
2240 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 4, APRIL 2023

A Bound on the Minimal Field Size of LRCs, and
Cyclic MR Codes That Attain It

Han Cai , Member, IEEE, and Moshe Schwartz , Senior Member, IEEE

Abstract— We prove a new lower bound on the field size
of locally repairable codes (LRCs). Additionally, we construct
maximally recoverable (MR) codes which are cyclic. While a
known construction for MR codes has the same parameters,
it produces non-cyclic codes. Furthermore, we prove both nec-
essary conditions and sufficient conditions that specify when the
known non-cyclic MR codes may be permuted to become cyclic,
thus proving our construction produces cyclic MR codes with
new parameters. Furthermore, using our new bound on the field
size, we show that the new cyclic MR codes have optimal field
size in certain cases. Other known LRCs are also shown to have
optimal field size in certain cases.

Index Terms— Distributed storage, locally repairable codes,
maximally recoverable codes, cyclic codes.

I. INTRODUCTION

IN LARGE-SCALE cloud storage and distributed file sys-
tems, such as Amazon Elastic Block Store (EBS) and

Google File System (GoogleFS), disk failures are the norm and
not the exception, due to the sheer scale of the system. To pro-
tect the data integrity, coding theory is used to recover from
data loss due to disk failures. The simplest solution for those
systems is a straightforward replication of data packets across
different disks. However, this solution is costly especially
for large-scale systems since it suffers from a large storage
overhead. As an alternative solution, erasure codes such as
[n, k] maximum distance separable (MDS) codes, may be
employed as storage codes. These codes encode k information
symbols to n symbols and store them across n disks, and they
can recover from the loss of any n− k symbols. This scheme
achieves a dramatic improvement in redundancy compared
with replication. However, for MDS codes, even if one disk
fails, the system needs to access k surviving disks in order to
recover the lost symbol, which makes the repair process costly.
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One method to improve the repair efficiently, suggested
in [17], is endow the code with a locality property. This
property allows a failed symbol to be recovered by accessing
only r � k other symbols. Erasure codes with locality
are also called locally repairable codes (LRCs). The original
concept of locality only works when exactly one erasure
occurs (that is, one disk fails). In the past decade, the
notion of locality further generalized in several directions.
For example, LRCs with (r, δ)-locality [31] allow an erased
symbol to be recovered by reading r other symbols, even if
the repair set suffered δ − 1 more erasures. Other examples
include: locality which guarantees disjoint multiple repairable
sets (also named as availability) [6], [8], [35], [40], locality
which has a hierarchical structure [14], [36], and unequal
localities [22], [26], [44].

Other code properties are also desirable. For a given code
length n and dimension k, we would like the Hamming dis-
tance to be as large as possible, in order to maximize erasure-
correcting capabilities. Additionally, we would like the field
size (or alphabet size) to be as small as possible, in order to
reduce the computation complexity for coding and decoding.
Other desirable properties may include a cyclic structure for
the code, since it allows for fast encoding algorithms. Finally,
even if the code has optimal distance, we would like to be
able to correct some pre-determined erasure patterns beyond
the minimum Hamming distance.

In the past a few years, many results have been obtained for
LRCs. Upper bounds on the minimum Hamming distance were
proved, e.g., Singleton-type bounds [7], [17], [31], [41], and
bounds related with the alphabet size [1], [5]. Optimal LRCs
(with respect to these bounds), were constructed, e.g., [13],
[24], [28], [34], [37], [38], [42]. In [21] and [9], lower bounds
on the field size of optimal LRCs were derived for δ = 2 [21],
and δ � 2 [9]. Among the known optimal LRCs, some of
them also achieve order-optimal field size [2], [12], [25], [43]
when δ = 2, and [9] when δ � 2. Otherwise, constructions of
optimal cyclic LRCs were introduced in [13], [14], [32], [39],
and [33]. When considering pre-determined recoverable era-
sure patterns beyond the minimum Hamming distance, codes
that can recover from all information-theoretically recover-
able erasure patterns are called maximally recoverable (MR)
codes [17], also known as partial MDS codes [3]. In [19],
lower bounds on the field size requirement for MR codes were
introduced. For explicit constructions of MR codes, the reader
may refer to [3], [10], [15], [16], [20], [28], and [18]. Notably,
there are MR codes have order-optimal field size (with respect
to the bound in [19]): [3] for a single global parity check

0018-9448 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on March 19,2023 at 09:07:25 UTC from IEEE Xplore.  Restrictions apply. 

https://orcid.org/0000-0002-8476-1303
https://orcid.org/0000-0002-1449-0026


CAI AND SCHWARTZ: BOUND ON THE MINIMAL FIELD SIZE OF LRCs, AND CYCLIC MR CODES THAT ATTAIN IT 2241

(h = 1), [4], [19] for h = 2, [16] for h = 3 and δ = 2,
and [10], [18] for h � δ + 1 a constant, and n = Θ(r2).

The above summary shows how subsets of the mentioned
desired properties may be obtained simultaneously. However,
to the best of our knowledge, there are no explicit construc-
tions that achieve all them, namely, cyclic MR codes with
optimal field size. In this paper, our motivation is to construct
cyclic MR codes with optimal field size, or order-optimal field
size. To this end, we work both on constructions for cyclic
MR codes, and a theoretic bound on the field size of optimal
LRCs (containing MR codes as special cases). In the first part
of the paper we prove a new general bound for optimal LRCs.
We compare our new bound with the known bounds, and show
that it is tighter for some parameters. In the second part of the
paper, we introduce a new construction for cyclic MR codes.
Our construction produces cyclic MR codes that share the
same parameters as one of the known non-cyclic constructions
in [19]. We also show that under certain conditions, the non-
cyclic construction from [19] can be permuted to become a
cyclic code, whereas in other cases it cannot, thus proving our
construction produces cyclic MR codes with new parameters.
As a byproduct of the proof, we characterize the algebraic
structure of repair sets for optimal cyclic LRCs, which results
in strong new restrictions on the parameters of optimal cyclic
LRCs. Finally, we return to review our bound on optimal
LRCs, and show that our construction has an optimal field
size when r = 2. Since the bound is for general LRCs,
as a consequence we get that some known constructions have
optimal field size when r = 2, a result which has not been
claimed before.

The remainder of this paper is organized as fol-
lows. Section II introduces some preliminaries about LRCs.
Section III proves a new bound on the field size of LRCs.
Section IV describes a construction of cyclic MR codes,
as well as sufficient and necessary conditions under which
a known non-cyclic construction from [19] may be permuted
to become cyclic. Section V concludes this paper with some
remarks.

II. PRELIMINARIES

In this section, we present notation and some necessary
known results, which are used throughout the paper. For a
positive integer n ∈ N, we define [n] = {0, 1, . . . , n− 1}.
If m|n is a positive integer, we denote

�m� � mZ ∩ [n] = {0,m, 2m, . . . , n−m} .
Thus, �m� implicitly depends on n, whose value should be
understood from the context.

For any prime power q, let Fq denote the finite field of
size q, let Fm

q denote the set of vectors of length m over Fq,
and let Fm×n

q denote the set of all possible m × n matrices
over Fq.

An [n, k]q linear code, C, over Fq , is a k-dimensional
subspace of Fn

q . Such a code may be specified as the row-space
of a k×n generator matrix G = (g0, g1, . . . , gn−1), where gi

is a column vector of length k for all i ∈ [n]. Specifically,
it is called an [n, k, d]q linear code if the minimum Hamming

distance of the code is d. For a subset S ⊆ [n], we define

span(S) � span {gi : i ∈ S} ,
rank(S) � rank(span(S)).

The code C can also be specified by a parity-check matrix H ∈
F

(n−k)×n
q , i.e., C =

{
c ∈ Fn

q : Hcᵀ = 0
}

, where rank(H) =
n − k. Given a non-empty set of coordinates, S ⊆ [n], the
punctured code C|S is the code obtained from C by deleting
the code symbols at positions [n] \ S. Thus, C|S is generated
by G|S which is obtained from G by deleting the columns at
[n] \ S. Similarly, the shortened code C|S is the code whose
parity matrix is H |S , namely, the matrix obtained from H by
deleting the columns at [n] \ S.

An [n, k]q linear code, C, is said to be a cyclic code
if c = (c0, c1, · · · , cn−1) ∈ C implies that σ(c) �
(cn−1, c0, c1, · · · , cn−2) ∈ C, where σ is the cyclic shift
operator by one place. It is well known (see [27]) that a cyclic
code with length n over Fq corresponds to a principal ideal of
Fq[x]/(xn − 1). Thus, let C be generated by a monic polyno-
mial g(x)|(xn − 1), which is called the generator polynomial
of C. When n|(qm − 1), assume α is a primitive nth root of
unity of Fqm , then the cyclic code C can be also be determined
by the roots of g(x), i.e., RC =

{
αi : g(αi) = 0

}
.

We shall encounter many Vandermonde matrices in the
following section. Since we use a broader-than-usual definition
for such matrices, we give it here explicitly. Let α1, . . . , αn ∈
Fq be n distinct elements. We say the following m×n matrix
is a Vandermonde matrix,

Π ·D ·

⎛⎜⎜⎜⎝
1 1 . . . 1
α0 α1 . . . αn−1

...
...

...
αm−1

0 αm−1
1 . . . αm−1

n−1

⎞⎟⎟⎟⎠D′,

where Π is a permutation matrix, and where D and D′ are
invertible diagonal matrices. It is well known that the rank of
such a matrix is min {m,n}.

A. Locally Repairable Codes

In [17], Gopalan et al. introduced a definition for the locality
of code symbols. For j ∈ [n], the jth code symbol, cj , of an
[n, k, d]q linear code, C, is said to have locality r if it can be
recovered by accessing at most r other symbols of C. This has
been generalized in [31] to the following definition:

Definition 1: Let C be an [n, k, d]q linear code, and let G
be a generator matrix for it. For j ∈ [n], the jth code symbol,
cj , of C, is said to have (r, δ)-locality if there exists a subset
Sj ⊆ [n] such that:

• j ∈ Sj and |Sj | � r + δ − 1; and
• the minimum Hamming distance of the punctured code

C|Sj is at least δ.

In that case, the set Sj is also called a repair set of cj . The
code C is said to have information (r, δ)-locality if there exists
S ⊆ [n] with rank(S) = k such that for each j ∈ S,
cj has (r, δ)-locality. Furthermore, the code C is said to
have all-symbol (r, δ)-locality if all the code symbols have
(r, δ)-locality.
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Thus, the definition of symbol locality from [17] is the
special case of δ = 2 in the definition from [31]. In [31]
(and for the case δ = 2, originally [17]), the following upper
bound on the minimum Hamming distance of linear codes with
information (r, δ)-locality is derived.

Theorem 1 [31]: For an [n, k, d]q linear code with informa-
tion (r, δ)-locality,

d � n− k + 1 −
(⌈

k

r

⌉
− 1

)
(δ − 1).

Codes with information (r, δ)-locality are said to be optimal
locally repairable codes (optimal LRCs) if their minimum
Hamming distance attains the bound of Theorem 1 with
equality. We note that all-symbol (r, δ)-locality is a special
case of information (r, δ)-locality. Thus, the bound of The-
orem 1 also applies to codes with all-symbol (r, δ)-locality.
While Theorem 1 may be further improved for all-symbol
(r, δ)-locality, it is already tight when (r+ δ− 1)|n, which is
the case we shall be interested in throughout the paper. From
now on, we shall also use the term optimal LRCs to refer
to all-symbol (r, δ)-LRCs, with (r + δ − 1)|n, that attain the
bound of Theorem 1 with equality. For the current state of
improvements on Theorem 1 when (r+ δ− 1) � n, the reader
is referred to the recent [7] and the references therein.

Theorem 2 ([9], [37]): Let C be an optimal [n, k, d]q LRC
with all-symbol (r, δ)-locality. Let Γ ⊆ 2[n] be the set of all
possible repair sets. Write k = ru + v, for integers u and v,
and 0 � v � r − 1. If (r + δ − 1)|n, k > r, and additionally,
u � 2(r − v + 1) or v = 0, then there exists a subset S ⊆ Γ,
such that:

• All S ∈ S are of cardinality |S| = r + δ − 1, and S is a
partition of [n].

• For any S ∈ S, C|S is an [r + δ − 1, r, δ]q MDS code.

Remark: The partitioning of [n] by repair sets was first
proved in [37] only for the case r|k, i.e., v = 0. Recently, this
property was proved in [9] also for the case u � 2(r− v+1).

In [21], Guruswami et al. asked a fundamental inter-
esting question: How long can an optimal LRC with
(r, δ = 2)-locality be? They derived the following upper bound
on the code length.

Theorem 3 [21]: Let C be an optimal [n, k, d]q LRC with
all-symbol (r, 2)-locality. If d � 5, k > r, (r + 1)|n, and
additionally, r|k or k � 2r2 + 2r − (2r − 1)(k mod r), then

n =

⎧⎨⎩O
(
dq

4(d−2)
d−a −1

)
, if a = 1, 2,

O
(
dq

4(d−3)
d−a −1

)
, if a = 3, 4,

(1)

where a ∈ {1, 2, 3, 4}, and a ≡ d (mod 4).
In [9], this problem is further considered for optimal LRCs

with all-symbol (r, δ)-locality, δ � 2.
Theorem 4 [9]: Let n = w(r + δ − 1), δ > 2, k = ur+ v,

0 � v � r − 1, and additionally, u � 2(r − v + 1) or v = 0,
where all parameters are integers. Assume that there exists an
optimal [n, k, d]q linear code C with all-symbol (r, δ)-locality,
and define t = 	(d− 1)/δ
. If t � 2, then

n �
{

(t−1)(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t−1 if t is odd

t(r+δ−1)
2r(q−1) q

2(w−u)r−2v
t if t is even

= O

(
t(r + δ)

r
q

(w−u)r−v
�t/2� −1

)
,

where w − u can also be rewritten as w − u = 	(d− 1 + v)/
(r + δ − 1)
.

