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On the Reverse-Complement
String-Duplication System

Eyar Ben-Tolila and Moshe Schwartz , Senior Member, IEEE

Abstract— Motivated by DNA storage in living organisms,
and by known biological mutation processes, we study the
reverse-complement string-duplication system. We fully classify
the conditions under which the system has full expressiveness, for
all alphabets and all fixed duplication lengths. We then focus on
binary systems with duplication length 2 and prove that they have
full capacity, yet surprisingly, have zero entropy-rate. Finally,
by using binary single burst-insertion correcting codes, we con-
struct codes that correct a single reverse-complement duplication
of odd length, over any alphabet. The redundancy (in bits) of
the constructed code does not depend on the alphabet size.

Index Terms— String-duplication systems, capacity, entropy
rate, error-correcting codes.

I. INTRODUCTION

DNA is a very appealing medium for storing digital infor-
mation, whose rate of creation is growing exponentially

in recent years, causing an expanding gap between informa-
tion production and data storage capabilities. Compared with
current storage technologies, DNA offers densities that are
higher in orders of magnitude, and thus can potentially serve
as an extremely efficient storage system. Already, a density
of 2.15 · 1017 bytes per gram of DNA molecules has been
demonstrated [12], whereas the densest commercially available
option [1] is capable of storing only 1.86 ·1011 bytes per gram
of hardware.

Data can be stored in DNA, in vitro or in vivo. While the
former will likely provide a higher density, the latter has many
advantages. First, in-vivo DNA storage can serve as a protected
medium for storing large amounts of data in a compact format
for long periods of time [3], [39]. An additional advantage
is that data can be disguised as part of the organisms’
original DNA, thus providing an added layer of secrecy [8].
Finally, in-vivo DNA storage has further applications such as
watermarking genetically modified organisms, and enabling
synthetic biology methods [15], [25], [31].

However, storing information in living organisms intro-
duces new types of errors. Among these new error types
we find duplication errors, which are motivated by a class
of mutations that are common in most organisms and lead
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to an abundance of repeated sequences in their genomes.
Some examples are transposon-driven repeats [20], and tandem
repeats, which are believed to be caused by slipped-strand
mispairings [24]. These mutation processes take a substring of
the DNA and insert a copy of it into the original string. The
copy can be inserted anywhere in the string, and might even be
reversed and complemented during the insertion [33]. A formal
mathematical model for studying these kinds of mutation
processes is the notion of string-duplication systems [13].
In such systems, a seed string evolves over time by successive
applications of duplication functions.

Previous works studied several properties of these models,
among which we mention capacity (the exponential growth
rate of the number of mutated strings), entropy rate (the
information generated by a stochastic mutation process),
and expressiveness (the ability to create any possible target
substring). It was shown in [13] that the system with end
duplication, which copies a substring of a fixed length k to
the end of the string, has full expressiveness and full capacity.
In contrast, the system with a fixed length tandem duplication,
where the copy is inserted next to its original position, has
zero capacity and is never fully expressive, but when the
length of the tandem duplication is only lower-bounded, full
expressiveness and positive capacity are obtained. In [10],
the exact entropy rate of both end- and tandem-duplication
systems were found, in the case where the duplication size is
k = 1 and the alphabet is binary. Furthermore, a noisy scenario
was investigated where the duplicated bit has a probability
of being complemented. In that case, the exact entropy rate
of end-duplication systems was found, as well as bounds on
the entropy rate of tandem-duplication systems. In [26], using
stochastic approximation methods, upper bounds were found
on the entropy rate of tandem duplication with a probability
of substitutions.

To protect against these duplications, error-correcting codes
for duplication channels were studied as well. A construction
correcting any number of tandem duplications of a fixed length
k was found in [17]. Other codes that correct a prescri-
bed number of duplications were constructed in [18], [19],
[21], [42], addressing several duplication types. Additional
codes that are capable of correcting a mixture of tandem
duplications and substitutions or edits were described in
[34]–[36]. Finally, some Levenshtein-reconstruction problems
for duplications were studied in [40], [41].

In this work we study reverse-complement duplication,
in which the duplicated copy is reversed and complemented
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before being inserted next to its original location. This dupli-
cation process has been observed in the genomes of many
living organisms [6], [9]. Previous works on this model were
severely limited. In [13] the duplicated copy was reversed but
not complemented. It was shown there that the system with
a fixed-length duplication has full expressiveness and positive
capacity. In [10], reverse-complement duplication was studied,
but only for a duplication of length k = 1. Upper and lower
bounds on the entropy rate of the system were found there,
but a gap between them remains. Therefore, many aspects of
this system are yet to be studied.

We make the following contributions in this paper. First,
we fully classify the exact conditions under which the reverse-
complement string-duplication system has full expressiveness,
for any alphabet and any fixed duplication length. Next,
we prove that the binary system with duplication length 2
has full capacity, by carefully characterizing the irreducible
strings. We then continue to a probabilistic setting, and show
that the same system has zero entropy rate, which is surprising
considering the fact that it has full capacity. Thus, while nearly
all strings are attainable via mutations, when the mutation
process is random, the probable mutated outcomes are con-
centrated in a small set. Finally, we construct error-correcting
codes that are capable of fixing a single duplication of odd
length, over any alphabet. The coding scheme is built on burst-
insertion-correcting codes, and interestingly, has redundancy
(in bits) that does not depend on the alphabet size.

The paper is organized as follows. We begin in Section II,
by introducing basic concepts and notation that will be used
throughout the paper. Then, in Section III, we completely clas-
sify the expressive power of the reverse-complement string-
duplication system. We continue in Section IV, by studying
the capacity and entropy rate of these systems. Error-correcting
codes are constructed in Section V. We conclude in
Section VI by summarizing our results and discussing open
problems.

II. PRELIMINARIES

Throughout this paper we let Σ denote some finite alphabet,
the elements of which are called letters. A sequence of letters
is a string, e.g., u = u0u1 . . . un−1, where ui ∈ Σ for all i.
In this case we say the length of u is n, and we denote it by
|u| = n. The set of all strings of length n is denoted by Σn.
The unique string of length 0 is denoted by ε, i.e., Σ0 = {ε}.
We then define Σ∗ to be the set of all strings of finite length,
i.e., Σ∗ �

⋃
i�0 Σi. Similarly, we define Σ+ � Σ∗ \ {ε} to be

the set of all non-empty strings of finite length.
Given two strings, u ∈ Σn and v ∈ Σm, we write uv to

denote the string of length n+m formed by the concatenation
of u and v. For any � ∈ N, we write u� to denote the string of
length �n formed by concatenating � copies of u. We define
u0 = ε. We further define

u∗ �
{
u�|� � 0

}
, u+ �

{
u�|� � 1

}
.

As is commonly done, if U ⊆ Σ∗ is a set of strings, we define
U∗ to be the set of strings formed by finite concatenations of
strings from U .

We say that y ∈ Σ∗ is a prefix of w ∈ Σ∗ if there exists
z ∈ Σ∗ such that w = yz. Similarly, y is a suffix of w if
there exists x ∈ Σ∗ such that w = xy. Also, y is a factor
(or substring) of w if there exist x, z ∈ Σ∗ such that w = xyz.
We shall say that y is a k-prefix (respectively, k-suffix,
k-factor) of w, if it is a prefix (respectively, suffix, factor)
of w, and |y| = k. If S ⊆ Σ∗ is a set of strings, its factor set
is then defined as

Factor(S) � {v ∈ Σ∗|∃u, w ∈ Σ∗ s.t. uvw ∈ S} .

We assume throughout the paper, that a complement opera-
tion is defined over Σ. More precisely, a complement operation
is a bijective map which takes any a ∈ Σ and outputs a ∈ Σ,
a �= a, and for which a = a. As a consequence, |Σ| must be
even, which we assume throughout the paper. We extend the
complement operation to strings in the natural way. That is,
if u = u0u1 . . . un−1 ∈ Σn, then u = u0 u1 . . . un−1 is the
letter-wise complement string.

Another useful notation we introduce is that of string rever-
sal. Let u = u0u1 . . . un−1 ∈ Σn be a string of length n. The
reversal of u is denoted by uR � un−1un−2 . . . u0. Obviously,
the reversal and complement operations are independent, and
so uR = uR.

