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Perfect Codes Correcting a Single Burst
of Limited-Magnitude Errors
Hengjia Wei and Moshe Schwartz , Senior Member, IEEE

Abstract— Motivated by applications to DNA-storage,
flash memory, and magnetic recording, we study perfect
burst-correcting codes for the limited-magnitude error channel.
These codes are lattices that tile the integer grid with the
appropriate error ball. We construct two classes of such perfect
codes correcting a single burst of length 2, where each error
affects the corresponding position by increasing it by one, both
for cyclic and non-cyclic bursts. We also present a generic
construction that requires a primitive element in a finite field
with specific properties. We then show that in various parameter
regimes such primitive elements exist, and hence, infinitely
many perfect burst-correcting codes exist.

Index Terms— Integer coding, perfect codes, burst-correcting
codes, lattices, limited-magnitude errors.

I. INTRODUCTION

IN MANY communication or storage systems, errors tend to
occur in close proximity to each other, rather than occurring

independently of each other. If the errors are confined to an
interval of positions of length b, they are referred to as a burst
of length b. Note that not all the positions in the interval are
necessarily erroneous. A code that can correct any single burst
of length b is called a b-burst-correcting code.

The design of burst-correcting codes has been researched
in the error models of substitutions, deletions and insertions.
Concerning the substitutions, Abdel-Ghaffar et al. [1], [2]
showed the existence of optimum cyclic b-burst-correcting
codes for any fixed b, and Etzion [11] gave a construction for
perfect binary 2-burst-correcting codes. As for deletions and
insertions, it has been shown in [21] that correcting a single
burst of deletions is equivalent to correcting a single burst of
insertions. Codes correcting a burst of exactly b consecutive
deletions, or a burst of up to b consecutive deletions, were
presented in [18] and [21], with the redundancy being of
optimal asymptotic order. The b-burst-correcting codes per-
taining to deletions were treated in [3], called codes correcting
localized deletions therein, and a class of such codes of
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asymptotically optimal redundancy was proposed. Similarly,
permutation codes correcting a single burst of b consecutive
deletions were studied in [9].

This paper focuses on the model of limited-magnitude
errors, which could be found in several applications, includ-
ing high-density magnetic recording channels [17], [19],
flash memories [8], and some DNA-based storage systems
[15], [29]. In all of these applications, information is encoded
as a vector of integers x ∈ Zn. A (k+, k−)-limited-magnitude
error affects a position by increasing it by as much as k+

or decreasing it by as much as k−. The design of codes
combating random limited-magnitude errors has been exten-
sively researched, see e.g., [5], [6], [12], [14], [16], [23], [25],
[26], [27], [29], [30], [31], [32], [33], and [34]. However, the
applications which exhibit limited-magnitude errors are prone
to errors occurring in a burst. The coding schemes for magnetic
recording channels [17], [19], and the DNA-based storage
system of [15], all employ a constrained code as part of the
system. Decoders for constrained codes are usually finite state
machines, and an error in their decoding process causes a burst
of errors in their output (e.g., see [20, Section 5.5]). Similarly,
flash memories suffer from inter-cell interference [10], leading
again to bursts of errors. To the extent of our knowledge, there
is no research in the literature on codes correcting a single
burst of limited-magnitude errors. We therefore focus in this
paper on such codes, and in particular, perfect codes.

Following the research on bursts of substitutions, e.g., [1],
[2], and [11], we distinguish between cyclic bursts and non-
cyclic bursts, of limited-magnitude errors. In the examples
mentioned here, [1], [2] study cyclic bursts, whereas [11]
studies non-cyclic bursts. We follow suit, and study both types
of bursts. Let Zn = {0, 1, . . . , n − 1} be the set of integers
mod n. If a word x ∈ Zn suffers a cyclic burst of length b,
then we can write the corrupted vector as x + e for some e
in the error ball

E◦(n, b, k+, k−) �
{(e0, e1, . . . , en−1) ∈ [−k−, k+]n | there is an i ∈ Zn s.t.

e� = 0 for all � ∈ Zn \ {i, i+ 1, . . . , i+ b− 1}}. (1)

If x suffers a non-cyclic burst of length b, then the corrupted
vector is x + e for some e in the error ball

E(n, b, k+, k−) �
{e = (e1, e2, . . . , en) ∈ [−k−, k+]n | there is an i ∈ [1, n]
s.t. e� = 0 for all � ∈ [1, n] \ [i,min{n, i+ b− 1}]}. (2)
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TABLE I

SUMMARY OF PERFECT-CODE CONSTRUCTIONS (q IS A PRIME POWER)

Note that in the cyclic case we use Zn to label the coordinates
and the addition is done in Zn (i.e., modulo n), while in the
non-cyclic case we use the set [1, n] to label the coordinates
and the addition is operated in Z.

The subject of interest for this paper is perfect codes
correcting a single burst of limited-magnitude errors. Our main
contributions are:

1) For each n � 2, we construct a perfect code of length n
which can correct a non-cyclic 2-burst of (1, 0)-limited-
magnitude errors.

2) For each n ≡ 1 (mod 3), we construct a perfect
code of length n which can correct a cyclic 2-burst of
(1, 0)-limited-magnitude errors.

3) We present a generic construction based on finite fields
for cyclic codes correcting a cyclic b-burst of (k+, k−)-
limited-magnitude errors. This construction requires,
as input, a primitive element that satisfies some con-
ditions, and our goal is to show that such a primi-
tive element indeed exists. Combining this construction
and the approach in [2], we show the existence of a
class of perfect cyclic b-burst-correcting codes for each
(b, k+, k−) ∈ {(2, 1, 0), (2, 1, 1), (3, 1, 0), (3, 1, 1)}.

The parameters of the code constructions are summarized in
Table I. We have the following two comments on our results.

1) In this paper, we choose Zn as the space of transmit-
ted/stored messages, and the codes presented in this
paper are lattice codes, i.e., additive subgroups of Zn.
Although this makes the analysis simpler, in practice we
need codes over a finite alphabet, i.e., {0, 1, . . . , q − 1}.
To this end, let Λ ⊆ Zn be a lattice code, we can
take Cv = (Λ + v) ∩ {0, 1, . . . , q − 1} for an arbitrary
vector v ∈ Zn. If Λ can correct a burst of limited-
magnitude errors, then the q-ary code Cv can correct
the same kind of errors. Furthermore, if Λ is a per-
fect code, then according to the pigeonhole principle,
there is a vector v ∈ Zn such that Cv has size at
least qn/ |E(n, b, k+, k−)| or qn/ |E◦(n, b, k+, k−)|. For
a detailed discussion on practical applications of lattice
codes, the reader is referred to [22, Section II.B].

2) All the codes presented in this paper have the para-
meter k+ = 1. For k+ � 2, finding a perfect
lattice becomes more difficult. Discussions and some

computer search results for k+ � 2 are presented in
Section V. We note that in practice one could use
q-ary substitution-correcting codes to combat limited-
magnitude errors. If k+ + k− + 1 is close to q, the
size of the error ball pertaining to limited-magnitude
errors is close to that of the ball pertaining to substitu-
tions, and so, using substitution-correcting codes would
not increase the redundancy significantly. Therefore,
the limited-magnitude errors are usually studied in the
region where k+ + k− is small.