B. Maximally Recoverable Codes

Maximally recoverable (MR) codes are an extremal case of
LRCs, that maximize the erasure-repair capability.

Definition 2: Let C be an [n, k, d]q code with all-symbol

(r, δ)-locality, and define S � {Si : i ∈ [n]}, where Si

is a repair set for coordinate i. The code C is said to be a
maximally recoverable (MR) code if S is a partition of [n],
and for any Ri ⊆ Si such that |Si \Ri| = δ−1, the punctured
code C|∪i∈[n]Ri is an MDS code.

In general, Si for i ∈ [n], are not required to be of the
same size. However, from an application point of view, equal-
sized repair sets simplify the implementation, bringing us to
the following definition:

Definition 3: Let C be an [n, k, d]q MR code, as in Defin-
ition 2. If each Si ∈ S is of size |Si| = r + δ − 1 (implying
r + δ − 1|n), we define

m � n

r + δ − 1
, h � mr − k.

Then C is said to be an (n, r, h, δ, q)-MR code.
We first note that it is easy to verify that (n, r, h, δ, q)-MR

codes are optimal [n, k, d]q LRCs with all-symbol
(r, δ)-locality. We can regard each codeword of an
(n, r, h, δ, q)-MR code, as an m × (r + δ − 1) array,
by placing each repair set in S as a row, when S forms a
partition of [n]. In this way, (n, r, h, δ, q)-MR codes match
the definition of partial MDS (PMDS) codes, as defined
in [3]. When implemented in a distributed-storage setting,
each entry of a codeword array corresponds to a sector,
each column of the array corresponds to a disk, and each
row to a stripe. Thus, an (n, r, h, δ, q)-MR code can recover
from δ − 1 sector erasures in each stripe, and additional h
erased sectors anywhere. We mention in passing that a more
restricted type of codes, called sector-disk (SD) codes, are
capable of recovering from δ−1 disk erasures, and additional
h erased sectors (see [11], [30]).

Paralleling the general case of optimal LRCs, it is interesting
to ask what is the minimum alphabet size required by MR
codes.

Lemma 1 ([19, Theorem I.1]): Let C be an (n, r, h,
δ, q)-MR code, h � 2. If m � n

r+δ−1 � 2, then

q = Ω(nrε),

where ε = min{δ − 1, h − 2� h
m�}/� h

m�, and where h and δ
are regarded as constants. Additionally,

1) If m � h:

q = Ω
(
nrmin{δ−1,h−2}

)
.

2) If m � h, m|h, and δ − 1 � h− 2h
m :

q = Ω
(
n1+ m(δ−1)

h

)
.
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3) If m � h, m|h, and δ − 1 > h− 2h
m :

q = Ω
(
nm−1

)
.

Remark: For the case h = 1, the field size requirement of
an (n, r, h, δ, q)-MR code may be as small as q = Θ(r+δ−1).
This is attainable since the punctured code over any repair set
together with the single global parity check is an [r + δ, r,
δ + 1]q MDS code when (r + δ − 1)|k or u � 2(r − v + 1),
where k = ur + v with 0 � v � r − 1 (see [9]).

Definition 4: A family of (n, r, h, δ, q)-MR codes has
order-optimal field size if it attains one of the bounds of
Lemma 1 asymptotically for h � 2, or if it has q = Θ(r+δ−1)
for h = 1.

III. A NEW BOUND ON OPTIMAL LRCs

In this section we present a new bound on the parameters
of optimal LRCs with all-symbol (r, δ)-locality. To that end,
we first prove bounds for optimal LRCs with small minimum
Hamming distance, distinguishing between the two cases of
2 | r and 2 � r. The proof strategy of both bounds is showing
that the existence of such codes forces the existence of many
subspaces, any two of which intersect only trivially. We then
recall a parameter-reduction lemma, which reduces optimal
LRCs with a large minimum Hamming distance into optimal
LRCs with a smaller one. Combining these together results in
the main bound. We note that the new bound is not specific
to MR codes or to cyclic codes, but instead applies to optimal
LRCs. The bound does, however, require certain divisibility
conditions, which are common to several constructions of
optimal LRCs, among them, MR codes.

Lemma 2: Let C be an optimal [n = (u + 1)
(r+δ−1), ur, r+2δ−1]q LRC with all-symbol (r, δ)-locality.
If 2|r, then

u+ 1 � (qr/2 + 1)
/⌊

2r + 2δ − 2
r

⌋
.

Proof: Denote t � �(2r + 2δ − 2)/r� and t′ � 	(2r +
2δ − 2)/r
. By Theorem 2, the code C has a parity-check
matrix of the following form,

P =
�
������������

V0,0 V0,1 · · · V0,t−1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 V1,0 V1,1 · · · V1,t−1 · · · 0 0 · · · 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
.
.

.

.

.

.

.

.

.

.

.

0 0 · · · 0 0 0 · · · 0 · · · Vu,0 Vu,1 · · · Vu,t−1
W0,0 W0,1 · · · W0,t−1 W1,0 W1,1 · · · W1,t−1 · · · Wu,0 Wu,1 · · · Wu,t−1

�
������������

,

where Vi,j ∈ F
(δ−1)×(r/2)
q , Wi,j ∈ F

r×(r/2)
q for i ∈ [u+1] and

j ∈ [t−1], and (Vi,0 Vi,1, · · · , Vi,t−1) is parity-check matrix of
an [r+δ−1, r, δ]q MDS code for i ∈ [u+1]. This implies that
the matrices Vi,t−1 and Wi,t−1, i ∈ [u + 1], have r

2 columns
each when r|(2r+2δ−2), and (2r+2δ−2) mod r

2 otherwise.
Let us consider the following square (r+2δ−2)×(r+2δ−2)

matrices,

Ea,b,i,j �
�
���

Va,0 · · · Va,i−1 Va,i+1 · · · Va,t−1 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0 Vb,0, · · · Vb,j−1 Vb,j+1 · · · Vb,t−1

Wa,0,· · ·Wa,i−1 Wa,i+1 · · ·Wa,t−1 Wb,0,· · ·Wb,j−1 Wb,j+1 · · ·Wb,t−1

�
���,

where a, b ∈ [u+1], a = b, and i, j ∈ [t′]. Since the minimum
Hamming distance of C is r+2δ−1, any r+2(δ−1) columns

from P are linearly independent. This implies that the matrices
Ea,b,i,j defined above have full rank.

Recall that (Va,0, Va,1, · · · , Va,t−1) is a parity-check
matrix of an [r + δ − 1, r, δ]q MDS code. Thus,
(Va,1, · · · , Va,i−1, Va,i+1, · · · , Va,t−1) is an invertible
(δ − 1) × (δ − 1) matrix. A similar claim follows for
(Vb,1, · · · , Vb,j−1, Vb,j+1, · · · , Vb,t−1). Hence, after simple
column and row operations, the full rank of Ea,b,i,j implies
that
�
����

0 Va,1 · · ·Va,i−1 Va,i+1 · · ·Va,t−1 0 0 · · · 0 0 · · · 0
0 0 · · · 0 0 · · · 0 0 Vb,1 · · ·Vb,j−1 Vb,j+1 · · ·Vb,t−1

W
∗
a,i 0 · · · 0 0 · · · 0 W

∗
b,j 0 · · · 0 0 · · · 0

�
����

has full rank, implying also that

rank(W ∗
a,i,W

∗
b,j) = r, (2)

for a, b ∈ [u+ 1], a = b, and i, j ∈ [t′]. We also mention that
if either i = 0 or j = 0, natural adjustments need to be made,
that is, zeroing Va,1 instead of Va,0, and Vb,1 instead of Vb,0.

Next, assume a ∈ [u+1], and i, j ∈ [t′], i = j. We pick only
r + δ − 1 columns from P , which must therefore be linearly
independent, giving us,

r + δ − 1

= rank

�
Va,0 Va,1 · · · Va,t−1
Wa,0 Wa,1 · · · Wa,t−1

�

= rank

�
Va,0 Va,0 Va,1 · · · Va,t−1
Wa,0 Wa,0 Wa,1 · · · Wa,t−1

�

= rank

�
Va,0 0 Va,1 · · · Va,t−1
Wa,0 W∗

a,j Wa,1 · · · Wa,t−1

�

= rank

�
Va,0 0 Va,1 · · · Va,i−1 Va,i+1 · · · Va,t−1
Wa,0 W

∗
a,j Wa,1 · · · Wa,i−1 Wa,i+1 · · · Wa,t−1

�

= rank

�
0 0 Va,1 · · · Va,i−1 Va,i+1 · · · Va,t−1

W∗
a,i W∗

a,j 0 · · · 0 0 · · · 0

�
.

(3)

We explain why the fourth equality holds in more detail. The
column operations performed in order to obtain W ∗

a,j may be
written as (

0
W ∗

a,j

)
=

∑
τ∈[t]\{j}

(
Va,τ

Wa,τ

)
Eτ ,

where E0 = I is the identity matrix. It then follows that

(Va,0, . . . , Va,j−1, Va,j+1, . . . , Va,t−1) ·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

E0

...
Ej−1

Ej+1

...
Et−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0.

Since (Va,0, . . . , Va,j−1, Va,j+1, . . . , Va,t−1) is a parity-check
matrix for an [ r

2 + δ − 1, r
2 , δ]q MDS code, we have that the

matrix (Eᵀ
0 , . . . , E

ᵀ
j−1, E

ᵀ
j , . . . , E

ᵀ
t−1) is a generator matrix

for that code. Hence, any r
2 columns of it are linearly inde-

pendent. In particular, that means Ei is invertible. We can
therefore write,(

Va,i

Wa,i

)
= −

∑
τ∈[t]\{i,j}

(
Va,τ

Wa,τ

)
EτE

−1
i +

(
0

W ∗
a,j

)
E−1

i .
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This completes the detailed explanation for the fourth equality
in (3). The main observation is that (3) gives

rank(W ∗
a,i,W

∗
a,j) = r, (4)

for a ∈ [u+1], and i, j ∈ [t′], i = j. Again, if i = 0 or j = 0,
a natural adjustment needs to be made.

Let us define the following set of subspaces

W �
{
colspan(W ∗

a,i) : a ∈ [u+ 1], i ∈ [t′]
}
,

where colspan(·) of a matrix denotes its column space. By (2)
and (4) we learn that W contains only r

2 -dimensional spaces,
which are all distinct, hence

|W| = (u + 1)t′ = (u + 1)
⌊

2r + 2δ − 2
r

⌋
.

Additionally, any two subspaces from W intersect only triv-
ially, hence

(u+ 1)
⌊

2r + 2δ − 2
r

⌋
= |W| � qr − 1

qr/2 − 1
= qr/2 + 1.

Rearranging this gives the desired claim.
For the case 2 � r, we also have a similar lemma.
Lemma 3: Let C be an optimal [n = (u + 2)

(r+δ−1), ur, 2r+3δ−2]q LRC with all-symbol (r, δ)-locality.
If 2 � r, then

u � q(r+1)/2.

Proof: By Theorem 2, and after simple row operations,
the code C has a parity-check matrix of the following form,

P =�
������

Iδ−1 V0,0 V0,1 0 0 0 · · · 0 0 0
0 0 0 Iδ−1 V1,0 V1,1 · · · 0 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 0 0 0 · · · Iδ−1 Vu+1,0 Vu+1,1
0 W0,0 W0,1 0 W1,0 W1,1 · · · 0 Wu+1,0 Wu+1,1

�
������
,

where Iδ−1 is the (δ − 1) × (δ − 1) identity matrix,

Vi,1 ∈ F
(δ−1)×((r−1)/2)
q , Vi,2 ∈ F

(δ−1)×((r+1)/2)
q , Wi,1 ∈

F
2r×((r−1)/2)
q , Wi,2 ∈ F

2r×((r+1)/2)
q , and (Iδ−1, Vi,1, Vi,2) is

a parity-check matrix of an [r + δ − 1, r, δ]q MDS code, for
all i ∈ [u+ 2].

Consider the following square (2r+3δ−3)× (2r+3δ−3)
matrices,

Ea,b �

⎛⎜⎜⎝
Iδ−1 V0,0 V ′

0,1 0 0 0 0
0 0 0 Iδ−1 Va,1 0 0
0 0 0 0 0 Iδ−1 Vb,1

0 W0,0 W ′
0,1 0 Wa,1 0 Wb,1

⎞⎟⎟⎠ ,

where a, b ∈ [u + 2] \ {0}, a = b, and where V ′
0,1 and W ′

0,1

are the first r−1
2 columns of V0,1 and W0,1, respectively. Since

the minimum Hamming distance of C is 2r + 3δ − 2, any
2r+ 3δ− 3 columns from P are linearly independent, and in
particular,

rank(Ea,b) = 2r + 3δ − 3.

This implies that

rank(W0,0,W
′
0,1,Wa,1,Wb,1) = 2r.

By the size of the matrices, we also must have

rank(Wa,1,Wb,1) = r + 1,

and also

rank(Wa,1) = rank(Wb,1) =
r + 1

2
.

We now denote U ′ = colspan(W0,0,W
′
0,1) ⊆ F2r

q .
Obviously, dim(U ′) = r − 1. Let us arbitrarily choose an

(r + 1)-dimensional subspace Ũ ⊆ F2r
q such that F2r

q =
U ′ + Ũ , namely, dim(Ũ) = r + 1 and U ′ ∩ Ũ = {0}. For
any vector x ∈ F2r

q , let x̃ ∈ F2r
q denotes its projection onto Ũ ,

that is, x̃ ∈ Ũ is the unique vector such that x = x′ + x̃, with
x′ ∈ U ′. For any a ∈ [u + 2] \ {0}, we then construct W̃a,1

from Wa,1 by replacing each column vector with its projection
onto Ũ . It then follows, that for all a, b ∈ [u+2]\ {0}, a = b,

rank(W0,0,W
′
0,1, W̃a,1, W̃b,1) = 2r,

and also

rank(W̃a,1) = rank(W̃b,1) =
r + 1

2
.

Let us construct the set of subspaces

W �
{
colspan(W̃a,1) : a ∈ [u+ 2] \ {0}

}
.