We now turn to describe the string-duplication framework.
We follow the ideas and notation as described in [13]. A string-
duplication rule is simply a function T : Σ∗ → Σ∗. Following
the motivation for this framework, such rules describe, or are
inspired by, biological processes that create duplications dur-
ing DNA replication. The rules that were studied in [13] were
tandem duplication, end duplication, interspersed duplication,
and palindromic duplication. Let T ⊆ Σ∗Σ∗

denote a set of
such duplication rules. For a string u ∈ Σ∗, we say that v
is an �-descendant of u, if there exist T1, . . . , T� ∈ T , not
necessarily distinct, such that v = T�(T�−1(. . . T1(u) . . . )),
and we denote it by u =⇒� v. If � = 1 we just write u =⇒ v.
Additionally, for � = 0 we only have u =⇒0 u. The set of all
�-descendants of u is the set

D�(u) �
{
v ∈ Σ∗|u =⇒� v

}
.

The descendant cone of u is then defined as all the strings
which may be derived from u following a finite number of
duplication rules, namely,

D∗(u) �
⋃
��0

D�(u).

We can then write u =⇒∗ v if and only if v ∈ D∗(u).
A string-duplication system, S(Σ, s, T ), where Σ is a finite

alphabet, s ∈ Σ∗ is the seed string, and T ⊆ Σ∗Σ∗
is a set

of duplication rules, is defined as the descendant cone of s,
that is

S(Σ, s, T ) � D∗(s).

Thus, S contains all the strings that may result from s after
applying a finite number of arbitrary duplication rules from T .

The dual of the descendant cone is the ancestor cone. Here,
the ancestor cone of u ∈ Σ∗ is defined as

A∗(u) � {v ∈ Σ∗|u ∈ D∗(v)} ,

Authorized licensed use limited to: Moshe Schwartz. Downloaded on October 23,2022 at 16:01:41 UTC from IEEE Xplore.  Restrictions apply. 



7186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 68, NO. 11, NOVEMBER 2022

namely, all the strings of which u is a descendant. We note
that u ∈ A∗(u) always. However, if A∗(u) = {u}, then we
say that u is irreducible.

Fix some string-duplication system S = S(Σ, s, T ).
Depending on the application, one can view S in two ways:
either as a generative model which describes what possible
strings may be derived from s (e.g., see [2], [7], [10], [13],
[16], [26]), or as a channel which describes what corrupted
versions of the transmitted s may be received (e.g., see
[17]–[19], [21], [34], [36], [40]–[42]). While the latter view
calls for the construction of suitably tailored error-correcting
codes, the former inspires the following properties of S to be
studied.

The first property of S is full expressiveness. We say that
S is fully expressive if for any v ∈ Σ∗ there exist u, w ∈ Σ∗

(that may depend on v) such that uvw ∈ S. Thus, in a fully
expressive system, any finite string appears as a factor of one
of the strings in the system (see [13], [16]).

The second property of S is its capacity. We define the
capacity of S to be

cap(S) � lim sup
n→∞

1
n

log2 |S ∩ Σn| .

Intuitively, the capacity of S measures the exponential growth
rate of the descendant cone of the seed string. One can trivially
see that cap(S) � log2|Σ|, and if equality holds we say that
S has full capacity. Additionally, as mentioned in [13], if S
has full capacity then it must be fully expressive.

The last property of S is its entropy rate (see [10]). Unlike
the deterministic nature of the previous two properties, here
we describe a stochastic process. Denote S(0) = s, the seed
string. Then, at each step i = 1, 2, . . . , using some probability
distribution (that may depend on i) over T , we apply a
randomly chosen duplication rule from T to S(i − 1), thus
obtaining S(i). Hence, S(n), n ∈ N, are all random variables.
We can then define the entropy of S(n) as

H(S(n)) � −
∑

w∈Σ∗
Pr(S(n) = w) log2 Pr(S(n) = w).

With this, the entropy rate of the random process S is
defined as

h(S) � lim sup
n→∞

1
n

H(S(n)).

Loosely speaking, h(S) measures the amount of information
generated by an application of a random duplication rule.

We conclude this section by describing the specific set of
duplication rules we shall be studying in this paper. Let Σ be a
finite alphabet with a complement operation defined on it. The
reverse-complement duplication rule, that copies a k-factor
starting in position i in the given string, is defined for all
x ∈ Σ∗ as

T rc
i,k(x) �

{
uvvRw, if x = uvw, |u| = i, |v| = k,

x, otherwise.

We then define the set of duplication rules, for a fixed
duplication length k ∈ N to be

T rc
k �

{
T rc

i,k|i � 0
}

.

Finally, the k-uniform reverse-complement string-duplication
system is defined as

Src
k (s) � S(Σ, s, T rc

k ).

We note that in the notation Src
k , the dependence on Σ is

implicit.
Example 1: Consider the alphabet Σ = Z4 = {0, 1, 2, 3}

with complement pairs defined by 0 = 1 and 2 = 3. Assume
that the duplication length is k = 2. Then,

0123 =⇒ 012303 =⇒ 01232303,

where the duplicated factor is underlined. Thus, 01232303 ∈
S(Σ, 0123, T rc

2 ).
We would like to note that the reverse-complement string-

duplication system is indeed biologically motivated. DNA
sequences are strings of bases (or nucleotides). Since there
are four possible bases, adenine (A), thymine (T), guanine (G),
and cytosine (C), we can think of DNA sequences as strings
over Σ = {A, C, G, T }. The bases form two complementary
pairs, A = T , and C = G. A reverse complement of a section
of the DNA molecule might be inserted immediately follow-
ing the said section, thus creating a palindromic duplication
(e.g., see [6], [9]). The reverse-complement string-duplication
system models this phenomenon. We mention in passing
that [13] misused the term “palindromic duplication” to
describe the insertion of a reversed, but not complemented,
copy of a section of a DNA molecule. To avoid confusion
with [13] and papers that cite it, we use the term “reverse-
complement duplication”.

III. EXPRESSIVENESS

In this section we study the expressiveness of the
k-uniform reverse-complement string-duplication system,
Src

k (s). We show a simple sufficient and necessary condition
on the seed string that implies the system is fully expressive
when k � 2. The special case of k = 1 is also fully
characterized.

We first study the case of k � 2. For any string s ∈ Σ∗, and
any non-negative integer i, we say a ∈ Σ is the ith letter from
the end of s if s = uav, with u ∈ Σ∗ and v ∈ Σi. The main
technical ingredient in proving the expressiveness of Src

k (s) is
the following lemma, which shows that we can push letters
towards the end of the string in a controlled manner.

Lemma 2: Let k ∈ N, k � 2, s ∈ Σ∗, |s| � k + 1, and
let i � 2 be an integer. If the ith letter from the end of s is
a, then there exists s′ ∈ D2(s), such that a is the (i − 2)nd
letter from the end of s′, where descendants are obtained using
k-uniform reverse-complement duplications.

Proof: By the lemma’s conditions, we can write s =
uvbcw, where u, w ∈ Σ∗, v ∈ Σk−1, b, c ∈ Σ, |w| � i − 2,
and v contains the letter a that is ith from the end of s. Now,

s = uvbcw =⇒ uvbbvRcw =⇒ uvbvRccvw = s′,

where for the reader’s convenience we underlined the dupli-
cated parts. The claim now follows immediately, since the
letter a in v that was ith from the end in s, is (i− 2)nd from
the end of s′.
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Assume now that s = s0s1 . . . sn−1 is a string of length n,
si ∈ Σ for all i. For j = 0, 1 we define

Σj(s) � {si|0 � i � n − 1, i ≡ j (mod2)} .

Thus, Σ0(s) (respectively, Σ1(s)) is the set of letters of s that
appear in even (respectively, odd) positions.

If A ⊆ Σ is a subset of letters, we define

A � {a|a ∈ A} .

For s ∈ Σ∗ the following is a useful definition:

δ(s) � Σ0(s) ∪ Σ1(s).

We observe that

δ(s) = Σ0(s) ∪ Σ1(s) = δ(s). (1)

We are now ready to prove the sufficient and necessary
condition for Src

k (s) to have full expressiveness.
Theorem 3: Let k ∈ N, k � 2, and let s ∈ Σ∗, |s| � k,

be a seed string. Then Src
k (s) has full expressiveness if and

only if:
1) k is odd, and δ(s) ∪ δ(s) = Σ.
2) k is even, and δ(s) = Σ.

Proof: We first prove the “only if” part of the claim.
Consider k odd, and assume that δ(s) ∪ δ(s) �= Σ. It follows
that there exists a letter a ∈ Σ such that neither a, nor a, appear
in s. Hence, a and a cannot appear in any of the descendants
of s, and Src

k (s) is not fully expressive. Now consider k even,
and assume δ(s) �= Σ. Thus, there exists a letter a ∈ Σ such
that δ(s) ⊆ Σ\{a}, and by (1), also δ(s) ⊆ Σ\{a}. Consider
now a k-factor of s that is being duplicated resulting in s′,
namely,

s = uvw =⇒ uvvRw = s′.

