets. We define two properties of subsets of repair sets, and
show that using them, we can find a subset of repair sets with
desired parameters. Using this subset we derive an improved
bound on the minimum Hamming distance that improves
upon (2). As a consequence, the improved bound shows that
some previously undecided cases are in fact unachievable for
the bound in (2). The improved bound can also prove some
LRCs based on matroids in [25] are indeed optimal. We also
give two new explicit constructions to generate optimal LRCs
with respect to the improved bound. In Fig. 1, we extend and
refine the summary appearing in [19], and show the known
and new results concerning the tightness of the Singleton-type
bound for LRCs under the assumption that the alphabet is
sufficiently large.

The paper is organized as follows. In Section II, we intro-
duce some definitions and facts concerning LRCs with
(r, δ)a-locality. Section III mainly discusses the structure and
properties of a collection of repair sets for locally repairable

codes with all-symbol locality. In Section IV, we prove an
upper bound on the minimum Hamming distance, by applying
the results obtained in Section III. In Section V, we discuss
the implications of our new upper bound. In Section VI,
constructions of locally repairable codes are given, which
can generate optimal codes with respect to our new bound.
Section VII concludes the paper with a discussion of the results
and some open questions.

II. PRELIMINARIES

Let C be an [n, k, d]q linear code over the finite field Fq.
Assume C has a generator matrix G = (g1,g2, . . . ,gn), where
gi ∈ Fk

q is a column vector for i = 1, 2, . . . , n. While
many different generator matrices exist for C, in what follows,
the choice of G is immaterial. Given C and the matrix G,
we introduce some notation and concepts.

For an integer n ∈ N we denote [n] = {1, 2, . . . , n}. For any
set N ⊆ [n], we denote GN = {gi : i ∈ N}. Then span(N)
denotes the linear space spanned by GN over Fq, and rank(N)
denotes the dimension of span(N). Additionally, CN denotes
the punctured code of C associated with the coordinate set N .
That is, CN is obtained from C by deleting all symbols in the
coordinates [n] \N .

The following lemma describes a useful fact about [n, k, d]q
linear codes, which plays an important role in our paper.

Lemma 1 ([10]): The minimum Hamming distance of any
[n, k, d]q linear codes satisfies

d = n−max {|N | : N ⊆ [n], rank(N) < k} .
We now recall the definition of repair sets, and locally

repairable codes.
Definition 1 ([14]): Let C be an [n, k, d]q code. For 1 �

r � k and δ � 2, an (r, δ)-repair set of C is a subset S ⊆ [n]
such that

1) |S| � r + δ − 1;
2) For every l ∈ S, L ⊆ S \ {l} and |L| = |S| − (δ −

1), cl is a linear function of {ci : i ∈ L}, where c =
(c1, . . . , cn) ∈ C.

We say that C is a locally repairable code (LRC) with all-
symbol (r, δ)-locality (or C is an LRC with (r, δ)a-locality) if
all the n symbols of the code are contained in at least one
(r, δ)-repair set.

Remark 1 ([19], [25]): Note that the symbols in an (r, δ)-
repair set S can be used to recover up to δ − 1 erasures in
the same repair set, then each of the following statements are
equivalent to Definition 1, item 2):

1) For any L ⊆ S with |L| = |S| − (δ − 1), we have
rank(L) = rank(S);

2) For any l ∈ S, L ⊆ S \ {l} and |L| = |S| − (δ − 1),
we have |CL∪{l}| = |CL|;

3) For any L ⊆ S with |L| � |S| − (δ − 1), we have
|CL| = |CS |;

4) d(CS) � δ, where d(CS) is the minimum Hamming
distance of CS .

In what follows, whenever we speak of an LRC with (r, δ)a-
locality, we will by default assume it is an [n, k, d]q linear code
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Fig. 1. The tightness of the Singleton-type bound for LRC in (2), where n = w(r + δ − 1) + m, 0 � m < r + δ − 1, k = ur + v, and 0 < v � r,
Δ = u− 1 + (v −m + δ − 1)(1 + 1�

r−v
u+v−r

� ). The new contributions of this paper appear in bold frames. We do not consider the case u = 0, i.e., k = r,

since this is exactly the case of the classic Singleton bound.

(i.e., its length is n, its dimension is k, its minimum Hamming
distance is d, and its alphabet size is q).

III. PROPERTIES OF LRCs WITH (r, δ)a-LOCALITY

The goal of this section is to study the structure of (r, δ)-
repair sets induced by (r, δ)a-locality, and propose some
properties which can be used to obtain a lower bound on the
minimum Hamming distance in the next section. Generally
speaking, we would like to find a set that contains as many
code coordinates as possible, under the condition that its rank
does not exceed k − 1. To this end, we distinguish between
three cases. The relationship between repair sets, the number
of code symbols, and their rank, is easy to determine for the
first case (refer to Proposition 2). The remaining two cases are
reduced to the first case in Propositions 3-5.

Throughout the paper we assume that C denotes an [n, k, d]q
LRC with (r, δ)a-locality. The parameters n and k are written
in the following forms:

n = w(r + δ − 1) + m, 0 � m < r + δ − 1,

k = ur + v, 0 < v � r, (3)

where w, m, u, v are nonnegative integers. Observe that we
represent k as ur + v with 0 < v � r to make sure that
ur < k.

Remark 2: For the parameters of LRC with (r, δ)a-locality,
we have the following simple observations:

1) If u = 0, then the fact that k � r implies that k = r
and n � r + δ − 1, which is a trivial case for LRC.

2) The facts that k = ur + v and the code has (r, δ)a-
locality imply that w � u, since we need at least �k

r � =
u + 1 repair sets to cover all the information symbols,
i.e., w(r + δ − 1) + m = n � k + (u + 1)(δ − 1) =
u(r+δ−1)+v+δ−1. Note that each repair set contains
at least δ − 1 parity check symbols.

3) For the nontrivial case k � r, we have n � r + δ − 1,
which follows directly from the previous claims.

Definition 2: Let n, T, s ∈ N. Additionally, let X be a set
of cardinality n, whose elements are called points. Finally,
let B = {B1, B2, . . . , BT } ⊆ 2X be a set of blocks such
that

�
i∈[T ] Bi = X , and for all i ∈ [T ], |Bi| � s and�

j∈T\{i} Bj �= X . We then say (X ,B) is an (n, T, s)-
essential covering family (ECF). If all blocks have the same
size we say (X ,B) is a uniform (n, T, s)-ECF.
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For an LRC with (r, δ)a-locality, note that each code symbol
may be contained in more than one repair set. Thus, to simplify
the discussion, we first use the (r, δ)-repair sets to form an
ECF, which can be naturally obtained from Definition 1 and
Remark 1, as described in [2].

Lemma 2 ([2]): For any [n, k]q linear code C with (r, δ)a-
locality, let Γ ⊆ 2[n] be the set of all possible (r, δ)-repair
sets. Then we can find a subset S ⊆ Γ such that ([n],S) is an
(n, |S| , r + δ − 1)-ECF with |S| �

�
k
r

�
.

Remark 3: The fact that the components of S cover all the
element of [n] implies that

|S| �
�

n

r + δ − 1

�
= w +

�
m

r + δ − 1

�
� w.

In particular, |S| = w if and only if m = 0, S is uniform, and
the repair sets in S form a partition of [n].

Let V be a subset of the set S that was obtained in Lemma 2.
We define the following two properties of V , which will form
the basis of our analysis:

C1:
			Si ∩


�
Sj∈V\{Si} Sj

�			 < |Si| − δ + 1 for any Si ∈ V ;

C2: |Si ∩ Sj | < min {|Si|, |Sj |} − δ + 1 for any distinct
Si, Sj ∈ V .

Remark 4: Condition C1 is stronger than Condition C2,
namely, if V satisfies C1 it must satisfy C2, but not necessarily
vice versa. To see this, assume to the contrary that C2 does
not hold. Then there exist distinct Si, Sj ∈ V such that
|Si ∩ Sj | � min {|Si|, |Sj |} − δ + 1, and w.l.o.g., assume
|Si| � |Sj |. Then						Si ∩

⎛⎝ �
Sj′∈V\{Si}

Sj′

⎞⎠
						 � |Si ∩ Sj | � |Si| − δ + 1,

and hence, C1 does not hold.
The following definitions introduce concepts required in

several of our claims.
Definition 3: Assume r, δ � 1 are fixed. For all integers

a � r+δ−1, b � 0 we define the function Φ(a, b) as follows:

Φ(a, b)

=

⎧⎪⎪⎨⎪⎪⎩
min

�
r+δ−1−c, max

��
b
2

�
,
�

b(b−1)(r+δ−1−c)
(�+1)�

���
if c �= 0,

0 if c = 0,

where c denotes the minimum nonnegative integer with c ≡
a mod (r + δ − 1), and � =

�
a

r+δ−1

�
.

