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Quantized-Constraint Concatenation and the
Covering Radius of Constrained Systems
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Abstract— We introduce a novel framework for implement-
ing error-correction in constrained systems. The main idea of
our scheme, called Quantized-Constraint Concatenation (QCC),
is to employ a process of embedding the codewords of an
error-correcting code in a constrained system as a (noisy, non-
invertible) quantization process. This is in contrast to traditional
methods, such as concatenation and reverse concatenation, where
the encoding into the constrained system is reversible. The
possible number of channel errors QCC is capable of correcting
is linear in the block length n, improving upon the O(

√
n)

possible with the state-of-the-art known schemes. For a given
constrained system, the performance of QCC depends on a
new fundamental parameter of the constrained system – its
covering radius. Motivated by QCC, we study the covering radius
of constrained systems in both combinatorial and probabilistic
settings. We reveal an intriguing characterization of the covering
radius of a constrained system using ergodic theory. We use
this equivalent characterization in order to establish efficiently
computable upper bounds on the covering radius.

Index Terms— Constrained systems, covering radius, error-
correcting codes, Markov chains, sliding-block codes.

I. INTRODUCTION

CONSTRAINED codes are often employed in commu-
nication and storage systems in order to mitigate the

occurrence of data-dependent errors. In many channels, some
words are more prone to error than others, and therefore by
avoiding them, the number of errors is reduced. Such codes are
called constrained codes. While the use of constrained codes
may significantly reduce the occurrence of data-dependent
errors, in many realistic scenarios, the transmitted data may
still be corrupted by data-independent errors.

A well-known strategy for handling the corruption of data
is to combine error-correcting codes with constrained codes.

Manuscript received 10 May 2023; revised 29 November 2023; accepted
8 December 2023. Date of publication 14 December 2023; date of
current version 21 May 2024. This work was supported in part by
the Israel Science Foundation under Grant 1052/18 and Grant 859/22.
An earlier version of this paper was presented in part at the 2023 ISIT
[DOI: 10.1109/ISIT54713.2023.10206533 and DOI: 10.1109/ISIT54713.
2023.10206920]. (Corresponding author: Dor Elimelech.)

Dor Elimelech is with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Be’er Sheva 8410501, Israel (e-mail:
doreli@post.bgu.ac.il).

Tom Meyerovitch is with the Department of Mathematics, Ben-Gurion Uni-
versity of the Negev, Be’er Sheva 8410501, Israel (e-mail: mtom@bgu.ac.il).

Moshe Schwartz is with the Department of Electrical and Computer
Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada,
on leave from the School of Electrical and Computer Engineering, Ben-
Gurion University of the Negev, Be’er Sheva 8410501, Israel (e-mail:
schwartz.moshe@mcmaster.ca).
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This has been extensively studied over the past 40 years (see
for example [7], [11], [15], [18], [22], [27]), and has recently
regained attention due to the increased interest in DNA storage
systems. Over the last years, error-correcting constrained codes
for DNA storage have been studied in numerous works [5],
[8], [9], [24], [26], [32], [33], [34], [38], with particular
attention given to the GC-content constraint and the run-length
(homopolymer) constraint.

Despite the considerable recent progress made in the con-
struction and analysis of error-correcting constrained codes for
specific families of constraints, only a few general frameworks
for implementing error correction in constrained systems are
known (see [29, Ch. 8] for a survey). An important example
of such a framework is the method of reverse concatena-
tion, sometimes called modified concatenation (see [7], [15],
[22], [27]), in which an error-correction encoding follows
a constrained encoder. Recently, an improvement of the
reverse-concatenation method called segmented reverse con-
catenation, was suggested [18]. A principal limitation of these
methods is their error-correction capability. While the state-
of-the-art method presented in [18] allows for a correction
of O(

√
n) errors (where n is the block length), a general

technique for correcting Θ(n) errors in constrained systems
is unknown.

Motivated by this gap, we propose an alternative strategy,
quantized-constraint concatenation (QCC), for the implemen-
tation of error correction in constrained systems, which also
works in the presence of Θ(n) errors. The basic idea behind
our proposed method is simple: we suggest to consider
the embedding process of information in the constrained
media as a quantization process rather than a coding process.
In traditional methods (including concatenation and reverse
concatenation), a constrained word represents the data to be
transmitted and protected against errors. Thus, the constrained
encoder is reversible and incurs a rate penalty on top of the
rate penalty for the error-correcting code. In QCC, we con-
sider the constrained word as a corrupted version of the
input message, obtained by a quantization procedure. Thus,
the constrained quantizer incurs no rate penalty. Instead, the
parameters of the error-correcting code are designed to handle
both errors caused by the channel and by the quantization
process.

Let Bn ⊆ Σn be some set of constrained words of length n
over some finite alphabet Σ. Assume furthermore that r < n
is an integer such that for any word y ∈ Σn there exists a cor-
responding word x ∈ Bn with Hamming distance d(x, y) ⩽ r.
Given an error-correcting code C ⊆ Σn that can correct t > r
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Fig. 1. A block diagram describing our proposed error correction procedure.

errors, we propose the following constrained error-correction
procedure (see Figure 1):
• Encoding: Given an information word u, use an encoder

for an error-correcting code to map it to a codeword c ∈
C.

• Quantization: Given c ∈ C, find a constrained word x ∈
Bn such that d(c, x) ⩽ r, and transmit x.

• Channel: At the channel output, x′ ∈ Σn, a corrupted
version of x, is observed.

• Decoding: Use the decoder for C on x′ and obtain u′.
If the channel does not introduce more than t−r errors, i.e.,

d(x, x′) ⩽ t−r, then d(c, x′) ⩽ t. Since C can correct t errors,
we have u = u′. Namely, it is possible to correct t−r channel
errors. We are therefore interested in the minimal number r,
such that any word in the space can be quantized to a word
in Bn with at most r coordinates changed. In coding-theory
terminology, this quantity, denoted by R(Bn), is called the
covering radius of Bn. Using this technique, it is now possible
to correct Θ(n) errors: assume that we have a constrained
system such that for all n we have R(Bn) ⩽ ρ·n, and (Cn)n∈N
is a sequence of codes capable of correcting δ · n errors for
some δ > ρ. Using the scheme presented above, it is therefore
possible to correct (δ − ρ) · n channel errors, which is linear
in n.

Certain ad-hoc coding strategies in the presence of con-
straints that use some sort of quantization have already been
discussed in the literature in the context of balanced codes e.g.
[17], [20], and [30]. However, not only are these examples lim-
ited to specific error-correcting codes or specific constraints,
they also have a major difference with our work: the amount
of quantization noise plays no role in these constructions.

To further understand our proposed scheme, we must study
the covering radius of constrained systems, which is the
goal of this paper. We outline the contributions we make.
In Section III, we provide a combinatorial definition for the
covering radius of a constrained system, and investigate some
of its fundamental properties. We also observe an intriguing
phenomenon: We present an example of a constrained system
with positive capacity that has the same covering radius as the
repetition code, which has zero capacity.

Inspired by this phenomenon, in Section IV we take a
probabilistic approach and define the essential covering radius.
We show that this version disregards the extreme cases causing
the unwanted phenomenon described above. We use the frame-
work of ergodic theory to give an alternative characterization
of the essential covering radius. In Section V we use our
ergodic-theoretic definition of the essential covering radius
to establish upper bounds on the essential covering radius in
typical scenarios. Using a Markov-chain approach, we derive a
general upper bound that is efficiently computable as a solution
of a linear program. We also provide bounds using sliding-
block-code functions. We show that in the primitive case, these
bounds asymptotically attain the essential covering radius.

II. PRELIMINARIES

Throughout this paper, we shall use lower-case letters, x,
to denote scalars and symbols, overlined lower-case letters,
x, to denote finite-length words, and bold lower-case let-
ters, x, to denote bi-infinite sequences. We use upper-case
letters, X , for constrained systems. For a bi-infinite sequence
x = . . . ,x−1,x0,x1, . . . and n ⩽ m we denote the subword
xm

n ≜ xn, . . . ,xm (and similarly xm
n for finite words). We use

Σ to denote a finite alphabet, and [n] ≜ {0, 1, . . . , n− 1}.
We denote the string of i consecutive 0’s (or 1’s) by 0i (or 1i,
respectively). Whenever the length of the string is clear from
the context, we may omit the subscript i from the notation.

The set of words of length n over Σ is denoted by Σn. If u ∈
Σn, we shall index its letters by [n], i.e., u = u0, u1, . . . , un−1.
For any v, u ∈ Σn, we define the Hamming distance as

d(u, v) ≜ |{i ∈ [n] : ui ̸= vi}|.

The ball of radius r (with respect to the Hamming distance)
centered in x is denoted by Ball(r, x). The covering radius of
a code C ⊆ Σn is the minimal integer r such that the union
of balls of radius r, centered at the codewords of C, covers
the whole space. That is,

R(C) ≜ min

{
r ∈ N ∪ {0} :

⋃
c∈C

Ball(r, c) = Σn

}
.

Elements in Σn whose distance to the closest codeword of C
is R(C), are often called deep holes (e.g., see [12, Definition
2.1.3]).

We turn to discuss constrained systems. These are often
studied in the framework of symbolic dynamics (see for
example [25], [29]). In a typical (one dimensional) setting we
have a finite alphabet Σ, and the space of bi-infinite sequences
of Σ, denoted ΣZ, is considered as a compact metrizable
topological space, equipped with the product topology (where
Σ has the discrete topology). The dynamics on the system ΣZ

are realized by the shift transformation, T : ΣZ → ΣZ, defined
by

(Tx)n ≜ xn+1,

which is a topological homeomorphism of the system. For a
finite word x ∈ Σn we let [x] denote the cylinder set defined
by x, which is

[x] ≜
{
x ∈ ΣZ : xn−1

0 = x
}
. (1)

A subshift (or shift space) X ⊆ ΣZ is a compact subspace,
which is invariant under the shift transformation. For a subshift
X , the language of X is the set of all finite words that appear
as subwords of some element in X . That is

B(X) ≜
{

x = (x0 . . . xk) : ∃x ∈ X, n ∈ Z such that

xn+k
n = x, k ∈ N ∪ {0}

}
.

The set of words of length n in the language is denoted by
Bn(X) ≜ B(X) ∩ Σn. The topological entropy, also called
capacity, of X is defined to be the following limit (which
exists by Fekete’s Lemma)

h(X) ≜ lim
n→∞

log|Σ| |Bn(X)|
n

.
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In our setting, constrained systems are those shift spaces
which can be realized by walks on some labeled graph.

Definition 1: A shift space X ⊆ ΣZ is called a constrained
system (or a sofic shift) if there exists a finite directed graph
G = (V,E) and a labeling function L : E → Σ such that

X = XG ≜
{
(L(ei))i∈Z : (ei)i∈Z is a bi-infinite

directed path in G
}
.

A labeled graph G = (V,E, L) is called irreducible if any
two vertices are connected by a directed path. An irreducible
graph is called primitive if the greatest common divisor of all
cycle lengths is 1. It is well known (e.g., see [25, Theorem
4.5.8]) that an irreducible graph is primitive if and only if
there exists n ∈ N such that for any two vertices v, v′ ∈ V
there exists a directed path of length n from v to v′.

Definition 2: A constrained system X ⊆ ΣZ is called irre-
ducible (respectively: primitive), if there exists an irreducible
(respectively: primitive) labeled graph G such that X = XG.

A special family of constrained systems of particular interest
is the family of systems defined by a finite set of local
constraints. These are referred to as systems of finite type and
are formally defined as follows:

Definition 3: A constrained system X ⊆ ΣZ is said to be
a system of finite type (SFT) if there exists some m ∈ N and
a finite set of forbidden words F ⊆ Σm such that X is the
set of all bi-infinite sequences not containing any forbidden
pattern from F . That is

X = XF ≜
{
x ∈ ΣZ : ∀n ∈ Z,xn+m−1

n /∈ F
}
.

We shall now formally describe the QCC scheme for a
given constrained system X and block length n. Let C be an
[n, k, d]q linear code, namely, a k-dimensional subspace of Fn

q

with the property that the minimal Hamming distance between
two distinct codewords in C is d. We define the components
of the block diagram from Figure 1 as follows:
• A pair of functions (E,D) is called an error-correction

encoding-decoding scheme for C if E : Fk
q → C (the

ECC-encoder) is an injection and D : Fn
q → Fk

q (the
ECC-decoder) satisfies that for any u ∈ Fk

q and x ∈ Fn
q

such that d(E(u), x) ⩽ ⌊d−1
2 ⌋ ≜ t we have D(E(u)) =

D(x) = u.
• An (n, r)-quantizer for X is a function Q : Fn

q → Bn(X)
such that for any y ∈ Fn

q we have d(y, Q(y)) ⩽ r.
In our coding procedure, the user-supplied information

word u ∈ Fk
q is encoded using the ECC-encoder to obtain

c = E(u) ∈ C. Next, c is quantized to a constrained
word x = Q(c) ∈ Bn(X), which is then transmitted. After
passing through the channel, a possibly corrupted version of
x, denoted x′ ∈ Fn

q , is then observed. We decode x′ using the
ECC-decoder and obtain u′ = D(x′).