Since k is even, we can easily see that

Σ0(s′) ⊆ Σ0(s) ∪ Σ1(s) = δ(s) ⊆ Σ \ {a},
Σ1(s′) ⊆ Σ0(s) ∪ Σ1(s) = δ(s) ⊆ Σ \ {a}.

Hence, once again we have δ(s′) ⊆ Σ \ {a}. By simple
induction, this holds not only for s′, but for any string in
D∗(s). Thus, aa is not a factor of any string in D∗(s), and
Src

k (s) is not fully expressive.
We move on to prove the “if” part. We now contend that

for any descendant u ∈ D∗(s), and any letter a ∈ Σ, we can
find a descendant u′ ∈ D∗(u) such that the (2i)th letter from
the end of u′ is a, for some i ∈ N (namely, a is found in
an even position from the end of the string). We distinguish
between two cases depending on the parity of k.

Assume k is odd. The requirement that δ(s) ∪ δ(s) = Σ
implies that for any letter a ∈ Σ, we have that a or a appear
in s. Trivially, any descendant of u ∈ D∗(s) also satisfies
δ(u)∪ δ(u) = Σ, since no letter gets erased in the duplication
process. Let u ∈ D∗(s) be some descendant of s. We have
the following cases:

1) If u contains the letter a as the (2i)th letter from the
end, i ∈ N, we are done by setting u′ = u.

2) Otherwise, if a is the last letter of u, we perform
two k-suffix reverse-complement duplications starting

with u. The resulting u′ has a as the (2k)th letter from
the end.

3) Otherwise, if u contains a as the (2i − 1)th letter from
the end, perform a single k-suffix reverse-complement
duplication to obtain u′. Now a is the (2i − 1 + k)th
letter from the end of u′, and 2i − 1 + k is even, since
k is odd.

4) Otherwise, u does not contain a, but only a. Perform a
single reverse-complement duplication on a factor of u
that contains a to obtain u′′. Now u′′ contains a, and we
repeat the arguments from the first three cases to obtain
the desired u′.

Assume k is even. Imagine the letters of s in even positions
are colored red, and those in odd positions green. Furthermore,
assume any letters inserted due to duplications are colored
blue. Since k is even, one can easily see that in any descendant
u ∈ D∗(s), the red letters remain in even positions, and the
green letters remain in odd positions. Hence, Σ = δ(s) ⊆ δ(u),
and so δ(u) = Σ. We have the following cases:

1) If u contains the letter a as the (2i)th letter from the
end, i ∈ N, we are done by setting u′ = u.

2) Otherwise, if the last letter of u is a, perform a single
k-suffix reverse-complement duplication to obtain u′.
Then the kth letter from the end of u′ is a.

3) Otherwise, since δ(u) = Σ, necessarily a is the (2j−1)st
letter from the end, for some j ∈ N. Perform a single
reverse-complement duplication on a factor of u that
contains a to obtain u′. Now u′ contains a as the (2i)th
letter from the end, for some i ∈ N∪ {0}. If i = 0, i.e.,
a is the last letter of u′, perform another k-suffix reverse-
complement duplication so a is the kth letter from
the end.

We have therefore proved our auxiliary claim, namely, that
for any u ∈ D∗(s) and any a ∈ Σ, there exists u′ ∈ D∗(u)
such that a is the (2i)th letter from the end of u′ for some
i ∈ N. We now claim that there exists u′′ ∈ D∗(u′) such that
u′′ ends with a. This is accomplished by repeated application
of Lemma 2, provided |u′| � k+1. If, |u′| = k, take u′u′Ru′ ∈
D2(u′) and apply Lemma 2 repeatedly on it to obtain the
desired u′′. Note that in all cases we apply Lemma 2 at least
once.

To complete the proof of the “if” part, assume we are given
a string a0a1 . . . a�−1 ∈ Σ�. We intend to show that there
exists a descendant of s whose �-suffix is a0 . . . a�−1. By our
previous discussion we can derive from s a string that ends
with a�−1,

s =⇒∗ va�−1.

Since at least one application of Lemma 2 was used in the
process, we necessarily have that δ(v) ∪ δ(v) = Σ if k is
odd, and δ(v) = Σ if k is even. We can therefore repeat the
argument, starting with v, to derive a string that ends with
a�−2. In context of the entire derivation starting from s we
obtain,

s =⇒∗ va�−1 =⇒∗ v′a�−2a�−1.

By simple induction, we can repeat the process until

s =⇒∗ v′′a0a1 . . . a�−1,

thus completing the proof.
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When the duplication-window size is k = 1 we have a
different situation. Here, full expressiveness depends solely
on whether the alphabet is binary or not.

Theorem 4: Let k = 1, and let s ∈ Σ∗, |s| � k, be a
seed string. Then Src

k (s) has full expressiveness if and only if
|Σ| = 2.

Proof: In the first direction, assume |Σ| = 2, and w.l.o.g.,
suppose Σ = {0, 1}. It is trivial that, starting with 0, we can
derive any binary string that starts with 01. First, repeatedly
duplicate the last bit to obtain an alternating string 0101 . . . .
Then, extend any run (except for the initial 0) by duplicating
the last bit of the preceding run, to obtain 01n10n21n30n4 . . . .
If the seed string s contains a 0, we are done. Otherwise,
duplicate a 1 bit from s to obtain a 0. Thus, Src

1 (s) is fully
expressive when |Σ| = 2.

For the other direction, assume |Σ| � 4. Denote the letters
of the seed string by s = s0s1 . . . sn−1, with si ∈ Σ. Since
the size of the duplication window is k = 1, it follows that,

D∗(s) = {u0u1 . . . un−1|ui ∈ D∗(si)}.

Furthermore, for all i,

D∗(si) ⊆ {si, si}∗ ,

namely, the strings derived from the letter si may contain only
the letters si and si. Since |Σ| � 4, There exist a, b ∈ Σ such
that {a, a} �= {b, b}. We contend that the string v = (ab)n+1

is not a factor of any string in D∗(s). Assume to the contrary
that v is a factor of some string w ∈ D∗(s). Since |s| = n,
by the pigeonhole principal, it follows that ab or ba is a factor
of ui ∈ D∗(si) ⊆ {si, si}∗, for some 0 � i � n − 1. This
contradicts the fact that {a, a} �= {b, b}. Hence, Src

1 (s) is not
fully expressive when |Σ| � 4.

IV. CAPACITY AND ENTROPY RATE

In this section we study the capacity and entropy rate
of the reverse-complement string-duplication system. Loosely
speaking, while the capacity focuses on what is possible
[13], [16], the entropy rate looks at what is probable [10].
Thus, the capacity is an upper bound on the entropy rate
(see [10]).

Both the capacity and the entropy rate are hard to find
exactly, and in previous works it was found exactly only for
a select few cases. We mention that the case of k = 1 was
studied in [10] for a binary alphabet and a seed string s = 0.
Trivially, when k = 1 we have full capacity, cap(Src

1 (0)) = 1,
and by an elaborate combinatorial counting argument it was
shown there that 0.8689 � h(Src

1 (0)) � 0.9067. However,
the case k = 1 is degenerate in several ways, as rever-
sal is meaningless, and duplication windows never overlap.
Thus, a first true step into the reverse-complement string-
duplication system requires taking a window size of k = 2 at
least. We therefore restrict ourselves in this section to the
binary alphabet Σ = Z2, a duplication length of k = 2,
and a seed string s = 00. Surprisingly, we show that a
huge gap exists in this case between the capacity and the
entropy rate.

A. The Capacity

Our strategy for finding the exact capacity of the binary
Src

2 (00) differs from previous approaches to the problem
in [13], [16]. We first characterize all the irreducible strings.
We then show that we can derive all of them as factors from
the seed string with a constant overhead. Finally, we show that
this implies full capacity, i.e., cap(Src

2 (00)) = 1.
In what follows, let us denote the set of irreducible strings

with respect to the Src
2 (s) system by Irr. That is,

Irr � {u ∈ Σ∗|A∗(u) = {u}} ,

is the set of strings who are their own sole ancestor. In the fol-
lowing lemma, (020∗1)∗ plays an important role. We remind
that (020∗1)∗ is the set of finite strings obtained by con-
catenating strings of the form 020∗1, which themselves, are
a concatenation of at least two 0’s, followed by a single 1.
A symmetric statement holds for (121∗0)∗.

Lemma 5: The set of binary irreducible strings with respect
to Src

2 (s) satisfies

Irr = Factor
(
(020∗1)∗

)
∪ Factor

(
(121∗0)∗

)
.