Definition 4: Let S denote the ECF induced by an LRC
with (r, δ)a-locality via Lemma 2, and let V ⊆ S be some
subset of it. We define

Υ(V ,S) =

� �
Si∈V

Si

�
\

⎛⎝ �
Sj∈S\V

Sj

⎞⎠
and denote

M(V ,S) = |Υ(V ,S)| .
We now present a sequence of results on the structure of
S, depending at times on which of Conditions C1 and C2

it satisfies. The proofs are technical and tedious, and are
therefore all deferred to the appendix to facilitate the reading.

Proposition 1: For any integer 0 � t � |S|, there exists a
t-subset V of S such that

|V|(r + δ − 1)−
					 �
Si∈V

Si

					 � Φ(n, t).

Proposition 2 ([2, Lemma 7]): Let V be a subset of S such
that V satisfies Condition C1. Then

rank

� �
Si∈V

Si

�
�

					 �
Si∈V

Si

					− |V|(δ − 1).

Proposition 3: Let V be a subset of S such that V satisfies
Condition C2, but not Condition C1. Then there exists a subset
V∗ ⊆ V , such that

1) V∗ satisfies Condition C1;
2) |V∗|(r + δ − 1)−

		�
Si∈V∗ Si

		 � �r/2�.
Proposition 4: Let V be a subset of S such that V does

not satisfy Condition C2. Then there exists a pair of subsets
V∗

1 ⊆ V1 ⊆ S such that:
1) V1 \ V∗

1 satisfies Condition C1;
2) For any Sj ∈ V1 \ V∗

1 , there exists Si ∈ V∗
1 , such that

span(Si) ⊆ span(Sj);
3) S \ V∗

1 satisfies Condition C2.
Proposition 5: Assume the same setting as in Proposition 4,

and let V∗
1 ⊆ V1 ⊆ S be the subsets guaranteed there. Denote

Υ = Υ(V∗
1 ,S) and M = M(V∗

1 ,S). Then

1) GΥ ⊆ span(
�

Si∈V1\V∗
1

Si);
2) |GΥ ∩ span(

�
Si∈U Si)| � |U|, for any subset U ⊆ V1 \

V∗
1 ;

3) |V∗
1 | � M , |V1 \ V∗

1 | � M , and |V1| � 2M .

IV. AN IMPROVED BOUND

Having laid the foundation in the previous section, we now
use the structure of the repair sets, together with Lemma 1,
to obtain a lower bound on the minimum Hamming distance
of an LRC with (r, δ)a-locality. Thus, we aim to find a subset
S ⊆ [n] with rank(S) = k − 1, whose size is as large as
possible. Particularly, in Lemma 3 below, we find such a set
of code symbols under Condition C1. When Condition C1 is
not satisfied but Condition C2 is, we apply Proposition 3 to
reduce it into the case of C1. For the last case, when even
Condition C2 is not satisfied, we consider a shortened code to
reach the case of C1 by applying Proposition 4. Thus, all the
possible cases are reduced to a subset that satisfies Condition
C1 in Proposition 6 below. We then describe our main bound
in Theorem 1.

Throughout this section, we still assume that C is an
[n, k, d]q linear code with (r, δ)a-locality, and S is the ECF
given by Lemma 2. The parameters n and k are written as in
(3).

Lemma 3: If there exists a subset V1 ⊆ S satisfying
Condition C1, |V1| � u, and

|V1|(r + δ − 1)−
					 �
Si∈V1

Si

					 � Δ � 0,
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then we can obtain a subset S ⊆ [n] with
�

Si∈V1
Si ⊆ S,

rank(S) = k − 1, and

|S| � k − 1 +
��

k + Δ
r

�
− 1

�
(δ − 1).

Proof: The main idea of the proof is to extend V1 to a
subset V3 ⊆ S such that

�
Si∈V3

Si has rank less than k, and
size as large as possible. Note that k = ur+v with 0 < v � r
means that |S| �

�
k
r

�
> u. We first claim that, for any V ∈ S,

if

rank

� �
Si∈V

Si

�
�

					 �
Si∈V

Si

					− |V|(δ − 1) (4)

and rank(
�

Si∈V Si) < k, then we can find an Sτ ∈ S \ V
satisfying

rank

⎛⎝ �
Si∈V∪{Sτ}

Si

⎞⎠�

						
�

Si∈V∪{Sτ}
Si

						− |V ∪ {Sτ}|(δ − 1).

Since rank (
�

Si∈S Si) = k, the fact that rank(
�

Si∈V Si) < k
implies that there is an Sτ ∈ S \ V , with

rank

� �
Si∈V

Si

�
< rank

⎛⎝ �
Si∈V∪{Sτ}

Si

⎞⎠ ,

which means that					Sτ ∩
� �

Si∈V
Si

�					 < |Sτ | − δ + 1.

Thus, we can delete δ−1 elements from Sτ \
��

Si∈V Si

 
and

keep the rank, i.e.,

rank

⎛⎝ �
Si∈V∪{Sτ}

Si

⎞⎠− rank

� �
Si∈V

Si

�

�

						
�

Si∈V∪{Sτ}
Si

						−
					 �
Si∈V

Si

					− δ + 1.

The above inequality and (4) imply that

rank

⎛⎝ �
Si∈V1∪{Sτ}

Si

⎞⎠
�

						
�

Si∈V1∪{Sτ}
Si

						− |V1 ∪ {Sτ}| (δ − 1),

which proves the claim.
If |V1| = u we set V2 = V1. Otherwise, by applying

Proposition 2 to V1,

rank

� �
Si∈V1

Si

�
�

					 �
Si∈V1

Si

					− |V1| (δ − 1).

Note that rank(
�

Si∈V1
Si) � |V1|r � r(u − 1) < k − r.

Since the union of any u repair sets from S has rank at most
ur < k, by applying the preceding claim sufficiently many

times, we can find a subset V2 ⊆ S with |V2| = u, V1 ⊆ V2,
and

rank

� �
Si∈V2

Si

�

�
					 �
Si∈V2

Si

					− |V2|(δ − 1)

� (u− |V1|) (r + δ − 1) +

					 �
Si∈V1

Si

					− u(δ − 1)

=ru +

					 �
Si∈V1

Si

					− |V1|(r + δ − 1)

�k − v −Δ. (5)

Note that this holds even if in the case V2 = V1 when |V1| = u.
Having obtained V2, we again apply the procedure on V2 to

find a subset V3 ⊆ S with V2 ⊆ V3, |V3| =
�

k+Δ
r

�
− 1, and

rank

� �
Si∈V3

Si

�
�

					 �
Si∈V3

Si

					− |V3|(δ − 1). (6)

By (5), we also have

rank

� �
Si∈V3

Si

�

� rank

� �
Si∈V2

Si

�
+ (|V3| − |V2|) r

=rank

� �
Si∈V2

Si

�
+

��
k + Δ

r

�
− 1− u

�
r

< rank

� �
Si∈V2

Si

�
+ v + Δ

�k.

Now let S be a subset of [n] with rank(S) = k − 1 and�
Si∈V3

Si ⊆ S. Then by (6), we have

|S| � rank(S)− rank

� �
Si∈V3

Si

�
+

					 �
Si∈V3

Si

					
� k − 1 + |V3| · (δ − 1)

= k − 1 +
��

k + Δ
r

�
− 1

�
(δ − 1).