We claim that as long as the channel introduces no more
then t−r errors, i.e., d(x, x′) ⩽ t−r, then we will successfully
decode u = u′. Indeed, by the triangle inequality we have

d(c, x′) ⩽ d(c, x) + d(x, x′) ⩽ d(c, Q(c)) + t− r ⩽ t,

where we used the fact that Q is an (n, r)-quantizer. Thus,
d(c, x′) ⩽ t and therefore, by our assumptions on the

encoding-decoding scheme, we conclude that u = D(c) =
D(x′), as desired.

By the definition of the covering radius of Bn(X), r =
R(Bn(X)), is the minimal number such that there exists an
(n, r)-quantizer, and therefore, it bounds the error-correction
capability of the QCC scheme. The coding-theoretic literature
on the covering radius of error-correcting codes is quite exten-
sive (e.g., see [12] and the many references within). However,
as will become apparent, our setting is quite different since
we are considering sequences of codes of finite block lengths,
associated with constrained systems. As mentioned above,
these constrained systems are mathematically formulated and
studied using bi-infinite sequences. Thus, we shall borrow
tools from ergodic theory to apply to the problem at hand.

III. THE COVERING RADIUS OF A CONSTRAINED SYSTEM

We begin with a definition of the covering radius of a set
B ⊆ Σn with respect to another set A ⊆ Σn under the
Hamming metric.

Definition 4: Let A, C ⊆ Σn, then the covering radius of
C with respect to A is defined to be

R(C, A) ≜ min

{
r ∈ N ∪ {0} : A ⊆

⋃
x∈C

Ball(r, x)

}
= max

y∈A
min
x∈C

d(x, y).

If A = Σn then R(C, A) is just the regular covering radius
of C, and is denoted by R(C).

For constrained systems X, Y ⊆ ΣZ we define the asymp-
totic covering radius of X with respect to Y to be the
asymptotic normalized covering radius of n-tuples from X
with respect to n-tuples from Y .

Definition 5: Let X, Y ⊆ ΣZ be shift spaces, then we define

R(X, Y ) ≜ lim inf
n→∞

R(Bn(X), Bn(Y ))
n

, (2)

where we remind that Bn(X) and Bn(Y ) are the subwords
of length n from X and Y respectively.

In a typical coding-theoretic framework, the covering radius
is considered as a property of a single code in the Hamming
space of a finite length n. A constrained system on the other
hand may be associated with a sequence of codes, which are
the sets of constrained words of fixed lengths. The covering
radius of the constrained system, as defined above, is in fact
the asymptotic value of the (normalized) covering radii of this
corresponding sequence of codes.

We remark that throughout the most of this work we take
Y to be the whole space ΣZ, however the results stated hold
for general constrained systems. An immediate question that
comes up when considering our definition of the covering
radius, is whether the limit from (2) exists. We shall now
show that the answer is yes when X or Y are primitive. For
our proof, we consider the following simple generalization of
Fekete’s Lemma.

Lemma 6: Let (an)n∈N be a sequence of real numbers
satisfying for all m, n ∈ N

an+m ⩽ an + am + C, (3)
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for some constant C ⩾ 0. Then the sequence (an

n )n∈N
converges and

lim
n→∞

an

n
= inf

n

an + C

n
.

Proof: Assume that (an)n∈N is a sequence and C ⩾ 0 are
such that (3) is satisfied. Consider the sequence (bn)n∈N
defined by bn ≜ an +C. We note that bn is subadditive as by
the assumption

bn+m = an+m + C ⩽ (an + am + C) + C = bn + bm.

Thus, by Fekete’s Lemma [16] the limit limn→∞ bn/n exists
and

inf
n

an + C

n
= inf

n

bn

n
= lim

n→∞

an + C

n
= lim

n→∞

an

n
.

We remark that whenever (an)n∈N is a non negative
sequence, Lemma 6 also follows from a generalization of
Fekete’s Lemma to nearly subadditive functions, which are
sequences satisfying the De Bruijn–Erdős condition: for all
m, n ∈ N

an+m ⩽ an + am + fn+m,

where (fk)k∈N is a sequence of numbers such that
∑∞

k=1
fk

k2 <

∞. In that case, it was proved in [13] that the sequence
(an

n )n∈N converges.
Proposition 7: Assume that X, Y ⊆ ΣZ are constrained

systems. If X or Y are primitive, then the lim inf in the
definition of R(X,Y ) is actually a limit:

R(X, Y ) = lim
n→∞

R(Bn(X), Bn(Y ))
n

.

Proof: We begin with the case where X is primitive,
and is presented by the primitive finite labeled graph G =
(V,E,L). Since G is primitive, there exists a sufficiently large
N such that any two vertices are connected by a directed
path of length N . This implies that for any two words u, v ∈
B(X) there exists w ∈ ΣN such that u w v ∈ B(X). For
n ∈ N let us denote an = R(Bn(X), Bn(Y )). We show that
for all n > N and m ⩾ 1, we have an+m ⩽ an + am + N .
In order to show the desired inequality it is sufficient that
we prove the following statement: given y ∈ Bn+m(Y ) there
exists x ∈ Bn+m(X) such that d(x, y) ⩽ an +am +N . From
the definitions of am and an−N there exists u ∈ Bm(X) and
v ∈ Bn−N (X) such that

d(u, ym−1
0 ) ⩽ am and d(v, ym+n−1

m+N ) ⩽ an−N .

We also observe that (ak)k∈N is a non-decreasing sequence
and therefore an−N ⩽ an. Indeed, let k < k′, it is sufficient
to show that for any y ∈ Bk(Y ) there exists x ∈ Bk(X)
such that d(x, y) ⩽ ak′ . Since Y is a shift space, there exists
y′ ∈ Bk′(Y ) whose prefix of length k is y. By the definition
of ak′ , there exists x ∈ Bk′(X) such that d(x′, y′) ⩽ ak′ . Let
x be the prefix of length k of x′, since X is a shift space,
x ∈ Bk(X), and clearly

d(x, y) ⩽ d(x′, y′) = a′k,

as desired.

Let w ∈ ΣN be such that x = u w v ∈ Bn+m(X). From
the properties of the Hamming metric

d(x, y) = d(u, ym−1
0 ) + d(w, ym+N−1

m ) + d(v, ym+n−1
m+N )

⩽ am + N + an−N ⩽ am + an + N.

When n ⩾ 1 and m > N a symmetric analysis
follows. Since the remaining cases, i.e., both
m, n ⩽ N , comprise of a finite number of cases, let
c = max(N, max{am+n − an − am : n, m ⩽ N}). For all
m, n ∈ N we have an+m ⩽ an + am + c, and therefore by
Lemma 6, the sequence (an

n )n∈N converges, as desired.
We now turn to the the second case of the proposition, where

Y is primitive. As in the first part, by the primitivity of Y ,
there exists an N such that for any word u ∈ B(Y ) there exists
u′ ∈ ΣN such that u u′u ∈ B(Y ). Now let u ∈ Bm(Y ) be
a deep hole, namely, a word such that R(Bm(X), Bm(Y )) =
min{d(x, u) : x ∈ Bm(X)}. Denote m′ = m + N . For n ⩾
m′, we consider the word y ∈ Bn(Y ) defined by

y = (

⌊ n
m′ ⌋ times︷ ︸︸ ︷

u, u′, u, u′, . . . , u, u′,y′),

where y′ is an arbitrary suffix such that y ∈ Bn(Y ).
We remark that it is possible to find y′, for example by taking
a prefix of u. For any x ∈ Bn(X) we have

d(x, y) ⩾

⌊ n
m′ ⌋−1∑
i=0

d
(
x

(i+1)m′−1
im′ , y

(i+1)m′−1
im′

)

=
⌊ n

m′ ⌋−1∑
i=0

d
(
x

(i+1)m′−1
im′ , (u, u′)

)

⩾

⌊ n
m′ ⌋−1∑
i=0

d
(
x

(i+1)m′−1−N
im′ , u

)
⩾
⌊ n

m′

⌋
R(Bm(X), Bm(Y ))

=
⌊

n

m + N

⌋
R(Bm(X), Bm(Y )).

This proves that

R(Bn(X), Bn(Y )) ⩾

⌊
n

m + N

⌋
R(Bm(X), Bm(Y )).

Taking the limit we have

lim inf
n→∞

R(Bn(X), Bn(Y ))
n

⩾ lim inf
n→∞

⌊
n

m+N

⌋
R(Bm(X), Bm(Y ))

n

=
R(Bm(X), Bm(Y ))

m + N
. (4)

This holds for all m ∈ N, which proves that

lim inf
n→∞

R(Bn(X), Bn(Y ))
n

⩾ lim sup
m→∞

R(Bm(X), Bm(Y ))
m + N

= lim sup
m→∞

R(Bm(X), Bm(Y ))
m

,

and the limit exists.
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Remark 1: From the proof of Proposition 7 it follows that
if Y = ΣZ then

R(X, Y ) = lim
n→∞

R(Bn(X), Σn)
n

= sup
n∈N

R(Bn(X), Σn)
n

. (5)

Indeed, since Y = ΣZ is the full system, which is primitive,
the limit exists. Furthermore, in that case the value N from
the proof of Proposition 7 is in fact 0, as the concatenation
of any two words is again a word in the full system. Plugging
in N = 0 in (4) we obtain that for all m ∈ N

lim inf
n→∞

R(Bn(X), Bn(Y ))
n

⩾
R(Bm(X), Bm(Y ))

m
,

which proves the right-hand side of the equality (5).
We shall use the following as a running example throughout

the paper.
Example 1: Consider the binary alphabet, [2] ≜ {0, 1}. Let

X0,k ⊆ [2]Z be the (0, k)-RLL system, which comprises all the
binary sequences that do not contain k +1 consecutive zeros.
That is, X0,k = XF , where F = {0k+1 = (0, . . . , 0)} ⊆
[2]k+1. We claim that

R(X0,k, [2]Z) =
1

k + 1
.

Indeed, by Remark 1

R(X0,k, [2]Z) ⩾
R(Bk+1(X0,k), [2]k+1)

k + 1

=
R([2]k+1 \ {0k+1}, [2]k+1)

k + 1
=

1
k + 1

.

We now show that the obtained lower bound is tight. Let y ∈
[2]n be any binary word. Consider x given by

xi ≜

{
yi i mod (k + 1) ̸= 0,

1 i mod (k + 1) = 0.

Clearly x does not contain any subword of k + 1 consecutive
zeros and therefore x ∈ Bn(X0,k). Since d(x, y) ⩽ ⌈ n

k+1⌉ we
conclude that 1

nR(Bn(X0,k), [2]n) ⩽ 1
n⌈

n
k+1⌉, and by taking

the limit,

R(X0,k, [2]Z) = lim
n→∞

R(Bn(X0,k), [2]n)
n

⩽
1

k + 1
.

Using a ball-covering argument, we provide a simple
lower-bound on the covering radius in terms of the capacities
of the systems. We recall that Hq : [0, 1] → [0, 1] denotes the
q-ary entropy function defined by

Hq(x) ≜ x logq(q − 1)− x logq(x)− (1− x) logq(1− x),

and for continuity, Hq(0) ≜ 0 as well as Hq(1) ≜ logq(q−1).
We also use H−1

q : [0, 1] → [0, 1 − 1
q ] to denote its inverse

function.
Proposition 8: Let X, Y ⊆ ΣZ be constrained systems with

capacities h(X) ⩽ h(Y ), respectively, and let us denote |Σ| =
q. Then

R(X,Y ) ⩾ H−1
q (h(Y )− h(X)).

Proof: If R(X, Y ) ⩾ 1 − 1
q the claim follows imme-

diately from the definition of H−1
q . Thus, we assume that

R(X, Y ) < 1 − 1
q . Let Vr,n,q denote the size of a ball of

radius r in Σn with respect to the Hamming metric (which
is invariant to the choice of the center), and let us denote
ρn ≜ 1

nR(Bn(X), Bn(Y )). By the union bound, for any
n ∈ N,

|Bn(Y )| =

∣∣∣∣∣∣Bn(Y ) ∩

 ⋃
x∈Bn(X)

Ball(nρn, x)

∣∣∣∣∣∣ (6)

⩽ |Bn(X)| · Vρnn,n,q.