The paper is organized as follows. We begin, in Section II,
by providing notation and basic known results used throughout
the paper. Section III is devoted to the constructions of
perfect codes correcting a 2-burst of (1, 0)-limited-magnitude
errors. Both non-cyclic bursts and cyclic bursts are consid-
ered. Section IV presents the generic construction for codes
correcting a single cyclic b-burst, and uses it to treat the
cases of (b, k+, k−) ∈ {(2, 1, 0), (2, 1, 1), (3, 1, 0), (3, 1, 1)}.
In Section V we summarize the results, and comment on
extensions and open questions.

II. PRELIMINARIES

For integers a � b we define [a, b] � {a, a+ 1, . . . , b}.
For a sequence s, we use s[i, j] to denote the subsequence
of s which starts at the position i and ends at the position j.
We use Zm to denote the cyclic group of integers with addition
modulo m, and Fq to denote the finite field of size q.

We say B ⊆ Zn packs Zn by T ⊆ Zn, if the translates of B
by elements from T do not intersect, namely, for all v,v� ∈ T ,
v �= v�,

(v + B) ∩ (v� + B) = ∅.

We say B covers Zn by T if⋃
v∈T

(v + B) = Zn.

If B both packs and covers Zn by T , then we say that B
tiles Zn by T , or we say that T is a tiling of Zn with B.
It now follows that a perfect code capable of correcting a
cyclic burst in our setting is equivalent to a tiling of Zn with
E◦(n, b, k+, k−) defined in (1), and a perfect code capable of
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correcting a non-cyclic burst in our setting is equivalent to a
tiling of Zn with E(n, b, k+, k−) defined in (2).

A code Λ ⊆ Zn is called a lattice code if it is an additive
subgroup of Zn. Similarly, a tiling T of Zn with B is called a
lattice tiling if T is an additive subgroup of Zn. Throughout
the paper, we shall only consider lattice codes, since these
are easier to analyze, construct, and encode, than non-lattice
codes.

The following result provides a way to convert a code over
Fp which can correct a burst of substitutions to a lattice code
which can correct a burst of limited-magnitude errors.

Theorem 1: Let p be a prime. Let C ⊆ Fn
p be a linear code

which can correct a cyclic/non-cyclic burst of b substitutions.
If k+ + k− + 1 = p, then

Λ � {x ∈ Zn | (x mod p) ∈ C}
is a lattice code which can correct a cyclic/non-cyclic burst
of b (k+, k−)-limited-magnitude errors. Furthermore, if C is
perfect, then Λ is perfect.

Proof: According to its definition, Λ is closed under
addition and under multiplication by integers. Thus, Λ is a
lattice.

Denote B � E(n, b, k+, k−) (or E◦(n, b, k+, k−) for the
cyclic case). We now prove B packs Zn by Λ. Assume that
v + e = v� + e�, for some v,v� ∈ Λ and e, e� ∈ B. Then
e − e� = v� − v ∈ Λ. By the definition of Λ, we have e�� �
((e−e�) mod p) ∈ C. We note that e has nonzero entries only
in an interval of length b, and so does e�. Since e�� + e� ≡
0 + e (mod p) and C can correct a burst of b substitutions,
necessarily ((e − e�) mod p) = e�� = 0. Since every entry
of e − e� is in the range [−(k+ + k−), k+ + k−], and since
k+ + k− + 1 = p, we have that e − e� = 0, which in turn
implies v = v�. It follows that B packs Zn by Λ.

To show tiling, let x ∈ Zn be any integer vector. Then
x� � (x mod p) ∈ Fn

p . Since C is a perfect code, there exists
v� ∈ C and e� ∈ Fn

p , where the support set of e� is contained
in an interval of length b, such that x� = v� + e�. Since k+ +
k− +1 = p, there exists e ∈ B such that (e mod p) = e�. But
then x − e ≡ v� mod p and by definition x − e ∈ Λ. Hence,
B covers Zn by Λ. Combing the arguments above, we have
that Λ is a tiling of Zn with B if C is perfect.

To the best of our knowledge, the only known perfect
burst-correcting codes with respect to substitutions are the
ones proposed in [11], which have block length n that is
a power of 2, and can correct a non-cyclic burst of two
substitutions. Thus, using Theorem 1 we can obtain a class
of perfect lattice which can correct a non-cyclic burst of
two (1, 0)-limited-magnitude errors. In this paper, we shall
construct more perfect burst-correcting codes for limited-
magnitude errors.

A. Group Splitting

Perfect lattice codes that correct a single (k+, k−)-limited-
magnitude error are equivalent to lattice tilings of Zn with
E(n, 1, k+, k−). Some papers consider an equivalent tiling of
Rn instead of Zn as follows: The unit cube is defined as Qn �
[0, 1)n ⊆ Rn. For each point of E(n, 1, k+, k−), we place a

unit cube, Qn, centered at it. Then the union of these unit
cubes is called a cross when k+ = k−, a semi-cross when
k− = 0, and a quasi-cross when k+ � k− � 0. The study of
lattice tilings of Rn with these shapes can be traced back to
1960’s (e.g., see [24]), and is usually connected with group
splitting (e.g., [12], [14], [22], [23], and [25]). For an excellent
treatment and history, the reader is referred to [27] and the
many references therein. More recent results may be found
in [31] and the references therein.

To construct codes that correct multiple errors, the notion
of group splitting was generalized in [6]. Lattice tilings
of chairs, or equivalently perfect lattice codes that correct
n− 1 random (k+, 0)-limited-magnitude errors, were con-
structed there. Additionally, several non-existence results for
perfect codes that correct multiple random errors can be found
in [6] and [28]. In this paper, we shall study lattice codes that
correct a single burst of limited-magnitude errors by using the
concept of (generalized) group splitting.

Let G be a finite Abelian group, where + denotes the group
operation. For m ∈ Z and g ∈ G, let mg = g+g+· · ·+g (with
m copies of g) if m � 0 and mg = (−m)(−g) if m < 0.
For a sequence m = (m1,m2, . . . ,mn) ∈ Zn and a sequence
s = (s1, s2, . . . , sn) ∈ Gn, we denote

m · s �
n∑

i=1

misi.

Definition 2: A set A ⊂ Zn splits an Abelian group G
with a splitting sequence s = (s1, s2, . . . , sn) ∈ Gn if the
set {a · s | a ∈ A} contains |A| distinct elements of G. This
operation is called a (generalized) splitting.

The following theorem shows the connection between a
lattice tiling and a group splitting.

Theorem 3 (Corollary 1 in [6]): Let A ⊂ Zn be a finite
subset. A lattice tiling of Zn with A exists if and only if there
exists an Abelian group G of order |A| such that A splits G.

In our context of b-burst-correcting codes with respect to
(k+, k−)-limited-magnitude errors, we need to take A =
E(n, b, k+, k−) or A = E◦(n, b, k+, k−), and the code con-
struction problem becomes that of finding an Abelian group
G of order |A| and a vector s ∈ Gn such that A splits G
with s.

Splittings with E(n, b, k+, k−) can also be used to charac-
terize codes that correct a single burst of substitutions. Let p
be a prime and let k+ and k− be non-negative integers such
that k+ + k− + 1 = p. Let C be an [n, n − r]p-linear code
with parity-check matrix H . We treat the columns of H as
elements of Fr

p and denote them as h1, h2, . . . , hn. Then C is
a perfect b-burst-correcting code with respect to substitutions
if and only if pr = |E(n, b, k+, k−)| and the additive group
Fr

p can be split by E(n, b, k+, k−) with the sequence h =
(h1, h2, . . . , hn). Binary perfect 2-burst-correcting codes per-
taining to substitutions were studied in [11] and a construction
for their parity-check matrices was presented. The existence
result of such codes could be stated as follows in the language
of splittings.