Proof: The irreducible strings are exactly those strings that
do not contain any reverse-complement duplication, namely,
none of the factors 0011, 1100, 0101, and 1010. Using
standard techniques from constrained coding [28], the set of
binary strings not containing these factors is exactly generated
by reading the labels on paths in the binary De Bruijn graph
of order 3, where the four edges corresponding to 0011,
1100, 0101, and 1010, are removed, seen in Figure 1(a).
By applying the Moore algorithm to minimize the number
of vertices in the graph,1 we obtain a more compact graph
representation, seen in Figure 1(b). The set of strings generated
by paths in the latter graph is immediately seen to be equal
to Factor((020∗1)∗) ∪ Factor((121∗0)∗), as claimed.

As our next step, we prove that we can derive any irre-
ducible string from the seed string 00 using at most a constant
overhead, which is independent of the irreducible string.

Lemma 6: Denote S = Src
2 (00) over Z2. Then there exists

a constant c ∈ N such that any irreducible u ∈ Irr is a factor
of some w ∈ S where |w| � |u| + c.

Proof: By Lemma 5, u ∈ Irr is either u ∈
Factor((020∗1)∗) or u ∈ Factor((121∗0)∗). Let us first
consider the former, i.e., u ∈ Factor((020∗1)∗). Our goal is
to find a derivation 00 =⇒∗ w such that u is a factor of w,
with only a constant overhead.

By possibly adding a prefix and a suffix totaling no more
than 4 bits, we can find

u′ = 0�110�21 . . . 0�m1,

�i � 2 for all i, such that u is a factor of u′. It then suffices
to prove that we can derive 00 =⇒∗ w such that u′ is a factor
of w. Let us further denote by t the number of indices i such
that �i is even.

1The Moore algorithm creates an equivalent graph with a minimal number
of vertices that correspond to the equivalence classes of the Myhill-Nerode
Theorem (see [30, §3.9 and §3.10]). We do this minimization merely to get
a compact form we can easily analyze.
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Fig. 1. The graphs used in the proof of Lemma 5: (a) The binary De Bruijn
graph of order 3, with the edges corresponding to 0011, 0101, 1010, and
1100 canceled. Labels read along paths in the graph form exactly the set of
binary strings not containing the factors 0011, 0101, 1010, and 1100. (b) The
minimized graph of (a).

In preparation for finding the desired derivation, we start by
deriving

00 =⇒∗ 0012+2�t/2� =⇒ 0012+2�t/2�00.

Thus, we obtain 0012+t00 if t is even, and 0013+t00 if t is
odd. We denote

y � 0012+2�t/2�, z � 00.

Hence, 00 =⇒∗ yz. We shall continue by induction, at each
step updating the y part and the z, with our invariant being
that the z part begins with 0 and that the y part ends with
sufficiently many 1’s (which will be made clear later).

Assume now that we would like to generate a factor of 0�1,
� � 2, from yz. Further assume y = 001i. We distinguish
between two cases, depending on the parity of �:

1) If � is even, assume i � 3, and then we repeatedly
duplicate the penultimate 11 in y to obtain,

yz = 001i−3111z =⇒�/2 001i−10�1 z = y′z′.

where y′ = 001i−1 and z′ = 0�1z. We consider y′ to
be the “new” y, and similarly z′, and we observe that y′

is shorter than y since a single-bit suffix of 1 has been
removed from it.

2) If � is odd, assume i � 2. We make use of the fact that y
ends in a 1, and z begins with a 0, and first duplicate this
10 factor. We then duplicate the suffix 11 of y repeatedly

to obtain,

yz = 001i−211z =⇒ 001i−21101z

=⇒(�−1)/2 001i0�1 z = y′z′,

where y′ = y and z′ = 0�1z. This time, the y prefix
remains unchanged.

The process described above can be repeated, namely,
we can generate 0�m1, then 0�m−11, and so on, until 0�11.
This is because at each step, the z part begins with a 0, and
the y part ends with sufficiently many 1’s. More precisely,
each time �1 is even, a single-bit suffix of 1 is removed from
the y part, and otherwise, the y part remains the same. Since
we have t occurrences of even �i, and the initial y part has a
suffix of 2 + t 1’s, the process terminates with a derivation

00 =⇒∗ 0012+(t mod 2)0�11 . . . 0�m100 � w.

Thus, w contains u′ as a factor, with at most 7 extra bits in
length. Together with the fact that u′ contains u as a factor
with at most 4 extra bits in length we get

|w| � |u| + 11.

Finally, we need to consider the case of u ∈ Factor
((121∗0)∗). In this case, we first derive 00 =⇒ 0011.
We ignore the 00 prefix, and repeat the proof from the previous
case, only starting with 11 to obtain the desired derivation.
In this case, we will get 2 more extra bits of overhead, namely,

|w| � |u| + 13.

We can now prove that the capacity is full.
Theorem 7: Over Z2,

cap(Src
2 (00)) = 1.

Proof: Denote S � Src
2 (00). We first note that all the

strings in S have even length. Let c ∈ N be the constant
from Lemma 6, and let n ∈ N be an even number, n � c.
We contend that any v ∈ Z

n−c
2 is a factor of some string in

S∩Z
n
2 . Indeed, let u ∈ Irr be a root of v, i.e., u is irreducible

and u =⇒∗ v. By Lemma 6, u is a factor of some string in
S∩Z

|u|+c
2 . Hence, there exist y, z ∈ Z

∗
2 such that 00 =⇒∗ yuz

and |yz| = c. It follows that

00 =⇒∗ yuz =⇒∗ yvz,

and |yvz| = n.
We have reached the conclusion that all 2n−c strings in

Z
n−c
2 appear as factors of strings in S ∩Z

n
2 . Since each string

of length n contributes at most c + 1 distinct (n − c)-factors,
we have

|S ∩ Z
n
2 | � 2n−c

c + 1
. (2)

Thus,

cap(S) = lim sup
n→∞

log2 |S ∩ Z
n
2 |

n
� lim

n→∞
log2

2n−c

c+1

n
= 1,

where the inequality follows from (2) and the fact that |S ∩
Z

n
2 | = 0 for odd n. Since trivially cap(S) � 1, we have

cap(S) = 1, as claimed.
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B. Entropy Rate

Before diving into the technical details of finding the exact
entropy rate h(Src

2 (00)) in the binary case, we would like to
describe an outline of the strategy. Recall that the object under
study here is a stochastic process, starting with the seed string
00. In each turn a position in the string is chosen, indepen-
dently and uniformly, and a reverse-complement duplication of
length 2 is performed there. The process then repeats, inducing
a probability distribution over outcome strings after n rounds.
The limit of the normalized entropy, as n → ∞, gives us the
entropy rate.

The approach we take is similar in spirit to [10], [26]:
we shall track the frequencies of 2-factors as n → ∞.
Unlike previous papers, it seems to be impossible to track
the frequencies exactly, and we shall have to resort to an
approximate tracking only. Thus, while [10], [26] manage
to extract differential equations that govern the evolution of
factor frequencies, we shall have to settle for a differential
inclusion. Once we have a handle on the limit of 2-factor
frequencies, we shall use semiconstrained systems [11] to find
their exact capacity, which we show is 0. Since the capacity
upper bounds the entropy rate, we will reach the conclusion
that h(Src

2 (00)) = 0.
Let us start the technical discussion. We follow [10], [13],

and consider strings to be cyclic, namely, if u = u0u1 . . .
un−1 ∈ Z

n
2 , then ui+1 is the letter following ui, where sub-

scripts are taken modulo n. We shall find it more convenient to
work with the derivative of strings rather than with the strings
themselves. The derivative of u (see [14]) is defined as

D(u) � u1−u0, u2−u1, . . . , un−1−un−2, u0−un−1 ∈ Z
n
2 ,

where the commas are written simply in order to separate
the letters of the string. The derivative is easily seen to be a
linear mapping which is two-to-one (mapping a string and its
complement to the same derivative).

The stochastic process we are studying, S = Src
2 (00), starts

with the seed string s = 00, and we denote S(0) = s. For
each i = 1, 2, . . . , a position in S(i − 1) is chosen uniformly
and independently at random, and a reverse-complement
duplication of length k = 2 is performed on this position,
resulting in S(i). Thus, each S(n), n ∈ N, is a random
variable representing the outcome of n reverse-complement
duplications. Using the definition of the entropy of S(n),

H(S(n)) � −
∑

w∈Σ2n+2

Pr(S(n) = w) log2 Pr(S(n) = w).

With this, the entropy rate of the random process S is
defined as

h(S) � lim sup
n→∞

1
n

H(S(n)).