By the previous discussion, W contains u + 1 subspaces of

Ũ , each of dimension r+1
2 , any two of which intersect only

trivially. Additionally, the sum of any two subspaces from W ,
summed together with the fixed (r− 1)-dimensional subspace
colspan(W0,0) + colspan(W ′

0,1), gives F2r
q . Thus,

u+ 1 = |W| � qr+1 − 1
q(r+1)/2 − 1

= q(r+1)/2 + 1,

completing the proof.
The final component in our main bounding theorem is a

parameter-reduction lemma. This lemma was proved in [9].
Lemma 4 ([9] Corollary 2): Let n = m(r+ δ− 1), δ � 2,

k = ur+v > r, and additionally, r|k or u � 2(r+1−v), where
all parameters are integers. If there exists an optimal [n, k, d]q
linear code C with d > r + δ and all-symbol (r, δ)-locality,
then there exists an optimal linear code C′ with all-symbol
(r, δ)-locality and parameters [n − �(r + δ − 1), k, d′ =
d− �(r + δ − 1)]q , where � � �(d− 1)/(r + δ − 1)� − 1.

Let us now state and prove our main bound. The next
theorem gives a lower bound on the size of the field required
for LRCs with all-symbol (r, δ)-locality.

Theorem 5: Let C be an optimal [n, k, d]q linear code with
all-symbol (r, δ)-locality. Assume n = m(r+ δ− 1), k = ur,
u � 2. If 2|r and m � u+ 1 then,

q � ψ

(((
k

r
+ 1

)⌊
2r + 2δ − 2

r

⌋
− 1

) 2
r

)
,

where ψ(x) is the smallest prime power greater or equal to x.
If 2 � r and m � u+ 2 then

q � ψ

((
k

r

) 2
r+1

)
.
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Proof: The proof is straightforward. Apply Lemma 4
until reaching the required conditions of either Lemma 2 or
Lemma 3, and then use them.

Remark: Assume that there exists an optimal [n, k, d]q
LRC with all-symbol (r, δ)-locality, and define t =
	(d− 1)/δ
 � 2. Rewriting the bound of Theorem 4 (which
we cite from [9]) in a slightly looser yet more convenient way,

q = Ω

⎛⎝(
nr

t(r + δ)

) �(d−1)/δ�
2	 d−1+v

r+δ−1 
r−2v

⎞⎠ .

Thus, when only k and n tend to infinity, and the other
parameters are constant, if

	(d− 1)/δ

2
⌊

d−1+v
r+δ−1

⌋
r − 2v

<
2

r + 1
,

then the exponent in the bound of Theorem 5 is higher, and
it may outperform the known bound of Theorem 4 (where
we denote k = ur + v and 0 � v � r − 1). For example,
assume the following are positive integers, δ = 3(r− 1), d =
3τ(r + δ − 1) + δ, t = 	d−1

δ 
 = 4τ , as well as τ being a
positive integer. Further assume that k = ur. In this case, the
known bound of Theorem 4 gives us q = Ω(n

2
3r ). However,

the new bound of Theorem 5 gives us q = Ω(n
2

r+1 ) if 2|r,
and q = Ω(n

2
r ), otherwise. LRCs with such parameters can

be constructed by the construction in [38].
Having seen that the new bound of Theorem 5 may provide

an improvement, we focus on a single case. More specifically,
the case of r = 2 is of particular interest, since we can then
use Theorem 5 to prove that some known LRCs have optimal
field size.

We first consider some Tamo-Barg codes [38].
Lemma 5 [38]: Let q be a prime power, q = r+δ−1, then

there exists an optimal LRC with all-symbol (r, δ)-locality
and parameters [qb, ur, (qb−1 − u)q + δ]qb , where b � 2 and
0 < u < qb−1.

Corollary 1: Let C be a code from Lemma 5 with r = 2 and
u = qb−1−1. If qb−1 is not a prime power then C has optimal
field size.

Example 1: Let n = 24, r = 2, δ = 3, then by Lemma 5
there exists an optimal LRC with all-symbol (2, 3)-locality
and parameters [16, 6, 7]24 , which has optimal field size since
15 is not a prime power.

We now examine a construction of cyclic optimal LRCs
from [39].

Lemma 6 [39]: Let r = 2, n = m(r + δ − 1) = qb − 1,
and k = ur + v with 0 � v < r, where qb is prime
power. Then there exists a cyclic optimal LRC with all-symbol
(2, δ)-locality and parameters [qb − 1, k, d]qb .

Corollary 2: Let C be a code from Lemma 6 with m = u+1
and v = 0. If neither qb − 2, nor qb − 1, are prime powers,
then C has optimal field size.

Example 2: Let n = 26 − 1, r = 2, and δ = 2. Then by
Lemma 6, there exists a cyclic optimal LRC with all-symbol
(2, 2)-locality, and parameters [63, 40, 5]26, which has optimal
field size since both 62 and 63 are not prime powers.

Yet another construction of cyclic optimal LRCs comes
from [13].

Lemma 7 [13]: Let r = 2, δ = 2, n = m(r + δ − 1) =
3m = qb + 1, and k = 2u, with u an even integer, and
where qb is prime power. Then there exists a cyclic optimal
LRC with all-symbol (2, 2)-locality and parameters [qb + 1 =
3m, 2u, d]qm .

Corollary 3: Let C be a code from Lemma 7 with m =
u+ 1. Then C has optimal field size.

Example 3 [13]: Let n = 9 = 23 + 1, r = 2, δ = 2, k = 4,
then there exists a cyclic optimal [9, 4, 5]8-LRC, which has
optimal field size.

Note that an (n, r = 2, h = 2, δ, q)-MR code is also an
[n = (u+1)(δ+1), 2u, 2δ+1]q optimal LRC. The following
corollary can be derived directly from Lemma 2.

Corollary 4: Let C be an (n, r = 2, h = 2, δ, q)-MR code.
Then q � n− 1.

IV. CYCLIC MAXIMALLY RECOVERABLE (MR) CODES

We divide this section into two parts. In the first part
we construct cyclic MR codes, and show that for certain
parameters they have the exact optimal field size. The main
idea behind our construction is to carefully choose the roots
for the cyclic code we construct, in a way that produces an MR
code. In the second part we study a known class of MR codes
which are non-cyclic, but have the same parameters as the
cyclic codes we construct. We then show that these non-cyclic
codes can sometimes be permuted to obtain cyclic MR codes.
For this part, as tools to prove the main results, we characterize
the algebraic structure of the repair sets of cyclic optimal
LRCs (Theorem 7) and the structure of punctured codes
and shortened codes over repair sets (Corollary 7). On the
one hand, we prove that for some parameters the known
construction can be permuted to obtain cyclic MR codes
by finding suitable permutations (Theorem 8). On the other
hand, we show that such a permutation is not always possible
(Theorem 9). By combining the two parts, we obtain our main
result.

A. A New Construction

We immediately present our construction for cyclic MR
codes. It is inspired by the construction of [39].

Construction 1: Let b, r, δ � 2 be integers, q a prime power,
n = qb−1, α ∈ Fqb a primitive element, a = (r+δ−1)|(q−1),
and m = n/a such that gcd(δ,m) = 1. Define

R �
{
αja+t : 1 � j � m, 1 � t � δ − 1

} ∪ {
1, αδ

}
.

The constructed code, C, is the cyclic code of length n over
Fqb with root set R.

Our goal is now to show that the code from Construction 1
is indeed a cyclic MR code. However, in order to do so we
require a technical lemma.

Lemma 8: Assume the setting and notation of Construc-
tion 1. Denote β = αm, and γ = αδ . Assume Ti =
{ti,1, . . . , ti,δ} ⊆ [a] for i = 1, 2. Then for any i1, i2 ∈ [m],
i1 = i2, the matrix, shown in the equation at the bottom of
the next page, has full rank.
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Proof: Assume to the contrary that there exists 0 =
E = (e1,1, e1,2, · · · , e1,δ−1, e2,1, e2,2, · · · , e2,δ−1, e0, eδ) ∈
F2δ

qb satisfying EM = 0. Hence, the polynomials f1(x) =
e0 + γi1eδx

δ +
∑δ−1

i=1 e1,ix
i and f2(x) = e0 + eδγ

i2xδ +∑δ−1
i=1 e2,ix

i have roots {βt1,i : 1 � i � δ} and {βt2,i : 1 �
i � δ}, respectively. Note that E = 0 implies that eδ = 0, for
otherwise, deg(f1(x)) < δ and deg(f2(x)) < δ, but they each
have δ distinct roots, a contradiction. By Vieta’s formula, we
have ∏

1�i�δ β
t1,i∏

1�i�δ β
t2,i

= γi2−i1 .

Hence, there exists an integer t such that βt = γi2−i1 , i.e.,
αmt = αδ(i2−i1). It follows that

mt ≡ δ(i2 − i1) (mod ma),

and then

0 ≡ δ(i2 − i1) (mod m).

This contradicts the facts that i1 = i2 and gcd(δ,m) = 1, and
completes the proof.

We can now prove that the constructed code is indeed a
cyclic MR code.

Theorem 6: Assume the setting and notation of Construc-
tion 1. Then the code C of Construction 1 is a cyclic (n =
qb − 1, r, h = 2, δ, qb)-MR code, equivalently, a cyclic MR
code with parameters [n = qb − 1, k = mr − 2, d]qb with
repair sets of size r + δ − 1, and

d =

{
δ + 2 r > 2,
2δ + 1 r = 2.

Proof: Denote β = αm, and γ = αδ . In the first step of
our proof we contend that the following matrix is a parity-
check matrix of C, shown in the equation at the bottom of the
next page. Define the following polynomial,

f(x) �
m−1∏
i=1

(x− αai) =
m−1∑
j=0

ejx
j .

Clearly, f(1) = 0. We then have

(e0, e1, · · · , em−1)

�
�������������

1 1 1 · · · 1

1 α
a

α
2a · · · α

a(n−1)

1 α
2a

α
4a · · · α

2a(n−1)

.

.

.

.

.

.

.

.

.

.

.

.

1 α
a(m−1)

α
2a(m−1) · · · α

a(m−1)(n−1)

�
�������������

= (f(1), 0, . . . , 0, f(α
am

), 0, . . . , 0, f(α
2am

), . . . , 0, f(α
(a−1)am

), 0, . . . , 0)

= (f(1), 0, . . . , 0, f(1), 0, . . . , 0, f(1), 0, . . . , 0, f(1), 0, . . . , 0).

The preceding equation also means that for all 1 � i � δ− 1,

(e0, e1, · · · , em−1)

�
�������������������

1 α
i

α
2i · · · α

i(n−1)

1 αa+i α2a+2i · · · αa(n−1)+i(n−1)

1 α
2a+i

α
4a+2i · · · α

2a(n−1)+i(n−1)

.

.

.

.

.

.

.

.

.

.

.

.

1 α
a(m−1)+i

α
2a(m−1)+2i · · · α

a(m−1)(n−1)+i(n−1)

�
�������������������

=(f(1), 0, . . . , 0, α
mi

f(1), 0, . . . , 0, α
2mi

f(1), 0, . . . , 0, α
(a−1)mi

f(1), 0, . . . , 0).

(5)

Assume G is a generator matrix for C. Recall that the
roots of C are R =

{
αja+t : 1 � j � m, 1 � t � δ − 1

} ∪{
1, αδ

}
. Hence, for all 1 � j � m and 1 � t � δ − 1,

G ·
(
1, αja+t, α2(ja+t), . . . , α(n−1)(ja+t)

)ᵀ
= 0.

Define, for all 1 � i � δ − 1,

ci = (1, 0, · · · , 0, βi, 0, · · · , 0, β2i, · · · , 0, β(a−1)i, 0, · · · , 0).

Note that ci is a linear combination of the rows of matrix
in (5). Thus, the facts β = αm, and f(1) = 0 hint

G · cᵀi = 0,

and so, ci ∈ C⊥. Combining this with the fact that C is cyclic
(and therefore, also C⊥), σj(ci) ∈ C⊥ for all j, where we
recall that σ is the cyclic left-shift operator. Thus, the first
m(δ−1) rows of H contain codewords of C⊥. The remaining
last two rows of H correspond to parity checks for the roots
1 and γ = αδ , both of which are roots of C. If we now denote
by C′ the [n, k′, d′]qb code whose parity-check matrix is H ,
we can say C ⊆ C′. It remains to show that C = C′ to complete
the proof.

We first observe that since H has m(δ − 1) + 2 rows,

dim(C′) = k′ � n−m(δ − 1) − 2 = mr − 2. (6)

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βt1,1 βt1,2 · · · βt1,δ 0 0 · · · 0
β2t1,1 β2t1,2 · · · β2t1,δ 0 0 · · · 0

...
...

...
...

...
...

β(δ−1)t1,1 β(δ−1)t1,2 · · · β(δ−1)t1,δ 0 0 · · · 0
0 0 · · · 0 βt2,1 βt2,2 · · · βt2,δ

0 0 · · · 0 β2t2,1 β2t2,2 · · · β2t2,δ

...
...

...
...

...
...

0 0 · · · 0 β(δ−1)t2,1 β(δ−1)t2,2 · · · β(δ−1)t2,δ

1 1 · · · 1 1 1 · · · 1
γt1,1m+i1 γt1,2m+i1 · · · γt1,δm+i1 γt2,1m+i2 γt2,1m+i2 · · · γt2,δm+i2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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An inspection of H reveals that C′ has all-symbol (r, δ)-
locality and the repair sets are given by Gi � �m� + i for
i ∈ [m]. Plugging (6) into Theorem 1 we obtain that the
minimum distance of C′ satisfies

d′ �
{
δ + 2 r > 2,
2δ + 1 r = 2.

