Jin Sima “*' | Department of Electrical and Computer Engineering,
University of lllinois Urbana-Champaign, Urbana, IL 61801 USA |
E-mail: jsima@illinois.edu
Netanel Raviv %, Senior Member, IEEE | Department of Computer Science
and Engineering, McKelvey School of Engineering, Washington University
in Saint Louis, St. Louis, MO 63130 USA | E-mail: netanel.raviv@wustl.edu
Moshe Schwartz “*, Senior Member, IEEE | Department of Electrical and
Computer Engineering, McMaster University, Hamilton, ON, L8S 4L8,
Canada | E-mail: schwartz.moshe@mcmaster.ca
Jehoshua Bruck 7, Life Fellow, IEEE | Electrical Engineering Department,

California Institute of Technology, Pasadena, CA 91125 USA |
E-mail: bruck@caltech.edu

Error Correction for DNA Storage

Abstract—DNA-based storage is an emerging technology
that provides high information density and longevity.
Noise and errors are present in almost every stage of the
process: writing, storing, and reading. Thus, efficient
error correction is crucial to guarantee high reliability
and low cost of storing data in DNA. Due to technological
constraints and biological limitations, error correction
in DNA-based storage poses several coding-theoretic
challenges, some of which are new. In this paper, we
briefly introduce some of these challenges, including
deletion/insertion correcting codes, codes over sliced
channels, and duplication-correcting codes. We describe
some of the major concepts and solutions in the respec-
tive topics, and provide bibliographic notes that briefly
review the related literature.

Introduction

Information theory is considered by many as the mathemati-
cal theory of communication. Normally, the word “communi-
cation” describes a scenario involving two physically distant
parties that exchange information, but may equally involve
two temporally distant parties that do so. The latter gives
rise to communication across time, rather than across space,
and is commonly referred to as information storage [8], i.e.,
the process of encoding information into a physical device in
order to retrieve it at a later point in time, efficiently and
accurately.

In his groundbreaking 1948 paper, Claude Shannon (1916-
2001) showed that all types of information (images, text, vid-
eos, etc.) can be communicated using bits, i.e., zeros and
ones, and an identical statement holds in the case of storage.

2692-4080 © 2023 IEEE

Digital Object Identifier 10.1109/MBITS.2023.3318516

Date of publication 25 September 2023; date of current version 19
August 2024.

In order to store a piece of information, one has to encode it
using bits, and place those bits on a reliable physical device,
preferably a nonvolatile one, i.e., that does not require elec-
tric current to retain that information.

The earliest example of high-density nonvolatile storage
device (beyond punch-cards and written media which
existed for millennia) is probably that of magnetic storage. In
this 1950s technology, bits were organized on a magnetiz-
able tape using different magnetization patterns. Over the
following decades, increased demand for higher storage vol-
umes pushed this technology forward to become the hard-
disk drives, which in recent years cleared the way to solid-
state drives.

Albeit over ten orders of magnitude increase in volume since
they were introduced, digital storage devices struggle to
keep up with increasing storage demands. The immense vol-
ume of data generated today, especially since the emergence
of information sharing platforms such as YouTube and social
networks, is projected to pass the rate in which digital stor-
age devices improve. Especially prominent is the growing
requirement for “cold” storage, i.e, one which is seldom
accessed, such as old family photos or historical records. One
of the most promising and most radical new technologies to
resolve the cold storage problem, is DNA storage, i.e., storing
information in DNA molecules.

In a way, DNA molecules are the storage device of nature.
These long molecules, which contain sequences of either one
of four basic molecules called nucleotides A, C, G, T, are used
by all living organisms to communicate across time. The DNA
molecules contain “recipes” for producing proteins, which are
the building blocks of living organisms. By communicating
DNA across generations, these recipes are literally transmit-
ted from parents to offsprings, and enable life to continue.

In the past several decades, scientists have had remarkable
success in creating artificial DNA molecules in the lab, and in
keeping those molecules stable in a vial (i.e., not inside any

T
501,
78 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4588-9790
https://orcid.org/0000-0003-4588-9790
https://orcid.org/0000-0003-4588-9790
https://orcid.org/0000-0003-4588-9790
https://orcid.org/0000-0003-4588-9790
mailto:jsima@illinois.edu
https://orcid.org/0000-0002-1686-1994
https://orcid.org/0000-0002-1686-1994
https://orcid.org/0000-0002-1686-1994
https://orcid.org/0000-0002-1686-1994
https://orcid.org/0000-0002-1686-1994
mailto:netanel.raviv@wustl.edu
https://orcid.org/0000-0002-1449-0026
https://orcid.org/0000-0002-1449-0026
https://orcid.org/0000-0002-1449-0026
https://orcid.org/0000-0002-1449-0026
https://orcid.org/0000-0002-1449-0026
mailto:schwartz.moshe@mcmaster.ca
https://orcid.org/0000-0001-8474-0812
https://orcid.org/0000-0001-8474-0812
https://orcid.org/0000-0001-8474-0812
https://orcid.org/0000-0001-8474-0812
https://orcid.org/0000-0001-8474-0812
mailto:bruck@caltech.edu

living cell). The A, C, G, T nucleotides in these artificial mole-
cules can be chosen freely, and can therefore store bits just
like any other storage device. For instance, one can decide
that

A=00,C=01,G=10,T=11

and then store the sequence 00101001 by creating the DNA
molecule AGGC in the lab. DNA storage has fantastic and
far-reaching advantages over existing technology:

) DNA storage is ultradense: Current data centers are
the size of buildings; storing similar amounts of data
in DNA would require the size of a refrigerator.

- DNA storage is stable: DNA molecules can last tens of
thousands of years without any energy investment;
some off-the-shelf hard drives will not be usable in as
little as 20 years.

- DNA storage is future-proof: As long as there are
humans, DNA reading technology will be of interest,
and DNA reading devices will exist. This can hardly be
said about, say, floppy disks, whose reading nowadays
requires a trip to a museum. In other words, while
humans already almost forgot how to read some fairly
recent storage devices, humans will never forget how
to read DNA.

A typical process to store information in DNA is as follows:
First, the data, represented by Os and 1s, are encoded into
sequences of nucleotides. Then, the DNA molecules contain-
ing these sequences of nucleotides are synthesized and
stored either in vials or in living organisms, which is the data
writing process. To read the data, the polymerase chain reac-
tion (PCR) technology is used to access the part of the data
to be retrieved. Then, the DNA molecules obtained after the
PCR process are read using DNA sequencing techniques,
thereby recovering the sequences of nucleotides. Finally, the
sequences of nucleotides are decoded back to the data. A
more detailed description of a DNA storage workflow is
given in Section III.

Whether old or new, all storage devices are prone to errors.
Due to imperfect hardware, physical damage, or deteriora-
tion of materials, some bits in any storage device might be
read in error. Without proper preparation, losing even a sin-
gle bit might render the respective piece of information
unreadable, and therefore lost. Coding-theorists and engi-
neers have been combating this phenomenon ever since stor-
age devices were invented, and various error-correction
mechanisms, known as codes, were developed.

All these mechanisms require adding redundancy to the data,
i.e., to store more bits than the actual size of the data. These
redundant bits are then used in the reading process in cases,
where some bits are read in error. The simplest form of

redundancy is replication: instead of storing every bit of the
data once, store it three times. For example,

Data: 01001
Store: 000111000000111

Then, while reading a possibly error-filled sequence from the
device, the most frequent bit among every consecutive triple
is most likely the correct one:

Store: 000111000000111
Errors: 100110000001111
Correction: 0 1 0 0 1

But how much redundancy is enough? The example above
shows a three-times increase in the amount of storage, a
high price to pay. The minimal amount of redundancy
required to correct errors is an ongoing and difficult research
area in coding theory, and depends on the type of storage
medium. Coding theorists have worked relentlessly over the
past 80 years in order to come up with algorithms that guar-
antee error-free information storage for the existing storage
technology. However, as we shall see throughout this article,
DNA storage devices have a very unique structure and con-
straints, which give rise to new and interesting types of
errors which have never been studied.