The probabilities Pr(S(n) = w) are hard to find, and thus,
to compute h(S) we resort to an indirect route. This involves
statistics of factors of S(n). To that end we give some more
definitions. Let u, v ∈ Σ∗ be two strings, |u| � |v|. We use
|u|v to denote the number of times v appears as a factor of
u, including cyclically. More precisely, if the letters of u are
u = u0u1 . . . un−1, then

|u|v � |{0 � i � n − 1|uiui+1 . . . ui+k−1 = v}| ,

where the indices of u are taken modulo n. The frequency of
v in u is then defined as

frv(u) � |u|v
|u| .

We can then see that for cyclic strings,

frv(u) =
∑
a∈Σ

frva(u) =
∑
a∈Σ

frav(u).

Let us therefore define the set of �-order admissible frequency
vectors as

Q(Σ�) �
{

(αv)v∈Σ� ∈ [0, 1]|Σ|�
∣∣∣∣∣

∑
v∈Σ�

αv = 1, ∀v′ ∈ Σ�−1 :
∑
a∈Σ

αv′a =
∑
a∈Σ

αav′

⎫⎬
⎭ .

Note that string indices, as the v in αv , are written in
superscript. We also comment that the α’s in the vector
(αv)v∈Σ� are indexed in lexicographic order. For example,
(α00, α01, α10, α11) ∈ Q(Z2

2) if and only if αv ∈ [0, 1]
for all v ∈ Z

2
2, α00 + α01 + α10 + α11 = 1, and also

α00 + α01 = α00 + α10, as well as α11 + α10 = α11 + α01.
We will also use partial vectors of Q(Σ�) by replacing entries
with a dot. For example, the statement (α00, α01, α10, ·) ∈
Q(Z2

2) is equivalent to stating that there exists α11 such that
(α00, α01, α10, α11) ∈ Q(Z2

2).
Our analysis of the stochastic process uses the framework of

stochastic approximation [5]. The fundamental tool we employ
is that of the differential inclusion limit [5, Sec. 5], and whose
main theorem we now recall.

Theorem 8 (Differential Inclusion Limit [5]): Let zn be a
discrete stochastic process in R

d given by

zn+1 = zn + an (yn + Mn+1) , n � 0,

with a given z0. Assume all the following conditions hold:
(A1) yn ∈ f(zn) for all n � 0, where f is a set-valued map

f : R
d → P(Rd) (i.e., a mapping of vectors from R

d to
subsets of vectors from R

d) that satisfies:
(i) For each z ∈ R

d, f(z) is convex and compact.
(ii) For all z ∈ R

d,

sup
y∈f(z)

y < K(1 + z)

for some constant K > 0.
(iii) f is upper semicontinuous in the sense that if zn →

z, yn → y, yn ∈ f(zn), for n � 1, then y ∈ f(z).
(A2) an > 0 for all n � 0, are fixed positive scalars satisfying∑

n

an = ∞,
∑

n

a2
n < ∞.

(A3) {Mn} is a martingale difference sequence w.r.t. the
increasing σ-algebras Fn = σ(zm, ym, Mm, m � n),
n � 0, i.e.,

E[Mn+1|Fn] = 0,

almost surely, n � 0. Additionally, {Mn} are square-
integrable with

E[Mn+1|Fn] � K ′ (1 + zn2
)
,

almost surely, n � 0, for some constant K ′ > 0.
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(A4) The sequence is bounded,

sup
n
zn < ∞,

almost surely.

Then zn converges almost surely to a closed connected inter-
nally chain transitive invariant set of the differential inclusion
limit

d
dt

z(t) ∈ f(z(t)). (3)

The following theorem does the heavy lifting in this section,
proving that the derivative of S(n) is asymptotically, almost
surely, composed nearly entirely of 1’s.

Theorem 9: Let S = Src
2 (00) be the stochastic process

described above. Then, almost surely,

lim
n→∞ fr1 (D(S(n))) = 1.

Proof: While our goal is to prove a claim on the frequency
of 1’s, we shall need to track the frequencies of other factors
as well. More precisely, we shall follow how the frequencies
of 0’s, 10’s, and 11’s evolve in D(S(n)) as n → ∞. Let us
therefore define

xn �

⎛
⎝ |D(S(n))|0
|D(S(n))|10
|D(S(n))|11

⎞
⎠ ,

zn �

⎛
⎝ fr0(D(S(n)))

fr10(D(S(n)))
fr11(D(S(n)))

⎞
⎠ =

1
2n + 2

xn,

where the last equality is due to the fact that |S(n)| =
|D(S(n))| = 2n + 2.

We now write
xn+1 = xn + ξn+1,

which we can rewrite in the following form:

zn+1 = zn +
1

2n + 4
(ξn+1 − 2zn) . (4)

The value of ξn+1 depends on the position of the reverse-
complement duplication taken from S(n) to S(n+1). To find
the possible values of ξn+1, consider a string u ∈ Z

∗
2

whose letters are ui. If a reverse-complement duplication is
performed on the ith position then

u = . . . uiui+1ui+2 . . . =⇒ . . . uiui+1ui+1uiui+2 . . . .

In the derivative domain this becomes,

. . . ui+1 − ui, ui+2 − ui+1, ui+3 − ui+2 . . . −→

. . . ui+1 − ui, 1, ui − ui+1, ui+2 − ui, ui+3 − ui+2 . . . , (5)

where −→ is used instead of =⇒ to emphasize that this is
a reverse-complement duplication in the derivative domain.
Tabulating all the possible cases of (5) gives us Table I.

We further manipulate (4) to obtain,

zn+1 = zn +
1

2n + 4
(E[ξn+1|Fn] − 2zn

+ ξn+1 − E[ξn+1|Fn]),

where Fn is the σ-algebra generated by σ(zm, ξm, m � n).
We first observe that

Mn+1 � ξn+1 − E[ξn+1|Fn]

is a martingale difference sequence w.r.t. Fn since

E[Mn+1|Fn] = E[ξn+1 − E[ξn+1|Fn]|Fn]
= E[ξn+1|Fn] − E[ξn+1|Fn] = 0.

Next, we study

yn � E[ξn+1|Fn] − 2zn. (6)

Determining E[ξn+1|Fn] seems difficult. However, if we
denote2

α000
n � E[fr000(D(S(n)))|Fn],

α001
n � E[fr001(D(S(n)))|Fn],

α010
n � E[fr010(D(S(n)))|Fn],

α011
n � E[fr011(D(S(n)))|Fn],

then by using Table I we could write,

E[ξn+1|Fn] = α000
n

⎛
⎝ 0

+2
0

⎞
⎠ + α001

n

⎛
⎝ 0

+1
+1

⎞
⎠

+ α010
n

⎛
⎝+2

0
0

⎞
⎠ + α011

n

⎛
⎝+2

+1
−1

⎞
⎠

+ (1 − α000
n − α001

n − α010
n − α011

n )

⎛
⎝ 0

0
+2

⎞
⎠

=

⎛
⎝ 2α010

n + 2α011
n

2α000
n + α001

n + α011
n

2 − 2α000
n − α001

n − 2α010
n − 3α011

n

⎞
⎠ .

We make the observation that, given zn = (z0
n, z10

n , z11
n )ᵀ,

α000
n + α001

n + α010
n + α011

n = z0
n. (7)

Looking back at (6), we can therefore write,

yn =

⎛
⎝ 2α010

n + 2α011
n

2α000
n + α001

n + α011
n

2 − 2α000
n − α001

n − 2α010
n − 3α011

n

⎞
⎠ − 2

⎛
⎝ z0

n

z10
n

z11
n

⎞
⎠

=

⎛
⎝−2 0 0

0 −2 0
−2 0 −2

⎞
⎠

⎛
⎝ z0

n

z10
n

z11
n

⎞
⎠ +

⎛
⎝ 2α010

n + 2α011
n

2α000
n + α001

n + α011
n

2 + α001
n − α011

n

⎞
⎠ .

Let us now define the function f : R
3 → P(R3), sending

vectors from R
3 to subsets of R

3, in the following way,

f

⎛
⎝ z0

z10

z11

⎞
⎠ �

⎧⎨
⎩

⎛
⎝−2 0 0

0 −2 0
−2 0 −2

⎞
⎠

⎛
⎝ z0

z10

z11

⎞
⎠

+

⎛
⎝ 2α010 + 2α011

2α000 + α001 + α011

2 + α001 − α011

⎞
⎠

∣∣∣∣∣∣
(α000, α001, α010, α011, ·, ·, ·, ·) ∈ Q(Z3

2)

⎫⎬
⎭ .

2We use superscripts here to remind us of the relevant factors, and not to
represent powers.
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TABLE I

THE CASES OF (5), SHOWING THE RELEVANT FACTORS OF THE DERIVATIVE BEFORE AND AFTER THE REVERSE-COMPLEMENT DUPLICATION, AS WELL
AS THE VECTOR ξn+1 REPRESENTING THE CHANGE IN THE NUMBER OF OCCURRENCES OF THE FACTORS 0, 10, AND 11.