(7)

Let us first handle the case of r > 2. We contend that in that
case, the minimum distance of C′ is at least d′ � δ+ 2. Even
if we ignore the two bottom rows of H , the (δ − 1) × (r +
δ − 1) Vandermonde matrices in the columns corresponding
to a repair set show that any δ− 1 columns of H are linearly
independent. Thus, a linearly dependent set of columns from
H requires at least δ columns from each repair set it intersects.
If we try to pick linearly dependent columns from a single
repair set, then taking into account also the bottom two rows
of H , the columns of a repair set also form a (δ + 1) × (r +
δ − 1) Vandermonde matrix (recall that γm = βδ), and so
δ+ 1 columns of H from the same repair set are still linearly
independent. If instead we pick columns from more than one
repair set, at least 2δ columns are required. Combined together,
since δ � 2, the smallest set of linearly dependent columns of
H contains at least δ+2 columns, i.e., d′ � δ+2 as claimed.
Together with (7),

d′ = δ + 2.

Again by Theorem 1, necessarily

k′ = n−m(δ − 1) − 2 = mr − 2.

Finally, we note that

dim(C) = k = n− |R| = n−m(δ − 1) − 2 = k′ = dim(C′).

Since C ⊆ C′, and they are of equal dimension, we have C =
C′, and H is a parity-check matrix for C.

We turn to the case of r = 2. As in the previous case,
a linearly dependent set of columns from H requires at least

δ columns from each repair set it intersects. However, this
time, since r = 2, we cannot choose δ + 2 columns from
the same repair set, since each repair set contains exactly
δ + 1 columns. Thus, a set of linearly dependent columns
of H contains at least δ columns each from two repair sets.
However, by Lemma 8, exactly δ columns each from two
repair sets, still forms a set of linearly independent vectors.
Thus, at least 2δ + 1 columns are required for a dependent
set, namely, d′ � 2δ + 1. As in the previous case, by (7) we
have

d′ = 2δ + 1,

and then

k′ = n−m(δ − 1) − 2 = k,

and C = C′, as desired.
In summary, we just proved the code C is an optimal LRC

which is cyclic. The fact that it is a (qb − 1, r, 2, δ, qb)-MR
code follows directly from Lemma 8, since any erasure pattern
hitting two repair sets with δ erasures each, corresponds to a
full-rank set of columns from H , and is therefore correctable.

The cyclic MR codes by Construction 1 have optimal
Hamming distance, and order-optimal field size with respect
to the bound in Lemma 1-(1), where we consider δ � 2 as a
constant. However, we can do better than that when r = 2,
according to Corollary 4.

Corollary 5: When r = 2, the cyclic MR codes generated
by Construction 1 have optimal field size by Corollary 4,
provided that neither qb − 1, nor qb − 2, are prime powers.
When r > 2, the cyclic MR codes by Construction 1 have
optimal Hamming distance, and order-optimal field size with
respect to the bound in Lemma 1-(1), where we consider δ � 2
as a constant.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 β 0 · · · 0 · · · βa−1 0 · · · 0
1 0 · · · 0 β2 0 · · · 0 · · · β2(a−1) 0 · · · 0
...

...
...

...
...

...
...

...
...

1 0 · · · 0 βδ−1 0 · · · 0 · · · β(δ−1)(a−1) 0 · · · 0
0 1 · · · 0 0 β · · · 0 · · · 0 βa−1 · · · 0
0 1 · · · 0 0 β2 · · · 0 · · · 0 β2(a−1) · · · 0
...

...
...

...
...

...
...

...
...

0 1 · · · 0 0 βδ−1 · · · 0 · · · 0 β(δ−1)(a−1) · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · β · · · 0 0 · · · βa−1

0 0 · · · 1 0 0 · · · β2 · · · 0 0 · · · β2(a−1)

...
...

...
...

...
...

...
...

...
0 0 · · · 1 0 0 · · · βδ−1 · · · 0 0 · · · β(δ−1)(a−1)

1 1 · · · 1 1 1 · · · 1 · · · 1 1 · · · 1
1 γ · · · γm−1 γm γm+1 · · · γ2m−1 · · · γ(a−1)m γ(a−1)m+1 · · · γn−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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B. Turning Non-Cyclic Codes Into Cyclic Codes

Previous works that constructed non-cyclic (n, r, h, δ, q)-
MR codes, for h = 2, did so with q = Θ(n(δ − 1)) in [4],
and later, with q = Θ(n) [19] (see also [23], that obtained
q = Θ(n) for the special case of n = 2(r + δ − 1)).
Of particular interest to us are the (n, r, 2, δ, qb)-MR codes
from [19, Theorem IV.2]. These MR codes have the same
parameters as Construction 1. However, they are not cyclic MR
codes directly. In what follows, we shall attempt to determine
whether the MR codes generated in [19, Theorem IV.2] can be
rearranged to become cyclic codes. Along the way, we shall
prove some interesting facts concerning cyclic optimal LRCs.

As a first step, we show the repair sets of cyclic optimal
LRCs are severely restricted.

Theorem 7: Let C be a cyclic optimal LRC with parameters
[n, k, d]q and all-symbol (r, δ)-locality. Write k = ur+v with
0 < v � r. If u � 2(r−v+1), then for any repair set S ⊆ Zn,
and any j ∈ Zn, either S + j = S or (S + j) ∩ S = ∅.

The technical proof of Theorem 7 is deferred to the appen-
dix. As an immediate consequence, we now show that the
repair sets of cyclic optimal LRCs must be cosets of Zn.

Corollary 6: Let C be a cyclic optimal LRC with parame-
ters [n, k, d]q and all-symbol (r, δ)-locality (where, to avoid
trivial cases, we assume that C does not have all-symbol
(r − 1, δ)-locality). Let k = ur + v, 0 < v � r. If u �
2(r − v + 1), then n = m(r + δ − 1), m ∈ N, and the repair
sets of C are

Gi � �m� + i = {jm+ i : j ∈ Z} ⊆ Zn,

for all i ∈ Z.
Proof: Let S0 ⊆ Zn be a repair set such that 0 ∈ S0.

By Theorem 7 we have S0 + i = S0 ⊆ Zn for any i ∈ S0.
Thus, S0 is a subgroup of the cyclic group (Zn,+). Note that
|S0| � r + δ − 1. If |S0| < r + δ − 1, then the fact S0 + i,
for i ∈ Zn, are also repair sets for C, implies that C has all-
symbol (r − 1, δ)-locality, which contradicts our assumption.
Thus, |S0| = r + δ − 1, S0 = �m�, and (r + δ − 1)|n.

Let S be any repair set of C. the same analysis shows that
|S| = r+δ−1. Note that S−i for any i ∈ S is still a repair set
of C. Now it is easy to check that S−i is a r+δ−1-subgroup
of (Zn,+), i.e., S − i = S0, which completes the proof.

Remark: Corollary 6 shows that the condition
(r + δ − 1)|n is not a restriction when u � 2(r − v + 1),
but rather a consequence.

Remark: For the case u = 1 (i.e., k = r + v),
and (r + δ − 1) � n, explicit constructions were proposed in
[33, Corollaries 27, 37, 43] for cyclic optimal LRCs.
Corollary 6 implies that constructions with such parameters
are possible only if 1 = u < 2(r − v + 1), i.e., r � v.

Further building on Corollary 6, we can now show that
cyclic optimal LRCs have a parity-check matrix with a nice
form.

Corollary 7: Let C be a cyclic optimal LRC with parame-
ters [n, k, d]q, and all-symbol (r, δ)-locality (where, to avoid
trivial cases, we assume that C does not have all-symbol
(r − 1, δ)-locality). If u � 2(r − v + 1), then a parity-check
matrix of C can be given in the following form, shown in

the equation at the bottom of the next page, where si, hj are
column vectors, (s0, s2, · · · , sa−1) is a parity-check matrix of
a cyclic code with minimum Hamming distance of at least δ,
a = r+δ−1, m = n/a, and (h0, h1, · · · , ham−1) corresponds
to the global parity checks. Moreover, the punctured codes
satisfy C|Gi = C|G0 for all i ∈ [m], where Gi � �m� + i.
Similarly, the shortened codes satisfy C|Gi = C|G0 for all
i ∈ [m], where C|Gi is the code whose parity check matrix
contains only the columns corresponding to Gi from H .

Proof: The parity-check matrix follows directly from
Corollary 6 and the fact that C|〈m〉 = C|〈m〉+i for i ∈ Z is
also a cyclic code. Additionally, since C is cyclic, trivially we
have C|Gi = C|G0 and C|Gi = C|G0 .

Now we recall a construction, which was first introduced
in [19].

Construction 2 [19]: Let q be a prime power, b ∈ N,
n = qb − 1, a = r + δ − 1, a|(q − 1), and m = n/a. Let
α be a primitive element of Fqb , β = αm, and λ = αs,
gcd(s,m) = 1. The following parity-check matrix defines an
(n, r, 2, δ, qb)-MR code, shown in the equation at the bottom
of the next page.

To simply our notation, we define,

x �

⎛⎜⎜⎜⎝
x
x2

...
xδ−1

⎞⎟⎟⎟⎠ .

In this notation, the matrix H from Construction 2 becomes,
shown in the equation at the bottom of the next page. One
cannot avoid seeing a similarity between the parity-check
matrix of Construction 2, and the parity-check matrix found
in Theorem 6 for the code from Construction 1. However, the
code from Construction 2 is not cyclic, but rather quasi-cyclic.
In what follows we study whether permuting it produces a
cyclic code.

Let Sn denote the set of permutations over Zn, for any n ∈
N. Each permutation in Sn may be thought of as a bijection
in ZZn

n , namely, a bijection from Zn to Zn. Let C be a code
of length n, whose coordinates are indexed by Zn. If � ∈ Sn

is a permutation, we define the permutation of C by � as

C� �
{
(c�(0), c�(1), . . . , c�(n−1)) : (c0, c1, . . . , cn−1) ∈ C)

}
.

If C is a cyclic code, it is natural to ask for what permutations
� ∈ Sn, C� is also cyclic. Apart from the trivial cyclic shifts of
C, a natural subset of candidate permutations are multipliers,
namely,

μt(x) � xt mod n,

Z×
n � {1 � t � n : gcd(t, n) = 1} ,

Υ(n) �
{
μt : t ∈ Z×

n

}
.

Pálfy [29] proved that, in many cases, multipliers are the
essential permutations keeping a code cyclic:

Lemma 9 [29]: Consider codes of length n whose coordi-
nates are indexed by Zn.

1) When gcd(n, ϕ(n)) = 1 or n = 4, for all cyclic codes
C, if C�′ , �′ ∈ Sn, is also a cyclic code, then there is a
multiplier � ∈ Υ(n) such that C�′ = C�.
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2) When gcd(n, ϕ(n)) = 1 and n = 4, there exists a cyclic
code C, and �′ ∈ Sn such that C�′ is cyclic, but C�′ = C�

for all multipliers � ∈ Υ(n).
Here ϕ(·) denotes Euler’s totient function.

Drawing inspiration from Lemma 9, we address the (dif-
ferent) question of finding permutations from Sn that turn
the non-cyclic code of Construction 2 into a cyclic code.
Recall that in the setting of Construction 2, a,m, n ∈ N, and
n = ma. We now define a set of functions from Zn to Zn as
follows:

μt,z(xm+ i) � (xmti + zi) mod n,

where we assume x ∈ [a], i ∈ [m], t = (t0, . . . , tm−1) ∈
Zm, and z = (z0, . . . , zm−1) ∈ Zm. We then define
the set,

Ψ(n, a) �
{
μt,z : t ∈ (Z×

a )m, z ∈ Zm, (z mod m) ∈ Sm

}
,

and where by abuse of notation, z mod m denotes the Zm →
Zm mapping that maps i �→ (zi mod m).

We would like to make some easy observations concerning
the elements of Ψ(n, a). Denote G0 � �m� ⊆ Zn. Then G0 is

an additive subgroup of Zn, and G0
∼= Za. Let us denote

the cosets of G0 by Gi � G0 + i, for all i ∈ Z. We now
note that j �→ jt mod n is a bijection from G0 to G0 if
and only if gcd(t, a) = 1. Thus, �t,z|Gi (i.e., the restriction
of �t,z to Gi) is a bijection from Gi to Gzi mod m. With
the extra requirement that (z mod m) ∈ Sm, we have that
distinct cosets Gi are mapped to distinct cosets Gzi mod m, and
hence, Ψ(n, a) ⊆ Sn, namely, Ψ comprises of permutations
over Zn.

Theorem 8: Assume the notation and setting of Construc-
tion 2, and let C be the resulting code when r � 3. Then there
exists a permutation � ∈ Ψ(n, a) such that C� is a cyclic code
if and only if gcd(m, a

gcd(a,δ) ) = 1.

Proof: We first observe that gcd(m, a
gcd(a,δ) ) = 1 if

and only if the equation δmτ ≡ δ (mod a) has at least
one solution τ ∈ Za. We now prove both directions of the
claim.

In the first direction, assume δmτ ≡ δ (mod a) has a
solution τ ∈ Za. Consider the permutation � = �t,z ∈ Ψ(n, a)
for which t = (1, . . . , 1), and z = (z0, . . . , zm−1), where

H =

⎛⎜⎜⎜⎜⎜⎝
s0 0 · · · 0 s1 0 · · · 0 · · · sa−1 0 · · · 0
0 s0 · · · 0 0 s1 · · · 0 · · · 0 sa−1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · s0 0 0 · · · s1 · · · 0 0 · · · sa−1

h0 h1 · · · hm−1 hm hm+1 · · · h2m−1 · · · h(a−1)m h(a−1)m+1 · · · ham−1

⎞⎟⎟⎟⎟⎟⎠ ,

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 β 0 · · · 0 · · · βa−1 0 · · · 0
1 0 · · · 0 β2 0 · · · 0 · · · β2(a−1) 0 · · · 0
...

...
...

...
...

...
...

...
...

1 0 · · · 0 βδ−1 0 · · · 0 · · · β(δ−1)(a−1) 0 · · · 0
0 1 · · · 0 0 β · · · 0 · · · 0 βa−1 · · · 0
...

...
...

...
...

...
...

...
...

0 1 · · · 0 0 βδ−1 · · · 0 · · · 0 β(δ−1)(a−1) · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · β · · · 0 0 · · · βa−1

...
...