Theorem 4 [11]: For each r � 5, there exists a splitting
of Fr

2 by E(2r−1, 2, 1, 0).
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In the following two sections we are going to present
some other constructions of splittings by E(n, b, k+, k−) or
E◦(n, b, k+, k−). Then according to Theorem 3, the corre-
sponding lattice tilings are obtained.

III. PERFECT 2-BURST-CORRECTING CODES FOR

(1, 0)-LIMITED-MAGNITUDE ERRORS

In this section, we present a class of constructions for
2-burst-correcting codes with (1, 0)-limited-magnitude errors,
both for cyclic bursts as well as for non-cyclic bursts. Our
constructions are based on splitting the cyclic group Zg , where
g = 2n for the non-cyclic burst and g = 2n+ 1 for the cyclic
burst. Using these constructions, together with Theorem 3,
we show that Zn can be lattice tiled by E(n, 2, 1, 0) for all
n � 2, and that Zn can be lattice tiled by E◦(n, t, 1, 0) for all
n ≡ 1 (mod 3).

The basic idea behind these constructions comes from
design theory: we start with a short sequence (a1, a2, . . . , as)
that satisfies a certain property, and develop it by adding a
series of numbers (0, b, 2b, . . . , tb) to each element ai. In this
way, we obtain a long sequence

(a1, a2, . . . , as, a1 + b, a2 + b, . . . , as + b, . . . ,
a1 + tb, a2 + tb, . . . , ai0 + tb)

for some 1 � i0 � s, which is usually the desired splitting
sequence. We note that {0, b, 2b, . . . , tb} need not form a
subgroup of Zg .

Since the operation described above repeats throughout our
construction, we introduce the following succinct notation. Let
a = (a1, a2, . . . , an) ∈ Zn

g and b = (b1, b2, . . . , bm) ∈ Zm
g be

two vectors, not necessarily of the same length. We define

a � b � 1m ⊗ a + b⊗ 1n

= (a1 + b1, a2 + b1, . . . , an + b1, a1 + b2, a2 + b2, . . . ,

an + b2, . . . , a1 + bm, a2 + bm, . . . , an + bm),
where ⊗ denotes the Kronecker product, and 1� denotes a
row vector of all ones with length �. If we wish to keep only
the first � entries of a � b we shall use the notation we have
already defined, (a � b)[1, �].

We first give our constructions in the case of non-cyclic
bursts. In this case, we have |E(n, 2, 1, 0)| = 2n, and we are
going to split the group Z2n by E(n, 2, 1, 0).

Theorem 5: Let n � 2. Then Zn can be lattice tiled by
E(n, 2, 1, 0). Namely, there exists a perfect lattice code in Zn

which can correct a single non-cyclic 2-burst of (1, 0)-limited-
magnitude errors.

Proof: The proof proceeds by considering the following
three cases.

Case 1: Assume n = 2m + 1 where m � 1 is an integer.
Working in the group G = Z4m+2, let us define

s � (1, 3, 5, . . . , 4m− 1, 4m+ 1).
Note that

{s[i] | 1 � i � n} = {1, 3, 5, . . . , 4m+ 1}
and

{s[i] + s[i+ 1] | 1 � i � n− 1} = {2, 4, 6, . . . , 4m}.
Thus, G is split by E(n, 2, 1, 0) with s.

Case 2: Assume n = 2m where m � 1 is even. This time
we work in G = Z4m, and we define

s � (m+ 1, 3m+ 1) � (0, 2, 4, . . . , 2(m− 1))
= (m+ 1, 3m+ 1,m+ 3, 3m+ 3, . . . ,m+ 1 + 2(m− 1)
= 3m− 1, 3m+ 1 + 2(m− 1) = m− 1).

Then

{s[i] | 1 � i � n}
= {m+ 1,m+ 3, . . . , 3m− 1, 3m+ 1, 3m+ 3, . . . ,m− 1}
= {1, 3, 5, . . . , 4m− 1}

and

{s[i] + s[i+ 1] | 1 � i � n− 1} = {2, 4, 6, . . . , 4m− 2}.
It follows that G is split by E(n, 2, 1, 0) with s.

Case 3: Assume n = 2m where m � 1 is odd. We again
work in G = Z4m, but this time the splitting is more involved.
For m = 1, it is easily seen that Z4 is split by E(2, 2, 1, 0)
with the splitting sequence (1, 2). For m � 3, consider the
following sequences

s1 � (1, 3, 5, . . . , 2m− 3),

s2 � (2m+ 1, 2m+ 5, 2m+ 9, . . . , 4m− 1),

s3 � (4m− 3, 4m− 7, 4m− 11, . . . , 2m− 1).

Denote

s � s1s2s3.

Then s has length n = 2m and

{s[i] | 1 � i � 2m} = {1, 3, 5, . . . , 4m− 1}.
We have that

{s1[i] + s1[i+ 1] | 1 � i � m− 2}
= {4, 8, 12, . . . , 4m− 8},
{s2[i] + s2[i+ 1] | 1 � i � m− 1

2
}

= {6, 14, 22, . . . , 4m− 6},
{s3[i] + s3[i+ 1] | 1 � i � m− 1

2
}

= {2, 10, 18, . . . , 4m− 10}.
Additionally,

s1[m− 1] + s2[1] = 2m− 3 + 2m+ 1 = 4m− 2

s2

[
m+ 1

2

]
+ s3[1] = 4m− 1 + 4m− 3 = 4m− 4.

So,

{s[i] + s[i+ 1] | 1 � i � 2m− 1} = {2, 4, . . . , 4m− 2}.
Thus, G is split by E(n, 2, 1, 0) with s.

We now move to the case of cyclic bursts. In this case,
we have |E◦(n, 2, 1, 0)| = 2n + 1, and so we consider the
group Z2n+1.

Theorem 6: Let n � 4 be a positive integer such that
n ≡ 1 (mod 3). Then Zn can be lattice tiled by E◦(n, 2, 1, 0).
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Namely, there exists a perfect lattice code in Zn which can
correct a single cyclic 2-burst of (1, 0)-limited-magnitude
errors.

Proof: We divide our proof depending on the residue n
leaves modulo 6.

Case 1: Assume that n = 6m + 1, m � 1. We work in
the group G = Z12m+3 and show that it can be split by
E◦(n, 2, 1, 0). Let

a = 3m+ 1, b = 3m+ 2, c = 6m+ 2,
d = 6m+ 4, e = 2, f = 9m+ 5,

and define

s � ((a, b, c, d, e, f) � (0, 3, 6, . . . , 3m))[1, n]
= (a, b, . . . , f, a+ 3, b+ 3, . . . , f + 3, . . . , a+ 3(m− 1),
b+ 3(m− 1), . . . , f + 3(m− 1), a+ 3m).