Proposition 6: If the requirements of Proposition 4 hold,
let V∗

1 ⊆ V1 ⊆ S be the two guaranteed sets, and otherwise
set V1 = V∗

1 = ∅. Denote M = M(V∗
1 ,S). Then there exists

a subset S ⊆ [n] with rank(S) = k − 1, and

|S| � k − 1 +

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
!��

k+� r
2�

r

�
− 1

�
(δ − 1),

M +

�

k+Φ(n−M,u−M)
r

�
− 1

�
(δ − 1)

�
,

if u > M ,

u +
��

k
r

�
− 1

 
(δ − 1), if u � M ,

where Φ(·, ·) is from Definition 3.
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Proof: Before proceeding with the proof, if V1 = V∗
1 = ∅,

the claims in this proof also hold (mostly trivially so). Thus,
we concentrate on the case they are not empty.

Define Υ = Υ(V∗
1 ,S), N = [n] \ Υ, and S∗ = S \ V∗

1 .
Then CN is an [n −M, k]q linear code with (r, δ)a-locality,
and S∗ is an ECF whose elements are (r, δ)-repair sets of CN ,
where additionally, |CN | = |C| by virtue of Proposition 5-1).
To avoid a conflict with the definition of Φ(·, ·), we highlight
that n −M � r + δ − 1, since k � r and CN has (r, δ)a-
locality (refer to Remark 2, item 3). The remainder of the
proof is divided into two cases.

Case 1: Assume u > M . The fact that rank(
�

Si∈S∗ Si) =
k implies that |S∗| � �k/r� > u � u − M . Thus,
by Proposition 1, there is a (u−M)-subset V2 ⊆ S∗ with

|V2|(r + δ − 1)−
					 �
Si∈V2

Si

					 � Φ(n−M, u−M).

Recall that by Proposition 5-3), we have |V1\V∗
1 | � M . Define

V3 = V2 ∪ (V1 \ V∗
1 ), then |V3| � u and

|V3|(r + δ − 1)−
					 �
Si∈V3

Si

					
�|V2|(r + δ − 1)−

					 �
Si∈V2

Si

					
�Φ(n−M, u−M).

If V3 satisfies Condition C1, then by Lemma 3, there is a
subset S(1) ⊆ N with

�
Si∈V3

Si ⊆ S(1), rank(S(1)) = k−1,
and

|S(1)| � k − 1 +
��

k + Φ(n−M, u−M)
r

�
− 1

�
(δ − 1).

Note that

GΥ⊆ span

⎛⎝ �
Si∈V1\V∗

1

Si

⎞⎠⊆ span

� �
Si∈V3

Si

�
⊆ span(S(1))

by Proposition 5-1), and Υ ∩ S(1) ⊆ Υ ∩ N = ∅. Define
S = S(1) ∪ Υ, then S is the desirable subset of [n] with
rank(S) = k − 1, and

|S| = M + |S(1)|

�M + k − 1 +
��

k + Φ(n−M, u−M)
r

�
− 1

�
(δ − 1).

(7)

Let us now consider the case where V3 does not satisfy
Condition C1. By Proposition 4-3), S \V∗

1 satisfies Condition
C2. Since V3 ⊆ S\V∗

1 , we also have that V3 satisfies Condition
C2. By Proposition 3, there exists a subset V∗

3 ⊆ V3 that
satisfies Condition C1 and

|V∗
3 | (r + δ − 1)−

						
�

Si∈V∗
3

Si

						 �
�r

2

�
.

Now, by Lemma 3, there is a subset S ⊆ [n] with rank(S) =
k − 1, and

|S| � k − 1 +

�"
k +

�
r
2

�
r

#
− 1

�
(δ − 1). (8)

Case 2: Assume u � M . Define V4 to be a u-subset of
V1 \ V∗

1 if |V1 \ V∗
1 | � u. Otherwise define V4 = V1 \V∗

1 . The
set V4 satisfies Condition C1 according to Proposition 4-1),
and obviously

|V4|(r + δ − 1)−
					 �
Si∈V4

Si

					 � 0.

By Lemma 3, there is a subset S(2) ⊆ N with
�

Si∈V4
Si ⊆

S(2), rank(S(2)) = k − 1, and

|S(2)| � k − 1 +
��

k

r

�
− 1

�
(δ − 1).

Note that |GΥ∩span(
�

Si∈V4
Si)| � u by Proposition 5-2) and

the facts that |V4| = u or V4 = V1 \V∗
1 , |Υ| = M � u. Define

S = S(2)∪Υ′, where Υ′ =
$
i : gi ∈ GΥ ∩ span(

�
Si∈V4

Si)
%

.
Recall that Υ′ ∩ S(2) ⊆ Υ ∩ S(2) ⊆ Υ ∩ N = ∅. Thus, S is
the desirable subset of [n] with rank(S) = k − 1, and

|S| � u +
			S(2)

			 � u + k − 1 +
��

k

r

�
− 1

�
(δ − 1). (9)

The proof is now completed by combining (7), (8), and (9).

Now we are ready to obtain an upper bound on the minimum
Hamming distance.

Theorem 1: Let C be an LRC with (r, δ)a-locality, and let
S be the ECF given by Lemma 2. If the requirements of
Proposition 4 hold, let V∗

1 ⊆ V1 ⊆ S be the two guaranteed
sets, and otherwise set V1 = V∗

1 = ∅. Denote M = M(V∗
1 ,S).

Then

d�n− k + 1−

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

min
!��

k+� r
2�

r

�
− 1

�
(δ − 1) ,

M +

�

k+Φ(n−M,u−M)
r

�
−1

�
(δ−1)

�
,

if u > M ,�
u +

��
k
r

�
− 1

 
(δ − 1)

 
, if u � M ,

where Φ(·, ·) is from Definition 3.
Proof: The conclusion is obtained directly by combining

Lemma 1 and Proposition 6.
Remark 5: We point out that the subsets V∗

1 ⊆ V1 ⊆
S, whose existence is guaranteed in Proposition 4, are not
necessarily unique. Thus, the value of M used in Theorem 1
is not unique as well. Of the (possibly many) choices for M ,
it is unclear which one results in the best bound.

Remark 6: We make the following observations:
1) If M = 0, the bound in Theorem 1 becomes

d�n−k+1−
�"

k+min
$�

r
2

�
, Φ(n, u)

%
r

#
−1

�
(δ−1),

which is tighter than the one given by (2) (see, [8], [14])
if and only if

min
��r

2

�
, Φ(n, u)

�
> r − v.

In particular, the bound is exactly the one in (2) when
m = 0, and it is tighter than the one in (2) when m �=
0 and v = r.
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2) If M �= 0 and k > r, the bound in Theorem 1 is tighter
than the bound in (2) if and only if�r

2

�
> r − v.

In particular, the bound is tighter than the one in (2)
when v = r, i.e., r | k and k > r.

V. CASE ANALYSIS OF THE IMPROVED BOUND

The new bound of Theorem 1 depends on many parameters.
In this section we highlight interesting cases of parameters
for this bound. Generally, we should consider all possible
M in Theorem 1 to determine the upper bound on d, where
M depends on the structure of the (r, δ)-repair sets, i.e., S.
However, for some special cases the expression for the bound
can be further simplified. Specifically, in Corollaries 2 and 3
we determine explicit bounds for two classes of parameters,
and in Theorem 3 we determine the exact maximum Hamming
distance for another class of parameters. Finally, in Corol-
lary 4, we show that the original Singleton-type bound given
by (2), is unattainable for a class of parameters.

We again assume that C is an [n, k, d]q linear code with
(r, δ)a-locality, and S is the ECF given by Lemma 2. The
parameters n and k are written as in (3).

Corollary 1: If an [n, k, d]q LRC with (r, δ)a-locality sat-
isfies that the repair sets in S are pairwise disjoint, then

d � n− k + 1−
��

k + Φ(n, u)
r

− 1
��

(δ − 1).

Proof: If the repair sets in S are pairwise disjoint, then
Condition C1 always holds for S. The conclusion is then
obtained directly by Proposition 1, Lemma 3 and Lemma 1.

In [25], Westerbäck et al. studied locally repairable codes
via matroid theory, and obtained the following bound for dmax,
where dmax is the largest d such that there exists a linear
[n, k, d]q code with (r, δ)a-locality.

Theorem 2 ( [25, Theorem 36-(ii)]): Assume r + δ − 1 � n
and r � k, namely, m > 0 and v < r. If 0 < r < k �
n−

�
k
r

�
(δ − 1) and v > m− δ + 1, then

dmax �n−k+1−
�
k

r

�
(δ−1)+

&
0, if m � δ,

δ−1−m, if m � δ − 1,

where dmax is the largest d such that there exists a linear
[n, k, d]q code with (r, δ)a-locality.