By a standard use of Stirling’s approximation (e.g., see [21,
Chapter 3]) it is well known that

Vρn,n,q =
⌊ρn⌋∑
i=0

(
n

i

)
(q − 1)i ⩽

{
qnHq(ρ) ρ ∈ [0, 1− 1

q ),
qn ρ ∈ [1− 1

q , 1].

Since the limit defining the capacity h(X) exists, by (6) and
the continuity of Hq we obtain

h(X) = lim
n→∞

logq|Bn(X)|
n

= lim inf
n→∞

logq|Bn(X)|
n

⩾ lim inf
n→∞

(
logq |Bn(Y )|

n
−Hq(ρn)

)
= h(Y )−Hq(R(X, Y )).

By rearranging and employing H−1
q we conclude.

We remark that the case h(Y ) ⩽ h(X) includes the
possibility that Y ⊆ X , in which case R(X, Y ) = 0. So any
general lower-bound on R(X, Y ) that depends only on δ =
h(Y )− h(X) must vanish when δ ⩽ 0.

Example 2: Fix Σ = [q] ≜ {0, . . . , q− 1} and consider the
repetition shift

Xrep ≜ {(. . . , a, a, a, . . . ) : a ∈ [q]}.

Clearly, Xrep is the SFT defined by the set of forbidden
patterns

F = {ab : a, b ∈ [q], a ̸= b} ⊆ [q]2.

Since h(Xrep) = 0, by Proposition 8

R(Xrep, [q]Z) ⩾ H−1
q (1− 0) = 1− 1

q
.

On the other hand, for any n ∈ N and for any y ∈ [q]n,
it is clear that there exists at least one symbol a ∈ [q] which
appears in at least ⌈n

q ⌉ coordinates of y, and in particular
d(y, (a, . . . , a)) ⩽ ⌊ q−1

q n⌋. This proves that

R(Bn(Xrep), [q]n) ⩽

⌊
q − 1

q
n

⌋
.

Taking the limit and combining with the lower bound

R(Xrep, [q]Z) = 1− 1
q
,

and in particular, at this example, the lower bound of Propo-
sition 8 is tight.

Remark 2: Example 2 shows that the covering radius of
a union of two constrained systems can be strictly smaller
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then the minimum of the covering radii. We note that Xrep =⋃
a∈[q]{xa}, where xa is the constant bi-infinite sequence of

the symbol a. We note that {xa} is a constrained system and
that R({xa}, [q]Z) = 1. Thus

min
a∈[q]

R({xa}, [q]Z) = 1 > 1− 1
q

= R(Xrep, [q]Z).

That is in contrast to the capacity of constrained systems,
where the capacity of a finite union is equal to the maximum
of the capacities.

Example 3: We recall the (0, 1)-RLL system, X0,1, from
Example 1, which is the system of words with no two con-
secutive zeros, and the binary repetition system, Xrep, from
Example 2. As in the previous examples, we shall calculate
R(X0,1, Xrep) and R(Xrep, X0,1). Since Bn(Xrep) contains
only the all zero word, 0n

, and all one word, 1n
, and since

1n ∈ Bn(X0,1), we have

R(Bn(X0,1), Bn(Xrep)) = min
x∈Bn(X0,1)

d(0n
, x)

= d(0n
, 010101 . . . ) =

⌊n

2

⌋
.

We therefore conclude that

R(X0,1, Xrep) = lim
n→∞

1
n

R(Bn(X0,1), Bn(Xrep)) =
1
2
.

For calculating R(Xrep, X0,1), the exact same argument as
in Example 2 shows that

R(Bn(Xrep), Bn(X0,1)) ⩽
⌊n

2

⌋
.

For the lower bound, since the word 10n
≜ (10101 . . . ) ∈ [2]n

belongs to Bn(X0,1), we have

R(Bn(Xrep), Bn(X0,1)) ⩾ min
{
d(0n

, 10n), d(1n
, 10n)

}
=
⌊n

2

⌋
.

Combining the lower and upper bounds and taking the limit
we obtain

R(X0,1, Xrep) = R(Xrep, X0,1) =
1
2
.

We note that unlike in the case where Y = [2]Z discussed in
Example 2, the lower bound of Proposition 8 is not tight as
the capacity of the (0, 1)-RLL system is known to be log2((1+√

5)/2) and therefore

H−1
2 (h(X0,1)− h(Xrep)) = H−1

2 (log2((1 +
√

5)/2))

≈ 0.186 <
1
2
.

At this point we have reached a curious situation. For the
sake of illustrating it, fix the binary alphabet Σ = [2]. If we
consider X0,1, the (0, 1)-RLL system from Example 1, then its
capacity is known to be h(X0,1) = log2((1+

√
5)/2) ≈ 0.694,

and we have shown that its covering radius (with respect to
[2]Z) is R(X0,1, [2]Z) = 1

2 . However, in Example 2 we have
seen that the binary repetition shift, Xrep, has the same cover-
ing radius R(Xrep, [2]Z) = 1

2 , but zero capacity, h(Xrep) = 0.
From a coding perspective, even though Bn(X0,1) has expo-
nentially more words than Bn(Xrep), the worst-case covering

scenario, namely, a deep hole, is asymptotically within the
same distance from the constrained code.

Apart from the mathematical curiosity, having
R(X0,1, [2]Z) = R(Xrep, [2]Z) = 1

2 hinders (in these
two example cases) the possibility of correcting channel
errors in the QCC scheme described in Section I. This is
because the error-correcting code needs to correct more
erroneous positions than 1

2 of the code length, which is
impossible to do with a non-vanishing rate. We are therefore
motivated to seek a different version of the covering radius
of a constrained system, which takes into account the rarity
of deep holes.

As a final comment for this section, we would like to
comment on the relation of R(X, ΣZ) to the QCC frame-
work. Since we are interested in asymptotics, assume that
the sequence of error-correcting codes in the QCC scheme
is (Cn)n∈N, where Cn is of length n. The expression
R(X, ΣZ) = limn→∞

1
nR(Bn(X), Σn) is an upper bound

on the worse-case quantization error rate using a sequence of
codes (Cn)n∈N, which is actually limn→∞

1
nR(Bn(X), Cn).

The bound R(X, ΣZ) is pessimistic twice: once for allowing
deep holes to determine the covering radius, and twice, for
assuming they reside in Cn. Since limn→∞

1
nR(Bn(X), Cn)

may be hard to compute and depends on the sequence of error-
correcting codes, we may use R(X, ΣZ) as an upper bound
on the worse-case quantization error, which is independent of
the sequence of codes.

IV. THE ESSENTIAL COVERING RADIUS

The covering radius that was studied in the previous section
may be perhaps too pessimistic in the sense that it is deter-
mined by the worst-case quantization distance. In this section,
we study a different definition of the covering radius, which
we call the essential covering radius. Given ε > 0, the ε-
covering radius of a constraint system is, loosely speaking, the
smallest r such that (1 − ε)-fraction the words in the space
can be quantized to the constraint system. In what follows,
we further generalize this to a probabilistic definition of the
covering radius.

We begin by stating some basic definitions and well-known
results from ergodic theory. For any finite alphabet Σ, we con-
sider ΣZ as a measurable space, together with the Borel
Σ-algebra induced by the product topology on ΣZ. Similarly,
any subshift Y ⊆ ΣZ is considered as a measurable space.

Definition 9 (Invariant and Ergodic Measures): Let Y ⊆
ΣZ be a subshift. A probability measure µ on Y is called
shift invariant if µ(T−1B) = µ(B) for any measurable set
B. A shift-invariant measure µ is further said to be ergodic
if T−1B = B implies µ(B) = 0 or µ(Y \ B) = 0. The
set of shift-invariant probability measures on Y is denoted by
M(Y ), and the set of ergodic measures in M(Y ) is denoted
by ME(Y ).

For a measure µ ∈ M(Y ) we denote by µn the marginal
measure of µ on the coordinates 0, 1 . . . , n − 1, which is a
probability measure on Σn. To avoid cumbersome notation,
throughout this work we shall use Pµ[A] in order to denote the
measure µ(A), and Y for a random bi-infinite sequence on Y .
Throughout this article we use bold upper-case letters for
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bi-infinite sequences of random variables, not to be confused
with non-bold capital letters used to denote constrained sys-
tems. An important result that we use in our analysis is the
following well-known ergodic theorem, which is a classical
result in Ergodic Theory. The L2 convergence in the ergodic
theorem is due to von-Neumann and the almost-surely result is
due to Birkhoff, both from 1931. A proof of this well-known
classical theorem can be found in most standard introductory
textbooks on ergodic theory, for instance [36, Chapter 3].

Theorem 10 (The Ergodic Theorem, [6], [31]): Let Y ⊆
ΣZ be a shift space, µ ∈ ME(Y ) be an ergodic measure,
and f ∈ L1(µ) be an integrable function. Then the sequence
(An)n∈N defined by

An =
1
n

n−1∑
i=0

f ◦ T−i

converges almost-surely, and in L2, to
∫

f · dµ. In particular,
for all δ > 0

lim
n→∞

Pµ

[∣∣∣∣An −
∫

f · dµ

∣∣∣∣ > δ

]
= 0.

We are now ready to define the essential covering radius.
Definition 11: For any real ε > 0, two sets A, C ⊆ Σn,

and η, a probability measure on A, we define

Rε(C, A, η) ≜ min

{
r ∈ N ∪ {0} :

η

(
A ∩

(⋃
x∈C

Ball(r, x)

))
⩾ 1− ε

}
.

We remark that when η is the uniform measure on A,
Rε(C, A, η) is the ε-covering radius of A, namely the smallest
r such that at least (1 − ε)-fraction of the words in C are at
distance at most r from A, as desired.

Definition 12: Let X, Y ⊆ ΣZ be constrained systems, and
µ ∈ ME(Y ) be an ergodic measure. We define the ε-covering
radius of X with respect to (Y, µ) by

Rε(X, Y, µ) ≜ lim inf
n→∞

Rε(Bn(X), Bn(Y ), µn)
n

,

and the essential covering radius of X with respect to (Y, µ)
by

R0(X, Y, µ) ≜ lim
ε→0

Rε(X, Y, µ).

We comment that the limit in the previous definition exists
due to the monotonicity of Rε(X, Y, µ) in ε. We also observe
that, trivially, the essential covering radius is upper bounded
by the (worst-case) covering radius, for every ε > 0

R0(X, Y, µ) ⩽ Rε(X, Y, µ) ⩽ R(X, Y ). (7)

We now review the examples of the repetition system
(Example 2) and the (0, k)-RLL system (Example 1), con-
sidered in the previous section.

Proposition 13: Consider the q-ary repetition system
Xrep ⊆ [q]Z from Example 2, and assume Y = [q]Z is
equipped with the uniform Bernoulli i.i.d measure, denoted

by µu. Then the essential covering radius is equal to the
covering radius, i.e.,

R0(Xrep, [q]Z, µu) = R(Xrep, [q]Z) = 1− 1
q
.

Proof: For a fixed n ∈ N and i ∈ [q], let Y
(i)
n be the

random variable that counts the number of coordinates with
the symbol i in a random (uniformly distributed) word in [q]n.
By the law of large numbers, for any δ > 0

lim
n→∞

Pµu
n

[
q−1⋂
i=0

{∣∣∣∣∣Y (i)
n

n
− 1

q

∣∣∣∣∣ < δ

}]
= 1. (8)

We also note that for a word y ∈ [q]n with each symbol i ∈ [q]
appearing in at least ( 1

q − δ)n coordinates, we have

min
x∈Bn(Xrep)

d(x, y) ⩾ (q − 1)
(

1
q
− δ

)
n. (9)

For any ε > 0, from (8) it follows that for sufficiently large n,
any set in [q]n, of probability at least 1− ε, contains a word
such that any i ∈ [q] appears in at least ( 1

q − δ)n coordinates.
Combining this with (9) we conclude that for sufficiently large
n

Rε(Bn(Xrep), [q]n, µu
n)

n
⩾ (q − 1)

(
1
q
− δ

)
.

It then follows that Rε(Xrep, [q]Z, µu) ⩾ (q−1)( 1
q−δ), which

is true for all δ > 0, and therefore

R0(Xrep, [q]Z, µu) = lim
ε→0

Rε(Xrep, [q]Z, µu) ⩾ 1− 1
q
.

The upper bound follows trivially from Example 2, and we
have

R0(Xrep, [q]Z, µu) = R(Xrep, [q]Z) = 1− 1
q
.

Remark 3: Since (7) is true for all ergodic measures,
we can lower bound the covering radius as follows,

R(X, Y ) ⩾ sup
µ∈ME(Y )

R0(X, Y, µ). (10)

Proposition 13 shows that in the case where X = Xrep is the
repetition system and Y = [q]Z, (10) is tight, as equality holds
for the uniform Bernoulli measure on Y .