...
...

...
...

...
...

...
0 · · · · · · 1 0 0 · · · βδ−1 · · · 0 0 · · · β(δ−1)(a−1)

λ0 λ1 · · · λm−1 λ0 λ1 · · · λm−1 · · · λ0 λ1 · · · λm−1

1 1 · · · 1 βδ βδ · · · βδ · · · βδ(a−1) βδ(a−1) · · · βδ(a−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

H =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 β 0 · · · 0 · · · βa−1 0 · · · 0
0 1 · · · 0 0 β · · · 0 · · · 0 βa−1 · · · 0
...

...
. . .

...
...

...
. . .

...
...

...
. . .

...
0 0 · · · 1 0 0 · · · β · · · 0 0 · · · βa−1

λ0 λ1 · · · λm−1 λ0 λ1 · · · λm−1 · · · λ0 λ1 · · · λm−1

1 1 · · · 1 βδ βδ · · · βδ · · · βδ(a−1) βδ(a−1) · · · βδ(a−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.
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zi = i + mτi. Applying � to the coordinates of C, the
parity-check matrix H from Construction 2 becomes, shown
in the equation at the bottom of the page, which is a parity-
check matrix for C�. Here we used δmτ ≡ δ (mod a) to get
that βδmτ = βδ . Now, by dividing some of the rows with
appropriate scalars, another parity-check matrix for C� is the
following, shown in the equation at the bottom of the next
page. It is now clear that C� is cyclic, since H ′

�c
ᵀ = 0 implies

H ′
�(σ(c))ᵀ = 0, i.e., c ∈ C� implies σ(c) ∈ C�.
In the second direction, assume that there exists � ∈ Ψ(n, a)

such that C� is cyclic. Assume to the contrary that δmτ ≡ δ
(mod a) for all τ ∈ Za. Let us write � = �t,z ∈ Ψ(n, a), with
t = (t0, . . . , tm−1) ∈ (Z×

a )m, and z = (z0, . . . , zm−1) ∈ Zm.
We can now write,

�(xm+ i) = (xmti + zi) mod n = ((x+ τi)mti + ζi) mod n

with x, τi ∈ [a], and i, ζi ∈ [m]. Let us further define βi � βti .
We can now apply � to the order of the columns of H from
Construction 2 to obtain a parity-check matrix H� for the code
C�. By rearranging the order of the rows of the matrix, we may
write, shown in the equation at the bottom of the next page.

Recall that, by construction, the multiplicative order of β is
o(β) = a. Since gcd(tj , a) = 1, we also have that o(βj) = a,
for all j ∈ Zm. Taking into account that r � 3, namely,
a = r + δ − 1 � δ + 2, we have that 1, βj, β

2
j , . . . , β

δ
j are all

distinct. Let us look at the columns of H� that correspond to
Gj for some j ∈ Zm. These columns, after removing all-zero
rows, form a (transposed) (δ + 1) × a Vandermonde matrix.

�
����

β
τj
j

β
τj+1

j
. . . β

τj+a−1

j

λ
ζj λ

ζj . . . λ
ζj

β
τjδ

j β
(τj+1)δ
j . . . β

(τj+a−1)δ
j

�
����

=Π · diag(β
τj
j , . . . , β

τj(δ−1)
j , λ

ζj , β
τjδ

j ) ·

�
����������

1 1 . . . 1

1 βj . . . β
a−1
j

1 β
2
j . . . β

2(a−1)
j

.

.

.
.
.
.

.

.

.

1 β
δ
j . . . β

δ(a−1)
j

�
����������

, (8)

where Π is a permutation matrix that moves the second row
from the bottom to the top. Since 1, βj, β

2
j , . . . , β

δ
j are all

distinct, the rows of (8) are linearly independent. Thus, a linear
combination of the rows of H� that results in zeros in all the
positions of Gj must be a trivial combination.

We now use the fact that H� is a parity-check matrix for a
cyclic code. By adding cyclic rotations of existing rows in H�,
we obtain H ′

� which is also a parity-check matrix for the same
code, shown in the equation at the bottom of the next page,
where i ∈ Zm. However, these added rows must be linear
combinations of the rows of H�. Since they contain zeros in

all the entries of Gj , j = 0, these linear combinations cannot
use the last two rows of H�. It now follows that

rank
(

βτi

i βτi+1
i . . . βτi+a−1

i

βτ0
0 βτ0+1

0 . . . βτ0+a−1
0

)
= rank

(
βτ0

0 βτ0+1
0 . . . βτ0+a−1

0

)
.

After the same treatment as (8), this gives

rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 βi . . . βa−1
i

1 β2
i . . . β

2(a−1)
i

...
...

...

1 βδ−1
i . . . β

(δ−1)(a−1)
i

1 β0 . . . βa−1
0

1 β2
0 . . . β

2(a−1)
0

...
...

...

1 βδ−1
0 . . . β

(δ−1)(a−1)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=rank

⎛⎜⎜⎜⎜⎝
1 β0 . . . βa−1

0

1 β2
0 . . . β

2(a−1)
0

...
...

...

1 βδ−1
0 . . . β

(δ−1)(a−1)
0

⎞⎟⎟⎟⎟⎠ .

If
{
β0, β

2
0 , . . . , β

δ−1
0

} = {
βi, β

2
i , . . . , β

δ−1
i

}
, then by the fact

that r � 3, we would have a contradiction to the rank equality
above. It follows that{

β0, β
2
0 , . . . , β

δ−1
0

}
=

{
βi, β

2
i , . . . , β

δ−1
i

}
, (9)

for all i ∈ Zm.
We now repeat the argument, with an extra step. Take H ′

�

and add to it a cyclic rotation of its last row to obtain the
following parity-check matrix for the same code, shown in
the equation at the bottom of the next page, where i ∈ Zm.
Again, this added row is linearly dependent on the others, and
so, looking at the columns of G0 we obtain the rank equality

rank

⎛⎜⎜⎜⎜⎜⎝
βτi

i βτi+1
i . . . βτi+a−1

i

βτ0
0 βτ0+1

0 . . . βτ0+a−1
0

λζ0 λζ0 . . . λζ0

βτ0δ
0 β

(τ0+1)δ
0 . . . β

(τ0+a−1)δ
0

βτiδ
i β

(τi+1)δ
i . . . β

(τi+a−1)δ
i

⎞⎟⎟⎟⎟⎟⎠
=rank

⎛⎝βτ0
0 βτ0+1

0 . . . βτ0+a−1
0

λζ0 λζ0 . . . λζ0

βτ0δ
0 β

(τ0+1)δ
0 . . . β

(τ0+a−1)δ
0

⎞⎠ .

H� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 β 0 · · · 0 · · · βa−1 · · · 0
0 βτ · · · 0 0 βτ+1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 0 · · · βτ(m−1) 0 0 · · · βτ(m−1)+1 · · · 0 · · · βτ(m−1)+a−1

λ0 λ1 · · · λm−1 λ0 λ1 · · · λm−1 · · · λ0 · · · λm−1

1 βτδ · · · βτ(m−1)δ βτmδ βτ(m+1)δ · · · βτ(2m−1)δ · · · βτm(a−1)δ · · · βτ(am−1)δ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,
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Again, using the same steps as in (8), we get

rank

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
1 βi . . . βa−1

i

1 β2
i . . . β

2(a−1)
i

...
...

...

1 βδ
i . . . β

δ(a−1)
i

1 β0 . . . βa−1
0

1 β2
0 . . . β

2(a−1)
0

...
...

...

1 βδ
0 . . . β

δ(a−1)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=rank

⎛⎜⎜⎜⎜⎜⎜⎝
1 1 . . . 1
1 β0 . . . βa−1

0

1 β2
0 . . . β

2(a−1)
0

...
...

...

1 βδ
0 . . . β

δ(a−1)
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

As before, if
{
1, β0, β

2
0 , . . . , β

δ
0

} = {
1, βi, β

2
i , . . . , β

δ
i

}
, then

by the fact that r � 3, we would have a contradiction to the
rank equality above. If follows that{

1, β0, β
2
0 , . . . , β

δ
0

}
=

{
1, βi, β

2
i , . . . , β

δ
i

}
, (10)

for all i ∈ Zm.

H ′
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 β 0 · · · 0 · · · βa−1 · · · 0
0 1 · · · 0 0 β · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 0 · · · 1 0 0 · · · β · · · 0 · · · βa−1

λ0 λ1 · · · λm−1 λ0 λ1 · · · λm−1 · · · λ0 · · · λm−1

1 βτδ · · · βτ(m−1)δ βτmδ βτ(m+1)δ · · · βτ(2m−1)δ · · · βτm(a−1)δ · · · βτ(am−1)δ

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

H� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

βτ0
0 0 · · · 0 βτ0+1

0 0 · · · 0 · · · βτ0+a−1
0 · · · 0

0 βτ1
1 · · · 0 0 βτ1+1

1 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 0 · · · β
τm−1

m−1 0 0 · · · β
τm−1+1
m−1 · · · 0 · · · β

τm−1+a−1
m−1

λζ0 λζ1 · · · λζm−1 λζ0 λζ1 · · · λζm−1 · · · λζ0 · · · λζm−1

βτ0δ
0 βτ1δ

1 · · · β
τm−1δ
m−1 β

(τ0+1)δ
0 β

(τ1+1)δ
1 · · · β

(τm−1+1)δ
m−1 · · · β

δ(τ0+a−1)
0 · · · β

δ(τm−1+a−1)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

H ′
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βτi

i 0 · · · 0 βτi+1
i 0 · · · 0 · · · βτi+a−1

i · · · 0
βτ0

0 0 · · · 0 βτ0+1
0 0 · · · 0 · · · βτ0+a−1

0 · · · 0
0 βτ1

1 · · · 0 0 βτ1+1
1 · · · 0 · · · 0 · · · 0

...
...

. . .
...

...
...

. . .
...

...
. . .

...

0 0 · · · β
τm−1

m−1 0 0 · · · β
τm−1+1
m−1 · · · 0 · · · β

τm−1+a−1
m−1

λζ0 λζ1 · · · λζm−1 λζ0 λζ1 · · · λζm−1 · · · λζ0 · · · λζm−1

βτ0δ
0 βτ1δ

1 · · · β
τm−1δ
m−1 β

(τ0+1)δ
0 β

(τ1+1)δ
1 · · · β

(τm−1+1)δ
m−1 · · · β

δ(τ0+a−1)
0 · · · β

δ(τm−1+a−1)
m−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

H ′′
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βτi

i 0 · · · 0 βτi+1
i · · · 0 · · · βτi+a−1

i · · · 0
βτ0

0 0 · · · 0 βτ0+1
0 · · · 0 · · · βτ0+a−1

0 · · · 0
0 βτ1

1 · · · 0 0 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

. . .
...

...
. . .

...

0 0 · · · β
τm−1

m−1 0 · · · β
τm−1+1
m−1 · · · 0 · · · β

τm−1+a−1
m−1

λζ0 λζ1 · · · λζm−1 λζ0 · · · λζm−1 · · · λζ0 · · · λζm−1

βτ0δ
0 βτ1δ

1 · · · β
τm−1δ
m−1 β

(τ0+1)δ
0 · · · β

(τm−1+1)δ
m−1 · · · β

δ(τ0+a−1)
0 · · · β

δ(τm−1+a−1)
m−1

βτiδ
i β

τi+1δ
i+1 · · · β

(τi−1+1)δ
i−1 β

(τi+1)δ
i · · · β

(τi−1+2)δ
i−1 · · · β

δ(τi+a−1)
i · · · β

τi−1δ
i−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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The combination of (9) and (10) implies that βδ
0 = βδ

i for
all i ∈ Zm. We observe that

βδ
0 − 1 = (1 + β0 + · · · + βδ−1

0 )(β0 − 1),

βδ
i − 1 = (1 + βi + · · · + βδ−1

i )(βi − 1).

By (9),
βδ

0 − 1
βδ

i − 1
=
β0 − 1
βi − 1

.

But now, since βδ
0 = βδ

i , we conclude that

βi = β0,

for all i ∈ Zm.
Now that we know that β0 = β1 = · · · = βm−1, we can

write H� as, shown in the equation at the bottom of the next
page. Looking at the columns of H� that correspond to Gj ,
j ∈ Zm, once again we observe that the non-zero rows are
equivalent to a (transposed) Vandermonde matrix⎛⎜⎜⎜⎜⎜⎜⎝

1 1 . . . 1
1 β0 . . . βa−1

0

1 β2
0 . . . β

2(a−1)
0

...
...

...

1 βδ
0 . . . β

δ(a−1)
0

⎞⎟⎟⎟⎟⎟⎟⎠ .

Hence, these rows are linearly independent. Let us now add
a cyclically shifted version of the last row of H�, to obtain
yet another parity-check matrix for the code, shown in the
equation at the bottom of the next page. The added row is a
linear combination of the original rows of H�. Assume j ∈
Zm, j = m − 1. If we look at the columns of Gj in H∗

� we
see that (

β
τj+1δ
0 , β

(τj+1+1)δ
0 , . . . , β

(τj+1+a−1)δ
0

)
=β(τj+1−τj)δ

(
β

τjδ
0 , β

(τj+1)δ
0 , . . . , β

(τj+a−1)δ
0

)
.

Since the non-zero rows in the columns of Gj are linearly
independent, this linear combination is unique. Similarly, for
j = m− 1 we get(

β
(τ0+1)δ
0 , β

(τ0+2)δ
0 , . . . , βτ0δ

0

)
=β(τ0−τm−1)δ+δ

(
β

τm−1δ
0 , β

(τm−1+1)δ
0 , . . . , β

(τm−1+a−1)δ
0

)
,

which is again unique. However, all these linear combinations
must coincide simultaneously when viewing the entire H∗

� ,
and so

β
(τ1−τ0)δ
0 =β(τ2−τ1)δ

0 = · · · = β
(τm−1−τm−2)δ
0 =β(τ0−τm−1)δ+δ

0 .