By applying the bound obtained in Lemma 1, we may
now determine the exact value of dmax for certain classes of
parameters.

Corollary 2: Under the setting of Theorem 2, if m � δ, r >
v > max

$
m− δ + 1,

�
r
2

�%
, and u � max{2(r + δ− 1−m),

r + δ − 1}, we have

d � n− k + 1−
�

k

r

�
(δ − 1).

Proof: By u � 2(r + δ− 1−m), we have
�

u
2

�
� r + δ−

1−m, which implies that Φ(n, u) = r + δ − 1−m. By v >
max

$
m− δ + 1,

�
r
2

�%
, we have r−v < min

$
Φ(n, u),

�
r
2

�%
.

Obviously
�

r
2

�
� r, and since m � δ, also Φ(n, u) = r + δ−

1−m � r. This implies that�
k + Φ(n, u)

r

�
=

"
k +

�
r
2

�
r

#
=

�
k

r

�
+ 1. (10)

The remainder of the proof is divided into three cases.
Case 1: Assume u � M . We note that u > δ− 1, and then

by Theorem 1, we have

d � n− k + 1− u−
��

k

r

�
− 1

�
(δ − 1)

< n− k + 1−
�

k

r

�
(δ − 1).

Case 2: Assume u > M and M � δ − 1. Since

M +
��

k+Φ(n−M, u−M)
r

�
−1

�
(δ − 1)�

�
k

r

�
(δ − 1),

by Theorem 1 and (10), we have

d � n− k + 1−
�"

k +
�

r
2

�
r

#
− 1

�
(δ − 1)

= n− k + 1−
�

k

r

�
(δ − 1).

Case 3: Assume u > M and M < δ−1. Obviously M < m
since δ � m. Additionally,

n−M = w(r + δ − 1) + (m−M),

where 0 < m − M < r + δ − 1, thus m − M = (n −
M) mod (r + δ − 1). Then

Φ(n − M, u − M)=

min

�
r+δ−1−m+M,

max

��
u − M

2

�
,

�
(u−M)(u−M−1)(r+δ−1−m+M)

w(w+1)

���
.

The facts that

r + δ − 1−m + M � r + δ − 1−m = Φ(n, u)

and'
u−M

2

(
�

'
(r + δ − 1)− (δ − 2)

2

(
=

'
r + 1

2

(
=

�r

2

�
imply that

Φ(n−M, u−M) � min
�

Φ(n, u),
�r

2

��
.

Thus, by Theorem 1, (10) and the above discussion, we have

d � n− k + 1−
�

k

r

�
(δ − 1).

Combining the above three cases, the proof is now completed.

Corollary 3: Under the setting of Theorem 2, if m � δ−1,
r > v >

�
r
2

�
, and u � 2r + δ − 1, we have

d � n− k + 1−
�

k

r

�
(δ − 1) + (δ − 1−m).
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Proof: We again use the upper bound obtained in Theo-
rem 1. By the definition of Φ(·, ·), and since m > 0, we have
Φ(n, u) � min

$
r + δ − 1−m,

�
u
2

�%
. It follows that�

k + Φ(n, u)
r

�
�

�
k

r

�
+ 1 =

"
k +

�
r
2

�
r

#
, (11)

where the first inequality holds by the fact that δ−1 � m > 0
and

�
u
2

�
�

�
2r+δ−1

2

�
� r, and the second equality follows

from r > v >
�

r
2

�
. The rest of the proof is divided into three

cases.
Case 1: Assume m > M . Obviously, we have u > δ− 1 �

m > M � 0. Since u−M > 2r, we get
�

u−M
2

�
� r, and we

note that r+δ−1−m+M � r. It follows that 0 < m−M <
r + δ − 1, and so m−M = (n−M) mod (r + δ − 1), and
so Φ(n−M, u−M) � r. Thus,

M +
��

k+Φ(n−M, u−M)
r

�
−1

�
(δ−1)�

�
k

r

�
(δ − 1),

and by Theorem 1 and

�
k+� r

2�
r

�
=

�
k
r

�
+1 from (11), we have

d � n− k + 1−
�

k

r

�
(δ − 1).

Case 2: Assume m � M and u > M . We have

M +
��

k + Φ(n−M, u−M)
r

�
− 1

�
(δ − 1)

�m +
��

k

r

�
− 1

�
(δ − 1)

and by (11) we have�"
k +

�
r
2

�
r

#
− 1

�
(δ − 1) =

�
k

r

�
(δ − 1)

�m +
��

k

r

�
− 1

�
(δ − 1).

Thus, by Theorem 1,

d � n− k + 1−
�

k

r

�
(δ − 1) + (δ − 1−m).

Case 3: Assume m � M and u � M . The fact that u >
δ − 1 � m implies that

u +
��

k

r

�
− 1

�
(δ − 1) > m +

��
k

r

�
− 1

�
(δ − 1).

Thus, by Theorem 1, we have

d < n− k + 1−
�

k

r

�
(δ − 1) + (δ − 1−m).

Combining the above three cases, the proof is now completed.

We can now strengthen Theorem 2 by applying Corollaries 2
and 3.

Theorem 3: Assume r + δ − 1 � n and r � k, namely, m >
0 and v < r. If 0 < r < k � n −

�
k
r

�
(δ − 1) and v >

max
$
m− δ + 1,

�
r
2

�%
, then

dmax=n− k + 1−
�

k

r

�
(δ − 1)

+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, if m � δ

and u � max {2(r+δ−1−m), r+δ−1},
δ − 1−m, if m � δ − 1

and u � 2r + δ − 1,

where dmax is the largest d such that there exists a linear
[n, k, d]q code with (r, δ)a-locality.

Based on the results in [19], [25], the remaining open cases
for the tightness of the bound in (2) are summarized in the
following:

Open Problem [19]: Do there exist optimal [n, k, d]q codes
with (r, δ)a-locality that achieve the minimum Hamming
distance bound in (2), under the conditions that v �= 0,
0 < m < v + δ − 1, 0 < u � r − v, and w < r + δ − 1−m?
(using the notation of (3))

We can answer this open question in part.
Corollary 4: No [n, k, d]q code with (r, δ)a-locality

achieves the bound in (2) under the conditions of
0 < m < v + δ − 1, and u > 1, if

min
!�r

2

�
,
u(u− 1)(r + δ − 1−m)

(w + 1)w

)
> r − v.

In particular, when v > r
2 , u > 1, and 0 < m < r + δ − 1−

w (w+1)(r−v)
u(u−1) , the bound in (2) is unachievable.
Proof: Since u > 1, i.e., k = ur + v > r and

�
r
2

�
>

r− v, if additionally M > 0 then by Remark 6, the bound in
(2) is unachievable. Assume now that M = 0. The fact that
m < v + δ − 1 means that r + δ − 1 − m > r − v. Recall
that u(u−1)(r+δ−1−m)

(w+1)w > r − v. Thus, Φ(n, u) > r − v by
Definition 3, i.e.,�

k + Φ(n, u)
r

�
>

�
k

r

�
+ 1 =

"
k +

�
r
2

�
r

#
,

which shows that

d � n− k + 1−
�

k

r

�
(δ − 1)

< n− k + 1−
��

k

r

�
− 1

�
(δ − 1).

Therefore, the bound in (2) is unachievable in this case.
Note that w � u (see Remark 2) means that r + δ −

1 − w (w+1)(r−v)
u(u−1) � v + δ − 1. Thus, combining the above

two cases, the corollary follows from
�

r
2

�
> r − v and

u(u−1)(r+δ−1−m)
(w+1)w > r − v when v > r

2 and 0 < m <

r + δ − 1− w (w+1)(r−v)
u(u−1) .

Remark 7: By Corollary 4, the remaining open cases can
be listed as:

1) 0 < v � r
2 , 0 < m < v + δ − 1, 1 � u � r − v, and

w < r + δ − 1−m.
2) v > r

2 , (r+δ−1)u(u−1)−w(w+1)(r−v) � mu(u−1),
0 < m < v+δ−1, 1 � u � r−v, and w < r+δ−1−m.
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VI. OPTIMAL LRCs ACHIEVING THE IMPROVED BOUND

In this section, we introduce explicit constructions of locally
repairable codes, which generate optimal codes with respect to
the improved bounds in Corollaries 2 and 3. These construc-
tions are mainly a modification of the construction in [16] by
endowing the repair sets with a special structure so that the
locally repairable codes can achieve the improved bound in
the pervious section.