We claim that (10) is tight also in the case where X =
X0,k, the binary (0, k)-RLL system described in Example 1.
To see this, consider µ = δ0, the Dirac measure of the all-zero
sequence 0 ∈ Y = [2]Z. Since 0 is a periodic point with
period 1 (with respect to the shift transformation), δ0 is indeed
an invariant measure, which is also ergodic, as it assigns a
measure of 0 or 1 to any set. A simple calculation shows that
for any 0 < ε < 1 and n ∈ N,

Rε(Bn(X0,k), [2]n, µn) = min
x∈Bn(X0,k)

d(x, 0n) =
⌊

n

k + 1

⌋
,

which implies

R0(X0,k, [2]Z, µ) = lim
ε→0

Rε(X0,k, [2]Z, µ)

= lim
ε→0

lim inf
n→∞

Rε(Bn(X0,k), [2]n, µn)
n

Authorized licensed use limited to: McMaster University. Downloaded on May 24,2024 at 04:05:04 UTC from IEEE Xplore.  Restrictions apply. 



ELIMELECH et al.: QUANTIZED-CONSTRAINT CONCATENATION AND THE COVERING RADIUS 4051

=
1

k + 1
= R(X, Y ).

We conjecture that the bound (10) is tight in general, and leave
it as a direction for future work.

As we have seen, the repetition system, whose capacity
is zero, has the same covering radius and essential covering
radius. The (0, k)-RLL system has positive capacity. While
its covering radius is 1

k+1 , the following theorem shows its
essential covering radius decays exponentially fast with k,
in stark contrast to the repetition system.

Theorem 14: Let X0,k ⊆ [2]Z be the (0, k)-RLL system
from Example 1, and let Y = [2]Z be equipped with the
uniform Bernoulli i.i.d measure µu. Then

R0(X0,k, [2]Z, µu) =
1

2(2k+1 − 1)
.

Proof: For a word y ∈ [2]n and an integer i ⩾ k + 1, let
us denote by Si(y) the number of appearances of the pattern
10i1 ∈ [2]i+2 in y. We also denote by M(y) the number of
coordinates j ∈ [n] that are not part of a pattern of the form
10i1 in y, for any i ⩾ 1. The key observation is the following
inequality, asserting that for all ℓ ⩾ k + 1 we have

ℓ∑
i=k+1

⌊
i

k + 1

⌋
Si(y) ⩽ min

x∈Bn(X0,k)
d(x, y)

⩽ M(y) +
∞∑

i=k+1

⌊
i

k + 1

⌋
Si(y). (11)

Indeed, we note that for any x ∈ Bn(X0,k) and for any
instance of the pattern ym+i+1

m = 10i1, we have that xm+i
m+1

and ym+i
m+1 must differ in at least ⌊ i

k+1⌋ places since x does
not contain k + 1 consecutive zeros. We further observe that
patterns of the form 10i1 in y do not overlap in zeros. Thus
we obtain,

d(x, y) ⩾
∞∑

i=k+1

⌊
i

k + 1

⌋
Si(y) ⩾

ℓ∑
i=k+1

⌊
i

k + 1

⌋
Si(y),

and the lower-bound follows by taking the minimum over all
x ∈ Bn(X0,k). On the other hand, in order to prove the upper
bound, it suffices to construct a word x ∈ Bn(X0,k) satisfying

d(x, y) ⩽ M(y) +
∞∑

i=k+1

⌊
i

k + 1

⌋
Si(y). (12)

We construct x as follows: for any i ⩾ k +1 and any instance
of the pattern 10i1 in ym+i+1

m , we set

xm+i+1
m = 1

⌊ i
k+1 ⌋(k+1)︷ ︸︸ ︷

0k10k1 · · · 0k1

i mod (k+1)︷ ︸︸ ︷
0 · · · 0 1.

In the remaining coordinates we define x to be the same as
y except the coordinates counted by M(y) which we set to
1. From the construction of x, the longest run of zeros it
contains is at most k, which implies x ∈ Bn(X0,k). Thus,
x satisfies (12) as desired.

For any ℓ ⩾ k +1 (including ℓ = ∞) we define fℓ : [2]Z →
R to be

fℓ(y) =

{⌊
i

k+1

⌋
yi+1

0 = 10i1 for k + 1 ⩽ i ⩽ ℓ,

0 otherwise,

and we denote

Eℓ ≜
∫

fℓ · dµu.

A simple calculation shows that for any finite ℓ ∈ N

Eℓ =
ℓ∑

i=k+1

⌊
i

k + 1

⌋
1

2i+2
,

and by the monotone convergence theorem Eℓ → E∞ as ℓ →
∞, since fℓ (monotonically) converges to f∞ pointwise.

Let Y n be a random word of length n distributed according
to µu

n, and let Y be a random sequence distributed according
to µu. We note that for any ℓ ⩽ n− 2,

n−ℓ−2∑
j=0

fℓ ◦ T j(Y) =
ℓ∑

i=0

⌊
i

k + 1

⌋
Si(Yn−1

0 ).

Combining with (11), for a fixed ℓ and δ > 0, and for all
sufficiently large n,

Pµu
n

[
min

xn∈Bn(X0,k)

d(xn, Y n)
n

> Eℓ − δ

]
= Pµu

[
min

xn∈Bn(X0,k)

d(xn,Yn−1
0 )

n
> Eℓ − δ

]
⩾ Pµu

[
1
n

ℓ∑
i=k+1

⌊
i

k + 1

⌋
Si(Yn−1

0 ) > Eℓ − δ

]

= Pµu

 1
n

n−ℓ−2∑
j=0

fℓ ◦ T j(Y) > Eℓ − δ

 −−−−→
n→∞

1,

where the convergence to 1 is due to the ergodic theorem (see
Theorem 10). This proves that for any ε ∈ (0, 1), δ > 0, and
ℓ ⩾ k + 1, for sufficiently large n

Rε(Bn(X0,k), Bn(Y ), µu)
n

> Eℓ − δ,

and therefore,

Rε(X0,k, [2]Z, µu) ⩾ lim
ℓ→∞
δ→0

Eℓ − δ = E∞.

For the upper bound, we use a similar technique. We first
note that the sequence of random variables ( 1

nM(Yn−1
0 ))n∈N

converges in probability to 0. We note that for any N ∈ N,
and a word y of length n, if M(y) > 2N then yN−1

0 = 0 or
yn−1

n−N = 0. Thus for any δ > 0

Pµu

[∣∣∣∣ 1nM(Yn−1
0 )− 0

∣∣∣∣ > 2δ

]
⩽ Pµu

[
Y⌊δn⌋

0 = 0
]

+ Pµu

[
Yn−1

n−⌊δn⌋ = 0
]

=
2

2⌊δn⌋ −−−−→n→∞
0.
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We similarly note that for any n,

n−1∑
j=0

f∞ ◦ T j(Y) ⩾
∞∑

i=0

⌊
i

k + 1

⌋
Si(Yn−1

0 ).

Combining with (11), for all δ > 0

Pµu
n

[
min

xn∈Bn(X0,k)

d(xn, Y n)
n

< E∞ + δ

]
⩾ Pµu

[
1
n

(
M(Yn−1

0 )

+
∞∑

i=k+1

⌊
i

k + 1

⌋
Si(Yn−1

0 )

)
< E∞ + δ

]

⩾ Pµu

[
1
n

(
M(Yn−1

0 )

+
n−1∑
j=0

f∞ ◦ T j(Y)

)
< E∞ + δ

]
−−−−→
n→∞

1,

where again, the convergence to 1 follows from the
ergodic theorem and from the convergence in probabil-
ity of 1

nM(Yn−1
0 ) to 0. As before, this proves that

Rε(X0,k, [2]Z, µu) ⩾ E∞ for all ε > 0, and by the lower
bound Rε(X0,k, [2]Z, µu) = E∞. In particular,

R0(X0,k, [2]Z, µu) = lim
ε→0

Rε(X0,k, [2]Z, µu) = E∞.

In order to complete the proof it only remains to compute
E∞:

E∞ =
∞∑

i=k+1

⌊
i

k + 1

⌋
1

2i+2
=

∞∑
j=1

j

(j+1)(k+1)−1∑
i=j(k+1)

1
2i+2

=
2k+1 − 1

2k+2

∞∑
j=1

j

2j(k+1)
=

2k+1 − 1
2k+2

· 2k+1

(2k+1 − 1)2

=
1

2(2k+1 − 1)
.

It is desirable to have alternative expressions for the essen-
tial covering radius, which could assist in calculating or
estimating its value. Inspired by tools used in the proof of
Theorem 14, we give an equivalent ergodic-theoretic charac-
terization.

Definition 15: Let X, Y ⊆ ΣZ be shift spaces, we consider
X × Y as shift space, with the left shift acting as T (x,y) =
(Tx, Ty). For an ergodic measure µ ∈ ME(Y ), an extension
of µ over X×Y is a shift-invariant measure ν on the product
space X×Y whose Y -marginal is µ. Namely, ν satisfies that
for any measurable A ⊆ Y

ν(X ×A) = µ(A).

An extension on X×Y is said to be ergodic if it is an ergodic
measure with respect to the shift transformation on the product
space. We let M(X, Y, µ) denote the set of all extensions of
µ, and ME(X, Y, µ) denote the set of all ergodic extensions in
M(X, Y, µ). We comment that M(X, Y, µ) and ME(X, Y, µ)

are non-empty for any measure µ. Indeed, taking the inde-
pendent coupling of any invariant measure η on X with the
measure µ gives an invariant extension in M(X, Y, µ). The
existence of an ergodic extension is a shown inside the proof
of Proposition 18.

In the following proposition, we provide an upper bound
on the essential covering radius, that holds with no further
assumptions on X and Y .

Proposition 16: Let X, Y ⊆ ΣZ be shift spaces, and µ ∈
ME(Y ). Then

R0(X, Y, µ) ⩽ inf{Pν [X0 ̸= Y0] : ν ∈ ME(X, Y, µ)},

where X0,Y0 are the random variables defined by the projec-
tions of two random sequences X and Y on the 0 coordinate.

Proof: Let ν be an extension in ME(X, Y, µ), and let
0 < ε < 1 and δ > 0 be arbitrarily small numbers. It is
sufficient to prove that

Rε(X, Y, µ) ⩽ Pν [X0 ̸= Y0] + δ.

We consider the function f : X × Y → {0, 1}, defined to be
the indicator function of the event {X0 ̸= Y0}. Clearly∫

f · dν = Pν [X0 ̸= Y0].

By Theorem 10, for sufficiently large n,

Pν

[∣∣∣∣∣ 1n
n−1∑
i=0

f ◦ Tn −
∫

f · dν

∣∣∣∣∣ > δ

]
< ε. (13)

We also observe that
n−1∑
i=0

f ◦ Tn = d
(
Xn−1

0 ,Yn−1
0

)
, (14)

where d is the Hamming distance. Let us denote

sδ ≜ Pν [X0 ̸= Y0] + δ

Bsδ
(Bn(X)) ≜ Bn(Y ) ∩

 ⋃
x∈Bn(X)

Ball(n · sδ, x)

.

Combining (13) and (14) with the law of total probability we
obtain

1− ε

< Pν

[
d
(
Xn−1

0 ,Yn−1
0

)
⩽ n · sδ

]
=

∑
y∈Bn(Y )

Pν

[
d
(
Xn−1

0 ,Yn−1
0

)
⩽ n · sδ

∣∣∣∣ Yn−1
0 = y

]
· Pν

[
Yn−1

0 = y
]

=
∑

y∈Bsδ
(Bn(X))

Pν

[
d
(
Xn−1

0 ,Yn−1
0

)
⩽ n · sδ

∣∣∣∣ Yn−1
0 = y

]
· Pν

[
Yn−1

0 = y
]

⩽
∑

y∈Bsδ
(Bn(X))

Pν

[
Yn−1

0 = y
]

=
∑

y∈Bsδ
(Bn(X))

Pµ

[
Yn−1

0 = y
]
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= Pµn

Bn(Y ) ∩

 ⋃
x∈Bn(X)

Ball(n · sδ, x)

.

This shows that

Rε(X, Y, µ) ⩽ sδ = Pν [X0 ̸= Y0] + δ,

and therefore completes the proof.
The following proposition shows that the minimization

problem from the upper bound of Proposition 16 over the
set of ergodic extensions ME(X, Y, µ) is in fact equivalent
to a minimization over the set of all invariant extensions
M(X, Y, µ). In order to show that, we shall require the ergodic
decomposition theorem. Let Z be a compact metric space
equipped with the Borel σ-algebra and T : Z → Z be a
continuous function. We consider the space of T -invariant
measures on Z, M(Z), as a measurable space with the Σ-
algebra induced by the weak-∗ topology.