Multiplying all of them together we get(
β

(τ1−τ0)δ
0

)m

=β(τ1−τ0)δ
0 · . . . · β(τm−1−τm−2)δ

0 · β(τ0−τm−1)δ+δ
0

=βδ
0 .

However, this means that

δm(τ1 − τ0) ≡ δ (mod a),

which completes the proof.

While the last theorem shows us a sufficient condition under
which the known code of Construction 2 may be permuted to
a cyclic code, the next theorem shows us that for almost all
cases, this condition is in fact necessary. First, we bring a
technical proposition.

Proposition 1: Let a, r, δ be positive integers with a =
r + δ − 1, and τ, τ ′ ∈ Z×

a . If

{iτ mod a : 1 � i � δ − 1} ⊆ {iτ ′ mod a : 1 � i � δ} ,
(11)

and one of the following conditions holds,
1) δ � 4 and r � 5
2) δ = 3 and r � 4
3) δ = 2 and r � 3 is odd

then we have τ = τ ′.
Proof: For Case 1, since τ, τ ′ ∈ Z×

a there exists an � ∈ Z×
a

such that τ ≡ �τ ′ (mod a). By (11), we have

{(i+ 1)τ mod a : 1 � i � δ − 1}
⊆{(iτ ′ + τ) mod a : 1 � i � δ}
= {(i+ �)τ ′ mod a : 1 � i � δ} .

Obviously,

| {(i+ 1)τ mod a : 1 � i � δ − 1}
∩ {iτ mod a : 1 � i � δ − 1} |

�δ − 2,

and so,

| {iτ ′ mod a : 1 � i � δ}
∩ {(i+ �)τ ′ mod a : 1 � i � δ} |

�δ − 2,

and since τ ′ ∈ Z×
a ,

|{i mod a : 1 � i � δ} ∩ {(i+ �) mod a : 1 � i � δ}|
�δ − 2.

Since δ − 1 � 3 and a � δ + 4, we must have � ∈ {1, 2}.
It remains to show that � = 2. Assume to the contrary that
� = 2. Similarly, by (11), we have

{(i+ 2)τ mod a : 1 � i � δ − 1}
⊆{(iτ ′ + 2τ) mod a : 1 � i � δ}
= {(i+ 4)τ ′ mod a : 1 � i � δ} .

Again,

| {(i+ 2)τ mod a : 1 � i � δ − 1}
∩ {iτ mod a : 1 � i � δ − 1} |

�δ − 3,

which implies that,

| {(i+ 4)τ ′ mod a : 1 � i � δ}
∩ {iτ ′ mod a : 1 � i � δ} |

�δ − 3,

and since τ ′ ∈ Z×
a ,

|{(i+ 4) mod a : 1 � i � δ} ∩ {i mod a : 1 � i � δ}|
�δ − 3.

Authorized licensed use limited to: Moshe Schwartz. Downloaded on March 19,2023 at 09:07:25 UTC from IEEE Xplore.  Restrictions apply. 



CAI AND SCHWARTZ: BOUND ON THE MINIMAL FIELD SIZE OF LRCs, AND CYCLIC MR CODES THAT ATTAIN IT 2253

However, a � δ + 4 implies that

|{(i+ 4) mod a : 1 � i � δ} ∩ {i mod a : 1 � i � δ}|
�δ − 4,

which is a contradiction. Thus, we have � = 1 and τ = τ ′.
For Case 2, by (11), we have

{τ, 2τ mod a} ⊆ {τ ′, 2τ ′ mod a, 3τ ′ mod a} .
If τ ≡ 2τ ′ (mod a) then we have 2τ ≡ 4τ ′ (mod a),
hence 4τ ′ mod a ∈ {τ ′, 2τ ′ mod a, 3τ ′ mod a}. However,
this is impossible since τ ′ ∈ Z×

a and a � 6. Similarly,
if τ ≡ 3τ ′ (mod a) then we have 2τ ≡ 6τ ′ (mod a),
hence 6τ ′ mod a ∈ {τ ′, 2τ ′ mod a, 3τ ′ mod a}. Again, this
is also impossible since τ ′ ∈ Z×

a and a � 6. Thus, we have
τ = τ ′.

Finally, for Case 3, by (11) we have {τ} ⊆ {τ ′, 2τ ′ mod a}.
Obviously τ ≡ 2τ ′ (mod a) is impossible since 2|a and a �
3. Thus, τ = τ ′.

Theorem 9: Assume the notation and setting of Construc-
tion 2. Let C be the resulting code. Denote k = dim(C) =
ur + v with 0 < v � r and u � 2(r − v + 1). Additionally,
let a = 4 or gcd(a, ϕ(a)) = 1. Furthermore, assume that
a = qb′ − 1|qb − 1 = n, and that one of the following holds:

1) δ � 4 and r � 5
2) δ = 3 and r � 4
3) δ = 2 and r � 3 is odd

Then there exists a permutation � ∈ Sn such that C� is cyclic
only if gcd(m, a) | δ.

Proof:
Assume � ∈ Sn is a permutation such that C� is cyclic.

By Construction 2, we have that Gi � �m� + i, i ∈ [m], are
exactly the repair sets of C. Thus, the image sets �(Gi) �
{�(x) : x ∈ Gi} are exactly the repair sets of C�. Note that
C is an optimal LRC, which means that C� is also optimal.

By Corollary 6, we have

{�(Gi) : i ∈ [m]} = {Gi : i ∈ [m]} .
Thus, there exists a sequence of permutations, �i over Gi, for
all i ∈ [m], and zi ∈ Z, such that for all x ∈ Gi,

�(x) = (�i(x) + zi) mod n, (12)

which also implies that �(Gi) = Gi+zi , and (z0, . . . , zm−1)
is a permutation of [m]. By assumption, C� is cyclic. Hence,
C�|Gi is also cyclic, for each i ∈ [m].

By Construction 2, any punctured code, C|Gi , i ∈ [m], is a
subcode of the code with the (δ − 1)× a parity-check matrix
(1,β, . . . ,βa−1). Recall that C is an optimal LRC. Hence,
by Theorem 2, we have that this punctured code, C|Gi , is an
[a = r + δ − 1, r, δ]q MDS code. This implies that its parity-
check matrix is exactly (1,β, . . . ,βa−1). Since this matrix
clearly does not depend on i, we have C|Gi = C|Gj , for all
i, j ∈ [m]. Additionally, since βa = 1, all the punctured codes
C|Gi are cyclic.

By Corollary 7, we have that C�|Gi = C�|Gj for all i, j ∈
[m], and are all cyclic codes. Thus, a parity-check matrix of
C�|Gi may be given by

H(C�|Gi) = (βτi,0 ,βτi,1 , · · · ,βτi,a−1). (13)

We now have that �0 maps the cyclic code C|G0 into a
cyclic code C�|G0 , where we view these codes as indexed
by Za. Then, by Lemma 9, we can find a multiplier per-
mutation from Υ(a) that also maps C|G0 to C�|G0 . More
concretely, there exists τ ′ ∈ Z×

a , with which we define a
permutation

�′(xm+ i) = (xmτ ′ + i) (mod n),

for all x ∈ [a] and i ∈ [m]. For this permutation we have
C�|Gi = C�′ |Gi for all i ∈ [m]. Now, a parity-check matrix for

H� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

βτ0
0 0 · · · 0 βτ0+1

0 0 · · · 0 · · · βτ0+a−1
0 · · · 0

0 βτ1
0 · · · 0 0 βτ1+1

0 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 0 · · · β
τm−1

0 0 0 · · · β
τm−1+1
0 · · · 0 · · · β

τm−1+a−1
0

λζ0 λζ1 · · · λζm−1 λζ0 λζ1 · · · λζm−1 · · · λζ0 · · · λζm−1

βτ0δ
0 βτ1δ

0 · · · β
τm−1δ
0 β

(τ0+1)δ
0 β

(τ1+1)δ
0 · · · β

(τm−1+1)δ
0 · · · β

δ(τ0+a−1)
0 · · · β

δ(τm−1+a−1)
0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

H∗
� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

βτ0
0 0 · · · 0 βτ0+1

0 0 · · · 0 · · · βτ0+a−1
0 · · · 0

0 βτ1
0 · · · 0 0 βτ1+1

0 · · · 0 · · · 0 · · · 0
...

...
. . .

...
...

...
. . .

...
...

. . .
...

0 0 · · · β
τm−1

0 0 0 · · · β
τm−1+1
0 · · · 0 · · · β

τm−1+a−1
0

λζ0 λζ1 · · · λζm−1 λζ0 λζ1 · · · λζm−1 · · · λζ0 · · · λζm−1

βτ0δ
0 βτ1δ

0 · · · β
τm−1δ
0 β

(τ0+1)δ
0 β

(τ1+1)δ
0 · · · β

(τm−1+1)δ
0 · · · β

δ(τ0+a−1)
0 · · · β

δ(τm−1+a−1)
0

βτ1δ
0 βτ2δ

0 · · · β
(τ0+1)δ
0 β

(τ1+1)δ
0 β

(τ2+1)δ
0 · · · β

(τ0+2)δ
0 · · · β

δ(τ1+a−1)
0 · · · βτ0δ

0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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C�′ |Gi may be given by

H(C�′ |Gi) = (1,βτ ′
, · · · ,βτ ′(a−1)),

and it must be row-equivalent to H(C�|Gi) from (13).
We switch our view from the punctured codes to the

shortened codes of C. As above, the following shortened codes
are all equal, C|Gi = C|G0 , for all i ∈ [m]. A parity-check
matrix for them may be written as

⎛⎝1 1 · · · 1
1 β · · · βa−1

1 βδ · · · βδ(a−1)

⎞⎠ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 1 · · · 1
1 β · · · βa−1

1 β2 · · · β2(a−1)

...
...

...
1 βδ−1 · · · β(δ−1)(a−1)

1 βδ · · · β(δ)(a−1)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

By the multiplicative order of β, the codes C|Gi are all cyclic.
By Corollary 7, C�|Gi = C�|G0 , for all i ∈ [m], and a parity-
check matrix for them may be given by

H(C�|Gi) =

⎛⎝ 1 1 · · · 1
βτi,0 βτi,1 · · · βτi,a−1

βδτi,0 βδτi,1 · · · βδτi,a−1

⎞⎠ , (14)

where τi,j , i ∈ [m], j ∈ [a], are the same as those in (13).
Once again, C�|Gi are all cyclic. Hence, by Lemma 9 we can
find a multiplier permutation from Υ(a) that also maps C|G0

to C�|G0 . Namely, there exists τ ′′ ∈ Z×
a , with which we define

�′′(xm+ i) = (xmτ ′′ + i) (mod n),

for all x ∈ [a] and i ∈ [m], such that C�|Gi = C�′′ |Gi , for all
i ∈ [m]. A parity-check matrix for C�′′ |Gi may be given by

H(C�′′ |Gi) =

⎛⎝1 1 · · · 1
1 βτ ′′ · · · βτ ′′(a−1)

1 βδτ ′′ · · · βδτ ′′(a−1)

⎞⎠ ,

and it must be row-equivalent to H(C�|Gi) from (14).
By the properties of Vandermonde matrices we have for all

i ∈ [m],

δ + 1 = rank

⎛⎝ 1 1 · · · 1
βτi,0 βτi,1 · · · βτi,a−1

βδτi,0 βδτi,1 · · · βδτi,a−1

⎞⎠

= rank

⎛⎜⎜⎝
1 1 · · · 1

βτi,0 βτi,1 · · · βτi,a−1

βτi,0 βτi,1 · · · βτi,a−1

βδτi,0 βδτi,1 · · · βδτi,a−1

⎞⎟⎟⎠

= rank

⎛⎜⎜⎝
1 1 · · · 1
1 βτ ′ · · · βτ ′(a−1)

1 βτ ′′ · · · βτ ′′(a−1)

1 βδτ ′′ · · · βδτ ′′(a−1)

⎞⎟⎟⎠ ,

where the last equality holds by the row equivalence of
H(C�|Gi) and H(C�′ |Gi), as well as the row equivalence of
H(C�|Gi) and H(C�′′ |Gi). Since r � 3, the above equality
implies{

βjτ ′
: 1 � j � δ − 1

}
⊆
{
βjτ ′′

: 0 � j � δ
}
.

By construction, the multiplicative order of β is o(β) = a,
and so

o(βτ ′
) =

o(β)
gcd(τ ′, o(β))

=
a

gcd(τ ′, a)
= a,

where the last equality follows from the fact that τ ′ ∈ Z×
a .

Since a = r + δ − 1,

1 ∈
{
βjτ ′

: 1 � j � δ − 1
}
.

Thus,{
βjτ ′

: 1 � j � δ − 1
}
⊆
{
βjτ ′′

: 1 � j � δ
}
.

Since o(β) = a, we have

{jτ ′ mod a : 1 � j � δ − 1}⊆{jτ ′′ mod a : 1�j � δ} .
Then, by Proposition 1, we have τ ′ = τ ′′.

Denote γ � βτ ′
= βτ ′′

. Thus, (1,γ, · · · ,γa−1) =
(1,βτ ′

, · · · ,βτ ′(a−1)). We now know that the following two
matrices are row equivalent⎛⎝1 1 · · · 1

1 γ · · · γa−1

1 γδ · · · γδ(a−1)

⎞⎠ and

⎛⎝ 1 1 · · · 1
1 γ · · · γa−1

βδτi,0 βδτi,1 · · · βδτi,a−1

⎞⎠ ,

(15)

for all i ∈ [m]. Recall that β and γ have the same order,
o(β) = o(γ)a = qb′−1, i.e., the entries of the matrices in (15)
belong to the field Fqb′ . Hence, (βδτi,0 , βδτi,1 , · · · , βδτi,a−1)
can be represented as a linear combination

(βδτi,0 , βδτi,1 , · · · , βδτi,a−1)

=
δ∑

s=0

ηi,s(1, γs, · · · , γs(a−1)) (16)

where ηi,s ∈ Fqb′ ⊆ Fqb for all i ∈ [m], s ∈ [δ + 1]. We also
highlight the fact that ηi,δ = 0 for all i ∈ [m], for otherwise we
would have that the matrix on the right has rank δ whereas the
one on the left has rank δ + 1. For convenience, let us define
ξi,j � ηi,δγ

δj + ηi,0, where i ∈ [m], j ∈ [a].
After focusing on shortened and punctured codes, let us

look again at the entire code. If we permute the columns of
the parity-check matrix of C using �, we arrive at the following
parity-check matrix for C�, to (14), shown in the equation at
the bottom of the next page, where zi, i ∈ [m] are the same
as in (12), and τi,j , i ∈ [m], j ∈ [a], are the same as in (13).
By (16) and the equivalence of H(C�|Gi) and H(C�′ |Gi), the
matrix H� is row equivalent with, shown in the equation at
the bottom of the next page. Since H ′ is also a parity-check
matrix for C�, which is a cyclic code, adding a dependent row
to H ′ which is a cyclic shift of another row, does not change
the code. Hence, we look at the following parity-check matrix
for C�, shown in the equation at the bottom of the next page.