Let Fq1 be an extension field of the finite field Fq , and let
S = {α1, α2, . . . , αn} ⊆ Fq1 be a set of n elements. Let
V (S, h) denote the matrix

V (S, h) �

⎛⎜⎜⎜⎝
α1 α2 α3 · · · αn

αq
1 αq

2 αq
3 · · · αq

n
...

...
... · · ·

...

αqh−1

1 αqh−1

2 αqh−1

3 · · · , αqh−1

n

⎞⎟⎟⎟⎠
h×n

.

We comment that in order for V (S, h) to be well defined,
we fix some ordering of the elements of Fq1 , and index
the elements of S so that they are in non-descending order.
Additionally, since Fq1 is a vector space over Fq , we use
rank(S) to denote the dimension of the space spanned by
linear combinations of elements from S with coefficients from
Fq.

Definition 5 ([7]): The set S ⊆ Fq1 is t-wise independent
over a field Fq ⊆ Fq1 if every T ⊆ S, |T | � t, is linearly
independent over Fq.

The following conclusion is obtained directly from the
above definition.

Lemma 4: Let S ⊆ Fq1 be t-wise independent over a field
Fq ⊆ Fq1 . Then a subset S′ ⊆ S is a t′-wise independent over
the field Fq ⊆ Fq1 if t′ � t and |S′| � t′.

With the above preparation, we give the following construc-
tion of linear codes.

Construction A: Fix Fq ⊆ Fq1 . With the notation of (3),
define h = n − k − (w + 1)(δ − 1). Let A =
(A1, A2)(δ−1)×(r+δ−1) be a parity-check matrix of an [r +
δ − 1, r, δ]q MDS code, where A1 is a (δ − 1)× (r + δ − 2)
matrix and A2 is a (δ− 1)× 1 matrix. Let S ⊆ Fq1 , |S| = n,
and w + 1 � r + δ − 1 − m. Define C(S, h) ⊆ Fn

q1
to be a

linear code with parity-check matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R1 0 0 . . . 0
0 R2 0 . . . 0
0 0 R3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Rw+1

H1 H2 H3 . . . Hw+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n−k)×n

, (12)

where

Ri = A1 for 1 � i � r + δ − 1−m, (13)

Rj = A for r + δ −m � j � w + 1, (14)

and

(H1, H2, . . . , Hw+1) = V (S, h). (15)
We cite the following lemma from [7].

Lemma 5 ([7]): Fix Fq ⊆ Fq1 . Let Ei, 1 � i � t, be a
parity-check matrix of an [ei, ei +1−δ, δ]q MDS code. For all
1 � i � t+1, let Si ⊆ Fq1 , |Si| = ei, and let H ′

i = V (Si, h).
If h �

,t+1
i=1 ei − t(δ − 1) and rank(∪t+1

i=1Si) =
,t+1

i=1 |Si| =,t+1
i=1 ei, then

rank

⎛⎜⎜⎜⎜⎜⎜⎜⎝

E1 0 0 . . . 0 0
0 E2 0 . . . 0 0
0 0 E3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . Et 0

H ′
i H ′

2 H ′
3 . . . H ′

t H ′
t+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
=

t+1-
i=1

ei,

i.e., the matrix has full column rank.
We can now prove the properties of Construction A.
Theorem 4: Let n = w(r+ δ−1)+m, δ � m < r+ δ−1,

k = ur+v, 0 < v < r, and let S ⊆ Fq1 be (h+(w−u)(δ−1))-
wise independent over Fq. Denote by C(S, h) the code gener-
ated by Construction A. If r > v > max

$
m− δ + 1,

�
r
2

�%
,

and u � max {2(r + δ − 1−m), r + δ − 1}, then C(S, h)
is an optimal [n, k, d]q1 linear code with (r, δ)a-locality and
d = h + (w − u)(δ − 1) + 1.

Proof: By Remark 2 we have w � u � 2(r + δ−1−m),
which means the condition w + 1 � r + δ − 1 −m holds in
Construction A. By (12)-(15), we have that the code C is an
[n, k1]q1 code with all symbol (r, δ)-locality and k1 � k. Our
next goal is to prove that d � h + (w − u)(δ − 1) + 1, i.e.,
that any h + (w− u)(δ− 1) columns of R have full rank. Let

R∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R∗
1 0 0 . . . 0

0 R∗
2 0 . . . 0

0 0 R∗
3 . . . 0

...
...

...
. . .

...
0 0 0 . . . R∗

w+1

H∗
1 H∗

2 H∗
3 . . . H∗

w+1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

denote the arbitrary h + (w− u)(δ− 1) columns chosen from
R, where R∗

i and H∗
i denote the chosen part from Ri and Hi

for 1 � i � w + 1, respectively. If R∗
i contains δ− 1 columns

or less, then R∗
i has full rank since its columns are part of a

parity-check matrix for a code with distance δ. Let i1 < i2 <
· · · < it be the indices such that R∗

ij
, 1 � j � t, contains at

least δ columns. Thus, R∗ has full rank if and only if

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R∗
i1 0 0 . . . 0
0 R∗

i2
0 . . . 0

0 0 R∗
i3 . . . 0

...
...

...
. . .

...
0 0 0 . . . R∗

it

H∗
i1 H∗

i2 H∗
i3 . . . H∗

it

⎞⎟⎟⎟⎟⎟⎟⎟⎠
has full rank. Let eij denote the number of columns of R∗

ij

for 1 � j � t. Thus, we have eij � δ for 1 � j � t and

t-
j=1

eij � h + (w − u)(δ − 1). (16)

We proceed by examining two cases, depending on the value
of t.
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Case 1: Assume 1 � t � w−u. Since A is the parity-check
matrix of an [r + δ − 1, r, δ]q MDS code, we have that any
δ − 1 columns of A have full rank. Thus, any δ − 1 columns
of R∗

ij
for 1 � j � t also have rank δ − 1, by (13) and (14).

Hence, R∗
ij

, 1 � j � t, can be viewed as a parity-check matrix
of an [eij , eij + 1− δ, δ]q MDS code. Recall that

h = n− k − (w + 1)(δ − 1)
= (w − u)r + m− v − δ + 1

(a)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(r + δ − 1)t− t(δ − 1) �

,t
j=1(eij − δ + 1),

if 1 � t � w − u− 1,

h + (w − u)(δ − 1)− (w − u)(δ − 1)
�

,t
j=1(eij − δ + 1), if t = w − u.

Here, the first case of (a) follows by t � w − u − 1, r > v,
and m � δ (i.e., r + m − v − δ + 1 > 0). The second case
of (a) follows by (16). Since S is (h + (w− u)(δ − 1))-wise
independent over Fq and

,t
j=1 |Sij | =

,t
j=1 eij � h + (w−

u)(δ− 1), we have that
�t

j=1 Sij is linearly independent over
Fq, where H∗

ij
= V (Sij , h) for 1 � j � t. Thus, by Lemma 5,

we have rank(R) =
,t

j=1 eij , i.e., any h + (w − u)(δ − 1)
columns of R have full rank when 1 � t � w − u.

Case 2: Assume t > w − u.

rank(R)

= rank

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R∗
i1

0 0 . . . 0
0 R∗

i2
0 . . . 0

0 0 R∗
i3 . . . 0

...
...

...
. . .

...
0 0 0 . . . R∗

it

H∗
i1 H∗

i2 H∗
i3 . . . H∗

it

⎞⎟⎟⎟⎟⎟⎟⎟⎠

� rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R∗
i1

0 · · · 0 0 . . . 0
0 R∗

i2 · · · 0 0 . . . 0
...

...
. . .

...
...

...
0 0 · · · R∗

iw−u
0 . . . 0

0 0 · · · 0 0 . . . 0
...

... · · ·
...

...
...

0 0 · · · 0 0 · · · 0
H∗

i1
H∗

i2
· · · H∗

iw−u
H∗

iw−u+1
. . . H∗

it

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Now rank(R) =
,t

j=1 eij follows by (16), Lemma 5, and the
fact that S is (h + (w− u)(δ− 1))-wise linearly independent.