Theorem 17 (Ergodic Decomposition, [14, Theorem 4.8]):
Let Z be a compact metric space, T : X → X be a continuous
map, and µ ∈ M(Z) be an invariant measure. Then there
exists a unique probability measure Pµ on M(Z), supported
on the set of ergodic measures ME(Z), such that for any
measurable set E ⊆ Z,

µ(E) =
∫

ME(Z)

ν(E)dPµ(ν).

Proposition 18: Let X, Y ⊆ ΣZ, and let µ ∈ ME(Y ) be a
shift-invariant ergodic measure. Then

inf{Pν [X0 ̸= Y0] : ν ∈ ME(X, Y, µ)}
= inf{Pν [X0 ̸= Y0] : ν ∈ M(X, Y, µ)}.

Proof: Let us denote

m ≜ inf{Pν [X0 ̸= Y0] : ν ∈ ME(X, Y, µ)}.

The inequality

m ⩾ inf{Pν [X0 ̸= Y0] : ν ∈ M(X,Y, µ)}

is trivial as ME(X, Y, µ) ⊆ M(X,Y, µ). For the other direc-
tion, we are required to show that for all η ∈ M(X, Y, µ)

Pη[X0 ̸= Y0] ⩾ m.

Let Pη be the ergodic decomposition of η. Namely η =∫
ME(X×Y )

ν · dPη(ν), and the set of ergodic measures has
full dPη-measure. We start by showing that Pη is supported
on ME(X, Y, µ), which also proves that ME(X, Y, µ) is non-
empty. Assume to the contrary that

Pη[{ν ∈ ME(X × Y ) : νY ̸= µ}] > 0,

where νY is the projection (marginal) of ν on Y . Since the
Borel Σ-algebra on Y is countably generated, there exists a
measurable set E ⊆ Y and n ∈ N such that at least one of
the sets A+ and A− defined by

A+ ≜

{
ν ∈ ME(X × Y ) : νY (E) ⩾ µ(E) +

1
n

}
,

A− ≜

{
ν ∈ ME(X × Y ) : νY (E) ⩽ µ(E)− 1

n

}
,

has a positive Pη-measure. Without loss of generality, assume
Pη(A+) > 0. We define a new measure η′ by

η′(A) =
1

Pη(A+)

∫
A+

ν(A) · dPη(ν).

We observe that η′ is a shift-invariant measure (as an integral
over shift-invariant measures). We also note that η′Y ≪ ηY

(that is, η′Y is absolutely continuous with respect to ηY ) as
any null set with respect to η is obviously a null set with
respect to η′. It is well known that any invariant probability
measure which is absolutely continuous with respect to an
invariant ergodic probability measure must be equal to it (e.g.
see [37, Remark 1, p.153]). We recall that ηY = µ is ergodic,
and therefore ηY = η′Y . This is a contradiction as from the
definition of A+ and η′ we have

µ(E) = ηY (E) = η′Y (E) = η′(X × E)

=
1

Pη(A+)

∫
A+

ν(X × E) · dPη(ν)

⩾
1

Pη(A+)

∫
A+

(
µ(E) +

1
n

)
dPη(ν) = µ(E) +

1
n

.

The claim now follows, since from the definition of m we
have

Pη[X0 ̸= Y0] =
∫

ME(X×Y )

Pν [X0 ̸= Y0]dPη(ν)

=
∫

ME(X,Y,µ)

Pν [X0 ̸= Y0]dPη(ν)

⩾
∫

ME(X,Y,µ)

m · dPη(ν) = m.

We are now ready to prove the main result of the section:
the upper bound given in Proposition 16 is in fact tight, and
it provides an exact characterization of the essential covering
radius by a minimization problem over invariant extensions.

Theorem 19: Let X,Y ⊆ ΣZ be constrained systems, and
let µ ∈ ME(Y ) be an ergodic measure. Then

R0(X, Y, µ) = inf{Pν [X0 ̸= Y0] : ν ∈ ME(X, Y, µ)}
= inf{Pν [X0 ̸= Y0] : ν ∈ M(X, Y, µ)}.

Proof: By Proposition 18 and Proposition 16, it is suf-
ficient to prove that for any δ > 0, there exists an invariant
extension ν ∈ M(X, Y, µ) with

Pν [X0 ̸= Y0] ⩽ R0(X, Y, µ) + δ. (15)

We shall prove the existence of such an extension using the
compactness of the simplex of probability measures X × Y
with respect to the weak-∗ topology. We fix δ > 0 and find
ε < δ/4 in (0, 1) such that

Rε(X, Y, µ) ⩽ R0(X, Y, µ) +
δ

4
. (16)

For any fixed word y ∈ Bn(Y ) we fix an arbitrary x(y) ∈
Bn(X) which is closest to y among the words in Bn(X).
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From the definition of Rε(X, Y, µ), there exists a sequence of
distinct integers (nk)k∈N such that

lim
k→∞

Rε(Bnk
(X), Bnk

(Y ), µnk
)

nk
= Rε(X, Y, µ).

From the definition of Rε(Bnk
(X), Bnk

(Y ), µnk
) we have

that for sufficiently large k

Pµ

[
1
nk

d
(
x(Ynk−1

0 ),Ynk−1
0

)
<Rε(X, Y, µ)+

δ

4

]
> 1− ε.

(17)

For a fixed k, we define a map fk : Y → X as follows: for
any x ∈ Bnk

(X) we fix some x ∈ X such that xnk−1
0 = x.

We then define fk(y) = x, where x is the sequence in X
corresponding to x(ynk−1

0 ). Clearly fk is measurable since
fk(y)m depends on finitely many coordinates of y. We now
consider the measure ν′k on X×Y , defined as the pushforward
of (fk, Id) : Y → X×Y . We also define νk to be the measure
obtained by averaging of ν′k along the action of the shift, which
is given by

ν=
1
nk

nk−1∑
i=0

T i
∗ν
′
k,

where T i
∗ν
′
k is the pushforward of ν′k with the ith-shift, defined

by T i
∗ν
′
k(A) = ν′k(T−iA). We note that the Y -marginal of ν′k

is µ since (fk, Id) is the identity on the Y -coordinate. Since
µ is shift invariant it follows that the Y -marginal of νk is also
µ.

By the compactness of the set of probability measures on
X × Y with respect to the weak-∗ topology, there exists a
convergent subsequence (νkl

)l∈N, which by abuse of notation
we denote by (νk)k. Let ν denote the weak-∗ limit of (νk)k.
Since the projection of a measure to its marginal is continuous
with respect to the weak-∗ topology, the Y -marginal of ν is
µ. We shall now show that ν is indeed an invariant measure
satisfying (15).

For the invariance of ν, it is sufficient to show that for any
continuous function on X × Y we have∫

f · dν =
∫

f ◦ T · dν.

Indeed,∫
f · dν −

∫
f ◦ T · dν

= lim
k→∞

∫
f · dνk − lim

k→∞

∫
f ◦ T · dνk

= lim
k→∞

1
nk

nk−1∑
i=0

(∫
f · dT i

∗ν
′
k −

∫
f ◦ T · dT i

∗ν
′
k

)

= lim
k→∞

1
nk

nk−1∑
i=0

(∫
f ◦ T i · dν′k −

∫
f ◦ T i+1 · dν′k

)
= lim

k→∞

1
nk

(∫
f · dν′k −

∫
f ◦ Tnk · dν′k

)
= 0,

where the convergence to 0 follows since f is bounded (as a
continuous function on a compact space).

It now remains to show that ν satisfies (15). From the
definitions of ν, νk, and ν′k, for all k we have

Pν [X0 ̸= Y0] = lim
k→∞

Pνk
[X0 ̸= Y0]

= lim
k→∞

1
nk

nk−1∑
i=0

Pν′k

[
T−i{X0 ̸= Y0}

]
= lim

k→∞

1
nk

nk−1∑
i=0

Pν′k
[Xi ̸= Yi]

= lim
k→∞

Eν′k

[
1
nk

nk−1∑
i=0

IXi ̸=Yi

]

= lim
k→∞

Eν′k

[
1
nk

d
(
Ynk−1

0 ,Xnk−1
0

)]
= lim

k→∞
Eµ

[
1
nk

d
(
Ynk−1

0 , x(Ynk−1
0 )

)]
.

We define Eδ to be the event that d(Ynk−1
0 , x(Ynk−1

0 )) ⩾
nk(Rε(X, Y, µ) + δ/4). By (17), for sufficiently large k,

Eµ

[
1
nk

d
(
Ynk−1

0 , x(Ynk−1
0 )

)]
⩽ Eµ

[
1
nk

d
(
Ynk−1

0 , x(Ynk−1
0 )

)
· IEδ

]
+ Eµ[1− IEδ

]

⩽ Rε(X, Y, µ) +
δ

4
+ (1− Pµ[Eδ])

⩽ Rε(X, Y, µ) +
δ

4
+ ε ⩽ Rε(X, Y, µ) +

δ

2
.

Combining the above inequality with (16) we conclude that

Pν [X0 ̸= Y0] = lim
k→∞

Pνk
[X0 ̸= Y0] ⩽ R0(X, Y, µ) +

3δ

4
,

as desired.
In the following example, we explicitly describe a sequence

of extensions in ME(X, Y, µ) which approximates the essential
covering radius of the (0, k)-RLL system from Example 1 with
respect to the full-shift (equipped with the uniform Bernoulli
measure).

Example 4: Let X0,k ⊆ [2]Z denote the (0, k)-RLL shift as
in Example 1. Let y ∈ [2]n be a finite binary word. We define
c(y) to be the length of longest zero suffix of y, formally given
by

c(y) ≜ max
{

i : y = yn−i−1
0 0i

}
.

We fix N ∈ N and consider the map f (N) : [2]Z → X0,k

defined by

f (N)(y)m =

{
1 c

(
ym−1

m−(N(k+1)−1)

)
≡ k (mod k + 1),

ym otherwise.

Clearly, Im(f) ⊆ X0,k since no run of k + 1 zeroes may
appear in f (N)(y). We note that the map (f (N), Id) : [2]Z →
X0,k × [2]Z is a sliding-block-code function (i.e., a function
such that the value in each coordinate is determined by a finite
block of adjacent coordinates), and therefore it is measurable
and commutes with the shift transformation. Let µu be the
uniform measure over [2]Z, and let νN be its pushforward
measure on X0,k×[2]Z using f (N). Clearly νN is an invariant
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measure, which is also ergodic (as a factor of an ergodic
measure). Therefore, νN ∈ ME(X0,k, [2]Z, µu). We note that

PνN
[X0 ̸= Y0]

= Pµu

[
c
(
Y−1
−(N(k+1)−1)

)
≡ k (mod k + 1) and Y0 = 0

]
=

N−1∑
i=0

Pµu

[
c
(
Y−1
−(N(k+1)−1)

)
= i(k + 1) + k and Y0 = 0

]
= Pµu

[
Y0
−(N(k+1)−1) = 0N(k+1)

]
+

N−1∑
i=1

Pµu

[
Y0
−i(k+1) = 10i(k+1)

]
=

1
2N(k+1)

+
1
2

N−1∑
i=1

1
2i(k+1)

.

Taking N →∞ we obtain

lim
N→∞

PνN
[X0 ̸= Y0] = lim

N→∞

1
2N(k+1)

+
1
2

N−1∑
i=1

1
2i(k+1)

=
1

2(2k+1 − 1)
= R0(X0,k, [2]Z, µu).

To conclude this section we briefly discuss the essential
covering radius in the context of the QCC scheme. Loosely
speaking, asymptotically, all but a vanishing fraction of Σn

may be quantized to Bn(X) by changing an R0(X, ΣZ, µu)-
fraction of the positions. This fraction may be significantly
lower than the worst-case fraction R(X,ΣZ). In a finite-length
setting, at least a (1 − ε)-fraction of Σn may be quantized
to Bn(X) by changing at most rε = Rε(Bn(X), Σn, µu

n)
positions. A small obstacle we need to overcome is the fact
that in the QCC scheme we do not quantize any word from
Σn, but rather only codewords of the error-correcting code
C. The ε-fraction of words from Σn that are a long distance
from Bn(X) may disproportionately reside in C. However,
if we further assume that C is a linear error-correcting code,
by a simple averaging argument there exists at least one coset
of the code, C ′, such that the fraction of codewords whose
distance to the language of X is at most rε. This means that
there exists C ′′ ⊆ C ′ with |C ′′| ⩾ (1 − ε)|C ′| such that
R(Bn(X), C ′′) ⩽ rε.

V. UPPER BOUNDS ON THE ESSENTIAL
COVERING RADIUS

The goal of this section is to establish general upper bounds
on the essential covering radius. While Theorem 19 gives
an exact expression for the essential covering radius, the
minimization problem involved is hard to solve. In Example 4,
we found a sequence of good extensions which approximates
the essential covering radius. In general, by Theorem 19, such
a sequence of extensions provides a sequence of upper-bounds
on the essential covering radius. In this section we shall
present two different approaches for constructing extensions
for general constrained systems, thus providing upper bounds
on the essential covering radius. The first approach, using
Markov chains, provides an upper bound which is efficiently

computable as the solution of a linear-programming prob-
lem. An alternative method for constructing extensions is by
sliding-block-code functions. In that case, we prove that if X
is primitive, the essential covering radius can be approximated
by increasing the block size in such functions.