It then follows that yn from (6) satisfies,

yn ∈ f(zn).

By a simple check we can verify that the requirements of
Theorem 8 are satisfied. Thus, by employing it we can say
that zn converges almost surely to the limit of a function
satisfying (3). In our case, that means solving

d
dt

⎛
⎝ z0

z10

z11

⎞
⎠ =

⎛
⎝−2 0 0

0 −2 0
−2 0 −2

⎞
⎠

⎛
⎝ z0

z10

z11

⎞
⎠

+

⎛
⎝ 2α010 + 2α011

2α000 + α001 + α011

2 + α001 − α011

⎞
⎠

for some constants (α000, α001, α010, α011, ·, ·, ·, ·) ∈ Q(Z3
2),

and with the initial condition

z0(0) = 1, z10(0) = 0, z11(0) = 0,

since the seed string is 00. The solution is then

z0(t) = (α010 + α011)(1 − e−2t) + e−2t,

z10(t) =
(

α000 +
1
2
α001 +

1
2
α011

)
(1 − e−2t),

z11(t) =
(

1 +
1
2
α001 − α010 − 3

2
α011

)
(1 − e−2t)

+ e−2t · 4t(α010 + α011 − 1).

Thus, almost surely,

lim
n→∞

⎛
⎝ fr0(D(S(n)))

fr10(D(S(n)))
fr11(D(S(n)))

⎞
⎠ = lim

t→∞

⎛
⎝ z0(t)

z10(t)
z11(t)

⎞
⎠ (8)

=

⎛
⎝ α010 + α011

α000 + 1
2α001 + 1

2α011

1 + 1
2α001 − α010 − 3

2α011

⎞
⎠ �

⎛
⎝z0

∞
z10∞
z11
∞

⎞
⎠ .

Since for any cyclic binary string u we have

fr0(u) + fr10(u) + fr11(u) = 1,

this relation also holds in the limit, and therefore,

z0
∞ + z10

∞ + z11
∞ = 1.

Substituting the values from (8) we thus have

α000 + α001 = 0.

Since α000, α001 ∈ [0, 1], we reach the conclusion that

α000 = α001 = 0,

and we obtain⎛
⎝z0

∞
z10∞
z11
∞

⎞
⎠ =

⎛
⎝ α010 + α011

1
2α011

1 − α010 − 3
2α011

⎞
⎠ . (9)

The information in (9) is not yet sufficient to prove the
claim. The main technical obstacle is that Theorem 8 does not
completely determine all the parameters. However, by reusing
it in a slightly different manner we can improve our result.
We go all the way back to our observation (7). We now make
another observation, which is that the frequencies of 01 and
10 in a cyclic binary string must be equal. Hence,

α010
n + α011

n = E[fr010(D(S(n)))|Fn]
+ E[fr011(D(S(n)))|Fn]

= E[fr01(D(S(n)))|Fn]

= E[fr10(D(S(n)))|Fn] = z10
n .

Continuing down the same path as before, we now have,

yn =

⎛
⎝ 2α010

n + 2α011
n

2α000
n + α001

n + α011
n

2 − 2α000
n − α001

n − 2α010
n − 3α011

n

⎞
⎠ − 2

⎛
⎝ z0

n

z10
n

z11
n

⎞
⎠

=

⎛
⎝−2 2 0

1 −2 0
−2 0 −2

⎞
⎠

⎛
⎝ z0

n

z10
n

z11
n

⎞
⎠ +

⎛
⎝ 0

α000
n − α010

n

2 + α001
n − α011

n

⎞
⎠ ,

and by defining

g

⎛
⎝ z0

z10

z11

⎞
⎠ �

⎧⎨
⎩

⎛
⎝−2 2 0

1 −2 0
−2 0 −2

⎞
⎠

⎛
⎝ z0

z10

z11

⎞
⎠

+

⎛
⎝ 0

α000 − α010

2 + α001 − α011

⎞
⎠

∣∣∣∣∣∣
(α000, α001, α010, α011, ·, ·, ·, ·) ∈ Q(Z3

2)

⎫⎬
⎭ ,

it then follows that yn from (6) satisfies,

yn ∈ g(zn).

Once again we use Theorem 8, however this time we obtain
that almost surely,⎛

⎝z0
∞

z10∞
z11
∞

⎞
⎠ =

⎛
⎝ β000 − β010

β000 − β010

1 − β000 + 1
2β001 + β010 − 1

2β011

⎞
⎠ , (10)

for some (β000, β001, β010, β011, ·, ·, ·, ·) ∈ Q(Z3
2). We cru-

cially note that the first two components of (10) are equal.
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Fig. 2. An example simulation of Src
2 (00) showing (a) fr00(S(n)),

(b) fr01(S(n)) = fr10(S(n)), and (c) fr11(S(n)).

Carrying this knowledge back to (9) we obtain the equation

α010 + α011 =
1
2
α011.

Since α010, α011 ∈ [0, 1], we necessarily have

α010 = α011 = 0.

Putting this back into (9), we reach the conclusion that, almost
surely, ⎛

⎝z0
∞

z10
∞

z11∞

⎞
⎠ =

⎛
⎝0

0
1

⎞
⎠ ,

thus proving our claim.
Returning from the derivative domain is simple.
Corollary 10: Let S = Src

2 (00) be the stochastic process
described above. Then, almost surely,

lim
n→∞

⎛
⎜⎜⎝

fr00(S(n))
fr01(S(n))
fr10(S(n))
fr11(S(n))

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

0
1
2
1
2
0

⎞
⎟⎟⎠ .

Proof: In a cyclic binary string, the frequencies of
01 and 10 are equal. Additionally, they are the only factors
creating 1’s in the derivative. Thus, the conclusion follows
from Theorem 9.

An illustration of the frequencies of 2-factors in S(n),
as n → ∞, is shown in Figure 2. Notice in this figure how
fr01(S(n)) = fr10(S(n)) tends to 1

2 , hence in the derivative,
fr1(D(S(n)) tends to 1. We now conclude this section by
proving that the entropy rate of Src

2 (00) is 0. We recall the
following useful bound [26, Th. 11], and the remark following
it.

Lemma 11 ([26]): Let S be a stochastic duplication system,
as defined above. Assume that

lim
n→∞ (frv(S(n)))v∈Σ� = (αv)v∈Σ� ,

almost surely. Then,

h(S) � −
∑
v∈Σ�

αv log2

(
αv

μv

)
,

where μv is the marginal on the first �−1 coordinates, namely,
if v = v0v1 . . . v�−1, with vi ∈ Σ for all i, then

μv =
∑
a∈Σ

αv0...v�−2a.

Corollary 12: Over Z2,

h(Src
2 (00)) = 0.

Proof: Simply combine Lemma 11 with Corollary 10 to
obtain an upper bound of 0 on the entropy rate. A lower bound
of 0 is trivial.

V. SINGLE-DUPLICATION-CORRECTING CODES

In this section we switch gears, and consider the reverse-
complement duplication as a source of noise. To protect the
information against such a noise mechanism, we would like to
design efficient error-correcting codes. We first formally define
error-correcting codes for the reverse-complement duplication
channel. We then show how to construct single-duplication-
correcting codes, with odd duplication length, by altering
known code constructions for single-burst-insertion correction.

Definition 13: An (n, M, t)rck reverse-complement-
duplication code is a set C ⊆ Σn of size |C| = M , such that
for every c1 �= c2 ∈ C, Dt(c1)∩Dt(c2) = ∅, all with respect
to the reverse-complement string-duplication system, with
duplication length k. The redundancy of the code (in bits) is
defined as log2(|Σ|n/|C|).

Thus, in a code capable of correcting t reverse-complement
duplications of length k, no two distinct codewords have the
same t-descendant. Our focus here is on single-error-correcting
codes, namely, t = 1.

Trivially a reverse-complement duplication is a special case
of an insertion. Hence, a simple “off-the-shelf” solution to
finding such a code is to employ a general insertion-correcting
code. The first code solving this problem in the literature is
the renowned Varshamov-Tenengolts (VT) code [22], [38].
It is a binary code which addresses the case of a single
insertion or deletion, i.e., k = 1. The redundancy of the
binary VT code is log2 n + o(1). This code was extended
to a q-ary alphabet in [37], with a code of redundancy
log2 n+log2 q+o(1). The binary VT codes were also extended
to binary codes capable of correcting (general) k insertions
or deletions. For example, recently, [32] (see also references
therein) constructed binary k-deletion-correcting codes with
redundancy 8k log2 n + o(log n).