Combining the above cases, we conclude that d � h+(w−
u)(δ − 1). By Corollary 2,

d �n− k1 + 1− (u + 1)(δ − 1)
�n− k + 1− (u + 1)(δ − 1)
=h + (w − u)(δ − 1),

where n = w(r + δ − 1) + m, k = ur + v, and h = (w −
u)r + m− v− δ + 1. Thus, we have d = h + (w − u)(δ− 1)
and necessarily, k1 = k, which completes the proof.

Remark 8: We would like to mention that the method and
main idea of Construction A was first introduced in [16], based
on Gabidulin codes. The purpose of Construction A that we

brought here is only to show that optimal LRCs with (r, δ)a-
locality can be generated by arranging the repair sets carefully.
For more constructions of LRCs based on Gabidulin codes and
their generalizations, the reader may refer to [7], [11], [16],
[19].

Construction A was used in Theorem 4 with the requirement
of m � δ. For the case 0 < m � δ − 1, we apply the
following construction to generate optimal codes with respect
to the bound in Corollary 3.

Construction B: Fix Fq ⊆ Fq1 . With the notation of (3),
define h = n− k −m− w(δ − 1). Let P1 and P2 be parity-
check matrices of an [m + r + δ − 1, r, m + δ]q MDS code
and an [r + δ−1, r, δ]q MDS code, respectively. Let S ⊆ Fq1 ,
|S| = n. Define C(S, h) ⊆ Fn

q1
to be a linear code with parity-

check matrix

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R1 0 0 . . . 0
0 R2 0 . . . 0
0 0 R3 . . . 0
...

...
...

. . .
...

0 0 0 . . . Rw

H1 H2 H3 . . . Hw

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(n−k)×n

, (17)

where R1 = P1, Ri = P2 for 2 � i � w, and

(H1, H2, H3, . . . , Hw) = V (S, h). (18)
Theorem 5: Let n = w(r+δ−1)+m, k = ur+v, 0 < v <

r, and let S ⊆ Fq1 be (h + (w + 1− u)(δ− 1))-wise linearly
independent over Fq. Denote by C(S, h) the code generated
by Construction B. If 0 < m � δ − 1, r > v >

�
r
2

�
, and

u � 2r + δ− 1, then the code C(S, h) is an optimal [n, k, d]q1

linear code with (r, δ)a-locality and d = h+(w−u)(δ−1)+1.
Proof: By (17) and R1 = P1, we have that

C(S, h)[m+r+δ−1] is an [m+ r+ δ− 1, � r, � m+ δ]q1 linear
code. Thus, C(S, h)S1 and C(S, h)S2 are punctured codes with
parameters [r + δ − 1, � r, � δ]q1 , where S1 = [r + δ − 1]
and S2 = [m + r + δ − 1] \ [m]. Now, by (17)-(18), we can
conclude that the code C(S, h) is an [n, k1]q1 code with (r, δ)a-
locality and k1 � k. By Corollary 3, it is sufficient to prove
that d � h + (w− u)(δ− 1) + 1, i.e., any h + (w− u)(δ− 1)
columns of R have full rank. Let

R∗ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R∗
1 0 0 . . . 0

0 R∗
2 0 . . . 0

0 0 R∗
3 . . . 0

...
...

...
. . .

...
0 0 0 . . . R∗

w

H∗
1 H∗

2 H∗
3 . . . H∗

w

⎞⎟⎟⎟⎟⎟⎟⎟⎠
denote the h + (w− u)(δ− 1) arbitrary columns chosen from
R, where for 1 � i � w, R∗

i and H∗
i denote the chosen part

from Ri and Hi, respectively. By (15), R∗ has full rank if and
only if

R =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

R∗
i1 0 0 . . . 0
0 R∗

i2
0 . . . 0

0 0 R∗
i3

. . . 0
...

...
...

. . .
...

0 0 0 . . . R∗
it

H∗
i1

H∗
i2

H∗
i3

. . . H∗
it

⎞⎟⎟⎟⎟⎟⎟⎟⎠
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has full rank, where if i1 = 1 then R∗
1 contains at least m+ δ

columns selected from R1, otherwise for 1 � j � t, ij denotes
the block from which we choose at least δ columns, with
2 � ij � w.

For the case i1 = 1, rank
�
R
 

= rank( .R), where

.R �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R∗
1,1 0 0 0 0 . . . 0
0 0 R∗

i2 0 0 . . . 0
0 0 0 R∗

i3 0 . . . 0
0 0 0 0 R∗

i4
. . . 0

...
...

...
...

... . . .
...

0 0 0 0 0 . . . R∗
it

0 H∗
1,2 H∗

i2
H∗

i3
H∗

i4
. . . H∗

it

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

R∗
1 = (R∗

1,1, R
∗
1,2), with R∗

1,1 an (m + δ − 1) × (m +
δ − 1) matrix, H∗

1 = (H1,1, H1,2), and H∗
1,2 = H1,2 −

H1,1(R∗
1,1)

−1R∗
1,2. Let ei denote the number of columns in

R∗
i for 1 � i � w and let e′1 denote the number of columns

in H∗
1,2. The fact that e1 � m + r + δ − 1 means that

e′1 = e1 −m− δ + 1 � r.
Case 1: Assume i1 = 1 and t � w− u. By Construction B

h =(w − u)r − v

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(r + δ − 1)(t− 1)− (t− 1)(δ − 1) + 2r − v

>
,t

j=2(eij − δ + 1) + r

�
,t

j=2(eij − δ + 1) + e′1, if 1 � t � w − u− 1,,t
j=2(eij − δ + 1) + e′1 + m,if t = w − u,

where for the case t = w−u we use the facts that
,w−u

j=1 eij �
h+(w−u)(δ−1) and e1 = e′1+m+δ−1, i.e.,

,t
j=2 eij +e′1 �

h + (w − u − 1)(δ − 1) −m. Since S is (h + (w − u)(δ −
1))-wise linearly independent over Fq, by Lemma 5, we have
rank( .R) =

,t
j=1 eij .

Case 2: Assume i1 = 1 and t > w − u. Then

rank( .R)

= rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R∗
1,1 0 0 0 0 . . . 0
0 0 R∗

i2
0 0 . . . 0

0 0 0 R∗
i3 0 . . . 0

0 0 0 0 R∗
i4

. . . 0
...

...
...

...
...

. . .
...

0 0 0 0 0 . . . R∗
it

0 H∗
1,2 H∗

i2
H∗

i3
H∗

i4
. . . H∗

it

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� rank

⎛⎜⎜⎜⎜⎜⎝
R∗

1,1 0 0 · · · 0 0 . . . 0
0 0 R∗

i2 · · · 0 0 . . . 0
...

...
...

. . .
...

... · · ·
...

0 0 0 · · · R∗
iw−u

0 . . . 0
0 H∗

1,2 H∗
i2
· · · H∗

iw−u
H∗

iw−u+1
. . . H∗

it

⎞⎟⎟⎟⎟⎟⎠ .

Recall that
,t

j=1 eij � h+(w−u)(δ−1) and e1 = e′1 +m+
δ−1, i.e., h � e′1 +m+

,t
j=2 eij − (w−u−1)(δ−1). Thus,

by Lemma 5 and the fact that S is (h + (w− u)(δ− 1))-wise
linearly independent over Fq , we have rank( .R) = m + δ −
1 + e′1 +

,t
j=2 eij =

,t
j=1 eij .

Case 3: Assume i1 �= 1 and t � w − u. In this case,
according to Lemma 5, rank(R) =

,t
j=1 eij follows directly

from

h =(w − u)r − v

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(r+δ−1)t− t(δ−1)+r−v >

,t
j=1(eij − δ + 1),

if 1 � t � w − u− 1,

h + (w − u)(δ − 1)− (w − u)(δ − 1)
�

,t
j=1(eij − δ + 1), if t = w − u,

and S is (h + (w− u)(δ− 1))-wise linearly independent over
Fq.

Case 4: Assume i1 �= 1 and t � w − u. In this case

rank(R)

= rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R∗
t1 0 0 0 . . . 0
0 R∗

i2
0 0 . . . 0

0 0 R∗
i3 0 . . . 0

0 0 0 R∗
i4

. . . 0
...

...
...

...
. . .