Let us now denote by h the bottom row of H ′′, and by
h−2, h−1 the bottom two rows of H ′. We recall that ξi,j �
ηi,δγ

δj + ηi,0, and hence,

h|Gi =(ηi+1,δγ
0 + ηi+1,0, ηi+1,δγ

δ + ηi+1,0,

. . . , ηi+1,δγ
δ(a−1) + ηi+1,0), i ∈ [m− 1]
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h|Gm−1 =(η0,δγ
δ + η0,0, η0,δγ

2δ + η0,0, . . . , η0,δγ
0 + η0,0),

h−1|Gi =(ηi,δγ
0 + ηi,0, ηi,δγ

δ + ηi,0,

. . . , ηi,δγ
δ(a−1) + ηi,0), i ∈ [m]

h−2|Gi =λzi(1, 1, . . . , 1) i ∈ [m].

We now observe that the last row of H ′′|Gi may be shown as a
linear combination of the preceding two rows. More precisely,
for all i ∈ [m],

h|Gi = θi,1h−1|Gi + θi,2h−2|Gi ,

where

θi,1 =

⎧⎨⎩
ηi+1,δ

ηi,δ
i ∈ [m− 1],

η0,δ

ηm−1,δ
γδ i = m− 1,

θi,2 =

⎧⎨⎩
ηi+1,0−θ1,iηi,0

λzi
i ∈ [m− 1],

η0,0−θm−1,1ηm−1,0
λzm−1 i = m− 1.

(17)

Since H ′′ is row equivalent with H ′, and rank(H ′|Gi) = δ+1
(i.e., full rank), the linear combination above is the unique
linear combination of the rows of H ′|Gi that gives h|Gi .
This linear combination does not use the first δ − 1 rows of
H ′|Gi .

Looking at the entire matrix (instead of focusing on the pro-
jections onto Gi), once again, since H ′′ is row equivalent with
H ′, h must be linear combination of the rows of H ′. Since in

each projection onto Gi there is a unique linear combination,
all these must simultaneously agree. In particular, this means

θ0,1 = θ1,1 = θ2,1 = · · · = θm−1,1.

We recall that 0 = ηi,δ ∈ Fqb′ for all i ∈ [m], and γ ∈ Fqb′ is
primitive. Thus, we may write

θ0,1 = θ1,1 = θ2,1 = · · · = θm−1,1 = γj, (18)

for some integer j. Also, by (17),

η1,δ

η0,δ
=
η2,δ

η1,δ
=
η3,δ

η2,δ
= · · · =

ηm−1,δ

ηm−2,δ
= γδ η0,δ

ηm−1,δ
. (19)

Now, combining (18) and (19) we get

γjm =
∏

i∈[m]

θi,1 = γδ.

Thus,
jm ≡ δ (mod a).

This, in turn, implies that gcd(m, a) | δ, as we wanted to
prove.

To conclude this section, we make use of Theorem 9 in order
to show that Construction 1 may produce cyclic MR codes
with new parameters. Namely, in certain case, the construction
of [19], which produces codes with the same parameters as our
Construction 1, results in codes that are neither cyclic, nor can
be permuted to become cyclic.

H� =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

βτ0,0 0 · · · 0 βτ0,1 0 · · · 0 · · · βτ0,a−1 0 · · · 0
0 βτ1,0 · · · 0 0 βτ1,1 · · · 0 · · · 0 βτ1,a−1 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · βτm−1,0 0 0 · · · βτm−1,1 · · · 0 0 · · · βτm−1,a−1

λz0 λz1 · · · λzm−1 λz0 λz1 · · · λzm−1 · · · λz0 λz1 · · · λzm−1

βδτ0,0 βδτ1,0 · · · βδτm−1,0 βδτ0,1 βδτ1,1 · · · βδτm−1,1 · · · βδτ0,a−1 βδτ1,a−1 · · · βδτm−1,a−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

H ′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 γ 0 · · · 0 · · · γa−1 0 · · · 0
0 1 · · · 0 0 γ · · · 0 · · · 0 γa−1 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · γ · · · 0 0 · · · γa−1

λz0 λz1 · · · λzm−1 λz0 λz1 · · · λzm−1 · · · λz0 λz1 · · · λzm−1

ξ0,0 ξ1,0 · · · ξm−1,0 ξ0,1 ξ1,1 · · · ξm−1,1 · · · ξ0,a−1 ξ1,a−1 · · · ξm−1,a−1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

H ′′ =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0 γ 0 · · · 0 · · · γa−1 0 · · · 0
0 1 · · · 0 0 γ · · · 0 · · · 0 γa−1 · · · 0
...

...
...

...
...

...
...

...
...

0 0 · · · 1 0 0 · · · γ · · · 0 0 · · · γa−1

λz0 λz1 · · · λzm−1 λz0 λz1 · · · λzm−1 · · · λz0 λz1 · · · λzm−1

ξ0,0 ξ1,0 · · · ξm−1,0 ξ0,1 ξ1,1 · · · ξm−1,1 · · · ξ0,a−1 ξ1,a−1 · · · ξm−1,a−1

ξ1,0 ξ2,0 · · · ξ0,1 ξ1,1 ξ2,1 · · · ξ0,2 · · · ξ1,a−1 ξ2,a−1 · · · ξ0,0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.
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Example 4: Set q = 3, b1 = 2, b = 4, r = 6, δ = 3, a = 8,
n = 80, and m = 10. By using Construction 1, we may
generate a cyclic (n = 80, r = 6, h = 2, δ = 3, qb = 34)-MR
code, where we note that gcd(3, 10) = 1. A non-cyclic MR
code with the same parameters may be constructed using [19].
However, since gcd(m, a) = gcd(10, 8) = 2 � 3 = δ,
by Theorem 9 this code cannot be permuted to become a cyclic
code.

V. CONCLUSION

In this paper, we proved a new lower bound on the field
size of optimal LRCs. As a byproduct, when r = 2 we were
able to prove that some known code constructions actually
have optimal field size (where we further had to assume that
the field size minus 1 or 2 is not a prime power). We then
constructed cyclic MR codes. When r = 2, these codes
also attain the new bound with equality, and therefore have
optimal field size (again, assuming the same number-theoretic
condition). We concluded by showing a known quasi-cyclic
MR code, with the same parameters as our cyclic construction,
may sometimes be permuted to become cyclic, and in other
cases it may not.

Many open questions remain. First and foremost, the con-
struction for a cyclic MR code in this paper only works for
the case of two global parity checks, i.e., h = 2. However,
in the non-cyclic case, there are a few known constructions of
MR codes with h � 3. Finding cyclic MR codes with h � 3 is
still an open question.

As a second open question we mention our lower bound
on the field size of optimal LRCs. We were able to show it is
tight only when r = 2. Thus, finding out whether it is tight for
cases in which r � 3, or improving it, remains widely open.
We leave these questions and others for future work.

APPENDIX

In this appendix, we shall prove Theorem 7. To this end,
we first recall some definitions and lemmas from [9].

Throughout the appendix we shall assume the coordinate of
code of length n are indexed by Zn, and where operations on
coordinates are required, they shall be made modulo n. Let
k = ru+ v with 0 < v � r. Denote the set of all the possible
repair sets for an LRC C with all-symbol (r, δ)-locality as

Γ � {S : S ⊆ Zn, |S| � r + δ − 1, d(C|S) � δ} .
Lemma 10 ([8], Lemma 7): Let C be an [n, k]q linear code

with all-symbol (r, δ)-locality. If for a subset V ⊆ Γ, and for
all S′ ∈ V , ∣∣∣∣∣∣S′ ∩

⎛⎝ ⋃
S∈V\{S′}

S

⎞⎠∣∣∣∣∣∣ � |S′| − δ + 1,

then we have

rank

( ⋃
S∈V

S

)
�
∣∣∣∣∣ ⋃
S∈V

S

∣∣∣∣∣− |V| (δ − 1).

For cyclic LRCs we have the following simple fact.

Lemma 11: Let C be a cyclic LRC. If S ∈ Γ is a repair set
of C, then S + i is also a repair set of C, for all i ∈ Z.

Proof: Since C is cyclic, C|S = C|S+i for any i ∈ Z. The
claim follows immediately by definition.

We are now ready for the main proof.
Proof of Theorem 7: Assume to the contrary that there

exists a repair set Ŝ ∈ Γ and t̂ ∈ Z such that

0 <
∣∣∣Ŝ ∩ (Ŝ + t̂)

∣∣∣ < ∣∣∣Ŝ∣∣∣ . (20)

As an auxiliary claim, we contend that for any τ � u/2 there
exists a 2τ -subset of S ⊆ Γ that satisfies one of the following
properties:
P1. There exists a subset S′ ⊆ S and S′ ∈ S′ such that

|S′| − δ + 1 �

∣∣∣∣∣∣S′ ∩
⎛⎝ ⋃

S∈S′\{S′}
S

⎞⎠∣∣∣∣∣∣ < |S′| . (21)

P2. The following inequalities hold:

|S| (r + δ − 1) −
∣∣∣∣∣ ⋃
S∈S

S

∣∣∣∣∣ � τ, (22)∣∣∣∣∣ ⋃
S∈S

S

∣∣∣∣∣ � rank

(⋃
S∈S

S

)
+ |S| (δ − 1). (23)

We proceed to prove this auxiliary claim by induction on τ .
For the induction base, consider τ = 1 � u/2. In that case,

choose S = S′ =
{
Ŝ, Ŝ + t̂

}
. By (20), if additionally, |Ŝ| −

δ+1 � |Ŝ∩(Ŝ+ t̂)|, then P1 holds. Otherwise, by Lemma 10,
P2 holds. Thus, the induction base is proved. Now arbitrarily
choose i1 ∈ Ŝ ∩ (Ŝ + t̂).

For the induction hypothesis, assume the claim holds for τ ,
and let Sτ be a set that satisfies the claim in that case, i.e.,
|Sτ | = 2τ . For the induction step, we prove it also holds for
τ + 1, as long as τ + 1 � u/2, namely, that there exists a
repair set of repair sets, Sτ+1, containing 2(τ +1) repair sets,
that satisfies P1 or P2. We shall make an educated guess as to
what Sτ+1 might be, which will work in most cases. When it
does not, we shall offer a correction to our initial choice of
Sτ+1.

Since 2τ � u− 2 we have

rank

( ⋃
S∈Sτ

S

)
� 2τr � (u− 2)r < k.

Hence, there exists an iτ+1 ∈ Zn with span({iτ+1}) ⊆
span(

⋃
S∈Sτ

S). As our initial guess, we now define the
following:

Sτ+1,1 = Ŝ + iτ+1 − i1,

Sτ+1,2 = Ŝ + t̂+ iτ+1 − i1,

Sτ+1 = Sτ ∪ {Sτ+1,1, Sτ+1,2} .
We observe that Sτ+1,1 = Sτ+1,2 since they are cyclic
rotations by the same amount of Ŝ and Ŝ + t̂, respectively,
which by (20), are two distinct sets. Additionally, iτ+1 ∈
Sτ+1,1 ∩ Sτ+1,2, and since span({iτ+1}) ⊆ span(

⋃
S∈Sτ

S),
it follows that Sτ+1,1, Sτ+1,2 ∈ Sτ . Hence, |Sτ+1| = 2(τ+1).
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If Sτ satisfies P1 then trivially so does Sτ+1 and the claim
follows. Assume then that Sτ only satisfies P2. In particular,
by (23), ∣∣∣∣∣ ⋃

S∈Sτ

S

∣∣∣∣∣ � rank

( ⋃
S∈Sτ

S

)
+ |Sτ | (δ − 1). (24)

Again, if Sτ+1 satisfies P1 then we are done. Otherwise,
assume that Sτ+1 does not satisfy P1, which means∣∣∣∣∣∣Sτ+1,j ∩

⎛⎝ ⋃
S∈Sτ+1\{Sτ+1,j}

S

⎞⎠∣∣∣∣∣∣ = |Sτ+1,j| , (25)

or ∣∣∣∣∣∣Sτ+1,j ∩
⎛⎝ ⋃

S∈Sτ+1\{Sτ+1,j}
S

⎞⎠∣∣∣∣∣∣ < |Sτ+1,j| − δ + 1 (26)

for j = 1, 2.
If (25) holds for Sτ+1,1, then the fact that

0 < |Sτ+1,1 ∩ Sτ+1,2| =
∣∣∣Ŝ ∩ (Ŝ + t̂)

∣∣∣ < ∣∣∣Ŝ∣∣∣ ,
means that ∣∣∣∣∣Sτ+1,1 ∩

( ⋃
S∈Sτ

S

)∣∣∣∣∣ � 1. (27)

Recall that span({iτ+1}) ⊆ span(∪S∈SτS), but note that
iτ+1 ∈ Sτ+1,1, which implies that∣∣∣∣∣Sτ+1,1 ∩

( ⋃
S∈Sτ

S

)∣∣∣∣∣ < |Sτ+1,1| − δ + 1.