We now observe that

{a+ 3i | 0 � i � m}∪
(

m−1⋃
i=0

{d+ 3i, b+ c+ 6i, e+ f + 6i}
)

= {1, 4, 7, . . . , 12m+ 1},(
m−1⋃
i=0

{b+ 3i, c+ 3i, e+ 3i, f + 3i}
)
∪ {2a+ 3m}

= {2, 5, 8, . . . , 12m+ 2},
m−1⋃
i=0

{a+ b+ 6i, c+ d+ 6i, d+ e+ 6i, f + a+ 3 + 6i}

= {3, 6, 9, . . . , 12m}.
Hence, G is split by E◦(n, 2, 1, 0) with s.

Case 2: Assume that n = 6m+4. We now work in the group
G = Z12m+9 and show that it can be split by E◦(n, 2, 1, 0).
For m = 0, it is easily seen that Z9 is split by E◦(4, 2, 1, 0)
with the splitting sequence (1, 3, 2, 6). For m � 1, let

a = 1, b = 9m+ 10, c = 3m+ 2,
d = 3m+ 7, e = 6m+ 7, f = 6m+ 8,

and define

s1 � (a, b, c, d, e, f) � (0, 3, 6, . . . , 3(m− 1))
= (a, b, . . . , f, a+ 3, b+ 3, . . . , f + 3, . . . , a+ 3(m− 1),
b+ 3(m− 1), . . . , f + 3(m− 1)),

s2 � (6m+ 5, 12m+ 6, 6m+ 6, 9m+ 7).

Define s to be the concatenation of s1 and s2, i.e.,

s � s1s2.

Note that
m−1⋃
i=0

{a+ 3i, b+ 3i, d+ 3i, e+ 3i}

= {1, 4, 7, . . . , 12m+ 7} \ {3m+ 1, 3m+ 4, 9m+ 7},
m−1⋃
i=0

{c+ 3i, f + 3i, a+ b+ 6i, d+ e+ 6i}

= {2, 5, 8, . . . , 12m+ 8} \ {6m+ 2, 6m+ 5, 9m+ 8},

and (
m−1⋃
i=0

{b+ c+ 6i, c+ d+ 6i, e+ f + 6i}
)

⋃
{f + a+ 3 + 6i | 0 � i � m− 2}

= {3, 6, 9, . . . , 12m+ 3} \ {6m+ 3, 6m+ 6}.
Furthermore, we have

{s2[i] | 1 � i � 4} = {6m+ 5, 12m+ 6, 6m+ 6, 9m+ 7}
and

{f + 3(m− 1) + s2[1], s2[1] + s2[2], s2[2] + s2[3],
s2[3] + s2[4], s2[4] + a}

= {3m+ 1, 6m+ 2, 6m+ 3, 3m+ 4, 9m+ 8}.
Hence, G is split by E◦(n, 2, 1, 0) with s.

IV. PERFECT � 3-CYCLIC-BURST-CORRECTING CODES

FOR (1, 1) AND (1, 0)-LIMITED-MAGNITUDE ERRORS

In this section, we present a construction for the splitting of
the additive group of Fq by E◦(n, t, k+, k−). Thus, throughout
this section, we let G be the additive group of Fq. This is in
contrast with the previous section, where we split only cyclic
groups. Denote

e � (k+ + k−)(k+ + k− + 1)b−1. (3)

Let q be a prime power such that e|q − 1, and denote

n � (q − 1)/e. (4)

Then

|E◦(n, b, k+, k−)| = en+ 1 = q. (5)

Let α ∈ F∗
q be a primitive element. For any z ∈ F∗

q , we use
logα(z) to denote the unique integer a ∈ [0, q − 2] such that
z = αa.

The splitting sequence we shall use most in this section is
defined as

sα � (α0, αe, α2e, . . . , α(n−1)e).

We also define

Fk+,k−
b � {(1, xe, . . . , x(b−1)e) · c | c = (c0, c1, . . . , cb−1) ∈

[−k−, k+]b and c0 �= 0}. (6)

Hence, Fk+,k−
b is a set containing e distinct polynomials. The

following proposition provides sufficient conditions on α such
that the group G can be split by E◦(n, b, k+, k−) with sα.

Proposition 7: Assume the setting above, and n � 2b− 1.
Let α be a primitive element of F∗

q , and assume f(α) �= 0 for

all f(x) ∈ Fk+,k−
b . If

{logα(f(α)) mod e | f(x) ∈ Fk+,k−
b } = {0, 1, 2, . . . , e− 1},

(7)

then E◦(n, b, k+, k−) splits G (the additive group of Fq) with
the splitting sequence sα.
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Proof: For each vector c = (c0, c1, . . . , cb−1) ∈
[−k−, k+]b, let

E◦
c � {e = (e0, e1, . . . , en−1) ∈ E◦(n, b, k+, k−) | there is

an integer i such that e[i, i+ b− 1] = c},
where the indices of e are taken cyclically, i.e., modulo n.
Since n � 2b − 1, it follows that E◦(n, b, k+, k−) \ {0}
can be partitioned into E◦

c ’s, where c = (c0, c1, . . . , cb−1) ∈
[−k−, k+]b and c0 �= 0.

Note that αen = αq−1 = 1. For each � ∈ [0, n−1], sα[�, �+
b − 1] = (α�e, α(�+1)e, . . . , α(�+b−1)e), where the indices of
sα are modulo n. Hence,

{e · sα | e ∈ E◦
c }

= {c · sα[�, �+ b− 1] | � ∈ [0, n− 1]}
= {αe�(c0 + c1α

e + · · · + cb−1α
(b−1)e) | � ∈ [0, n− 1]}

= {αe�+a | � ∈ [0, n− 1]},
where a = logα(c0 + c1α

e + c2α
2e + · · · + cb−1α

(b−1)e).
Since (7) holds, the collection of sets of the form

{e · sα; e ∈ E◦
c }, where c ∈ [−k−, k+]b with c0 �= 0, are

exactly the e cosets of the multiplicative subgroup 
αe� in
F∗

q . It then follows that

{e · sα | e ∈ E◦(n, b, k+, k−)}

= {0} ∪

⎛
⎜⎜⎝ ⋃

c∈[−k−,k+]b

c0 �=0

{e · sα; e ∈ E◦
c }

⎞
⎟⎟⎠ = Fq.

Hence, in conjunction with (5), E◦(n, b, k+, k−) splits G
with sα.

If we find an α satisfying condition (7), then, according to
Theorem 3, the splitting in Proposition 7 yields a lattice tiling
of Zn by E◦(n, b, k+, k−), or equivalently, a perfect lattice
code which can correct a cyclic b-burst of (k+, k−)-limited-
magnitude errors. Furthermore, noting that (x0, x1, . . . , xn−1)·
sα = 0 implies that (xn−1, x0, . . . , xn−2) · sα = αe ·
((x0, x1, . . . , xn−1) · sα) = 0, the code itself is cyclic.

Let us start examining specific values of the code parame-
ters. When b = 2 and (k+, k−) = (1, 0), we have e = 2 and
q = en + 1 is odd. As we shall soon observe and use, the
sufficient condition (7) is reduced to that of 1 + α2 being a
quadratic non-residue in Fq . Since any primitive element of
Fq, q � 3, is always a quadratic non-residue, the following
result can be used for our construction.

Lemma 8 ( [4, Theorem 1]): Let q be an odd prime power
which does not belong to the following set:

E � {3, 5, 7, 9, 11, 13, 19, 23, 25, 29, 31, 37, 41, 43, 49, 61, 67,
71, 73, 79, 121, 127, 151, 211}. (8)

Then there is a primitive element α ∈ Fq such that 1 + α2 is
also a primitive element of Fq.