The error shown above is called substitution: A “1” bit is
replaced by a “0” bit, or vice versa. This is a common and
well-understood error in traditional storage media, which
seldom appears in DNA storage devices. However, most
errors in DNA storage devices are new, ie, have never
appeared in traditional devices. These new types of errors
depend on the type of DNA storage device at hand.

DNA storage devices are partitioned to two families: The
most common family is called in vitro, which includes devices
that contain a vial with short, unordered sequences of DNA
that float in a solution inside that vial. The other less com-
mon family is called in vivo, where artificially synthesized
DNA molecules are planted inside a primitive life form, such
as bacteria, for better data longevity and stability. Better lon-
gevity is guaranteed by the self-sustaining property of primi-
tive life-forms; with minimal energy investment a bacteria
colony could last millions of years. Better stability is guaran-
teed by reproduction across generations; redundancy in the
data will be introduced naturally, and will be stabilized via
natural selection.

In-vitro DNA storage devices pose several interesting coding-
theoretic challenges. First, they are prone to known but
understudied errors called deletions. In a deletion, a bit
completely disappears from a sequence without leaving a
trace, and the read sequence is shorter than the one which
was initially stored. Deletions occur in DNA storage mainly
due to imperfections in the synthesis reaction, which

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 79
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

commonly skip one or more of the nucleotides that need to
be written due to weak chemical bonds. A closely related
type of errors, where redundant bits sneak into the sequence
unexpectedly, are called insertions.

Even though mechanisms for deletion correction, known as
deletion codes, were studied to some extent since the 1960s,
much was left unknown. Driven by the advent in DNA stor-
age, the interest in deletion errors increased recently, and
optimal solutions were found only in the past few years.
Deletion errors will be described in Section II.

An even more substantial challenge in in-vitro DNA storage
systems is the fact that only short and unordered DNA
sequences can be stored together in a vial. Current limitation
in DNA-synthesis technology can only generate sequences
that are a few thousand nucleotides long, and placing those
sequences together in a vial makes it impossible to know
which one comes after or before any other. This is in sharp
contrast to traditional storage media, where data are parti-
tioned to pages, which always appear in memory in the same
order they were written.

A simple solution to the ordering problem comes in the form
of indexing: begin each short DNA sequence with several
nucleotides that determine its correct position relative to
other sequences in the same vial. Surprisingly, this is not the
best solution in terms of the amount of redundancy. Due to
errors, the indexing nucleotides might get scrambled and
interfere with the correct order. An optimal solution for the
order problem was also found very recently, and it is
described in Section III.

For in-vivo storage, however, the picture is remarkably differ-
ent. While placing the synthetic DNA inside bacteria improves
its longevity and stability, it exposes the stored data to the
natural biochemical and evolutionary processes inside the
bacteria. As the reader might already know, cells reproduce
by a process called mitosis, where one cell splits into two. Dur-
ing mitosis, DNA molecules replicate themselves in each one
of the offspring cells, a process that is not perfect, and some
errors might occur. In nature, these errors are the basis of
Darwin’s natural selection theory: arbitrary errors cause arbi-
trary mutations, and only the mutations which improve the
organism’s ability to survive persist among generations. In
the context of information storage, however, these errors
must be understood, and corrected; an evolution-correcting
code must be developed. A common error in this setting is
duplication, where a piece of DNA material is replicated, and
attaches itself at a different location. Duplication errors in in-
vivo DNA storage are described in Section IV.

Deletion Codes

Though deletion errors were studied from the 1960s,
motivated by synchronization errors in traditional media,

the interest in correcting deletion errors increased
recently due to their prevalence in DNA storage. As men-
tioned in Section I, deletions, insertions, and substitutions
are the notable three types of errors that occur in the
reading, writing, and storing processes in DNA storage.
Hence, codes correcting these three types of errors are
necessary for reliably storing information in DNA. Beyond
the applications in DNA storage and communication, the
study of deletions, insertions, and substitutions, is also
connected to edit distance and sequence alignment, etc.,
which have applications in natural language processing
and other applications involving DNA sequence analysis.

What are Deletion, Insertion, and
Substitution Errors?

We now describe the three types of errors in greater detail. A
deletion removes a symbol from a sequence; in the context of
DNA storage, it removes a nucleotide from the sequence, e.g.,
turning TGGA into TGA. In the context of natural language,
it removes a letter from a word or a sentence, e.g., turning
the word “cat” into “at” An insertion adds an extra symbol to
the sequence, e.g., turning ACTG into ACCTG or turning
“eat” into “heat” A substitution replaces a symbol in the
sequence, e.g., changing TGGA to TGGG or “for” to “far.”

Among those three types of errors, substitution errors are
better understood compared to deletions and insertions, as
there are many classic code constructions for correcting sub-
stitution errors such as Hamming codes, polar codes, LDPC
codes, Reed-Muller codes, Reed-Solomon codes, and BCH
codes, etc. Many of these codes were proved to be optimal in
terms of redundancy in some settings. However, less is
known about deletion and insertion errors, which are com-
monly referred to as synchronization errors. Nevertheless,
the information-theorist Vladimir Levenshtein (1935-2017)
proved an interesting fact about deletion and insertion
errors already in the 1960s: if a code corrects deletion
errors, it can also correct an equal number of combination of
deletions and insertions (However, an efficient encoding/
decoding algorithm for correcting deletions does not neces-
sarily imply an efficient algorithm for correcting deletion and
insertion errors). Moreover, a substitution error can be
regarded as a deletion error followed by an insertion. There-
fore, it is reasonable to focus on deletion errors, as correcting
deletion errors implies correcting a combination of the three
types of errors.

There are two scenarios for correcting deletion errors:

1) The probabilistic scenario, where a fraction of deletions
occur randomly. The goal is to find the optimal informa-
tion rate (i.e., the data size relative to the code length),
known as the channel capacity, such that the information
could be recovered with high probability.

1
0
80 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

2) The adversarial scenario, where at most a certain number
of deletions are caused by an adversary that wishes the
reading process to fail. The goal is to find the minimal
amount of added redundancy that guarantees successful
reading in all cases.

DNA storage devices are commonly considered as an adver-
sarial scenario, since the number of deletions is usually quite
small, and the respective amount of redundancy can be opti-
mized directly. Therefore, in this section, we focus on adver-
sarial deletion correcting codes. Moreover, for simplicity we
consider bits rather than nucleotides, however, similar state-
ments can be made for nucleotides as well.

In contrast to multiple results about correcting substitution
errors, there are not many efficient and well structured
codes correcting deletion errors, and even the deletion chan-
nel capacity is still unknown except for cases where the dele-
tion probability is small. One of the reasons for deletions and
insertions being more difficult is that channels with substitu-
tion channels are memoryless, i.e., different output bits are
independent given the input, while deletion/insertion chan-
nels are not; one deletion affects all subsequent bits by shift-
ing them one position to the left. Moreover, there is a
symmetry in substitution errors that is not present in dele-
tion or insertion errors.

To see this symmetry, we introduce the notion of an error
ball, which is common in the analysis of error correcting
codes. An error ball is the set of all possible sequences one
can get after at most some number of errors occur in a given
input sequence. If the type of error is substitution or dele-
tion, we call the corresponding error ball a substitution ball
or a deletion ball, respectively.

For example, the substitution ball and the deletion ball of
the input sequence 1001 with at most 1 error are given
by {1001, 0001,1101,1011,1000} and {1001,001,101,100},
respectively. The symmetry in substitution errors reflects the
fact that the size of the substitution ball is independent of the
input sequence; any other sequence of length 4 will have a
substitution ball with 5 sequences. Moreover, the erroneous
sequence is uniformly distributed over the substitution ball if
the substitution indices are uniformly and randomly selected.
These two properties do not hold for deletion balls, since two
deletion balls (for different input sequences) can have differ-
ent sizes. In addition, the probabilities of getting different
erroneous sequences in the deletion ball are different when
the deletion indices are uniformly and randomly selected. The
following example illustrates this crucial difference in
symmetry.