A. Markov Chains

We consider the scenario where X and Y are constrained
systems generated by labeled graphs GX = (VX , EX , LX)
and GY = (VY , EY , LY ) respectively. Throughout this
section, we assume that GX and GY contain no parallel edges
with the same label. An edge u → v shall be denoted by the
ordered pair e = (u, v), and we say its source is σ(e) = u and
its target is τ(e) = v. We focus on the case where the measure
µ ∈ ME(Y ) is generated by some Markov chain on the graph
GY . We remark that the case of Y = ΣZ and µ = µu is the
uniform Bernoulli measure, falls into that category. We begin
with some definitions and basic results from the theory of
Markov chains on finite graphs.

Definition 20: Let G = (V,E) be a finite directed graph.
A stationary Markov chain on G is a pair (π, Q), where π is
a probability measure on V and Q is a function from V to
the space of probability measures on E that sends v ∈ V to a
probability measure Q(·|v) on E such that for every v ∈ V ,∑

e∈E
σ(e)=v

Q(e|v) = 1,

and so that for every v ∈ V we have:

π(v) =
∑
e∈E

τ(e)=v

π(σ(e))Q(e|σ(e)).

Note that for any Markov chain on (π, Q) on G = (V,E),
Q(e|v) > 0 implies that σ(e) = v so we can conveniently
write Q(e) as an abbreviation for Q(e|σ(e)). In the case where
G is a simple graph (i.e., without parallel edges), for any edge
e = (u, v) ∈ E we use the notation Q(v|u) for Q(e). Also,
when G is a simple graph, Q may be identified with a |V |×|V |
stochastic matrix (often called the transition matrix), for which
π is a left eigenvector with eigenvalue 1.

There is a one-to-one correspondence between Markov
chains on G = (V,E) and probability measures on E that
satisfy the condition∑

e∈E
σ(e)=v

P (e) =
∑
e∈E

τ(e)=v

P (e).

Indeed, such a probability measure P corresponds to a sta-
tionary Markov chain (π, Q), where

π(v) ≜
∑
e∈E

σ(e)=v

P (e) =
∑
e∈E

τ(e)=v

P (e),

and
Q(e|v) ≜

P (e)
π(v)

.

By abuse of notation, we denote P = (π, Q). We assume
the Markov chain does not contain degenerate vertices, i.e.,

Authorized licensed use limited to: McMaster University. Downloaded on May 24,2024 at 04:05:04 UTC from IEEE Xplore.  Restrictions apply. 



4056 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 6, JUNE 2024

π(v) > 0 for all v ∈ V . Any stationary Markov chain P
induces an invariant measure P̂ on the space of bi-infinite
paths on G by

P̂ ([(e0, e1, . . . , en−1)]) = P (e0)
n−1∏
i=1

Q(ei).

for any cylinder set [(e0, . . . , en−1)] corresponding to a finite
path (e0, . . . , en−1), which by Definition 1 is the set

[(e0, . . . , en−1)] =
{
e ∈ EZ : en−1

0 = (e0, . . . , en−1)
}
.

We call P̂ the stationary Markov process on G, induced by P .
In the case where G is a simple graph (i.e., without parallel
edges), for any edge e = (u, v) ∈ E we use the notation
Q(v|u) for Q(e).

If G = GY generates the constrained system Y by the
labeling function LY , then P = (π, Q) induces an invariant
probability measure on Y , which is the pushforward measure
of P̂ via the labeling function, i.e., for a cylinder set [y],

µP ([y]) =
∑

e path in G
L(e)=y

π(σ(e0))
|y|−1∏
i=0

Q(ei).

We note that Y is a hidden Markov process with respect to µP ,
and refer to the measure µP as above as the hidden Markov
measure induced by P via the labeling function L.

Assume that X, Y ⊆ ΣZ are irreducible constrained sys-
tems given by labeled graphs GX and GY respectively, and
assume that µ = µPY

∈ ME(Y ) is a measure on Y ,
induced by PY , a stationary Markov Chain on GY . We con-
sider the strong product graph of GX and GY given by
GX×Y = (VX×Y , EX×Y , (LX , LY )) where VX×Y ≜ VX ×
VY , EX×Y ≜ EX × EY with σ(ex, ey) = (σ(ex), σ(ey)),
τ(ex, ey) = (τ(ex), τ(ey)) and labeling function LX×Y given
by:

LX×Y (ex, ey) = (LX(ex), LY (ey)).

We note that a stationary Markov chain P on GX×Y naturally
defines a stationary Markov process P̂ on GX×Y , which
induces the hidden Markov measure νP on X × Y by the
labeling function LX×Y . Since each edge e ∈ EX×Y is
composed of a pair (ex, ey) ∈ EX×EY , P̂ may be considered
as a measure on the space of pairs of bi-infinite paths where
the first is a path on GX and the second is a path on
GY . We denote the marginal measure of P̂ on the space of
bi-infinite paths on GY by (P̂ )Y

For our purpose, we are interested in stationary Markov
chains on GX×Y such that the Y -marginal of the induced
measure is µPY

. A sufficient condition is the following:
considering P̂ as a stationary Markov process on GX×Y ,
the GY -marginal measure of P̂ is the Markov process P̂Y .
We are therefore interested in the following question: given a
stationary Markov chain P on GX×Y , when is P̂ an extension
of the measure P̂Y ? An obvious necessary condition is that
the GY -marginal of pairs in the distribution of P̂ equals the
pairs distribution of P̂Y . This condition may equivalently be

described by

PY (e) =
∑

e′∈EX×Y

e′y=e

P (e′), for all e ∈ EY . (18)

It is tempting to speculate that the condition given in (18)
is also sufficient, however, it is not the case. The marginal of
a Markov measure, in general, is not necessarily a Markov
measure, but rather a hidden Markov measure. In fact, there
exists an example for stationary Markov chains P and PY

satisfying (18) such that there is no invariant measure on
the space of bi-infinite paths on GX×Y which has the same
pairs distribution as P̂ and an GY -marginal that equals to
the Markov process P̂Y . In the following lemma, we propose
a sufficient condition under which the GY -marginal of P̂
equals P̂Y . For ease of notation, we state and prove the
claim for simple graphs. However, the claim is true without
the assumption of graph simplicity, and the proof generalizes
immediately from simple graphs to general labeled graphs.
The corresponding condition for the general (not necessarily
simple) case is given in (22).

Lemma 21: Let G1 = (V1, E1) and G2 = (V2, E2) be
finite simple directed graphs and let G1 ×G2 = G = (V,E)
denote strong graph product of G1 and G2 (as defined above).
For given stationary Markov chains P = (π, Q) and P1 =
(π1, Q1) on G and G1 respectively, the G1-marginal of the
Markov process P̂ is the Markov process P̂1 (on G1) if the
following conditions hold:
• For all e ∈ E1

P1(e) =
∑
e′∈E
e′1=e

P (e′) (19)

• For all u0 ∈ V2 and v0, v1 ∈ V1 we have

Q(v1|v0, u0) ≜
∑

u1∈V2

Q((v1, u1)|(v0, u0))

= Q1(v1|v0). (20)

Proof: The proof is a straightforward calculation. Let us
denote by (P̂ )1 the marginal measure of P̂ on G1. By the
law of total probability, for any path e = (e0, . . . , en−1) =
((v0, v1), (v1, v2), . . . , (vn−1, vn)) on G1,

(P̂ )1([e]) =
∑

u0,...,un∈V2

P ((v0, u0), (v1, u1))

·
n−1∏
i=1

Q((vi+1, ui+1)|(vi, ui))

=
∑

u0,u1∈V2

P ((v0, u0), (v1, u1))

·
n−1∏
i=1

 ∑
ui+1∈V2

Q((vi+1, ui+1)|(vi, ui))


(a)
=

∑
u0,u1∈V2

P ((v0, u0), (v1, u1))
n−1∏
i=1

Q1(vi+1|vi)

(b)
= P1(v0, v1)

n−1∏
i=1

Q1(vi+1|vi) = P̂1([e]),
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where (a) and (b) follow from the assumptions (19) and (20)
respectively.

We are now ready to give an upper bound on R0(X, Y, µ),
formulated as an optimization problem over stationary Markov
chains. Let PY and P be stationary Markov chains on GY

and GX×Y respectively such that P satisfies the conditions of
Lemma 21 with respect to PY . Let us denote the measure on
X × Y induced by P by νP , and denote the measure on Y
induced by PY by µ. By Lemma 21 we have νP ∈ M(X,Y, µ)
and therefore by Theorem 19 we have

R0(X, Y, µ) ⩽ PνP
[X0 ̸= Y0] =

∑
e=EX×Y

LX(e)̸=LY (e)

P (e).

We note that if we consider the Markov chain P as an
element in the simplex contained in [0, 1]EX×EY , we have that
νP [X0 ̸= Y0] is a linear function of P . In addition, we note
the condition (19) is linear in P as a constraint defined by
a sum over the elements of P . In the case of simple graphs
a straightforward calculation shows that (20) is also a linear
condition, since Q(vy

1 |vx
0 , vy

0 ) = Q(vy
1 |v

y
0 ) if and only if∑

vx
1∈VX

P ((vx
1 , vy

1 ), (vx
0 , vy

0 ))

= QY (vy
1 |v

y
0 ) ·

∑
vx∈VX
vy∈VY

P ((vx, vy), (vx
0 , vy

0 )) (21)

We observe that (21) may be equivalently formulated as a
condition on edges, under which the conclusion of Lemma 21
is true in the general case. That is, the conclusion of of
Lemma 21 is true if (19) is satisfied and for all e ∈ EX×Y∑

e′∈EX×Y

e′y=ey

σ(e′x)=σ(ex)

P (e′) = QY (ey)
∑

e′∈EX×Y

σ(e′y)=σ(ey)

σ(e′x)=σ(ex)

P (e′) (22)

We therefore obtain an upper bound by minimizing
PνP

[X0 ̸= Y0] over all stationary Markov chains on GX×Y

satisfying (19) and (22), which turns out to be a linear-
programming problem.

Theorem 22: Let X, Y ⊆ ΣZ be shift spaces defined by the
labeled graphs GX and GY respectively, and let PY be a
stationary Markov chain on Y that induces the measure µ.
Then

R0(X, Y, µ) ⩽ MB(GX , GY , PY ),

where MB(GX , GY , PY ) is the solution to the following
linear-programming problem:

minimize
P ∈ REX×Y

∑
e∈EX×Y

LX(e)̸=LY (e)

P (e)

subject to
P (e) ⩾ 0, ∀e ∈ EX×Y ,∑

e∈EX×Y

P (e) = 1,

∑
e′∈EX×Y

e′y=e

P (e′) = PY (e), ∀e ∈ EY ,

∑
e∈EX×Y

σ(e)=v

P (e) =
∑

e∈EX×Y

τ(e)=v

P (e), ∀v ∈ VX×Y ,

∑
e′∈EX×Y

e′y=ey

σ(e′x)=σ(ex)

P (e′) = QY (ey)
∑

e′∈EX×Y

σ(e′y)=σ(ey)

σ(e′x)=σ(ex)

P (e′) ∀e ∈ EX×Y .

Example 5: Consider X0,k, the (0, k)-RLL shift from Exam-
ple 1. Take Y = [2]Z and let µu be the uniform Bernoulli
measure on Y . We consider the labeled graphs GX and
GY shown in Figure 2, generating X and Y respectively.
We take PY to be the uniform measure on EY (inducing the
measure µu). The product graph, GX×Y (shown in Figure 3),
is therefore a “doubled” version of the graph GX .

We consider the Markov measure P , defined by the edge
probabilities given in Figure 3. For an appropriate choice of α,
P is indeed a stationary Markov chain satisfying (19) and (22).
First, in order to get a probability measure on edges we require

1 =
∑

e∈GX×Y

P (e) = 2α(2k + 2k−1 + · · ·+ 2 + 1)

= 2α(2k+1 − 1),

which implies that α = 1
2(2k+1−1)

. We observe that for the
j-th state in VX×Y ,∑

σ(e)=j

P (e) =
∑

τ(e)=j

P (e) = α · 2k−j ,

which implies that P is indeed stationary. We also observe
that for any edge with LY (e) = 0 there is a corresponding
edge e′ with LY (e′) = 1 such that P (e) = P (e′). This shows
that the marginal of P on GY is indeed PY = µu. We further
observe that for any edge e ∈ EX×Y , if σ(ex) = j ∈ VX we
have ∑

e′∈EX×Y

e′y=ey

σ(e′x)=j

P (e′) = α2k−j−1 =
1
2
α2k−j

= QY (ey)
∑

e′∈EX×Y

σ(e′y)=σ(ey)

σ(e′x)=j

P (e′).