...
0 0 0 0 . . . R∗

it

H∗
i1

H∗
i2

H∗
i3

H∗
i4

. . . H∗
it

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

� rank

⎛⎜⎜⎜⎜⎜⎝
R∗

i1 0 · · · 0 0 . . . 0
0 R∗

i2
· · · 0 0 . . . 0

...
...

. . .
...

... · · ·
...

0 0 · · · R∗
iw−u

0 . . . 0
H∗

i1
H∗

i2
· · · H∗

iw−u
H∗

iw−u+1
. . . H∗

it

⎞⎟⎟⎟⎟⎟⎠ .

Similarly,
,t

j=1 eij � h + (w − u)(δ − 1) means that h �,t
j=1 eij − (w−u)(δ− 1). Now, by Lemma 5 the fact that S

is (h + (w− u)(δ− 1))-wise linearly independent means that
rank(R) =

,t
j=1 eij .

Combining the above cases, we have d � h + (w − u)(δ−
1) + 1. Thus, by Corollary 3, we have d = h + (w − u)(δ −
1) + 1 and k1 = k, which completes the proof.

VII. CONCLUSION

In this paper, we improved the Singleton-type bound of [8],
[14] for locally repairable codes with (r, δ)a-locality. For some
special cases, the improved bound is indeed tighter than the
original one. As a byproduct, we prove some locally repairable
codes generated in [25] via matroid theory are indeed optimal.
Two explicit optimal constructions were also introduced with
respect to the improved bound.

As presented in Fig. 1, there are two cases which are
still open. Whether the Singleton-type bound in [8], [14] is
achievable or not in those two cases is still undecided. Those
cases are:
RI: 0 < v � r

2 , 0 < m < v + δ − 1, 1 � u � r − v, and
w < r + δ − 1−m;

RII: v > r
2 , (r+δ−1)u(u−1)−w(w+1)(r−v) � mu(u−1),

0 < m < v+δ−1, 1 � u � r−v, and w < r+δ−1−m.

Additionally, the sharp bound is still unknown for many cases,
namely, those cases for which the bound of (2) was proved to
be unachievable (refer to Fig. 1). Those problems are left for
future research.
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APPENDIX

This appendix contains the omitted proofs for the claims
on the properties of the ECF induced by an LRC with (r, δ)a-
locality, namely, Propositions 1, 3, 4, and 5. Throughout this
appendix, we assume that C is an LRC with (r, δ)a-locality,
and that the parameters n and k are as in (3). Furthermore,
let S be the ECF that was obtained in Lemma 2.

A. Proof of Proposition 1

For any family of subsets, B ⊆ 2X , define its overlap,
denoted D(B), as

D(B) =
-
B∈B
|B| −

					 �
B∈B

B

					 .
It is easy to check that D(B) � 0 and D(B) � D(B′) for
B′ ⊆ B. Additionally, D(B) = 0 if and only if its sets are
pairwise disjoint. We cite the following lemma, concerning
the overlap, from [2].

Lemma 6 ( [2, Lemma 5]): Let S∗ be a set of subsets of
X . For any integer 0 � t � |S∗|, there exists a t-subset V of
S∗ such that

D(V) � min(D(S∗), �t/2�).
We now further elaborate on the overlap.
Lemma 7: If S∗ is a set of (r + δ − 1)-subsets of X with
|S∗| � w + 1, then for any integer 0 � t � |S∗|, there exists
a t-subset V of S∗ such that

D(V) � min
!

r + δ − 1−m,

�
t(t− 1)(r + δ − 1−m)

(w + 1)w

�)
.

In particular, we have D(S∗) � r + δ − 1−m.
Proof: If t � w + 1, let V be any t-subset of S∗. Then

D(V) =t(r + δ − 1)−

						
�

S∗
i ∈V

S∗
i

						
�(w + 1)(r + δ − 1)− n

=r + δ − 1−m.

If t � w, let Vw+1 be a (w + 1)-subset of S∗. Define Θ to
be the set of all the possible t-subsets of Vw+1. We arbitrarily
index the sets in Vw+1 = {A1, A2, . . . , Aw+1}. Let us con-
sider the sum

,
V′∈Θ D(V ′) in comparison with D(Vw+1).

Consider a fixed V ′ ∈ Θ, and some element x ∈ X . The
definition of the overlap function may be equivalently read as:
Ai, Aj ∈ V ′, i < j contribute 1 to the overlap due to x, if and
only if x ∈ Ai ∩ Aj and i is the minimal index such that
x ∈ Ai. We observe that if Ai, Aj contribute to D(Vw+1)
due to x, they do so also for any V ′ that includes them.
Additionally, Ai and Aj appear in exactly

�
w−1
t−2

 
elements

of Θ. Combining all of this together we obtain-
V′∈Θ

D(V ′) �
�

w − 1
t− 2

�
D(Vw+1).

Since |Θ| =
�
w+1

t

 
, by an averaging argument there exists

V ∈ Θ such that

D(V) �
"�

w−1
t−2

 �
w+1

t

 D(Vw+1)

#

�
"�

w−1
t−2

 
(r + δ − 1−m)�

w+1
t

 #

=
�

t(t− 1)(r + δ − 1−m)
(w + 1)w

�
.

Then this V is the desired t-subset of S∗.
Corollary 5: If |S| � w + 1, then for any integer 0 � t �
|S|, there exists a t-subset V of S such that

|V|(r + δ − 1)−
					 �
Si∈V

Si

					
� min

&
r + δ − 1−m,

max
!'

t

2

(
,

�
t(t− 1)(r + δ − 1−m)

(w + 1)w

�)/
.

Proof: First, we extend any Si ∈ S to an (r + δ − 1)-
subset S∗

i of [n], that is, Si ⊆ S∗
i and |S∗

i | = r + δ − 1. Let
S∗ = {S∗

i : Si ∈ S}. Obviously
�

S∗
i ∈S∗ S∗

i = [n]. Define T ∗

to be the corresponding subset of S∗ for any subset T of S.
Then |T | = |T ∗| and

|T |(r + δ − 1)−
					 �
Si∈T

Si

					 �|T ∗|(r + δ − 1)−

						
�

S∗
i ∈T ∗

S∗
i

						
=D(T ∗). (19)

By Lemmas 6 and 7, there exists a t-subset V∗
1 of S∗ such

that

D(V∗
1 ) � min

!
D(S∗),

'
t

2

()
� min

!
r + δ − 1−m,

'
t

2

()
. (20)

By Lemma 7, there exists a t-subset V∗
2 of S∗ such that

D(V∗
2 )

� min
!

r + δ − 1−m,

�
t(t− 1)(r + δ − 1−m)

(w + 1)w

�)
.

(21)

The conclusion is then obtained by combining (19), (20) and
(21).

Remark 9: Recalling the definition of Φ(·, ·) (see Defini-
tion 3),

Φ(n, t) =⎧⎪⎪⎨⎪⎪⎩
min

�
r +δ−1−m, max

��
t
2

�
,
�

t(t−1)(r+δ−1−m)
(w+1)w

���
,

if m �= 0,

0, if m = 0.

Note that D(S) may be 0 when m = 0, i.e., (r+δ−1)|n, which
corresponds to the case Φ(n, t) = 0 when m = 0. We may use
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Φ(n, t) to lower bound the value |V|(r + δ−1)−
		�

Si∈V Si

		,
for V ⊆ S.

Finally, the sought after proof for Proposition 1 is simply
the combination of Corollary 5, Remark 3 and Remark 9.

B. Proof of Proposition 3

Proof: For any Si ∈ V , define Vi to be a smallest subset
of V with Si ∈ Vi and						Si ∩

⎛⎝ �
Sj∈Vi\{Si}

Sj

⎞⎠						 � |Si| − δ + 1, (22)

if
			Si ∩


�
Sj∈V\{Si} Sj

�			 � |Si|−δ+1, and otherwise, define
Vi = V . Note that V does not satisfy Condition C1. Thus, there
exists Si ∈ V such that |Si∩ (

�
Sj∈V\{Si} Sj)| � |Si|− δ +1.

Condition C2 implies that |Si ∩ Sj | < |Si| − δ + 1 for any
Sj ∈ Vi, Sj �= Si, which means that |Vi| � 3, since (22)
cannot hold for |Vi| � 2.