Example 1. Consider the sequences 0000 and 1010. The
substitution balls of 0000 and 1010, with at most a sin-
gle substitution, are {0000, 1000,0100,0010,0001} and
{1010,0010,1110,1000, 1011}, respectively. Each set

has five elements and each element appears once under
all possible error patterns. The deletion balls of 0000
and 1011 with at most a single deletion are given by
{0000,000} and {1011,011,111,101}, respectively. The
numbers of elements in the two sets are different. In
addition, after a single deletion in 1011, the erroneous
sequence becomes 011 or 111 if the first bit or the
second bit is deleted, respectively. The erroneous
sequence becomes 101 if either the third or the fourth
bit is deleted. Hence, it is more probable to obtain 101
than 011 or 111 after a single deletion uniformly occurs
in 1011.

How to Efficiently Correct Deletions?

One of the natural approaches to correct deletion errors is to
use a repetition code, which was presented in the introduc-
tion for substitution errors but also works well for deletion
errors. This is undesirable due to high redundancy. Another
potential approach is to borrow results from substitution
correcting codes. The difficulty with this approach is that
even two binary sequences with large Hamming distance
(i.e., have multiple different bits), which are resilient to sub-
stitution errors, can be ambiguous even under a single dele-
tion. As an example, one can consider two sequences
1010101 and 0101010 that have Hamming distance 7 (i.e.,
all bits are different), and therefore one can identify the cor-
rect sequence between them under any three substitutions.
However, these two sequences become indistinguishable in
the case of even a single deletion, since deleting the first bit
in one produces the same string 010101 as deleting the last
bit in the other.

How to correct a single deletion with low redundancy? One
classic construction is the Varshamov-Tenengolt (VT) codes,
defined by

Co=A{(e1,...,¢) s 2 iy ic; =0modn + 1} (@8]

which corrects a single deletion. In words, VT codes show
that one can protect any sequence from a single deletion by
summing up the indices of all the 1 entries in the sequence
and taking a modulo of n + 1. The following example demon-
strates how this modulo summation scheme works.

Example 2. Suppose the erroneous sequence 00110 is
obtained from some unknown sequence cjcaczcycscs
after a single deletion. To see what c;cocseqscscg is, enu-
merate all possible sequences of length 6 that might
become 00110 after a single deletion, given by 000110,
001010, 001100, 100110, 010110, 001110, and
001101. The respective modulo summations, i.e., the
expressions Z?:1 ic;mod (n + 1), are given by 2, 1, 0, 3,
4, and 5, respectively, all of which are different. There-
fore, the only sequence with modulo summation 0 is
001100, and hence it must be the correct answer.

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 81
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

The VT code has redundancy at most log ,(n + 1) bits, which
is asymptotically optimal for a single deletion.

Can we generalize the VT code to correct more than a single
deletion with asymptotically optimal redundancy? This is a
key question toward a good understanding of how to correct
deletion errors, and turns out to be highly nontrivial. A
counting argument by Vladimir Levenshtein showed that the
optimal redundancy of codes of length n correcting ¢ dele-
tions lies between tlog on + o(log yn) and 2tlog yn + o(log on)
for constant t, where the notation o(log,n) means
that (o(log,n))/(logyn) approaches 0 as n goes to infinity.
For larger ¢, the optimal redundancy is linear in tlogy(%).
These arguments only prove that a code exists, without find-
ing it explicitly. Finding the respective codes explicitly with
comparable redundancy has been puzzling for decades even
for the case t = 2.

Inspired by the modulo summation in VT codes, researchers
wondered if higher power summation might be useful for
correcting multiple deletions with optimal redundancy. Spe-
cifically, given the modulo sums) ; i’¢; for p from 0 up to
some positive integer, is it possible to recover (ci,...,c,)
from multiple deletions? This is a challenging question even
for two deletions, and unfortunately, counterexamples were
found showing that knowing the sums > ¢ for ps
from 0 up to p = 4 does not guarantee successful correction.

To generalize the idea of using weighted modulo sum for cor-
recting multiple deletions, one can use weights that are expo-
nential in indices in the weighted modulo sum. However, due
to the exponential weights, such generalization requires
redundancy that is linear in the code length to correct even
two deletions, in contrast to the optimal redundancy which
is a logarithm in the code length for correcting a constant
number of deletions.

Another brilliant idea for correcting multiple deletions is to
use a concatenated code, that has a two-level structure of an
inner code and an outer code. Specifically, the codewords are
separated into blocks. The inner code protects each block
from deletions and is constructed by using exhaustive search
(i.e., finding the best code by traversing all codes using a com-
puter). The outer code treats each block as a symbol and uses
a substitution correcting code to correct blocks in case the
inner code fails in some blocks. Note that the brute force
search to construct the inner code is tractable when the block
size is small (specifically, a logarithm of the code length). The
concatenated code approach reduces the problem of correct-
ing deletions in a long sequence to that of correcting deletions
in short sequences, by using the well-constructed substitution
correcting codes. Using concatenated codes, it is possible to
correct a number of deletions which is linear in the code
length, with redundancy that is also linear in the code length.
This is asymptotically optimal based on the bounds that were
mentioned above.

What about correcting a small number, say a constant, of
deletions, a regime that is of interest in DNA storage since
the number of deletions is small and the code length is mod-
erately sized? As discussed previously, the optimal redun-
dancy should be asymptotically between tlog,n and 2tlog yn
where t is the number of deletions. In the following, we dis-
cuss codes with close to optimal redundancy, using a funda-
mentally different idea from the concatenated code
construction. Specifically, we discuss a generalization of the
VT codes using an algebraic approach. Recall that the higher
order weighted sum)" ; i”c;, a natural generalization of the
VT codes, is not guaranteed to provide a code correcting
even two deletions. However, a similar higher order
weighted sum is capable of correcting deletions for con-
strained sequences.

We illustrate the idea for the case of two deletions. In this
case, an interesting observation is that if the codewords are
sequences with at least a single 0 between any two 1s, then
any codeword (cy,...,c,) can be protected from two dele-
tions by providing the sums Y7, (375_, j”)¢; mod 2n?*! for
p=0,1,2.

Example 3. Consider the sequence 101001 of length 6,
where any two 1s are separated by at least one 0. Its
weighted modulo sums are

Z?:I(Z;’:l jU)Ci mod?2- 6%t =3
i (ZEQ jY)eimod 2 - 611 = 28

S (3 f)eimod 2 - 62! = 106.
Suppose two deletions occur in 101001, resulting in
1001. We list all possible sequences that satisfy: 1) can
result in 1001 after two deletions; and 2) there is at least
one 0 bit between any two 1 bits. These sequences are
given by 001001,010001,010010,100001,100010,100100,
10100, 1,010101, and 100101. It can be verified that
only 101001 has the weighted modulo sums 3 28 106 as
above.

But how do we guarantee at least one 0 between any two 1s?

To this end, let us define an indicator vector 11¢(cy, ..., c,) of
length n for a sequence (cy,...,c,) as follows. The ith bit
of lh()(ch ey C,,) is

1 ifg=1, and ¢;11 =0

0 otherwise

ﬂlo(ch. -~7Cn)z' = {

for i € {1,...,n}, where it is assumed that ¢,.; = 1. Note
that by definition, for any binary sequence (cy, .. .,c,), there
is at least one 0 between any two 1s in lig(cy,...,c,): it is

impossible to have to consecutive 1s, since it would imply
both that ¢; = 1 and ¢;;; =0, and that ¢;;; = 1 and ¢;12 =0,
and clearly ¢;;; cannot simultaneously be a 0 and a 1.