Theorem 9: Let q � 7 be an odd prime power, and let
n = (q−1)/2. Then there is a perfect lattice code of Zn which
can correct a single cyclic 2-burst of (1, 0)-limited-magnitude
errors.

Proof: For q = 7, let G = Z7 and s = (1, 2, 4). Then
|G| = |E◦(3, 2, 1, 0)| and G is split by E◦(3, 2, 1, 0) with s.
According to Theorem 3, there is a lattice tiling of Z3 by
E◦(3, 2, 1, 0). Since n = 3, any two errors can be treated as
a cyclic burst of length 2. So, this specific case is a perfect
tiling with a chair [6].

For q � 9, let G be the additive group of Fq . With the
parameters in the hypothesis of this theorem, we have

F1,0
2 = {1, 1 + x2}.

We would like to use Proposition 7 to construct the splitting.
With regard to (7), since logα(1) = 0, we need logα(1 +
α2) ≡ 1 (mod 2). We contend that it suffices to require that
1 + α2 is a quadratic non-residue. In this case, assume to
the contrary that logα(1 + α2) ≡ 0 (mod 2), since q − 1 is
even, logα(1 + α2) ≡ 2m (mod q − 1) for some integer m.
Then 1 + α2 = α2m = (αm)2, which is a quadratic residue,
a contradiction.

If q �∈ E of (8), then Lemma 8 shows that there is a
primitive α such that 1 + α2 is also primitive, and hence,
1 + α2 is a quadratic non-residue. If q ∈ E and q � 9,
a computer search shows that there is a primitive element
α ∈ Fq with 1 + α2 being a quadratic non-residue. Accord-
ing to Proposition 7, E◦(n, 2, 1, 0) splits G with sα. The
conclusion then follows from Theorem 3 and the fact that
|G| = |E◦(n, 2, 1, 0)|.

We note that both Theorem 6 and Theorem 9 concern
the tiling of the ball E◦(n, 2, 1, 0), but in different regimes.
In Theorem 9 the size |E◦(n, 2, 1, 0)| is q, a prime power,
while in Theorem 6 the size |E◦(n, 2, 1, 0)| is divisible by 3.

For the other cases, we adapt the approach in [2] to show
the existence of α which satisfies condition (7). Recall that
a multiplicative character of F∗

q is a group homomorphism
χ : F∗

q → C, where for all β, γ ∈ F∗
q we have χ(βγ) =

χ(β)χ(γ). For example, χ(αi) = e2πi/(q−1), where α is a
primitive element of Fq, defines a multiplicative character of
F∗

q . We use χi(β) = (χ(β))i to avoid awkward parentheses,
hence the superscript i denotes taking the ith power of χ(β)
and not function composition. We say that χ has order i if
i is the minimal positive integer such that χi(β) = 1 for all
β ∈ F∗

q . Thus, the order of χ divides q − 1. Let χi denote
an arbitrary multiplicative character of order i. In particular,
χ1 is the function sending all the elements of F∗

q to 1. It is
convenient to extend the definition by letting χ(0) = 0 for
all characters. We also recall the definition of the Möbius
function, μ : N → {−1, 0, 1}. If n ∈ N is a natural number,
n =

∏s
i=1 p

mi

i , where mi ∈ N and the pi are distinct primes,
then

μ(n) =

{
0 mi � 2 for some i,

(−1)s otherwise.

The following sequence of lemmas will help us establish the
existence of perfect codes.

Lemma 10 ( [7, Lemma 4]): For all α ∈ F∗
q we define

ψ(α) �
∑

k|q−1

μ(k)
k

∑
χk=χ1

χ(α), (9)
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where μ is the Möbius function, and the inner summation runs
over all characters χ whose k-th power is the identity. Then

ψ(α) =

{
1 if α is primitive,

0 otherwise.

In the following we also use the convention that 00 = 0 to
simplify derivations.

Lemma 11: Let ψ be defined as in (9). Furthermore, let
F = {f1, f2, . . . , fM} ⊆ Fq[x] be a collection of polynomials
over Fq , and let h be an integer such that h|q − 1. For any
α ∈ F∗

q we define

Θ(α) � ψ(α)
M∏
i=1

h−1∑
j=0

χj
h(α−�ifi(α)), (10)

where �i ∈ Z for all i. Then

Θ(α) =

⎧⎪⎨
⎪⎩
hM if α is primitive and for all 1 � i � M,

fi(α) �= 0 and logα(fi(α)) ≡ �i mod h;
0 otherwise.

Proof: If α is not primitive, then by Lemma 10, ψ(α) = 0,
and therefore also Θ(α) = 0. If fi(α) = 0 for some i, then
again, Θ(α) = 0. We are therefore left with the case that α
is primitive, and fi(α) �= 0 for all i. Let γ ∈ F∗

q , and assume
logα(γ) = m. Then

χh(γ) = χh(αm) = χm
h (α).

Thus, χh(γ) = 1 if and only if m = logα(γ) ≡ 0 (mod h).
If indeed χh(γ) = 1, then

h−1∑
j=0

χj
h(γ) =

h−1∑
j=0

1 = h.

Otherwise, χh(γ) �= 1 and we have

h−1∑
j=0

χj
h(γ) =

χh
h(γ) − 1
χh(γ) − 1

= 0.

Using this observation we note that

h−1∑
j=0

χj
h(α−�ifi(α)) =

{
h if logα(fi(α)) ≡ �i mod h,

0 otherwise.

The conclusion now easily follows.
Since we are working with characters, we shall also need a

bound on character sums over F∗
q , which can be derived from

the Weil bound (see [2]).
Lemma 12 [2]: Let χ be a multiplicative character of order

m > 1, and let f ∈ Fq[x] be a polynomial that cannot be
written as c · (g(x))m with c ∈ Fq and g(x) ∈ Fq[x]. Let Nf

be the number of distinct roots of f in its splitting field. Then
for every a ∈ Fq we have∣∣∣∣∣∣

∑
x∈F∗

q

χ(af(x))

∣∣∣∣∣∣ � Nf
√
q.

For the next lemma we recall the definitions of
Euler’s function φ(n) and the divisor function d(n),

for all n ∈ N,

φ(n) � |{1 � i � n | gcd(i, n) = 1}| ,
d(n) �

∑
i|n

1.

Lemma 13: Consider the setting of Lemma 11. Suppose
that for any (i1, i2, . . . , iM ) ∈ [0, h − 1]M \ {(0, 0, . . . , 0)},
the polynomial

∏M
t=1(ft(x))(q−1)it/h cannot be written in the

form c · (g(x))q−1, where c ∈ Fq and g(x) ∈ Fq[x]. Then∣∣∣∣∣∣
∑
α∈F∗

q

Θ(α) − φ(q − 1)

∣∣∣∣∣∣ � A · d(q − 1) · √q,

where φ is the Euler function, d is the divisor function, and
A is a real number that is independent of q.

Proof: From (10), if ft(α) �= 0 for all 1 � t � M , then
let us write Θ(α) = ψ(α) +R(α), where

R(α) = ψ(α)
∑

(i1,i2,...,iM )∈[0,h−1]M

(i1,i2,...,iM ) �=(0,0,...,0)

χi1
h (α−�1f1(α)) · · ·

χiM

h (α−�M fM (α)). (11)

Otherwise, if ft(α) = 0 for some 1 � t � M , then Θ(α) =
0 = R(α). By Lemma 10,∑

α∈F∗
q

ψ(α) = φ(q − 1).