Thus, we can find a (δ− 1)-subset S∗
τ+1,1 ⊆ Sτ+1,1 such that

rank(Sτ+1,1 \ S∗
τ+1,1) = rank(Sτ+1,1) and

S∗
τ+1,1 ∩

( ⋃
S∈Sτ

S

)
= ∅.

We therefore have,

rank

(
Sτ+1,1 ∪

( ⋃
S∈Sτ

S

))

= rank

(
(Sτ+1,1 \ S∗

τ+1,1) ∪
( ⋃

S∈Sτ

S

))

�
∣∣∣∣∣Sτ+1,1 \

(
S∗

τ+1,1 ∪
( ⋃

S∈Sτ

S

))∣∣∣∣∣ + rank

( ⋃
S∈Sτ

S

)

�
∣∣∣∣∣Sτ+1,1 \

( ⋃
S∈Sτ

S

)∣∣∣∣∣− δ + 1 +

∣∣∣∣∣ ⋃
S∈Sτ

S

∣∣∣∣∣− 2τ(δ − 1)

=

∣∣∣∣∣Sτ+1,1 ∪
( ⋃

S∈Sτ

S

)∣∣∣∣∣− (2τ + 1)(δ − 1), (28)

where the second inequality holds by (24). Note that since Sτ

satisfies P2, by (22),

(2τ + 1)(r + δ − 1) �
∣∣∣∣∣ ⋃
S∈Sτ

S

∣∣∣∣∣+τ + r + δ − 1

�
∣∣∣∣∣ ⋃
S∈Sτ

S

∣∣∣∣∣+τ + |Sτ+1,1|

�
∣∣∣∣∣Sτ+1,1 ∪

( ⋃
S∈Sτ

S

)∣∣∣∣∣+τ + 1, (29)

where the last inequality follows from (27). Recall that τ+1 �
u/2, hence

rank

(
Sτ+1,1 ∪

( ⋃
S∈Sτ

S

))
� (2τ + 1)r �(u − 1)r

�k − 1 − r.

It then follows that there exists a repair set S̃τ+1,2 ∈ Γ such
that

span(S̃τ+1,2) ⊆ span

⎛⎝ ⋃
S∈Sτ∪{Sτ+1,1}

S

⎞⎠ .

We now correct our initial guess, and for this case only, set
Sτ+1 = Sτ ∪

{
Sτ+1,1, S̃τ+1,2

}
. We therefore have,

rank

⎛⎝ ⋃
S∈Sτ+1

S

⎞⎠ > rank

⎛⎝ ⋃
S∈Sτ∪{Sτ+1,1}

S

⎞⎠ .

By the last inequality, there exists a (δ − 1)-subset S̃∗
τ+1,2 ⊆

S̃τ+1,2 \ (
⋃

S∈Sτ∪{Sτ+1,1} S), and then

rank

⎛⎝ ⋃
S∈Sτ+1

S

⎞⎠
= rank

⎛⎝(S̃τ+1,2 \ S̃∗
τ+1,2) ∪

⎛⎝ ⋃
S∈Sτ∪{Sτ+1,1}

S

⎞⎠⎞⎠
�

∣∣∣∣∣∣S̃τ+1,2 \
⎛⎝S̃∗

τ+1,2 ∪
⎛⎝ ⋃

S∈Sτ∪{Sτ+1,1}
S

⎞⎠⎞⎠∣∣∣∣∣∣
+ rank

⎛⎝ ⋃
S∈Sτ∪{Sτ+1,1}

S

⎞⎠
�

∣∣∣∣∣∣S̃τ+1,2 \
⎛⎝ ⋃

S∈Sτ∪{Sτ+1,1}
S

⎞⎠∣∣∣∣∣∣− δ + 1

+

∣∣∣∣∣Sτ+1,1 ∪
⋃

S∈Sτ

S

∣∣∣∣∣− (2τ + 1)(δ − 1)

=

∣∣∣∣∣∣
⋃

S∈Sτ+1

S

∣∣∣∣∣∣− (2τ + 2)(δ − 1), (30)

where the second inequality holds by (28). By (29) we have,

|Sτ+1| (r + δ − 1) −
∣∣∣∣∣∣

⋃
S∈Sτ+1

S

∣∣∣∣∣∣
� (2τ + 1)(r + δ − 1) −

∣∣∣∣∣Sτ+1,1 ∪
( ⋃

S∈Sτ

S

)∣∣∣∣∣
� τ + 1. (31)
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In total, the combination of (30) and (31) shows that the
modified Sτ+1 satisfies P2.

We now return to the original Sτ+1 = Sτ ∪
{Sτ+1,1, Sτ+1,2}. If Sτ+1,2 satisfies (25), then a similar argu-
ment shows we can build a modified Sτ+1 for which P2 holds.

As a final case, we consider the situation where both Sτ+1,1

and Sτ+1,2 satisfy (26). In that case, there exist (δ−1)-subsets
S∗

τ+1,j ⊆ Sτ+1,j with S∗
τ+1,j∩(

⋃
S∈Sτ+1\{S∗

τ+1,j} S) = ∅ and

rank(Sτ+1,j) = rank(Sτ+1,j \ S∗
τ+1,j), for j = 1, 2. Thus,

we have

rank

⎛⎝ ⋃
S∈Sτ+1

S

⎞⎠
= rank

(
(Sτ+1,1 \ S∗

τ+1,1) ∪ (Sτ+1,2 \ S∗
τ+1,2)

∪
( ⋃

S∈Sτ

S

))

�
∣∣∣∣∣((Sτ+1,1 \ S∗

τ+1,1) ∪ (Sτ+1,2 \ S∗
τ+1,2))

\
( ⋃

S∈Sτ

S

) ∣∣∣∣∣ + rank

( ⋃
S∈Sτ

S

)

�
∣∣∣∣∣(Sτ+1,1 ∪ Sτ+1,2) \

( ⋃
S∈Sτ

S

)∣∣∣∣∣− 2(δ − 1)

+ rank

( ⋃
S∈Sτ

S

)

�

∣∣∣∣∣∣
⋃

S∈Sτ+1

S

∣∣∣∣∣∣− (2τ + 2)(δ − 1), (32)

where the last inequality holds by (23). Additionally, by (22),
and since iτ+1 ∈ Sτ+1,1 ∩ Sτ+1,2,

2(τ + 1)(r + δ − 1) −
∣∣∣∣∣∣

⋃
S∈Sτ+1

S

∣∣∣∣∣∣
� 2τ(r + δ − 1) −

∣∣∣∣∣ ⋃
S∈Sτ

S

∣∣∣∣∣ + 2(r + δ − 1)

− |Sτ+1,1 ∪ Sτ+1,2|
� τ + 1. (33)

By combining (32) and (33) we learn that Sτ+1 satisfies P2,
and the auxiliary claim follows.

We turn to prove the main claim. The proof is divided into
two cases depending on properties P1 and P2:

Case 1: P1 holds for some τ � u
2 . Let S ⊆ Γ be a

2τ -subset, S′ ⊆ S, and S′ ∈ S′, such that (21) holds.
By that equation, we can choose a subset V ⊆ S′ \ {S′} such
that rank(

⋃
S∈V S) = rank(

⋃
S∈S′ S). Of all such subsets,

let us choose V to be minimal, namely, rank(
⋃

S∈V S) >
rank(

⋃
S∈V\{A} S) for any A ∈ V . Thus, by Lemma 10 we

have

rank

(⋃
S∈V

S

)
�
∣∣∣∣∣ ⋃
S∈V

S

∣∣∣∣∣− |V| (δ − 1). (34)

Assume V contains ν repairs sets, V = {S1, S2, . . . , Sν}.
Since each repair set in Γ has rank at most r, and the union
of u repair sets has rank at most ur � k−1, we can extend V
to a u-set V ′ ⊆ Γ such that V ′ = V ∪ {Sν+1, Sν+2, . . . , Su},
such that each added repair set increases the overall rank, i.e.,

rank (V ∪ {Sν+1, Sν+2, . . . , Sν+i})
< rank (V ∪ {Sν+1, Sν+2, . . . , Sν+i+1}) (35)

for all 1 � i � u− ν − 1.
Let S∗

ν+1 be a (δ−1)-subset of Sν+1 \ (
⋃

S∈V S) and S′ �
S′ \ (

⋃
S∈V S). In a similar fashion to the analysis above, we

have

rank

⎛⎝ ⋃
S∈V∪{Sν+1}

S

⎞⎠
= rank

(
(Sν+1 \ S∗

ν+1) ∪
(⋃

S∈V
S

))

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|(Sν+1 \ S∗

ν+1) \ (
⋃

S∈V S)| − 1 + rank(
⋃

S∈V S),
if S′ ∩ Sν+1 = ∅

|(Sν+1 \ S∗
ν+1) \ (

⋃
S∈V S)| + rank(

⋃
S∈V S),

otherwise

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Sν+1 \ (

⋃
S∈V S)| − δ + rank(

⋃
S∈V S),

if S′ ∩ Sν+1 = ∅
|Sν+1 \ (

⋃
S∈V S)|−δ + 1 + rank(

⋃
S∈V S),

otherwise

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|Sν+1 \ (

⋃
S∈V S)| − δ + |⋃S∈V S| − |V|(δ − 1),

if S′ ∩ Sν+1 = ∅
|Sν+1 \ (

⋃
S∈V S)|−δ + 1+|⋃S∈V S|−|V|(δ − 1),

otherwise

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|⋃S∈V∪{Sν+1} S| − (|V| + 1)(δ − 1) − 1,

if S′ ∩ Sν+1 = ∅
|⋃S∈V∪{Sν+1} S| − (|V| + 1)(δ − 1),

otherwise

where to prove the first inequality we use the fact that S′ ⊆
span(

⋃
S∈V S). Repeating the processing, at each iteration

adding Sν+2, . . . , Su, we can conclude that

rank

( ⋃
S∈V′

S

)

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|⋃S∈V′ S| − u(δ − 1) − 1,

if S′ ∩ (
⋃u−ν−1

i=1 Sν+i) = ∅
|⋃S∈V′ S| − u(δ − 1),

otherwise,

(36)

by (34) and (35).
Recall that the rank of the union of u repair sets, and in

particular, V ′, satisfies rank(
⋃

S∈V′ S) � ur � k − 1. Thus,
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we have a set of coordinates B ⊆ Zn, with
⋃

S∈V′ S ⊆ B and

rank(B) = k − 1. Consider the set B̃ � B ∪ S′. By (36),∣∣∣B̃∣∣∣− rank
(
B̃
)

=
∣∣∣B̃∣∣∣− rank(B)

�
{
|B| − rank(B), if S′ ∩ (

⋃u−ν−1
i=1 Sν+i) = ∅

|B| − rank(B) + 1, otherwise

�

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|⋃S∈V′ S| − rank(

⋃
S∈V′ S),

if S′ ∩ (
⋃u−ν−1

i=1 Sν+i) = ∅
|⋃S∈V′ S| − rank(

⋃
S∈V′ S) + 1,

otherwise

�u(δ − 1) + 1,

i.e., ∣∣∣B̃∣∣∣ � k + u(δ − 1). (37)

Recall now that for an [n, k, d]q code C,

d = n− max {|I| : I ⊆ Zn, rank(CI) = k − 1} .
Thus, by (37), for our code

d � n− k − u(δ − 1).

However, since our code is an optimal LRC,

d = n− k + 1 − u(δ − 1),

and thus, a have reached a contradiction.
Case 2: P2 holds for all 2τ -subsets S ⊆ Γ, where τ � u/2.

Assume first that u is odd. Denote τ = u−1
2 , and arbitrarily

pick S ⊆ Γ, with |S| = 2τ = u− 1. By (22) and (23),

k − 1 − rank

(⋃
S∈S

S

)
=ur + v − 1 − rank

(⋃
S∈S

S

)

�r + v − 1 +
u− 1

2
�2r,

where the last inequality holds by the condition u � 2(r −
v + 1), and the fact that u is odd. Thus, we can extend S to
V ′ = S ∪ {Su, Su+1} ⊆ Γ with |V ′| = u+ 1, such that

rank

(⋃
S∈S

S

)
< rank

(
Su ∪

(⋃
S∈S

S

))

< rank

( ⋃
S∈V′

S

)
�k − 1,

and ∣∣∣∣∣ ⋃
S∈V′

S

∣∣∣∣∣ � rank

( ⋃
S∈V′

S

)
+ (u+ 1)(δ − 1).

The fact that rank(
⋃

S∈V′ S) � k− 1 means that we can find
a set B ⊆ Zn with

⋃
S∈V′ S ⊆ B and rank(B) = k − 1.

Then,

|B| − k + 1 =|B| − rank(B)

�
∣∣∣∣∣ ⋃
S∈V′

S

∣∣∣∣∣− rank

( ⋃
S∈V′

S

)
�(u+ 1)(δ − 1).

As in Case 1, we obtain

d � n− k + 1 − (u+ 1)(δ − 1),

which contradicts the minimum distance of an optimal LRC
being

d = n− k + 1 − u(δ − 1).

Assume now that u is even. Denote τ = u
2 , and arbitrarily

pick S ⊆ Γ, with |S| = 2τ = u. By (22) and (23),

k − 1 − rank

(⋃
S∈S

S

)
=ur + v − 1 − rank

(⋃
S∈S

S

)
�v − 1 +

u

2
�r,

where the last inequality holds by the condition u � 2
(r− v+ 1). Thus, we can extend S to V ′ = S ∪ {Su+1} ⊆ Γ
with |V ′| = u+ 1, such that

rank

(⋃
S∈S

S

)
< rank

( ⋃
S∈V′

S

)
� k − 1,

and ∣∣∣∣∣ ⋃
S∈V′

S

∣∣∣∣∣ � rank

( ⋃
S∈V′

S

)
+ (u+ 1)(δ − 1).

We now continue exactly as in the case of odd u to obtain a
contradiction.

In all of the above cases, we have reached a contradiction.
Hence, our assumption that there exist Ŝ ∈ Γ and t̂ ∈ Z such
that 0 < |Ŝ ∩ (Ŝ + t̂)| < |Ŝ| is incorrect, and the main claim
of the theorem follows. �
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