1
0
82 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

Therefore, for any sequence (cy, ..., c,), the indicator vector
lyo(c1s - - -, ¢y) can be protected from two deletions given the
weighted modulo sums Z;’Zl(zgzl P lioler, ... en);
mod 2nP*! for p =0, 1,2. Then, it suffices to protect the
modulo sums 21;1(217:1) (e, ..., ¢p); mod 2nPtl, p =
0,1,2 by using a very short repetition code, in order to
recover the vector 1i(cy, ..., c,). After recovering the vector
lyo(c1y - - -, ¢n), one can protect a similarly defined indicator
vector lgi(cy,...,c,). Finally, the sequence (cy,...,c,) can
be recovered from indicator vectors lio(cy,...,c,) and
ﬂm(cl, ey Cn)-

This approach extends to any constant number ¢ of deletions
by generalizing the observation: For any ¢, if the codewords
are sequences that have at least ¢t — 1 0s between any two 1s,
then the codewords can be protected from ¢ deletions by
using the weighted modulo sum Y7, (377_, j7)¢; mod 3tn?*!
forp =0,1,...,6t Similarly, one can define indicator vectors
such that the indicator vector of a sequence has at least ¢t — 1
Os between any two 1s. The resulting redundancy is then
4tlog on + o(log yn), which is asymptotically at most four
times the optimal.

Despite the progress on codes correcting ¢ deletions, several
problems remain open. How to construct minimal-redun-
dancy deletion codes, which can also be decoded efficiently?
How to approach or improve the existential redundancy
bound? How to efficiently correct a combination of deletions
and substitutions? The third problem is crucial in DNA stor-
age applications as errors are normally a combination of
deletions, insertions, and substitutions. Though the problem
was investigated and codes combining the deletion codes
above and the substitution codes were proposed, are there
more redundancy efficient methods?

Sliced Channel

One feature that fundamentally distinguishes DNA storage
from traditional storage is that in traditional systems, the
codeword is a single long sequence, whereas in DNA storage,
the codeword is a set of unordered short sequences.

To see this, we briefly describe the workflow of DNA storage
systems, as shown in Figure 1. As mentioned earlier, in DNA
storage information is encoded into sequences of four letters,
A,C,G, T, which are synthesized into the respective DNA
molecules. The synthesized DNA molecules are then placed
in a solution inside a vial. In the reading phase, the sequences
are amplified by a process called polymerase chain reaction
(PCR), which generates many more copies of the nucleotide
sequences in the vial. The copies are then sampled and read
through a sequencing process, producing many potentially
erroneous copies of the sequences that were originally syn-
thesized. By using clustering and reconstruction algorithms,
the copies generated from the same sequence are clustered,
and the corresponding sequence is reconstructed. Finally,

100110 (Data)

l Encoding
Synthesis PCR —
(ACT, CAT, AGT, TGC} — oo, ACT fAGTTGC — ==
— Sequencing —— Decoding
—— —_— —_ 100110

{ACT,CGT,AGT,TAGC}

Figure 1

[llustration of the processes in a typical in-vitro DNA storage
system. The data (1,0,0,1,1,0) are encoded into a set of short
sequences { ACT, CAT, AGT, TGC'} of nucleotides. Errors
occur during the synthesis of the short sequences, turning the
nucleotide A in CAT to G. The synthesized sequences,
including the erroneous sequence “CGT,” are amplified in the
PCR process, generating multiple noisy copies of the
synthesized sequences. During the sequencing process, these
noisy copies are read and clustered such that each cluster
consists of noisy copies of a synthesized sequence. Then, an
estimate { ACT, CGT, AGT, TAGC'} of the synthesized
sequences is obtained from the clusters of noisy copies, where
TAGC is an erroneous estimate of TGC. Finally, the estimated
set of synthesized sequences is decoded into data.

the reconstructed sequences are decoded to retrieve the
data. Due to technological constraints in the above processes,
only short DNA molecules (=~ 100 nucleotides) can be syn-
thesized and sequenced, meaning that information can only
be encoded into a collection of short sequences. Moreover,
the DNA molecules stored in the same vial are unordered;
they all float in the same solution without any knowledge
regarding which comes prior.

Note that errors occur in the collection of unordered short
nucleotide sequences. This gives rise to the question of how
to correct errors when the codeword is “sliced” into multiple
unordered pieces. This brings new aspects to classic error
correction setups, where the information is encoded into a
codeword that is a single sequence, and retrieved from a
noisy copy of that sequence. In the context of coding for DNA
storage, the codeword is sliced into multiple unordered
pieces, normally of equal lengths, which presented both
noisy and unordered to the decoder.

In the sliced codeword setting, we may either think of a code-
word as a single sequence that it then sliced into multiple unor-
dered pieces, or a priori consider the codeword as the set of
those pieces; both approaches are equivalent. In this article, we
choose the latter, i.e., we assume that the codeword is a set of
M short sequences, each of length L. In existing DNA storage
systems, L is of the order of magnitude 100 and M is of the
order of magnitude 10* to 10°, based on the size of the data.

In DNA storage, the types of errors include: 1) deletions,
insertions, and substitutions, which occur in either of the

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 83
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

sequences, and were discussed in Section II. 2) sequence loss
due to the fact that some DNA molecules may not be sampled
during the sequencing process. As a result, the sequence con-
tained in the DNA molecule is missing. The following is an
example of coding over a set of short binary sequences.

Example 4. Assume that the given data are encoded
to M =4 sequences of length L =6, say
{110001,100100,101010,111111}, which are placed
together in a vial. Then, noisy copies of the codeword
can be {100000,1100001,10101}, after deletion, inser-
tion, substitution errors, and sequence loss that occur
in any sequence in the set. Note that the identity of a
noisy copy is not known. For example, the noisy copies
100000, 1100001, 10101 can be obtained from
110001, 100100, 101010, respectively, or from
100100, 110001, and 111111, respectively.

The setting of coding over a set of sequences can be consid-
ered as a generalization of the classic setting of coding over a
single sequence, where the set contains only a single
sequence and there is no sequence loss. Also, a similar order-
ing issue often arises in network packet transmission, where
due to varied network delays and changes in routing, packets
might arrive not in the same order they were sent.

To understand the problem of how to handle unordered sets
of sequences, we focus on the basic setting where the code-
word is a set of M different binary sequences of length L,
and focus on substitution errors; more complex settings fol-
low similar ideas. For example, one can transform a code
that uses {0, 1} to one which uses A,C, G, T using the map-
ping mentioned in the introduction. Further, to correct dele-
tion and insertion errors, one can combine the codes for this
basic setting and the deletion codes discussed in Section IL
To combat sequence loss, it is possible to add an “outer”
code, such as the Reed-Solomon code. Intuitively, correcting
errors in the sliced codeword setting (over a set of sequen-
ces) is more difficult than correcting errors in a single
sequence, since in the former setting, the information about
the index of each sliced piece is lost. One natural way to cor-
rect errors in the set of sequences is to use error correction
codes to protect each sequence independently. This is effi-
cient when each sequence roughly has the same amount of
errors. In the case when some sequences have no errors, or
some sequences have much more errors than average, the
method may be inefficient since one has to protect every
sequence from the largest number of errors possible.

To deal with the loss of the index information of each unor-
dered sequence, another natural (and possibly the most com-
mon) approach is to use extra redundancy to index each
sequence. That is, in each sequence, dedicate the first log, M
(out of L) bits to record the index among the total M sequen-
ces. This gives an order to the sequences based on their

indices, and reduces the problem of coding over an unordered
set of sequences to that of coding over a single sequence.

It can be shown that the simple index-based scheme
asymptotically approaches the best information rate, i.e., the
channel capacity, for coding over an unordered set of
sequences. More specifically, index-based schemes achieve
the asymptotically optimal information rate in probabilistic
settings, where a fraction of sequence loss and substitution
errors randomly occur. Partly for this reason, indexing
schemes are used in most of the recent DNA storage experi-
ments, where extra bases are dedicated to index each
sequence, and Reed-Solomon codes are used to correct
errors in the bases. In addition, many code constructions
were proposed based on the indexing schemes.

One of the problems which need to be addressed for indexing
schemes is to protect against errors in the index. One way is
to encode the indices such that they are far from each other
in Hamming distance (i.e, have many distinct bits). In this
way, the indices are more robust to substitution errors. How-
ever, it requires more redundancy in the indices. To resolve
this issue, another approach is to use data to protect errors
in indices. When the Hamming distance between two indices
is small, meaning that they are ambiguous under substitution
errors, it is required the data in the corresponding two
sequences have a large enough Hamming distance. With this
constraint, the decoder can distinguish two sequences based
on their data, if it fails to decode their indices.