Thus, summing over all α ∈ F∗
q , we get

φ(q − 1) −
M∑

t=1

deg(ft) +
∑
α∈F∗

q

R(α)

�
∑
α∈F∗

q

Θ(α) � φ(q − 1) +
∑
α∈F∗

q

R(α). (12)

Note that
∑M

t=1 deg(ft) is independent of q. In the following,

we shall give an upper bound on
∣∣∣∑α∈F∗

q
R(α)

∣∣∣.
Let us observe a typical term in the sum on the right-hand

side of (11). From (9), we have

ψ(α)χi1
h (α−�1f1(α)) · · ·χiM

h (α−�M fM (α)) =∑
k|q−1

μ(k)
k

∑
χk=χ1

χ(α)χi1
h (α−�1f1(α)) · · ·χiM

h (α−�M fM (α)).

In the inner sum, χ = χj for some j|k. Hence

χj(α)χi1
h (α−�1f1(α))· · ·χiM

h (α−�M fM (α))=χq−1(αLw(α))

where

L = (q − 1)
(

1
j
− 1
h

(i1�1 + · · · + iM�M )
)

and

w(x) =
M∏

t=1

(ft(x))(q−1)it/h.

We notice that w(x) has at most
∑M

t=1 deg ft distinct roots
in its splitting field. Due to the assumption, we can apply
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Lemma 12 to get∣∣∣∣∣∣
∑
α∈F∗

q

χj(α)χi1
h (α−�1f1(α)) · · ·χiM

h (α−�M fM (α))

∣∣∣∣∣∣
�

M∑
t=1

(deg ft)
√
q.

Next, we observe that there are exactly k characters χ such
that χk = χ1. Hence,∣∣∣∣∣∣

∑
α∈F∗

q

ψ(α)χi1
h (α−�1f1(α)) · · ·χiM

h (α−�M fM (α))

∣∣∣∣∣∣
�

M∑
t=1

(deg ft)d(q − 1)
√
q.

It follows that∣∣∣∣∣∣
∑
α∈F∗

q

R(α)

∣∣∣∣∣∣ �
M∑

t=1

(hM − 1)(deg ft)d(q − 1)
√
q.

Finally, using (12), we have∣∣∣∣∣∣
∑
α∈F∗

q

Θ(α) − φ(q − 1)

∣∣∣∣∣∣ �

∣∣∣∣∣∣
∑
α∈F∗

q

R(α)

∣∣∣∣∣∣+
M∑

t=1

deg ft

�
M∑

t=1

hM (deg ft)d(q − 1)
√
q.

Now, we study the cases (b, k−, k−) ∈ {(2, 1, 1),
(3, 1, 0), (3, 1, 1)}, and use Lemma 13 to show the existence
of α which satisfies (7). It is worth noting that when we apply
Lemma 13, the collection of polynomials under consideration
is not necessarily the set Fk+.k−

b . We first look at the case of
b = 2 and (k+, k−) = (1, 1).

Theorem 14: For all sufficiently large prime powers q such
that q ≡ 7 (mod 12), there is a perfect lattice code of Zn

with n = (q − 1)/6, which can correct a single cyclic 2-burst
of (1, 1)-limited-magnitude errors.

Proof: Recalling (3), (4), and (6), in this case we have
e = 6, q ≡ 1 (mod 6), and

F1,1
2 = {1, 1 + x6, 1 − x6,−1,−1 + x6,−1 − x6}.

We label the polynomials in F1,1
2 as f0, f1, . . . , f5, and

then (7) becomes

{logα(fi(α)) mod 6 | 0 � i � 5} = {0, 1, . . . , 5}.
Since q ≡ 1 (mod 6), for any primitive α we have

logα(−1) = (q − 1)/2 ≡ 0 (mod 3).

Note that

logα(1) = 0,
logα(−1 + α6) ≡ logα(−1) + logα(1 − α6) (mod 6),

logα(−1 − α6) ≡ logα(−1) + logα(1 + α6) (mod 6).

Hence, in order to ensure (7), it suffices to require that q ≡ 7
(mod 12), i.e., logα(−1) ≡ 3 (mod 6), and

{logα(1 + α6) mod 3, logα(1 − α6) mod 3} = {1, 2}.
(13)

We shall use Lemma 13 with h = 3 to show the existence
of α which satisfies (13). Then according to the discussion
above and Proposition 7, the additive group of Fq can be split
by E◦(n, 2, 1, 1) with sα, and so, the perfect 2-burst-correcting
code exists.

Consider the collection of polynomials F =
{1 + x6, 1 − x6}. Let �1 = 1, �2 = 2, and h = 3.
Let Θ be defined as in (10) for F . For each
(i1, i2) ∈ {0, 1, 2}2 \ {(0, 0)}, let

fi1,i2(x) � (1 + x6)
(q−1)i1

3 (1 − x6)
(q−1)i2

3 .

It can be checked that the polynomials fi1,i2(x) satisfy the
condition in Lemma 13:

1) If i2 �= 0, then 1−x is a factor of fi1,i2(x). Since q ≡ 7
(mod 12), we have that 1 − x � 1 + x6, and gcd(1 −
x6,−6x5) = 1. Thus, in the factorization of fi1,i2(x)
to irreducible polynomials, the multiplicity of 1 − x is
(q−1)i2

3 , which is not a multiple of q− 1. It follows that
fi1,i2(x) cannot be written in the form c(g(x))q−1.

2) If i2 = 0, then i1 �= 0. Since gcd(1 + x6, 6x5) = 1,
in the factorization of 1+x6 to irreducible polynomials,
every irreducible factor has multiplicity 1. Thus, fi1,0(x)
cannot be written in the form c(g(x))q−1.

Applying Lemma 13, we get∣∣∣∣∣∣
∑
α∈F∗

q

Θ(α) − φ(q − 1)

∣∣∣∣∣∣ � Ad(q − 1)
√
q,

which implies that∑
α∈F∗

q

Θ(α) � φ(q − 1)−Ad(q − 1)
√
q.

Note that A is independent of q, and for any given small
ε > 0 we have φ(q − 1) > q1−ε and d(q − 1) < qε for all
sufficiently large q (see [13, Theorem 315 and Theorem 327]).
Hence,

∑
α∈F∗

q
Θ(α) > 0, and so, there is an α ∈ F∗

q such
that Θ(α) > 0. According to the definition of Θ, this α is the
desired element to satisfy (13).

Now, we turn to the case of b = 3 and (k+, k−) = (1, 0).
This time, using (3), (4), and (6), we have e = 4, q ≡ 1
(mod 4), and

F1,0
3 = {1, 1 + x4, 1 + x8, 1 + x4 + x8}.

The idea is the same as before. We use Lemma 13 to find
a primitive α such that the logarithm of the evaluations
of the polynomials in F1,0

3 at α, are different modulo 4.
However, here we need to consider two different collections of
polynomials when applying Lemma 13, depending on whether
q is divisible by 3 or not.

Theorem 15: For all sufficiently large prime powers q such
that q ≡ 1 (mod 4), there is a perfect lattice code of Zn with
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n = (q − 1)/4, which can correct a single cyclic 3-burst of
(1, 0)-limited-magnitude errors.