We now compute:∑
e∈GX×Y

LX(e)̸=LY (e)

P (e) = α =
1

2(2k+1 − 1)
= R0(X0,k, [2]Z, µu).

Thus, by Theorem 14 and Theorem 22, P attains the minimal
value for the linear-programming problem MB(GX , GY , PY ),
and in particular in this case, the upper bound from Theo-
rem 22 is tight.

Example 6: Let X = Xd,∞ be the (d,∞)-RLL system,
defined by the constraint of having a run of at least d zeroes
between any two consecutive ones. Equivalently, Xd,∞ is
defined by GX presented in Figure 4. Let Y = [2]Z and µu

be as in Example 1. The product graph GX×Y is shown in
Figure 5. We consider the Markov measure P , defined by the
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Fig. 2. Labeled graphs generating the shift spaces X = X0,k (the
(0, k)-RLL shift), and Y = [2]Z.

Fig. 3. The product graph GX×Y for the graphs GX and GY from Figure 2.
Each edge is given a two-bit label, xy, corresponding to the label x from GX

and the label y from GY . A stationary Markov chain achieving the bound
MB(GX , GY , PY ) is shown by writing P (e) after the label on each edge.

edge probabilities given in Figure 5. For α = (2(d + 2))−1

we have

1 =
∑

e∈GX×Y

P (e) = 2α(d + 2),

and so P is indeed a stationary Markov chain satisfying the
conditions of Theorem 22. We now compute the upper-bound:

R0(Xd,∞, [2]Z, µu) ⩽
∑

e∈GX×Y

LX(e)̸=LY (e)

P (e) = α · d =
d

2(d + 2)
.

(23)

We note that when d = 1, the system X1,∞ is isomorphic to
X0,1, by complementing all the bits. Thus

R0(X1,∞, [2]Z, µu) = R0(X0,1, [2]Z, µu) =
1
6
,

and in particular, the bound (23) is tight.
For a lower bound, we claim that

R0(Xd,∞, [2]Z, µu) ⩾
1
2
− 1

d + 1
.

The proof is straight-forward from the definition of the essen-
tial covering radius. We note that for d = 1 the bound is
meaningless, and therefore we assume that d ⩾ 2. We start by
a simple observation. Let wt(w) = d(w, 0) denote the number
of non-zero coordinates of a binary word w. We note that for
any x, y ∈ [2]n,

d(x, y) ⩾ |wt(y)− wt(x)| ⩾ wt(y)− wt(x).

From the definition of the Xd,∞ system, for any any x ∈
Bn(X), there must be at least d zeroes between any two
consecutive ones. Hence, for any x ∈ Bn(X) we have

wt(x) ⩽

⌈
n

d + 1

⌉
⩽

n

d + 1
+ 1.

Thus, for any word y ∈ [2]n, we have

min
x∈Bn(X)

d(x, y) ⩾ wt(y)− n

d + 1
− 1. (24)

Fig. 4. A labeled graph generating the constrained system X = Xd,∞ (the
(d,∞)-RLL shift).

Fig. 5. The product graph GX×Y for the graphs GXd,∞ and GY from
Figure 4 and Figure 2 respectively. Each edge is given a two-bit label,
xy, corresponding to the label x from GXd,∞ and the label y from GY .
A stationary Markov chain achieving the bound MB(GX , GY , PY ) is shown
by writing P (e) after the label on each edge.

Let Y be a random bi-infinite sequence generated by the
distribution µu. That is, (Yk)k∈Z are i.i.d Ber( 1

2 ) random
variables. Applying the law of large numbers, we have

1
n

wt
(
Yn−1

0

)
=

1
n

n−1∑
i=0

Yi
Pµu

−−−−→
n→∞

Eµu [Y0] =
1
2
.

Namely, the normalized weights of random words converge in
Pµu probability to 1

2 . Combining this with (24), we obtain that
for every δ > 0

Pµu
n

[
min

x∈Bn(Xd,∞)

d(x,Yn−1
0 )

n
>

1
2
− 1

d + 1
− 1

n
− δ

]
⩾ Pµu

[
1
n

wt(Yn−1
0 ) >

1
2
− δ

]
−−−−→
n→∞

1.

This proves that for any ε ∈ (0, 1), δ > 0, for sufficiently large
n

Rε(Bn(Xd,∞), Bn(Y ), µu)
n

>
1
2
− 1

d + 1
− δ,

and therefore,

Rε(Xd,∞, [2]Z, µu) ⩾ lim
δ→0

1
2
− 1

d + 1
− δ =

1
2
− 1

d + 1
.

Taking ε → 0, we get

R0(Xd,∞, [2]Z, µu) ⩾
1
2
− 1

d + 1
.

Combining the lower and upper bounds we get,

1
2
− 1

d + 1
⩽ R0(Xd,∞, [2]Z, µu) ⩽

1
2
− 1

d + 2
.

B. Sliding Block Codes

We now present an alternative approach for constructing
extensions by using sliding-block-codes functions. We begin
by revising Example 4, where we found a sequence of exten-
sions approximating the essential covering radius of X0,k with
respect to [2]Z with µu, (the uniform i.i.d measure). The main
idea in the construction of these extensions was the following:
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for X,Y ⊆ ΣZ and µ ∈ ME(Y ), given a measurable function
g : Y → X which commutes with the shift transformation,
the map (g, Id) : Y → X × Y defines an extension νg in
M(X, Y, µ) by the pushforward of µ via (g, Id). That is

νg(AX ×AY ) ≜ µ
(
AY ∩ g−1(AX)

)
.

We call such a function g a stationary coding function from
Y to X . By Proposition 16, for any such stationary coding
function g,

R0(X, Y, µ) ⩽ Pνg
[X0 ̸= Y0] = Pµ[g(Y)0 ̸= Y0],

Namely, any such measurable function g that commutes with
the shift provides an upper bound on the essential covering
radius.

In Example 4, we used sliding-block-code functions (func-
tions defined by a local rule) as our measurable functions
that commute with the shift. Sliding-block-code functions are
of particular interest to us since they provide a rich family
of functions, easily described by a local rule. The properties
and constructions of sliding-block codes have been extensively
studied in the literature (for example, see [1], [3], [4]). The
goal of this section is to explicitly describe the bound obtained
from a sliding-block-code function, and to give sufficient
conditions under which the essential covering radius can be
approximated using extensions constructed by sliding-block
codes.

Definition 23: Let X, Y ⊆ ΣZ be shift spaces. A function
f̂ : Y → X is called a sliding-block code if there exist N ∈ N
and a function f : B2N+1(Y ) → Σ such that for all y ∈ Y
and all i ∈ Z,

f̂(y)i = f(yi+N
i−N ).

In that case, f̂ is said to be a sliding-block code of block
length N .

Let f̂ : Y → X be a sliding-block-code function defined by
a local function f : B2N+1(Y ) → Σ, and let µ ∈ ME(Y ) be
an ergodic measure. We denote the extension obtained from f̂
by νf . The quantity Pνf

[X0 ̸= Y0] is now easily computable:

Pνf
[X0 ̸= Y0] = Pµ[f̂(Y)0 ̸= Y0] = Pµ

[
f(YN

−N ) ̸= Y0

]
=

∑
y∈B2N+1(Y )

f(y)̸=yN

µ([y]).

We recall the notion of aperiodicity for ergodic measures:
Definition 24: An ergodic measure µ ∈ ME(Y ) is called

aperiodic if the measure of periodic points is 0. Namely,

µ({y ∈ Y : ∃n ∈ N such that Tny = y}) = 0.

We now state the main result of this section: if X is
a primitive constrained system and µ is aperiodic then the
essential covering radius R0(X, Y, µ) may be approximated
by extensions constructed by sliding-block codes, as the block
length is increased. We note that the uniform i.i.d measure is
aperiodic, meaning that the conclusion of Theorem 25 is true
in the case of chief interest where (Y, µ) = (ΣZ, µu).

Theorem 25: Let X, Y ⊆ ΣZ be constrained systems such
that X is primitive and µ ∈ ME(Y ) is an aperiodic ergodic

measure. Then for any ε > 0 there exists a sufficiently large
N and a sliding-block-code function f̂ of length N such that

Pµ[g(Y)0 ̸= Y0]− ε ⩽ R0(X, Y, µ) ⩽ Pµ[g(Y)0 ̸= Y0].

The proof of Theorem 25 has two major components. The
first part shows that it is possible to approximate the essential
covering radius by extensions obtained from stationary coding
functions. In the second step, we use the fact that sliding-
block-code functions are dense in the space of stationary
coding functions to obtain the main result.

For the first component of the proof, we a version of a stan-
dard result in ergodic-theory known as Alpern’s Lemma [2].
The precise version we use appears in [10].

Lemma 26 ([10, Theorem 1]): Let Y ⊆ ΣZ be a con-
strained system, µ ∈ ME(Y ) be an aperiodic ergodic measure,
n1, . . . , nk be integers whose greatest common divisor is 1,
and q1 . . . , qk positive numbers such that

∑k
i=1 qini = 1. For

any finite measurable partition P of Y there exist measurable
sets Q1, . . . , Qk such that:

1) The set

P ′ =
{
T−i(Qj) : 1 ⩽ j ⩽ k, 0 ⩽ i ⩽ nj − 1

}
is a partition of Y .

2) For all 1 ⩽ j ⩽ k, µ(Qj) = qj .
3) For all 1 ⩽ j ⩽ k, Qj is independent of the partition P

with respect to µ (namely, for any A ∈ P µ(A∩Qj) =
µ(A)µ(Qj)).

Proposition 27: Let X,Y ⊆ ΣZ be constrained systems,
X be primitive, and µ ∈ ME(Y ) be an aperiodic ergodic
measure. Then

R0(X, Y, µ) = inf
{
Pµ[g(Y)0 ̸= Y0] :

g : Y → X is a stationary coding function
}
.

Proof: We start by outlining the proof strategy. By Theo-
rem 19, Pµ[g(Y)0 ̸= Y0] ⩾ R0(X, Y, µ) for every stationary
coding function g : Y → X . It is therefore sufficient to
prove the other opposite inequality by showing that for any
ε > 0 there exists a stationary coding function g : Y → X
such that the probability of the event {g(Y)0 ̸= Y0} is at
most R0(X, Y, µ) + ε. We construct such a stationary coding
function using “block coding”: Using Lemma 26, we partition
an infinite sequence from Y into blocks of two types, one large
and the other of a fixed length. The large blocks are common
while the other type occurs only rarely. The large blocks we
code (with high probability) to a close counterpart from the
language of X , such that the whole bi-infinite sequence ends
in X . This is possible since X is primitive. We show that
using this kind of block coding, the probability of the event
{g(Y)0 ̸= Y0} is dominated by R0(X,Y ). The construction
procedure of our stationary block function is demonstrated in
Figure 6.

We now start with the proof. Let X be defined by the
primitive labeled graph G = (V,E,L). We fix an arbitrarily
small ε ∈ (0, 1). We also fix an arbitrary vertex v0 ∈ V .
Since G is primitive, there exists a number p such that for
any two vertices v1, v2 ∈ V , there exists a directed path of
length p from v1 to v2. For any v1, v2 ∈ V we fix such
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a directed path of length p, which we denote by Γ(v1, v2).
We also define L(Γ) ≜ (L(e1), . . . , L(em)) ∈ Bm(X) to be
the word obtained by reading the labels on Γ.

In order to simplify the notation, for any M ′ ∈ N we denote
rε(M ′) ≜ Rε(BM ′(X), BM ′(Y ), µM ′). For any M ′ ∈ N we
let δM ′ ⩾ 0 be such that

rε(M ′)
M ′ = Rε(X, Y, µ) + δM ′ .

By the definition of Rε(X,Y, µ), there exists arbitrarily large
M ′ such that δM ′ is sufficiently small. For a fixed M ′, we let
N ≜ ⌈M ′

p ⌉, and we easily observe that

rε(Np + 1) ⩽ rε(M ′) + p.

Thus,
rε(Np + 1)

Np + 1
⩽

rε(M ′) + p

Np + 1

=
M ′

Np + 1
· rε(M ′)

M ′ +
p

Np + 1

⩽ Rε(X, Y, µ) + δM ′ +
1
N

.

Since N →∞ as M ′ →∞, by the above inequality, replacing
M ′ by M ≜ Np + 1, we conclude that one may always find
M ∈ N arbitrarily large such that δM is arbitrarily small and
gcd(M, p) = 1.