While index-based schemes achieve asymptotically the opti-
mal information rate in probabilistic settings, how do they
perform in deterministic settings? In deterministic settings,
the number of errors is bounded and zero-error decoding is
required. When the number of errors is not large, it is reason-
able to look at the redundancy, rather than the information
rate of a scheme, which approaches one with a small number
of errors. Note that different from information rate, which
measures the ratio between the amount of information and
the number of symbols used to store the information, redun-
dancy measures the difference between the two. But how
should we define “redundancy” in the unordered sequence
setting? To study this question, we define the redundancy of a
code as log, 2‘?\5 — log,|C|, where |C| is the size of the code
(i.e, number of codewords) and log ,|C| is the number of infor-
mation bits the code can represent. This definition measures
how many extra bits are needed for error correction, and
would be zero in the case of no errors. Under this definition,
the extra redundancy neeLded for indexing in an index-based
scheme is at least log, (3,) — M(L —log, M) (which is lin-
ear in M) even when there'are no errors.

Can one use less redundancy than that? Using counting argu-
ments, one can show that the optimal redundancy for
correcting a total number of ¢ substitution errors across
all M unordered sequences of length L is at most
2tlog o(ML) + o(log (ML)) for small ¢ (e.g., a constant), and

1
0
84 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

at most linear in tlog,(ML/t) for large ¢ (e.g, a fraction of
ML). In addition, the optimal redundancy is at least
tlog 5 (ML) 4 o(log o(ML)) for small ¢, and at least linear in
tlog o(ML/t) for large ¢. The upper and lower bounds are
orderwise the same. Note that in the classic setting of cor-
recting ¢ substitution errors over a single sequence of length
ML (which is equivalent to M ordered sequences of length
L), similar counting arguments also yield 2tlog,(ML) +
o(log o (ML)) for small ¢, and linear in tlog,(ML/t) for large
t. In addition, the lower bound on redundancy is orderwise
the same as the upper bound. This result has a surprising
implication: it costs almost the same amount of redundancy
to correct errors over a set of unordered and ordered
sequences! This is highly surprising, since the unordered
case is intuitively more complex.

We now compare the redundancy bound 2tlog,(ML) +
o(logo(ML)) to that of the index-based schemes presented
earlier, which is linear in M. Since M is much larger than
L, the redundancy in the index-based schemes is much
larger than bound 2tlog 5 (ML) + o(log o (ML)) whenever

' M
=ol————|.
log (ML)

In what follows we describe ideas that close this gap, i.e., pro-
vide codes correcting substitution errors with almost opti-
mal redundancy, and thus are better than index-based
schemes for this many substitution errors.

The idea is to use the data itself for the purpose of indexing,
or alternatively, encoding data inside the index. Specifically,
we use the lexicographic order of the data for indexing, that
is, the prefix in each sequence is used for indexing, while
also containing data.

Example 5. Let the codeword be {1001101,0101100,
1010001,0001001}, where the first three bits are the
prefix in each sequence used for indexing. Then one
can order the set of sequences in the codeword by
0001001,0101100,1001101,1010001 in ascending lex-
icographic order of the prefixes.

Using prefixes for indexing is similar to index-based
schemes. Yet, unlike index-based schemes, the prefixes
also encode information. In order to make the indexing of
the prefixes robust from substitution errors, the collection
of prefixes in all sequences constitutes a code with large
minimum Hamming distance. This is similar to protecting
the indices from errors in the index-based schemes. The
difference is that the indexing prefixes here encode infor-
mation. Information is encoded into prefixes through dif-
ferent choices of the codes, as shown in Figure 2. The
construction of codes for the prefixes can be done using a
greedy algorithm, so that the prefixes in the code are gen-
erated bit-by-bit. The scheme of using data to index avoids

Codebook 27

Codebook 1 Codebook i

v
a

D}
2[as

or

1 e] |

(N |

M | e | |
On:,? I<e);zoir?h: j;: o Prefix Data

Figure 2

Illustration of codes that use data for indexing.

the index bits, and achieves redundancy that is linear in
tlog,(ML), i.e, almost optimal. One can also combine it
with the deletion correcting codes discussed in Section II,
and enable deletion and/or insertion correction as well.
Finally, some questions about the unordered setting
remain unanswered: What is the optimal redundancy for a
large number of errors? How to construct efficient codes
that achieve orderwise optimal redundancy?

Duplication

Unlike previous sections, this section is motivated by storing
information in the DNA of living organisms. The process
involves synthesizing DNA sequences, which are then
inserted into the DNA of living organisms. We can then
sequence the DNA extracted from these organisms, or more
likely, their descendants, to read the information. Thus, the
DNA storage channel in this case corrupts data not only due
to synthesis and sequencing errors, but also due to naturally
occurring biological processes that mutate the DNA.

We now focus on the errors (mutations) introduced by biolog-
ical processes. It is well known that when cells divide, the
genetic material is replicated. However, the DNA replication
process is not without noise, and the resulting copy may be
corrupted by several error types. These include substitution,
where a base is replaced by another (point mutation), as well
as insertions and deletions of blocks. These types of errors
have been studied to various extents by existing literature.
Another type of error is duplication, whereby a copy of a sub-
string of the DNA is inserted. Duplications accumulate over
time, and it has been found that the majority of human DNA is
duplicated. Since this error type is rarely found in electronic
communication, it has not been studied in the coding theory
community, and in what follows, we focus on it solely.

What kind of duplications are possible? Several biological
mechanisms are known to create duplications in the process

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 85
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

of replicating the DNA. We illustrate a few here. Perhaps the
simplest one (though not necessarily the most common) is
tandem duplication. This mutation process takes a substring
and inserts a duplicate of it immediately after its original
location, for example

ACCTAGGA = ACCTACTAGGA (tandem)

where the underlined part is the substring being duplicated,
and the overlined part is the inserted duplication. In inter-
spersed duplication, the duplicated part is inserted anywhere
in the sequence, for example

ACCTAGGA = ACCTAGGCTAA (interspersed).

Another duplication process, called reverse-complement
duplication (r.c. duplication), takes the substring to duplicate,
and inserts a reversed and complemented duplicate of it
immediately after its location, for example

ACCTAGGA —> ACCTATAGGGA (r.c.).

Here we use the Watson-Crick base pairing, making A and T
complements of each other, and similarly, C and G. All of the
processes mentioned above are the result of known biological
mutation processes whose mechanisms we understand. For
the sake of mathematical simplicity, and to better illustrate
the intricacies of duplication processes, we introduce an artifi-
cial duplication process called end duplication which inserts
the duplicated part at the end of the sequence, for example

ACCTAGGA —> ACCTAGGACTA (end).

As a final note on duplication processes, we emphasize that
following a duplication process, another may occur, perhaps
of a different type, and perhaps of a different length. Thus,
over time, duplications accumulate, like layers of an onion. A
naive inspection of a DNA sequence may only reveal the
outer layer, namely, the last duplications made, and only
after removing those, older occurrences become visible.

We can now formalize the description of the duplication chan-
nel. We shall be working over some finite alphabet 3, (which in
the case of DNA molecules will be % = {A,C, G, T}). We store
a sequence z € 3", where X" is the set of all finite length
sequences over 3. The channel then applies any number of
duplications, resulting in a string y € 3. We denote this pro-
cess as = *y. The set of all possible mutated outcomes,
given that = was stored, is called the descendant cone of =, and
is denoted by D*(z). Conversely, the set of all possible strings
that may be mutated by the channel into y is called the ances-
tor cone of y, and is denoted by A*(y).

When faced with such a channel, our goal is to construct
error-correcting codes that can undo the duplications and
recover the original stored sequence. General coding-theo-
retic principles guide us to define an error-correcting code
as a set of sequences C' C X", whose descendant cones are

disjoint, namely, for any ¢, € C, D*(¢) N D*(¢') = (. Thus,
any corrupted sequence belongs to a single descendant cone
of a valid codeword, and the decoding process simply out-
puts that codeword in response.