Proof: If q is not divisible by 3, consider the collection
of polynomials

F = F1,0
3 \ {1} = {1 + x4, 1 + x8, 1 + x4 + x8},

as logα(1) = 0 for all primitive α. Let h = e = 4, �1 = 1,
�2 = 2, �3 = 3, and let Θ be defined as in (10). Consider
fi1,i2,i3(x) � (1+x4)

(q−1)i1
4 (1+x8)

(q−1)i2
4 (1+x4+x8)

(q−1)i3
4 ,

where (i1, i2, i3) ∈ {0, 1, 2, 3}3 \ {(0, 0, 0)}.
We verify that fi1,i2,i3(x) cannot be written as c ·(h(x))q−1

for any c ∈ Fq and h(x) ∈ Fq[x]:

1) If i1 �= 0, let p(x) be an irreducible factor of 1 +
x4 and a be a root of p(x) in its splitting field. Since
gcd(1 + x4, 4x3) = 1, the multiplicity of p(x) in the
factorization of 1 + x4 is 1. Moreover, p(x) does not
divide (1+x8)(1+x4 +x8) as (1+a8)(1+a4 +a8) =
2 �= 0. Hence, in the factorization of fi1,i2,i3(x), the
multiplicity of p(x) is (q−1)i1

4 , which is not a multiple
of q − 1.

2) If i1 = 0 and i2 �= 0, let p(x) be an irreducible factor of
1+x8. Using the same argument as above, we can show
that in the factorization of f0,i2,i3(x), the multiplicity of
p(x) is (q−1)i2

4 , which is not a multiple of q − 1.
3) If i1 = i2 = 0 and i3 �= 0, f0,0,i3(x) = (1 + x4 +

x8)
(q−1)i3

4 . Note that 2(1 + x4 + x8) = (1 + 2x4)(x4 −
1) + 3(1 + x4). Since q is not divisible by 3 and
gcd(1+x4, 1+2x4) = 1, we have gcd(1+x4 +x8, 1+
2x4) = 1, and so, gcd(1 + x4 + x8, 4x3 + 8x7) = 1.
Hence, in the factorization of f0,0,i3(x) every irreducible
factor has multiplicity (q−1)i3

4 , which is not a multiple of
q − 1.

Then according to Lemma 13, when q is sufficiently large,
there is a primitive element α such that the logarithm of
the evaluations of the polynomials in F1,0

3 at α, are distinct
modulo 4. The conclusion then follows from Proposition 7 and
Theorem 3.

If q is divisible by 3, we have (1 + x4 + x8) = (1 − x4)2.
Then it suffices to find a primitive element α such that

logα(1 + α4) ≡ 1 mod 4, logα(1 + α8) ≡ 3 mod 4,

logα(1 − α4) ≡ 1 mod 4. (14)

Let

gi1,i2,i3(x) � (1 + x4)
(q−1)i1

4 (1 + x8)
(q−1)i2

4 (1 − x4)
(q−1)i3

4 ,

where (i1, i2, i3) ∈ {0, 1, 2, 3}3 \ {(0, 0, 0)}. If i3 = 0, then
gi1,i2,0(x) = fi1,i2,0(x), and so, it cannot be written as c ·
(h(x))q−1. If i3 �= 0, since 1 − x � (1 + x4)(1 + x8) and
1 − x4 = (1 − x)(1 + x + x2 + x3), in the factorization of
gi1,i2,i3(x) the factor 1− x has multiplicity (q−1)i3

4 , which is
not a multiple of q− 1. Hence, we can apply Lemma 13 with
F = {1 + x4, 1 + x8, 1 − x4} to show the existence of α such
that (14) holds, when q is sufficiently large, which completes
our proof.

For the case of b = 3 and k+ = k− = 1, we have e =
18 and q ≡ 1 (mod 18). Since logα(−1) = (q − 1)/2 for

any primitive element α, we shall assume q ≡ 19 mod 36
such that logα(−1) �≡ logα(1) (mod 18).

Theorem 16: For all sufficiently large prime powers q such
that q ≡ 19 (mod 36), there is a perfect lattice code of Zn

with n = (q−1)/18, which can correct a single cyclic 3-burst
of (1, 1)-limited-magnitude errors.

Proof: The proof repeats the same steps taken in the
previous two proofs. We therefore briefly sketch its outline.
We have e = 18 and let

f1(x) = 1 + xe, f2(x) = 1 − xe,

f3(x) = 1 + x2e, f4(x) = 1 − x2e,

f5(x) = 1 + xe + x2e, f6(x) = 1 − xe + x2e,

f7(x) = 1 + xe − x2e, f8(x) = 1 − xe − x2e.

Since logα(−1) ≡ 9 (mod 18) and f4(x) = 1 − x2e =
f1(x)f2(x), if we can find a primitive α such that

logα(f1(α)) ≡ 1 (mod 9), logα(f2(α)) ≡ 2 (mod 9),
logα(f3(α)) ≡ 6 (mod 9), logα(f5(α)) ≡ 5 (mod 9),
logα(f6(α)) ≡ 7 (mod 9), logα(f7(α)) ≡ 4 (mod 9),
logα(f8(α)) ≡ 8 (mod 9),

then (7) holds.
We set h = 9. If q is not divisible by 5, it is verifiable

that the set of polynomials {fi | 1 � i � 8, i �= 4} satisfies
the condition of Lemma 13. Thus, when q is large enough,
such an α exists.

If q is divisible by 5, then

f3(x) = 1 + x2e = (xe + 2)(xe − 2),

f7(x) = 1 + xe − x2e = −(xe + 2)2,

f8(x) = 1 − xe + x2e = −(xe − 2)2.

Let f9(x) = xe + 2 and f10(x) = xe − 2. Then the set
of polynomials {f1, f2, f5, f6, f9, f10} satisfies the condition
of Lemma 13. Therefore, when q is large enough, there is a
primitive element α such that

logα(f1(α)) ≡ 1 (mod 9), logα(f2(α)) ≡ 2 (mod 9),
logα(f5(α)) ≡ 5 (mod 9), logα(f6(α)) ≡ 7 (mod 9),
logα(f9(α)) ≡ 2 (mod 9), logα(f10(α)) ≡ 4 (mod 9).

It then follows that

logα(f3(α)) ≡ 6 (mod 9), logα(f4(α)) ≡ 3 (mod 9),
logα(f7(α)) ≡ 4 (mod 9), logα(f8(α)) ≡ 8 (mod 9).

Hence, α is the desired primitive element.

A. Modification of the Constructions

Theorem 14 shows the existence of lattice tilings of
E◦(n, 2, 1, 1) when q ≡ 7 (mod 12), whereas the necessary
condition on q is only q ≡ 1 (mod 6). Thus, the existence of
such tilings when q ≡ 1 (mod 12) remains undecided. In the
following, we solve half of the remaining cases. We assume
that q = 12m + 1 with m odd, and show that a different
splitting sequence provides a tiling. The following proposition
is the equivalent of Proposition 7.
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Proposition 17: Assume n � 3, q = 12m+ 1, m odd, and
define

rα � (1, α3, α12, α15, . . . , α12(m−1), α12(m−1)+3),

F � {±1,±x3,±(1 + x3),±(1 − x3),±(x3 + x12),

± (x3 − x12)}.
Let α be a primitive element of F∗

q , and assume f(α) �= 0 for
all f(x) ∈ F . If

{logα(f(α)) mod 12 | f(x) ∈ F} = {0, 1, 2, . . . , 11}, (15)

then E◦(n, 2, 1, 1) splits G (the additive group of Fq) with the
splitting sequence rα.