Taking another step forward, we observe that a single
reverse-complement duplication does not insert k symbols
in random positions, but rather as a single burst of length
k. Thus, to correct a single reverse-complement duplication
we may use a ready-made code capable of correcting a
single burst of insertions of length k. A binary code that
corrects a single burst of insertions or deletions of length
k = 2, was first constructed in [23]. This code has redundancy
log2(n)+1+o(1). Recently, [29] (see also references therein)
constructed binary codes that correct a single burst of length
(general) k insertions or deletions, with redundancy at most
log2 n + (k − 1) log2 log2 n + k − log2 k.
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Thus, in light of the above, the advantage of the construction
we are about to propose is two-fold. First, except for the
degenerate case of burst-length 1 (i.e., a single inserted sym-
bol), the known constructions are only over the binary alpha-
bet. Our construction works for arbitrary alphabets. Second,
the redundancy of our construction does not depend on the
size of the alphabet.

To present our construction we require the notion of a
complement-preserving mapping.

Definition 14: Let Σ be any alphabet of even size, with a
complement operation as defined in Section II. A mapping
β : Σ → Z2 is said to be complement preserving if for all
a ∈ Σ,

β(a) = β(a).

Complement-preserving mappings always exist, and may be
chosen to be easily computable. For example, if Σ = Zq , with
2i = 2i + 1 for all i, then we may take β(a) = a mod 2.
We also extend β to act on strings in the natural way, namely,
β(a0a1 . . . an−1) � β(a0)β(a1) . . . β(an−1), with ai ∈ Σ for
all i. We can now give our construction.

Construction A: Let C′ ⊆ Z
n
2 be a binary code capable of

correcting a single burst insertion of odd length k. Let Σ be
an alphabet of even size, and β : Σ → Z2 a complement-
preserving mapping. We construct the following code:

C � {c ∈ Σn|β(c) ∈ C′} .

To prove that this construction is indeed capable of cor-
recting a single reverse-complement duplication, one might
expect the following straightforward decoding algorithm: upon
receiving a string w ∈ Σn+k, the receiver computes β(w)
and then it runs the decoding algorithm for the binary burst-
insertion-correcting code C′. The receiver then finds out what
k-factor is to be removed from w to obtain the transmitted
codeword. This however is insufficient, as the following exam-
ple shows. Suppose Σ = Z4 (with 0 = 1 and 2 = 3), and
k = 3. Consider the received string w = 1332202221, for
which we have β(w) = 1110000001. Assume further that the
decoder of C′ determines a 000 factor was inserted, and is
therefore to be removed. Unfortunately, there are four possible
factors 000 in β(w), the removal of any of which results in
the same string β(c) = 1110001. However, in the string w
over Z4 these four factors are 220, 202, 022 and 222. It is not
immediately clear which of them is to be removed to obtain the
transmitted c. We solve this problem by using the fact that the
inserted burst forms a reverse-complement duplication. In this
case, only 220 forms a reverse-complement duplication since
it is preceded by 133.

We cite the useful Lyndon-Schützenberger Lemma, and then
proceed to prove the correctness of the code construction. For
the following, recall that ε denotes the unique empty word.

Lemma 15 ([27, Lemma 2]): Let x, y, z ∈ Σ∗, x �= ε.
If xy = yz, then there exist u, v ∈ Σ∗ and � � 0 such that
x = uv, y = (uv)�u, and z = vu.

Lemma 16: Let Σ be any alphabet of even size. Consider
the reverse-complement string-duplication system over Σ, with
duplication length k that is odd. If w′ =⇒ w (i.e., w is
obtained from w′ using a single reverse-complement duplica-

Fig. 3. The two cases of w in the proof of Theorem 17.

tion operation), then there is only a single way of obtaining w
from w′ using a reverse-complement duplication of length k.

Proof: Throughout the proof, we adopt the notation that
if a ∈ Σn is a string, its letters are denoted a0a1 . . . an−1.
Assume to the contrary that two k-factors of w ∈ Σn+k

in distinct positions, denoted x, z ∈ Σk, may be removed
to obtain w′ ∈ Σn. We contend that with the additional
knowledge that both x and z form a reverse-complement
duplication, a contradiction must be reached. We distinguish
between two cases, depending on whether the positions of x
and z overlap, as depicted in Figure 3.

Case I: Assume x and z do not overlap (see Figure 3(a)).
Since the removal of x and the removal of z result in w′,
we necessarily have xy = yz. By Lemma 15 there exist u,
v ∈ Σ∗ and an integer � � 0 such that

x = uv, y = (uv)�u, z = vu. (11)

According to (11), the k-factor preceding z in w is vu.
Since z is a reverse-complement duplication of length k, its
preceding k-factor must be the reverse complement of z. Thus,
by (11) we get,

z = vu = (vu)R = zR.

Since |z| = k is odd, we have an odd-length string that is
equal to its own reverse complement. The middle letter of
that string, zi, i = (k − 1)/2, must therefore satisfy zi = zi,
a contradiction.

Case II: Assume that x and z overlap (see Figure 3(b)).
In this case, by Lemma 15 we must have x = uv, y = u, and
z = vu. Since x is a reverse-complement duplication, it is
preceded by its reverse complement. Thus, the following is a
factor of w:

xR︷ ︸︸ ︷ x︷︸︸︷
vR uR u v u︸︷︷︸

z

Since k is odd, and k = |u| + |v|, we have that |u| − |v| is
odd, and in particular, |u| �= |v|. If |u| = 0 then x and z are in
the exact same location, which contradicts our assumption that
they are not. If |v| = 0 then x and z do not overlap. Hence,
in what follows we assume |u|, |v| > 0. We now use the fact
that z is also a reverse-complement duplication, and hence,
must be preceded by its reverse complement. We divide our
discussion depending on the relation between |u| and |v|.
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1) 0 < |v| < |u|: In order for z to be a reverse-complement
duplication the following equations must hold,

v0v1 . . . v|v|−1 = u|u|−1u|u|−2 . . . u|u|−|v|, (12)

u0u1 . . . u|u|−|v|−1 = u|u|−|v|−1u|u|−|v|−2 . . . u0. (13)

Recall that |u|− |v| is odd. Thus, (13) shows a string of
odd length that equals its reverse complement. In par-
ticular, for its middle letter we get ui = ui, i =
(|u| − |v| − 1)/2, a contradiction.

2) 0 < |u| < |v| < 2|u|: For z to form a reverse-
complement duplication, the following equations must
hold,

v0v1 . . . v|u|−1 = u|u|−1u|u|−2 . . . u0, (14)

v|u|v|u|+1 . . . v|v|−1 = u0u1 . . . u|v|−|u|−1, (15)

u0u1 . . . u2|u|−|v|−1 = u|v|−|u| . . . u|u|−1, (16)

u2|u|−|v| . . . u|u|−1 = v0 v1 . . . v|v|−|u|−1. (17)

From (14) and (17) we get that

u2|u|−|v| . . . u|u|−1 = u|u|−1u|u|−2 . . . u2|u|−|v|.

Once again we have a string of odd length that is equal
to its own reverse complement, a contradiction.

3) |v| = 2|u|: This time for z to form a reverse-complement
duplication we must have,

v0v1 . . . v|u|−1 = u|u|−1u|u|−2 . . . u0, (18)

v|u|v|u|+1 . . . v|v|−1 = u0u1 . . . u|u|−1, (19)

u0u1 . . . u|u|−1 = v0v1 . . . v|u|−1. (20)

Recall that |u| − |v| is odd, so since |v| is even in this
case, we have that |u| is odd. From (18) and (20) it
follows that u = uR, which is again a contradiction
since u has odd length.

4) 2|u| < |v|: For z to form a reverse-complement dupli-
cation we necessarily have,

v0v1 . . . v|u|−1 = u|u|−1u|u|−2 . . . u0, (21)

v|u|v|u|+1 . . . v2|u|−1 = u0u1 . . . u|u|−1, (22)

v2|u|v2|u|+1 . . . v|v|−1 = v0v1 . . . v|v|−2|u|−1, (23)

u0u1 . . . u|u|−1 = v|v|−2|u| . . . v|v|−|u|−1. (24)

By repeated applications of (23) we may reduce the
indices of v modulo 2|u|. Denote by I � {|v| − 2|u|,
|v| − 2|u| + 1, . . . , |v| − |u| − 1} the |u| consecutive
indices of v appearing on the right-hand side of (24).
They may be reduced modulo 2|u| to obtain I mod 2|u|.
We contend that the following intersection

J = (I mod 2|u|) ∩ {0, 1, . . . , |u| − 1}

is not empty. If this intersection were empty, then
necessarily I mod 2|u| = {|u|, |u + 1|, . . . , 2|u| − 1}.
But that would mean that

|v| − 2|u| ≡ |u| (mod 2|u|),

and therefore

|v| − |u| ≡ 0 (mod 2|u|),

which implies that |v| − |u| is even, a contradiction.
Denote

s � (|v| − 2|u|) mod 2|u|,
t � (|v| − |u|) mod 2|u|.