Many questions arise: How do we find a good error-cor-
recting code? What makes a good error-correcting code?
What is the best possible? How do we encode, and how do
we decode? How does the answer depend on the type and
parameters of the duplication processes? In what follows
we briefly outline partial answers to these questions, and
along the way, uncover connections to other motivating
problems.

Know Thy Enemy—Understanding
Descendant Cones

The first property of interest, when studying descendant
cones, is knowing their size. Since our ultimate goal is con-
structing error-correcting codes, which are equivalent to
packing descendant cones without overlap, finding their size
may help us bound the parameters of such codes. The number
of strings in any descendant cone is obviously infinite, and
thus, we do not measure their size but rather the rate at which
they grow with each mutation step. This property is called the
capacity, and sometimes the combinatorial entropy.

Formally speaking, to compute the capacity of the descen-
dant cone of x € X", the definition calls for counting the
number of descendants of length n, i.e, |D*(z) N X"|. Taking
log , of this number and dividing by n gives us the exponen-
tial growth rate we are after. Thus

1 ,
cap(x) = limsup;logQMD*(m) nx".

A large capacity indicates a fast growing descendant cone,
and similarly, a small capacity indicates slow growth.
Packing fast growing descendant cones may be more diffi-
cult, resulting in smaller, less efficient, error-correcting
codes.

The capacity may obviously depend on the alphabet size, the
starting sequence x, and the duplication rules. To illustrate
the subtleties of the latter, fix an alphabet 3 and a starting
sequence z. First consider the end-duplication system, in
which each mutation copies a fixed-length substring of length
k to the end. It has been shown that this has full capacity, i.e.,
cap$"d(x) = log,|2|, which is the highest possible value the
capacity may have, indicating the highest possible growth
rate for a descendant cone. We now tweak a single parame-
ter—instead of end duplication, we consider tandem duplica-
tion, namely the duplicated sequence of fixed length & is
inserted immediately after its original position. With this min-
ute change, the capacity vanishes completely, i.e,, cap{*(z) =
0, indicating subexponential growth of the descendant cone.

1
0
86 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

One might argue that the capacity is perhaps too harsh: it
takes into account what is possible, where instead it should
take into account what is probable. We can describe the
mutations as a stochastic process. We start with the initial
sequence x € 3", and then at each round, a randomly chosen
duplication rule (duplicating substring of fixed length k) is
applied to a randomly selected position. We can set, to our
liking, the distributions from which the duplication rule and
the location are chosen. We denote the resulting sequence
after n mutations by S, (z), and observe that it is a random
variable. We can then define the entropy of S, (z) as

H(S,(z)) = - Z Pr(S,(z) = w)log, Pr(S,(z) = w).

wex*

With this, the entropy rate of the entire system

h(S(z)) = limsule(Sn(x)).
n—oo N
Loosely speaking, h(S(z)) measures the amount of informa-
tion generated by an application of a random duplication
rule. Using standard information-theoretic arguments, one
can show that the capacity bounds the entropy rate from
above, namely

h(S(x)) < cap(x).

Once again, we demonstrate the intricacies of string-duplica-
tion systems by showing how even the smallest of changes
create dramatically different results. For the sake of this
demonstration, we focus on the reverse-complement string
duplication system over the binary alphabet % = {0,1}. We
further assume for simplicity that the initial string is = =0,
all duplications are of the same fixed length &£ = 1, and that
their location is chosen uniformly and independently in each
round. We emphasize that the fact the locations are chosen
uniformly does not mean that S, (z) is distributed uniformly.
For example, there is only one way of deriving 0111 from
z=0

0=01=011=0111

and the probability of this happening is exactly 1-1.1=1,

2°37 6
However, there are two ways of deriving 0101

0= 01=011=-0101
0= 01=010 = 0101

and we get 0101 with probability % Interestingly, the
entropy-rate we are after is connected to the asymptotics of
permutation signatures, and the best we know is that for
duplication length k£ = 1

0.8689 < h(S(z = 0)) < 0.9067 < cap(z = 0) = 1.

Importantly, while the capacity is full (i.e,, “most” sequences
are obtainable via carefully chosen derivation paths), not all
outcomes are probable, and the entropy rate is strictly less

0.5

0.4

0.3

0.2

0.1

1 10 100 1000 10* 10°
n

Figure 3

Example simulation of the reverse-complement string-
duplication system with starting sequence x = 00,
and duplication length k = 2, showing for S,,(00)

the frequencies of the substrings (a) 00, (b) 01

(which equals that of 10), and (c) 11.

than 1. To further complicate matters, consider duplication
of length k=2 and an equally long starting sequence,
2 = 00. In this case, it has been shown that

0= h(S(z =00)) < cap(z =00) = 1.

Namely, while again, “most” sequences are obtainable, only
very few are probable. This surprising result was obtained
by proving that with high probability, S, (z = 00) is eventu-
ally almost entirely an alternating sequence of 0101.... A
simulation of this fact is shown in Figure 3.

The last two properties we shall describe are perhaps more
interesting from a bio-informatics perspective. Consider the
following question: We are given some distant ancestor that
humans evolved from, and this ancestor does not have the
DNA substring that codes for a specific protein humans have.
Can tandem duplication alone mutate the ancestor’s DNA
sequence into a sequence that contains the instructions for
that protein? In our mathematical framework of string-dupli-
cation systems, we say a system with a starting sequence
x € X" is fully expressive if any given sequence y € 2" appears
as a substring of some descendant of x. Returning to our pre-
vious example of end duplication versus tandem duplication
(both of some fixed length k), it was shown that tandem dupli-
cation is not fully expressive, whereas end duplication is. To
put this in context, imagine the following challenge: We are
given Tolstoy’s “War and Peace” (which we consider as a very
long sequence of symbols). We can duplicate substrings of
some fixed length, say, k£ = 200. Our goal is to create a sub-
string, which is Shakespeare’s “Macbeth.” When the dupli-
cated parts are inserted next to their original position
(tandem duplication), this is impossible. However, when the

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 87
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

duplicated parts are placed at the end, the challenge is solv-
able (albeit, the procedure might be extremely lengthy)!

The final property we would like to mention is that of distance
to the root. When reading a mutated version y € 3 of the
stored sequence z € 3", our goal is to reverse the mutation
process and find x. This may be performed by undoing duplica-
tions, a process called deduplication. The process stops when
no further deduplications are possible, and the sequence at
that point is called a root of y. The number of deduplication
steps is called the distance to a root from y. In the binary case
3, = {0, 1}, with unbounded tandem duplication, the root is
always one of six options {0, 1,01, 10,010, 101}. In this setting,
we let f(n) denote the maximum distance to the root of a
binary sequence of length n. Surprisingly

0.045 < lim m <04
n—oo N
and the lower bound in fact holds for all but an exponentially
small fraction of sequences of length n. Thus, the vast major-
ity of sequences have a distance to the root that is linear in
their length. This result remains essentially the same even if
the duplication process is imprecise.

Constructing Error-Correcting Codes

Armed with a better understanding of descendant cones, we may
now approach the problem of designing error-correcting codes
for string-duplication channels. Two main issues are of interest:
finding a good code (i.e,, making sure descendant cones of distinct
codewords are disjoint), and finding an efficient decoding algo-
rithm. Throughout this section, we shall consider the tandem-
duplication string-duplication channel as an example.

When the duplication length is fixed at some length &, we are
indeed fortunate. If the alphabet contains exactly g letters,
we may assume without loss of generality that 3 =7,
namely, the ring of integers with addition modulo ¢. It has
been suggested to view any string after taking the k-step dis-
crete derivative 9, i.e., for each i, subtracting the letter in
position ¢—k from the letter in position 4. Thus,
dpx = 20" — 0%z, where 0F denotes a run of k zeros, and sub-
traction is symbolwise over Z,. This operation is invertible.
Moreover, in the derivative domain, a tandem duplication of
length k manifests as an insertion of 0. As a consequence,
we obtain the following:

) Any sequence x € 3" has a unique root.