We now fix such M = Np + 1 ∈ N. From the definition
of rε(n), there exist a map φ′ : BM (Y ) → EM and a set
S ⊆ BM (Y ) of µM -measure at least 1 − ε, such that for all
y ∈ S, φ′(y) is a directed path on G and

d(y, L(φ′(y))) ⩽ rε(M) ⩽ M · (Rε(X, Y, µ) + δM ). (25)

We call the words in S good words. For every y ∈ BM (Y )
we now replace the length p prefix and suffix of φ′(y) by
paths of length p starting and ending in v0 respectively.
We denote the new path by φ(y). That is, for y such that
φ′(y) = (e0, . . . , eM−1) we define

φ(y) ≜
(
Γ(v0, σ(ep−1)), ep,

. . . , eM−p−1, Γ(σ(eM−p), v0)
)
∈ EM .

We denote δ̃M ≜ δM + 2p/M . By (25)

d(y, L(φ(y))) ⩽ d(y, L(φ′(y))) + 2p

⩽ M ·
(

Rε(X, Y, µ) + δM +
2p

M

)
(26)

= M ·
(
Rε(X,Y, µ) + δ̃M

)
.

We recall that the measure µ is aperiodic and ergodic, and
we note that the positive integers n1 = p and n2 = M are co-
prime. Defining q1 = 1

p·M and q2 = 1
M · (1− 1

M ), we clearly
have q1n1 + q2n2 = 1. We consider the partition defined by
the M first coordinates of Y. That is

P ′ ≜ {[y] : y ∈ BM (Y )},

where we recall the definition of a cylinder from (1).
By Lemma 26 there exist measurable sets Q1, Q2 ⊆ Y such
that the set

P =
{
T−ℓ(Qj) : 0 ⩽ ℓ ⩽ nj − 1, j = 1, 2

}

is a partition of Y , as well as for j = 1, 2 we have µ(Qj) = qj

and Qj is independent of P ′. We shall use the partition P in
order to divide a bi-infinite sequence to blocks.

For a fixed y ∈ Y , and m ∈ Z, we say that y admits a block
of length nj , j = 1, 2, in the coordinates m, m + 1, . . . ,m +
nj − 1 if Tm(y) ∈ Qj . We enumerate the blocks composing
y and denote them by (Bk(y) = (mk(y), lk(y)))k∈Z, where
B0(y) is the block containing the 0 coordinate, mk is the
starting point of the k-th block and lk ∈ {n1, n2} is its length.
By the construction of the partition P , each coordinate in Z
belongs to exactly one block. Therefore, in order to define a
function Y → X it is sufficient to define the values that it
takes in each and every block.

Given a y ∈ Y and the corresponding sequence of blocks
(Bk(y) = (mk(y), lk(y)))k∈Z we define fM as follows:
• We define fM on blocks of length n1 = p to be the labels

on the self loop Γ(v0, v0) ≜ Γ0.
• We define fM on blocks of length n2 = M to be the

labels φ(y), where y ∈ BM (Y ) is the word that appears
in the n2-length block.

That is

fM (y)mk+lk−1
mk

=

{
L(Γ0) lk = n1 = p,

L
(
φ
(
ymk+M−1

mk

))
lk = n2 = M.

By the construction of φ and fM , for any given block, the
corresponding path begins and ends in v0, which implies that
fM (y) corresponds to a bi-infinite path in G, and therefore
Im(fM ) ⊆ X . The function fM is also measurable as P is a
measurable partition. We note that for any y ∈ Y , from the
definition of the block partition, the block partition of T (y)
is a shifted version of the block partition of y. Thus, fM also
commutes with the shift, which makes it a stationary coding
function.

We now turn to prove that Pµ[fM (Y)0 ̸= Y0] indeed
approximates R0(X, Y, µ) for sufficiently large M . Let X and
Y denote the random bi-infinite sequences in ΣZ generated
with respect to µ, and let I{fM (Y)0 ̸=Y0} be the indicator
function of the event {fM (Y)0 ̸= Y0}. Since µ is an invariant
measure, for all n ∈ N

Pµ[fM (Y)0 ̸= Y0] =
∫

I{fM (Y)0 ̸=Y0} · dµ

=
∫

1
n

n−1∑
k=0

I{fM (Y)̸=Y0} ◦ T k · dµ

= Eµ

[
1
n

d
(
fM (Y)n−1

0 ,Yn−1
0

)]
.

Let Cn be the random variable that counts the number of
good blocks in coordinates 0, 1, . . . , n − 1. These are blocks
of length n2 = M contained in Yn−1

0 which contain a good
word, i.e., a word in the set S. Formally, for a sequence y ∈ Y ,
with corresponding blocks (Bk(y) = (mk(y), lk(y))k∈Z

Cn(y) ≜
∣∣∣{k ∈ Z : lk = n2,

[mk, mk + n2 − 1] ⊆ [0, n− 1] and ymk+n2−1
mk

∈ S
}∣∣∣.

By the construction of fM , φ, S, and by (26), the number of
coordinates inside a single good block in which fM (Y) and
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Fig. 6. A demonstration of the coding procedure described in the proof of
Proposition 27.

Y do not agree is upper bounded by M(Rε(X,Y, µ) + δ̃M ).
Thus, we have

d
(
fM (Y)n−1

0 ,Yn−1
0

)
⩽ Cn(Yn−1

0 ) · (M(Rε(X, Y, µ) + δ̃M ))

+
(
n− Cn(Yn−1

0 )M
)

= Cn(Yn−1
0 ) ·M(Rε(X, Y, µ) + δ̃M − 1) + n

and therefore,

Eµ

[
d
(
fM (Y)n−1,Yn−1

0

)]
⩽ Eµ[Cn(Yn−1

0 )] ·M(Rε(X,Y, µ) + δ̃M − 1) + n. (27)

Let A be the event that a good block starts at the 0 coordi-
nate. That is,

A = Q2 ∩
{
YM−1

0 ∈ S
}
.

We note that we can write Cn(Yn−1
0 ) =

∑n−M
k=0 IA ◦ T k,

where IA is the indicator function of the event A. Thus, since
µ is shift invariant, and since Q2 is independent of the first
M coordinates, we have

Eµ[Cn(Yn−1
0 )] = (n−M)Pµ[A]

= (n−M)Pµ

[
Q2 ∩

{
YM−1

0 ∈ S
}]

= (n−M)Pµ[Q2]Pµ

[
YM−1

0 ∈ S
]

⩾ (n−M)
(

1
M

(
1− 1

M

))
(1− ε).

Assume without loss of generality that δM and 2p/M are
sufficiently small such that Rε(X, Y, µ) + δ̃M − 1 < 0. Thus,
by combining the lower bound on Eµ[Cn(Yn−1

0 )] with (27)
we obtain

Pµ[fM (Y)0 ̸= Y0] = Eµ

[
1
n

d
(
fM (Y)n−1

0 ,Yn−1
0

)]
⩽

n−M

n
· 1
M

(
1− 1

M

)
(1− ε)

·M(Rε(X, Y, µ) + δ̃M − 1) + 1.

Taking the limit as n →∞ we get

Pµ[fM (Y)0 ̸= Y0]

⩽

(
1− 1

M

)
(1− ε)(Rε(X, Y, µ) + δ̃M − 1) + 1.

We now conclude as for ε′ choosing ε such that ε ⩽ ε′/4,
Rε(X, Y ) ⩽ R0(X, Y ) − ε′/4 and M sufficiently large such
that δ̃M , 1/M ⩽ ε′/4 we obtain

Pµ[fM (Y)0 ̸= Y0] ⩽ R0(X, Y, µ) + ε′,

which concludes the proof.
We now have the first component of the proof of Theo-

rem 25. The second part of the proof requires the well-known
fact that stationary coding functions may be approximated by
sliding-block-codes.

Lemma 28 ([19, Theorem 3.1]): Let X, Y ⊆ ΣZ be shift
spaces, µ ∈ M(Y ), and g : Y → X be a stationary coding
function. Then for any ε > 0, there exists a sliding-block-code
function f̂ : Y → X such that

Pµ

[
g(Y) ̸= f̂(Y)

]
< ε.

We are now ready to prove Theorem 25.
Proof of Theorem 25: Fix ε > 0. By Proposition 27, there

exists a stationary coding function g : Y → X such that

Pµ[g(Y)0 ̸= Y0] < R0(X, Y, µ) +
1
2
ε.

By Lemma 28, there exists a sliding-block-code function f̂ :
Y → X and a set E with µ(E) > 1− 1

2ε such that g coincides
with f̂ on E. We now have,

Pµ[Y0 ̸= f̂(Y)0] = Pµ[{Y0 ̸= f̂(Y)0} ∩ E]

+ Pµ[{Y0 ̸= f̂(Y)0} ∩ EC ]

⩽ Pµ[g(Y)0 ̸= Y0] + Pµ[EC ]

< R0(X,Y, µ) +
1
2
ε +

1
2
ε

= R0(X, Y, µ) + ε.

The upper bound R0(X, Y, µ) ⩽ Pµ[f(Y)0 ̸= Y0] is imme-
diate by Proposition 16.

VI. CONCLUSION

In this work, we introduced the Quantized-Constraint
Concatenation (QCC) scheme, providing a new general
framework for implementing error correction in constrained
systems. We have shown that by embedding codewords of
an error-correcting code in a constrained system by way
of quantization, it is possible to correct Θ(n) errors (with
respect to the code’s length n). We discovered that the
asymptotic error-correction capabilities of our method for a
given constrained system are determined by a new funda-
mental parameter of the constrained system – its covering
radius – which bounds the amount of noise caused by
the quantization process. Unlike previous methods, such as
concatenation and reverse concatenation, the embedding into
the constrained system is not reversible, hence the term
quantization.

We presented two different notions for the covering
radius of a constrained system, one combinatorial and the
other probabilistic. While the combinatorial notion takes
into account the worst-case scenario (deep holes), in the
probabilistic approach, the essential covering radius ignores
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rare cases and therefore allows a smaller covering radius.
We have studied the properties of the essential and combi-
natorial covering radii, and provided general lower and upper
bounds.

While the covering radius of constrained systems is of
independent intellectual merit, let us put our results in the
context of the QCC scheme. Consider X0,k, the (0, k)-RLL
system described in Example 1. Using the coding scheme
presented in [18, Theorem 1], it is possible to correct up to
O(
√

n) errors. However, using QCC with the combinatorial
covering radius (which in that case is 1

k+1 ), since there
exist error-correcting codes with non-vanishing rate capable of
correcting up to ( 1

4 − δ)n errors (for every δ > 0), we obtain
codes with non-vanishing rate capable of correcting up to
( 1
4−

1
k+1−δ)n channel errors. On the other hand, we may use

the essential covering radius of X0,k to bound the probable
quantization noise. In that case, since

R 1
2
(X0,k, [2]Z, µu) ⩽ R0(X0,k, [2]Z, µu) =

1
2(2k+1 − 1)

,

using the QCC, it is possible to find error-correcting codes
such that by removing at most half of the codewords (which
asymptotically does not affect the rate), it is possible to
improve our error correction capability to ( 1

4−
1

2(2k+1−1)
−δ)n

channel errors.
While QCC can operate in the regime where the number of

errors is Θ(n), and other methods cannot, it may be inferior
in the regime where the number errors vanishes with respect
to the block length. Consider a constrained system X with
capacity C over Σ. In the coding scheme obtained in [18]
(called segmented reverse concatenation, or in short SRC),
the optimal possible rate for correcting t = O(

√
n) errors is

approximately C(1− log(t)
n +o( 1

n )), where n is the block length.
Namely, the asymptotic optimal rate using SRC approaches
the capacity of the system. On the other hand, as before,
in order to correct t errors using QCC, a code correcting
R0(X)n + t errors is required. Thus, the optimal asymptotic
rate of QCC is upper bounded by the maximal rate of an
error-correcting code capable of correcting R0(X)n + t =
R0(X)n+O(

√
n) errors. Using the GV bound, the best known

asymptotic rate of codes correcting R0(X)n errors is 1 −
h|Σ|(2R0(X)), which for certain parameters might be strictly
smaller than C. For example, if X = X0,2 is the (0, 2)−RLL
system, the maximal asymptotic rate obtained by QCC is
1 − h2(2/14) ≈ 0.408, while the capacity of the system is
C ≈ 0.8791.

Previous lower bounds on the possible rates for
error-correcting constrained codes have been established
in previous work [23], [28], via somewhat non-constructive
methods. A certain advantage of our scheme is its simplicity
and constructive nature. We also remark that it was suggested
in [35] that an error-correcting scheme for constrained systems
capable of correcting Θ(n) errors with a non-vanishing rate
may also be obtained by using concatenation with an inner
constrained code and outer error-correcting code. Such
frameworks however, have yet to be studied in general in the
context of constrained systems, and may be of interest for
future research.
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