Thus, either J = {0, 1, . . . , t − 1} or J = {s, s +
1, . . . , |u| − 1}.
Assume the former case holds, i.e., J = {0, 1, . . . , t−1}.
Observe that

|J | = t ≡ |v| − |u| ≡ 1 (mod 2).

Then, using only the indices in J with (21) and (24) we
have

u|u|−t . . . u|u|−1 = v0 . . . vt−1 = u|u|−1 . . . u|u|−t.

We thus obtained a string of odd length that equals its
reverse complement, a contradiction.
If we assume the latter case holds, i.e., J = {s, s +
1, . . . , |u| − 1}, then

|J | = |u| − s ≡ |u| − |v| ≡ 1 (mod 2).

Then, using only the indices in J with (21) and (24) we
have

u0 . . . u|u|−s−1 = vs . . . v|u|−1 = u|u|−s−1 . . . u0.

Once again, we obtained a string of odd length that
equals its reverse complement, a contradiction.

After having considered all cases and reaching a contradic-
tion in all of them, we are forced to deduce that no x and
z factors, in distinct positions, are possible. That means that
there is a unique k-factor in w′ whose reverse-complement
duplication results in w.

Theorem 17: The code C from Construction A can correct
a single reverse-complement duplication of length k.

Proof: Assume that a codeword of C was transmitted,
and a single reverse-complement duplication of length k
occurred which resulted in w ∈ Σn+k. We then compute
β(w) ∈ Z

n+k
2 and use the decoding procedure of C′ on it.

This decoding procedure identifies at least one k-factor of
β(w) whose removal results in a codeword from C′. However,
by Lemma 16, this factor is unique. Hence, removing the
corresponding factor from w produces the correct transmitted
codeword.

Using Theorem 17, we may use known binary codes that
are capable of correcting a single burst insertion of odd
length k, as the component code C′ in Construction A. The
resulting q-ary codes are capable of correcting a single reverse-
complement duplication of length k. For example, taking C′

to be the binary VT code [22], [38], we can construct a
q-ary (n, M, 1)rc1 code with redundancy log2 n + o(1) for any
even q. This is better than using the q-ary VT code [37] with
redundancy log2 n + log2 q + o(1). For odd k � 3 we can
use the binary burst-insertion-correcting code of [29] to create
a q-ary (n, M, 1)rc1 code for any even q, with redundancy at
most log2 n + (k − 1) log2 log2 n + k − log2 k, which does
not depend on q. If we are willing to increase the redundancy
slightly, while gaining some flexibility with the duplication
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length, we can use the codes of [4] as the basis for our
construction. These binary codes of length n, can correct
any deletions or insertions that are confined to a range of K
positions, with redundancy log n+O(K log2(K log n)). Thus,
as long as the actual duplication length, k, is odd and does
not exceed K , we will be able to correctly decode. We also
mention that the encoding complexity of our code construction
is exactly that of the underlying binary code. Hence, if for
example we use the binary code of [4], we can encode in
time O(n · poly(K log n)).

By using Lemma 16 and a standard ball-packing argument,
we can also prove a simple lower bound on the redundancy.

Theorem 18: Let C be an (n, M, 1)rck , k odd, over an
alphabet Σ of size q. Then,

M � qn+k

n − k + 1
,

namely, the code has redundancy at least log2(n − k + 1) −
k log2 q.

Proof: By Lemma 16, from each codeword c ∈ C there
are exactly n−k+1 distinct reverse-complement duplications,
namely |D1(c)| = n − k + 1. By the definition of a code,
if c′ ∈ C, c′ �= c, then D1(c) ∩ D1(c′) = ∅. Since all the
mutated strings are of length n + k, by simple ball packing
we obtain |C| = M � qn+k/(n − k + 1), as well as the
claimed redundancy bound.

As we can see, the bound on the code redundancy from
Theorem 18 is lower than the redundancy we can currently
obtain using our construction. However, the main gap is due to
the gap between the redundancy of the binary burst-insertion-
correcting code, and the lower bound on the redundancy of
such codes [23].

To conclude this section, we would like to point out a pecu-
liarity of codes that correct reverse-complement duplications.
It is well known that codes that correct insertions can also
correct the same amount of deletions, even when burst inser-
tions/deletions are concerned (e.g., see [22], [29]). If insertion-
correcting codes correspond to duplication-correcting codes,
then deletion-correcting codes correspond to deduplication-
correcting codes, which we now define.

Definition 19: An (n, M, t)rck reverse-complement-
deduplication code is a set C ⊆ Σn of size |C| = M , such
that for every c1 �= c2 ∈ C, At(c1) ∩ At(c2) = ∅, all with
respect to the reverse-complement string-duplication system,
with duplication length k.

Hence, deduplication-correcting codes have non-intersecting
t-ancestors, whereas duplication-correcting codes have
non-intersecting t-descendants.

The peculiarity we would like to point out is that
duplication-correcting codes are not necessarily deduplication-
correcting codes, and vice versa. The following counter exam-
ples show this.

Example 20: Consider the following code,

C = {00110, 00011} ⊆ Z
5
2.

This is a (5, 2, 1)rc2 duplication-correcting code since,

D1(00110) = {0011110, 0010110, 0011000, 0011010} ,

D1(00011) = {0011011, 0001111, 0001011, 0001100} ,

hence, D1(00110) ∩ D1(00011) = ∅. However, C is not a
(5, 2, 1)rc2 deduplication-correcting code since

000 ∈ A1(00110) ∩ A1(00011).
Example 21: Consider the following code,

C = {1100, 1111} ⊆ Z
4
2.

This is a (4, 2, 1)rc2 deduplication-correcting code since,

A1(1100) = {11},
A1(1111) = ∅,

hence, A1(00110) ∩ A1(00011) = ∅. Observe that
A1(1111) = ∅ since 1111 is irreducible. We now also note
that C is not a (4, 2, 1)rc2 duplication-correcting code since

110011 ∈ D1(00110) ∩ D1(00011).

VI. CONCLUSION

In this paper, we studied the reverse-complement string-
duplication system. When viewed as a generative system,
we fully classified the cases in which Src

k (s) has full expres-
siveness. Interestingly, these differ depending on whether k is
even or odd, and with k = 1 being a special case altogether.
We then focused on the binary case with k = 2 and a seed
string 00. We proved that the capacity in this case is full,
i.e., cap(Src

2 (00)) = 1, but the entropy rate vanishes, i.e.,
h(Src

2 (00)) = 0. We switched gears to look at the duplications
as a noise source, and constructed q-ary codes that correct
a single reverse-complement duplication from binary burst-
insertion-correcting codes. The construction works for odd
duplication lengths, and produces codes whose redundancy
(in bits) does not depend on the alphabet size.

We find the fact that h(Src
2 (00)) = 0 particularly surprising.

When looking at previously known results [10], we have
cap(Src

1 (0)) = 1 and 0.8689 � h(Src
1 (0)) � 0.9067.

In stark contrast, when the duplication length is increased
from k = 1 to k = 2 we still have cap(Src

2 (00)) = 1, but
h(Src

2 (00)) = 0. To the best of our knowledge, this is the
first case of a duplication system that is fully expressive, with
full capacity, but vanishing entropy rate. Why that is the case
when k = 2, and whether it remains so for larger values of k,
is still unknown. Additionally, from Figure 2 it appears as if
the convergence to the limit is quite slow.

Many open questions remain, and we mention a few. First,
we observe that our proof that the binary Src

2 (00) has full
capacity is tailored to this case, and relies on the classification
of irreducible strings. The use of irreducible strings to prove
full capacity is new, and we suspect that the same approach
may work for any alphabet size, and any duplication length.
However, the classification of irreducible strings in each case
becomes increasingly complex. It would be interesting to
find a more general approach to the problem of determining
cap(Src

k (s)) over any alphabet. A similar open question per-
tains to the problem of finding the entropy rate h(Src

k (s)) for
general alphabets. The stochastic approximation method we
used calls for a decision on what factors to follow. It is still
unknown how to generalize this to cases other than Src

2 (00).
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Finally, the construction for duplication-correcting codes
that we provided only works for odd duplication lengths.
It is interesting to find a construction for even k, and to
find out whether it offers the same savings in redundancy
compared with burst-insertion-correcting codes. In addition,
the construction only works for a single duplication, which
parallels the fact that only single-burst-insertion-correcting
codes are known. These problems, and others, are left for
future work.
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