Proof: For each pair c = (c0, c1) ∈ [−1, 1]2 with c0 �= 0,
let

Ac � {e = (e0,e1, . . . , en−1) ∈ E◦(n, 2, 1, 1) | there is

an even integer i such that e[i, i+ 1] = c},
Bc � {e = (e0,e1, . . . , en−1) ∈ E◦(n, 2, 1, 1) | there is

an odd integer i such that e[i, i+ 1] = c},
where in both cases, i+ 1 is taken modulo n. Then

{e · rα | e ∈ Ac} = {α12�(c0 + c1α
3) | � ∈ [0,m− 1]},

{e · rα | e ∈ Bc} = {α12�(c0α3 + c1α
12) | � ∈ [0,m− 1]}.

Since (15) holds, we have that

{e · rα | e ∈ E◦(n, 2, 1, 1)}

= {0} ∪

⎛
⎜⎜⎝ ⋃

c∈[−1,1]2

c0 �=0

({e · rα | e ∈ Ac} ∪ {e · rα | e ∈ Bc})

⎞
⎟⎟⎠

= Fq.

Hence E◦(n, 2, 1, 1) splits G with rα.
Theorem 18: For all sufficiently large prime powers q such

that q ≡ 13 (mod 24), there is a perfect lattice code of Zn

with n = (q − 1)/6, which can correct a single cyclic 2-burst
of (1, 1)-limited-magnitude errors.

Proof: Since q ≡ 13 (mod 24), logα(−1) = (q−1)/2 ≡
6 (mod 12). Thus if the logarithms of 1, α3, 1 + α3, 1 −
α3, α3 +α12, α3−α12 are distinct modulo 6, then (15) holds.
To find such a primitive α, we let h = 6 and consider the
following set of polynomials

F � � {1 + x3, 1 − x3, 1 + x3 + x6, 1 − x3 + x6}.
It is verifiable that these polynomials satisfy the condition in
Lemma 13. Hence, if q is large enough, there is a primitive α
such that

logα(1 + α3) ≡ 1 mod 6

logα(1 − α3) ≡ 2 mod 6,
logα(1 − α3 + α6) ≡ 0 mod 6,

logα(1 + α3 + α6) ≡ 0 mod 6.

Then it follows that

logα(α3 + α12)

TABLE II

VALUES OF q, FROM e(2b − 1) + 1 UP TO 1000, THAT DO NOT
ADMIT THE REQUIRED PRIMITIVE ELEMENT

≡ 3 + logα(1 + α3) + logα(1 − α3 + α6) ≡ 4 mod 6,

logα(α3 − α12)
≡ 3 + logα(1 − α3) + logα(1 + α3 + α6) ≡ 5 mod 6.

Noting that logα(1) = 0 and logα(α3) = 3, we have
completed our proof.

V. DISCUSSION

In this paper we constructed perfect lattice codes that are
capable of correcting a single burst of limited-magnitude
errors. Our constructions span both the case of cyclic burst
errors, as well as non-cyclic bursts. The parameters of the
various constructions are summarized in Table I. We note that
the first row in this table is obtained by using Theorem 1 to
convert the code over Fp in [11] to a lattice code.

The approach in Section IV was inspired by [2]. This
is in particular interesting, since [2] did not study perfect
codes. Similar to [2], our constructions in Section IV call
for finding a primitive element of Fq with certain properties.
We note that a simple brute-force search can easily find such
an element (if it exists) in time polynomial in q, which is
also polynomial in n as n = Θ(q) in all of our constructions.
The number-theoretic conditions required by our constructions
seem to make it difficult to give an existence guarantee
stronger than “sufficiently large q”. We ran a computer search,
whose results are summarized in Table II. The table count
the number of good prime powers (i.e., those that admit a
primitive α with the required properties), the number of bad
prime powers, and the list of bad prime powers.

We would also like to comment on the prospect of extending
our constructions, both for longer bursts, as well as for errors
of larger magnitude.

A. Longer Bursts

In Section IV we presented a construction based on
finite fields and used it to prove a few existence results
for lattice tiling of E◦(n, t, k+, k−) with b � 3 and
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TABLE III

SPLITTING OF G BY E◦(n, 2, 2, 0) OR E(n, 2, 2, 0)

TABLE IV

SPLITTING OF Z6n+1 BY E◦(n, 2, 1, 1)

(k+, k−) ∈ {(1, 0), (1, 1)}. This approach may also work for
the cases b > 3. However, it would involve choosing a large
number of factors of the polynomials in Fk−,k−

b , checking
whether they satisfy the condition in Lemma 13, and assigning
each of them an integer such that (7) holds. Thus, a closed-
form solution to all the cases b > 3 still remains unsolved.
We note that a similar problem was considered in [2] for
polynomials that satisfy the Abramson-Elspus-Short (AES)
conditions, and it was solved by showing that it suffices to
consider only irreducible polynomials and assign all of them
the same integer zero [2, Theorem 3]. Whether a similar
solution exists here is still unknown.

B. Larger Error Magnitudes

In this paper, we studied only the case k+ = 1. For k+ � 2,
finding a lattice tiling becomes more difficult. If one wants
to use the construction in Section IV to handle the case of
b = 2 and (k+, k−) = (2, 0), a primitive element α satisfying
the following condition is required:

{logα(fi(α)) mod 6 | 1 � i � 5} = {1, 2, 3, 4, 5}, (16)

where

f1(x) = 1 + x6, f2(x) = 1 + 2x6, f3(x) = 2,
f4(x) = 2 + x6, f5(x) = 2 + 2x6.

Note that unlike logα(1) = 0 and logα(−1) = q−1
2 , the

value of logα(2) modulo 6 depends on the choice of α.
To complicate things further, f3(x) = 2 does not satisfy the

TABLE V

SPLITTING OF Z6n−3 BY E(n, 2, 1, 1)

condition in Lemma 13. Thus, we cannot use it, as is, to find
the desired α. A computer search up to 1000 shows that the
following field sizes, q,

19, 79, 103, 163, 181, 199, 229, 349, 373, 397, 421, 487, 499,
541, 613, 619, 631, 643, 691, 709, 733, 739, 751, 769, 787, 823,
853, 859, 907, 967, 997

admit a primitive α that satisfies (16).
We also ran a computer search for splittings by E◦(n, 2, 2, 0)

and E(n, 2, 2, 0). For n ∈ {3, 4}, existence results are listed
in Table III. Interestingly, for each 5 � n � 11, every Abelian
group G of order 6n + 1 cannot be split by E◦(n, 2, 2, 0),
and every Abelian group of order 6n − 3 cannot be split by
E(n, 2, 2, 0). In contrast, for the case of b = 2 and (k+, k−) =
(1, 1), Table IV shows that Z6n+1 can be split by E◦(n, 2, 1, 1)
for each n ∈ [4, 14] \ {7}, and Table V shows that Z6n−3 can
be split by E(n, 2, 1, 1) for each n ∈ [3, 14]. Thus, it would be
interesting to derive some constraints on the values of n for the
existence of lattice tilings of E(n, 2, 2, 0) and E◦(n, 2, 2, 0).
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