Without loss of generality, we choose Vτ to be the element
with smallest size among {Vi : Si ∈ V}. Then, any proper
subset of Vτ must satisfy Condition C1. Now we pick one
St ∈ Vτ \ {Sτ}. If

|Sτ ∩ St| �
|Sτ | − δ + 1

2
we set V∗ = {St, Sτ}. Otherwise, necessarily						Sτ ∩

⎛⎝ �
Si∈Vτ\{Sτ ,St}

Si

⎞⎠						 � |Sτ | − δ + 1
2

,

and we set V∗ = V \ {St}. In both cases D(V∗) � |Sτ |−δ+1
2 .

Therefore, we have

|V∗|(r + δ − 1)−
					 �
Si∈V∗

Si

					
�r + δ − 1 +

-
Si∈V∗\{Sτ}

|Si| −
					 �
Si∈V∗

Si

					
=r + δ − 1− |Sτ |+ D(V∗)

�r + δ − 1− |Sτ |+
|Sτ | − δ + 1

2

=
r + (r + δ − 1− |Sτ |)

2
�r

2
.

The last inequality is obtained by the fact that |Sτ | � r+δ−1.

C. Proofs of Propositions 4 and 5

The essence of the two propositions is to reduce the family
of repair sets to a sub-family that satisfies Condition C1, such
that the rank of points in the union of the two families is
the same. Loosely speaking, we delete some sets in a way
that preserves the rank. We then choose a sub-family with full
rank that satisfies Condition C1. This is implemented by Algo-
rithm 1. It finds subsets V ′

1 ⊆ V1 ⊆ S such that S\V1 satisfies

Algorithm 1

Input: S =
$
S1, S2, . . . , S|S|

%
the ECF from Lemma 2

1 V1,V ′
1 ← ∅

2 while there exist Si ∈ S \ V1, Sj ∈ S, and Si �= Sj with
|Si ∩ Sj | � |Si| − δ + 1 do

3 V1 ← V1 ∪ {Si, Sj}
4 V ′

1 ← V ′
1 ∪ {Si}

5 end
6 while there exist Si ∈ V1 \ V ′

1 and Sj ∈ S \ V1 with
|Si ∩ Sj | � |Si| − δ + 1 do

7 V1 ← V1 ∪ {Sj}
8 V ′

1 ← V ′
1 ∪ {Si}

9 end
10 return V1, V ′

1

Condition C2, and rank(∪S∈S\V1S) = rank(∪S∈S\V′
1
S),

where S is the ECF from Lemma 2.
Lemma 8: Let V1 and V ′

1 be the output of Algorithm 1.
Then

rank

⎛⎝ �
Sj∈V1

Sj

⎞⎠ = rank

⎛⎝ �
Sj∈V1\V′

1

Sj

⎞⎠
and S \ V1 satisfies Condition C2.

Proof: The first claim follows from the fact that |Si ∩
Sj | � |Si| − δ + 1 implies that rank(Sj) = rank(Si ∪
Sj). Thus, by Algorithm 1, we have rank(

�
Sj∈V1

Sj) =
rank(

�
Sj∈V1\V′

1
Sj). The second claim follows by the con-

dition to terminate for first while loop of Algorithm 1, and
by noting that the second while loop only removes elements
from S \ V1.

By Lemma 8, we may extend V ′
1 to a subset of V1, as large

as possible, denoted as V∗
1 , such that

rank

⎛⎝ �
Sj∈V1

Sj

⎞⎠ =rank

⎛⎝ �
Sj∈V1\V′

1

Sj

⎞⎠
=rank

⎛⎝ �
Sj∈V1\V∗

1

Sj

⎞⎠ . (23)

In other words, the set V∗
1 satisfies that for any Si ∈ V1 \ V∗

1

rank

⎛⎝ �
Sj∈V1\V∗

1

Sj

⎞⎠ > rank

⎛⎝ �
Sj∈(V1\V∗

1 )\{Si}
Sj

⎞⎠ . (24)

Note that a set V∗
1 which satisfies (23) and (24) is not

necessarily unique. We can now prove Proposition 4 and
Proposition 5.

Proof of Proposition 4: Let V1 and V ′
1 be the output of

Algorithm 1, and let V∗
1 satisfy (23) and (24), as discussed

above.
Claim 1): If there exists Sτ ∈ V1 \ V∗

1 with						Sτ ∩

⎛⎝ �
Sj∈(V1\V∗

1 )\{Sτ}
Sj

⎞⎠
						 � |Sτ | − δ + 1,
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then rank(Sτ ) = rank(Sτ ∩ (
�

Sj∈(V1\V∗
1 )\{Sτ} Sj)) by

Remark 1-1), which contradicts (24).
Claim 2): By Algorithm 1, if Sj ∈ V1 \ V∗

1 ⊆ V1 \ V ′
1 there

must exist Si ∈ V ′
1 such that |Si ∩ Sj | � |Si| − δ + 1 due

to Line 2 and Line 6 of the algorithm. Hence, rank(Si) =
rank(Si ∩ Sj) and span(Si) ⊆ span(Sj) by Definition 1 and
Remark 1.

Claim 3): Recall that by Lemma 8, the set S \ V1 satisfies
Condition C2, i.e., for any Si, Sj ∈ S\V1 we have |Si∩Sj | <
min {|Si|, |Sj |}− δ + 1. We further consider Si and Sj in the
following three cases:

Case 1: There exist two distinct Si, Sj ∈ V1 \ V∗
1 with

|Si∩Sj | � |Si|− δ +1. However, this is impossible by Claim
1).

Case 2: There exist two distinct Si ∈ S \ V1 and Sj ∈
V1 \ V∗

1 with |Si ∩ Sj | � |Si| − δ + 1. This is impossible by
the first while loop of Algorithm 1.

Case 3: There exist two distinct Si ∈ V1 \V∗
1 ⊆ V1 \V ′

1 and
Sj ∈ S \ V1 with |Si ∩ Sj | � |Si| − δ + 1. This is impossible
by the second while loop of Algorithm 1.

Thus, the claim follows. �
Proof of Proposition 5: We proceed claim by claim.
Claim 1): By (23), we have

rank(
�

Si∈V1

Si) = rank(
�

Si∈V1\V∗
1

Si),

which implies that G�
Si∈V∗

1
Si
⊆ span(

�
Si∈V1\V∗

1
Si). Thus,

the conclusion is obtained by the fact that Υ ⊆
�

Si∈V∗
1

Si.
Claim 2): Define TSi = Si \ (

�
St∈S\{Si} St) for any

Si ∈ S. The definition of the ECF implies that TSi �= ∅ and
TSi ∩ TSj = ∅ for any distinct Si, Sj ∈ S. By Proposition 4-
2), for any Si ∈ V1 \ V∗

1 , there exists a set S∗
i ∈ V∗

1 with
GS∗

i
⊆ span(Si). Note that TS∗

i
⊆ Υ ∩ S∗

i and GΥ∩S∗
i
⊆

GΥ ∩ span(Si). According to Algorithm 1, Lines 3, 7, and 8,
whenever a set Sj is included in V1 \ V ′

1 ⊇ V1 \ V∗
1 a

distinct set (we denote) S∗
j is included in V ′

1 ⊆ V∗
1 with

span(S∗
j ) ⊆ span(Sj). Thus, we can assume that for any

Sj1 �= Sj2 ∈ V1 \ V∗
1 we have S∗

j1 �= S∗
j2 ∈ V∗

1 . Now the
desired result follows, namely,					GΥ ∩ span

� �
Si∈U

Si

�					 �
					 �
Si∈U

TS∗
i

					 � |U|

for any subset U ⊆ V1 \ V∗
1 .

Claim 3): Setting U = V1\V∗
1 , the above inequality becomes

|V1 \ V∗
1 | �

						GΥ ∩ span

⎛⎝ �
Si∈V1\V∗

1

Si

⎞⎠
						 = |GΥ| = |Υ| = M.

(25)

Let TSi be the subset defined in Claim 2). Since for any Si ∈
V∗

1 , we have ∅ �= TSi ⊆ Si \ (
�

Sj∈S\V∗
1

Sj), it follows that
|V∗

1 | � |Υ| = M . Thus, in combination with (25), we have
|V1| = |V∗

1 |+ |V1 \ V∗
1 | � 2M . �
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