[The unique root of a sequence = may be reached by
deduplications performed in any order.

I Two sequences, z and 2/, have intersecting descen-

dant cones if and only if they have the same root.

We note in passing that these assertions are not true
even if we relax our setting minutely. For example, if we

allow deduplications of any length (instead of a fixed
length) then the sequence 210121010 does not have a
unique root:

210121010—21010—210
210121010—2101210

where — denotes a deduplication, and the underlined part
is dedeuplicated.

Returning to our search for codes that correct tandem
duplications of fixed length k, the three properties listed
above lead us to the following solution: Construct a code
by taking as codewords all the irreducible sequences of
length n over 7, (where an irreducible sequence is a
sequence that is its own root, namely, it does not contain
any duplications of length k). With a small tweak this code
can be made optimal, and allows information storage at a
rate of

q— Dlogse
10g2q_(q%

(14 0(1)).
Decoding is simple, since by the properties above, we can
deduplicate in any order we wish, until reaching the unique
root which must be the transmitted sequence.

In essence, since the duplications introduced by biological
processes are part of the evolutionary process, we can think
of the error-correcting codes we described as evolution-cor-
recting codes.

Bibliographic Notes

There are several implementations [3], [9], [10], [14], [21],
[24], [31], [37], [38], [77], [86], [99], [117], [118], [123] of
in-vitro and in-vivo DNA storage demonstrating their poten-
tial and motivating the error and channel models considered
in this article. A detailed description of the errors and the
channel can be found in [45], [60]. We also refer to [28],
[88], [119] for a broader overview of different aspects in
DNA storage.

Deletion Codes

The study of codes correcting deletions and insertions was
introduced in the seminal papers [69], [84], where it was
shown in [69] that deletion codes correct a combination of
deletions and insertions. The upper and lower bounds on the
optimal redundancy of deletion codes were also given
in [69]. The VT codes were proposed in [109]. An algebraic
generalization of VT codes with redundancy linear in code
length was presented in [47] and further extended in [44].
The first codes correcting a number of linear in code length
deletions based on concatenated code structures were pro-
posed in [83] and were improved in [41] and [40]. Using the

1
0
88 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

concatenated code construction, Brakensiek et al. [11] pro-
posed the first codes correcting a small number of deletions
with redundancy logarithmic in the code length. For two
deletions, the result in [11] was improved by [36], [39], [92].
The first-orderwise optimal codes correcting a constant
number of deletions were given by [18], [90], [91].

The algebraic generalizations of VT codes discussed in
Section II for correcting deletions were presented in [90],
[91], and [92]. Compared to the VT generalizations in [44]
and [47] that require linear redundancy, the generaliza-
tions in [90], [91], and [92] are capable of correcting a
constant number of deletions with asymptotically at most
four times the optimal redundancy, which is a logarithm
of the code length. Combining the codes in [91] and the
VT codes, Song et al. [97] further improved the redun-
dancy in [91] from

4tlogn + o(logn)

to
(4t — 1)log n + o(logn),

where t is the number of deletions and n is the code length.
Besides the above code constructions, existential bounds
improving the results in [69] were recently presented in [2].

Other related problems include: systematic deletion
codes [5], [18], [22], [42], [78], [91], nonbinary deletion
codes [23], [43], [62], [70], [71], [90], [107], deletion codes
with randomized decoding [6], [13], [48], [51], channel
capacity of deletion channels [19], [25], [26], [29], [52], [53],
[55], [100], [108], [110], codes correcting a combination of
deletions, insertions, substitutions, and transpositions [12],
[17], [34], [36], codes correcting a burst of deletions [63],
[82], [98], [112], codes for sticky insertions [27], [73], and
codes correcting asymmetric deletions [101], [113]. In addi-
tion, the application of edit distance in natural language proc-
essing and biological data analysis can be found in [81] and
[116]. See [20], [75], [76], [95] for a broader review of this
topic.

Sliced Channel

The model of encoding information into a set of unordered
and equal-length sequences was introduced in [46], where
it was shown that index-based schemes achieve the chan-
nel capacity when there are sequence losses. Later, the
channel capacity analysis was extended to channels with
both sequence loss and substitution errors [66], [67], [87],
[115]. The protection of indices against errors assuming
index-based schemes was addressed in [64], [85], and
[96].

The definition of redundancy measuring the extra redun-
dancy needed for error protection was introduced in [65],

where it was shown that the redundancy for index-based
schemes is linear in the number of sequences. The orderwise
optimal redundancy under this definition was obtained
in [94], where the idea of using data for indexing was pro-
posed. By using this idea, code constructions were presented
in [93] to achieve orderwise optimal redundancy and
in [114] to obtain improved results upon those in [65].

Other related problems include: permutation channels [56],
[57], [61], [74], [102], [111], codes for reconstruction from
substrings [15], [35], [54], [80], [120], and torn-paper chan-
nels [4], [79], [89].

Duplication

Early attempts of in-vivo information storage can be found
in [24] and [117]. Proofs of concepts for storing information
in the DNA of living organisms were provided in [86]
and [123]. In [60], it was pointed out that the majority of the
human DNA contains duplications. The string-duplication
channels were introduced in [32] and the capacity and
expressiveness of several duplication rules were studied.
These results were extended in [49] and [58]. The stochastic
channel model, called a Pdlya string model, was introduced
in [30], and further studied in [7], [33], and [72]. In
particular, Farnoud et al. [33] developed a parameter-estima-
tion scheme based on this model. The distance to the root in
tandem duplication channels was studied in [1].

Error-correcting codes for string-duplication channels were
first studied in [50]. The work was followed by many others,
among them works studying: tandem duplication [16], [59],
[68], [124], [125], Levenshtein reconstruction for uniform
tandem duplication [121], [122], noisy tandem duplica-
tion [103], [104], [105], [106], palindromic duplications [68],
[125], and reverse-complement duplications [7].

Acknowledgment
This work was supported by National Science Foundation
under Grant CCF-1816965 and Grant CCF-1717884.

References

[1] N. Alon, J. Bruck, F. Farnoud, and S. Jain, “Duplication distance
to the root for binary sequences,” IEEE Trans. Inf. Theory,
vol. 63, no. 12, pp. 7793-7803, Dec. 2017.

[2] N. Alon, G. Bourla, B. Graham, X. He, and N. Kravitz,
“Logarithmically larger deletion codes of all distances,” IEEE
Trans. Inf. Theory, to be published, doi: 10.1109/
TIT.2023.3304565.

[3] P. L. Antkowiak et al., “Low cost DNA data storage using
photolithographic synthesis and advanced information
reconstruction and error correction,” Nature Commun.,
vol. 11, no. 1, 2020, Art. no. 5345.

5 01,
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 89
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/TIT.2023.3304565
https://doi.org/10.1109/TIT.2023.3304565

[4] D. Bar-Lev, S. M. E. Yaakobi, and Y. Yehezkeally, “Adversarial
torn-paper codes,” IEEE Trans. Inf. Theory, vol. 69, no. 10,
pp. 6414-6427, Oct. 2023.

[5] D. Belazzougui, “Efficient deterministic single round
document exchange for edit distance,” 2015,
arXiv:1511.09229.

[6] D. Belazzougui and Q. Zhang, “Edit distance: Sketching,
streaming, and document exchange,” in Proc. IEEE 57th Annu.
Symp. Found. Comput. Sci., 2016, pp. 51-60.

[7] E. Ben-Tolila and M. Schwartz, “On the reverse-complement
string-duplication system,” IEEE Trans. Inf. Theory, vol. 68,
no. 11, pp. 7184-7197, Nov. 2022.

[8] E. R. Berlekamp, “The technology of error-correcting codes,”
Proc. IEEE, vol. 68, no. 5, pp. 564-593, May 1980.

[9] M. Blawat et al., “Forward error correction for DNA data
storage,” Procedia Comput. Sci., vol. 80, pp. 1011-1022, 2016.

[10] J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K.
Strauss, “A DNA-based archival storage system,” in Proc. 21st
Int. Conf. Architectural Support Program. Lang. Operating
Syst., 2016, pp. 637-649.

[11] J. Brakensiek, V. Guruswami, and S. Zbarsky, “Efficient low-
redundancy codes for correcting multiple deletions,” IEEE
Trans. Inf. Theory, vol. 64, no. 5, pp. 3403-3410, May 2018.

[12] K. Cai, Y. M. Chee, R. Gabrys, H. M. Kiah, and T. T. Nguyen,
“Correcting a single indel/edit for DNA-based data storage:
Linear-time encoders and order-optimality,” I[EEE Trans. Inf.
Theory, vol. 67, no. 6, pp. 3438-3451, Jun. 2021.

[13] D. Chakraborty, E. Goldenberg, and M. Koucky, “Low
distortion embedding from edit to hamming distance using
coupling,” Electron. Collog. Comput. Complexity, vol. 22, 2015,
Art.no. 111.

[14] S. Chandak et al.,, “Improved read/write cost tradeoff in
DNA-based data storage using ldpc codes,” in Proc. I[EEE
57th Annu. Allerton Conf. Commun., Control, Comput., 2019,
pp. 147-156.

[15] Z. Chang,]. Chrisnata, M. F. Ezerman, and H. M. Kiah, “Rates of
DNA sequence profiles for practical values of read lengths,”
IEEE Trans. Inf. Theory, vol. 63, no. 11, pp. 7166-7177, Nov.
2017.

[16] Y. M. Chee,]. Chrisnata, H. M. Kiah, and T. T. Nguyen, “Efficient
encoding/decoding of GC-balanced codes correcting
tandem duplications,” IEEE Trans. Inf. Theory, vol. 66, no. 8,
pp- 4892-4903, Aug. 2020.

[17] K. Cheng, Z. Jin, X. Li, and K. Wu, “Block edit errors with
transpositions: Deterministic document exchange protocols
and almost optimal binary codes,” 2018, arXiv:1809.00725.

[18] K. Cheng, Z. Jin, X. Li, and K. Wu, “Deterministic document
exchange protocols and almost optimal binary codes for edit
errors,” . ACM, vol. 69, no. 6, pp. 1-39, 2022.

[19] M. Cheraghchi, “Capacity upper bounds for deletion-type
channels,” J. ACM, vol. 66, no. 2, pp. 1-79, 2019.

[20] M. Cheraghchi and J. Ribeiro, “An overview of capacity results
for synchronization channels,” IEEE Trans. Inf. Theory, vol. 67,
no. 6, pp. 3207-3232, Jun. 2021.

[21] G. M. Church, Y. Gao, and S. Kosuri, “Next-generation digital
information storage in DNA,” Science, vol. 337, no. 6102,
pp. 1628-1628, 2012.

[22] G. Cormode, M. S. Paterson, S. C. Sahinalp, and U. Vishkin,
“Communication complexity of document exchange,”
1999.

[23] D. Cullina and N. Kiyavash, “An improvement to Levenshtein’s
upper bound on the cardinality of deletion correcting codes,”
IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 3862-3870, Jul.
2014.

[24]]. Davis, “Microvenus,” Art J., vol. 55, no. 1, pp. 70-74, 1996.

[25] S. N. Diggavi and M. Grossglauser, “On transmission over
deletion channels,” in Proc. Annu. Allerton Conf. Commun.
Control Comput., 2001, vol. 39, no. 1, pp. 573-582.

[26] R. L. Dobrushin, “Shannon’s theorems for channels with
synchronization errors,” Problemy Peredachi Informatsii,
vol. 3, no. 4, pp. 18-36, 1967.

[27] L. Dolecek and V. Anantharam, “Repetition error correcting
sets: Explicit constructions and prefixing methods,” SIAM J.
Discrete Math., vol. 23, no. 4, pp. 2120-2146, 2010.

[28] Y. Dong, F. Sun, Z. Ping, Q. Ouyang, and L. Qian, “DNA storage:
Research landscape and future prospects,” Nat. Sci. Rev.,
vol. 7, no. 6, pp. 1092-1107, 2020.

[29] E. Drinea and M. Mitzenmacher, “Improved lower bounds
for the capacity of iid deletion and duplication channels,”
IEEE Trans. Inf. Theory, vol. 53, no. 8, pp. 2693-2714, Aug.
2007.

[30] O. Elishco, F. Farnoud, M. Schwartz, and J. Bruck, “The entropy
rate of some Pdlya string models,” IEEE Trans. Inf. Theory,
vol. 65, no. 12, pp. 8180-8193, Dec. 2019.

[31] Y. Erlich and D. Zielinski, “DNA fountain enables a robust and
efficient storage architecture,” Science, vol. 355, no. 6328,
pp. 950-954, 2017.

[32] F. Farnoud, M. Schwartz, and J. Bruck, “The capacity of string-
duplication systems,” IEEE Trans. Inf. Theory, vol. 62, no. 2,
pp. 811-824, Feb. 2016.

[33] F. Farnoud, M. Schwartz, and J. Bruck, “Estimation of
duplication history under a stochastic model for tandem
repeats,” BMC Bioinf., vol. 20, no. 64, pp. 1-11, Feb. 2019.

[34] R. Gabrys, V. Guruswami, J. Ribeiro, and K. Wu, “Beyond
single-deletion correcting codes: Substitutions and
transpositions,” IEEE Trans. Inf. Theory, vol. 69, no. 1,
pp- 169-186, Jan. 2023.

1
0
90 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

[35] R. Gabrys and 0. Milenkovic, “Unique reconstruction of coded
sequences from multiset substring spectra,” in Proc. IEEE Int.
Symp. Inf. Theory, 2018, pp. 2540-2544.

[36] R. Gabrys, E. Yaakobi, and O. Milenkovic, “Codes in the
Damerau distance for deletion and adjacent transposition
correction,” IEEE Trans. Inf. Theory, vol. 64, no. 4,
pp. 2550-2570, Apr. 2018.

[37] N. Goldman et al,, “Towards practical, high-capacity, low-
maintenance information storage in synthesized DNA,”
Nature, vol. 494, no. 7435, pp. 77-80, 2013.

[38] R. N. Grass, R. Heckel, M. Puddu, D. Paunescu, and W. . Stark,
“Robust chemical preservation of digital information on DNA
in silica with error-correcting codes,” Angewandte Chemie Int.
Ed., vol. 54, no. 8, pp. 2552-2555, 2015.

[39] V. Guruswami and J. Hastad, “Explicit two-deletion codes with
redundancy matching the existential bound,” [EEE Trans. Inf.
Theory, vol. 67, no. 10, pp. 6384-6394, Oct. 2021.

[40] V. Guruswami and R. Li, “Efficiently decodable insertion/
deletion codes for high-noise and high-rate regimes,” in Proc.
IEEE Int. Symp. Inf. Theory, 2016, pp. 620-624.

[41] V. Guruswami and C. Wang, “Deletion codes in the high-noise
and high-rate regimes,” IEEE Trans. Inf. Theory, vol. 63, no. 4,
pp. 1961-1970, Apr. 2017.

[42] B. Haeupler, “Optimal document exchange and new codes for
insertions and deletions,” in Proc. IEEE 60th Annu. Symp.
Found. Comput. Sci., 2019, pp. 334-347.

[43] B. Haeupler and A. Shahrasbi, “Synchronization strings: Codes
for insertions and deletions approaching the singleton
bound,” in Proc. 49th Annu. ACM SIGACT Symp. Theory
Comput., 2017, pp. 33-46.

[44] M. Hagiwara, “On ordered syndromes for multi insertion/
deletion error-correcting codes,” in Proc. IEEE Int. Symp. Inf.
Theory, 2016, pp. 625-629.

[45] R. Heckel, G. Mikutis, and R. N. Grass, “A characterization of
the DNA data storage channel,” Sci. Rep., vol. 9, no. 1, pp. 1-12,
20109.

[46] R. Heckel, I. Shomorony, K. Ramchandran, and N. David,
“Fundamental limits of DNA storage systems,” in Proc. [EEE
Int. Symp. Inf. Theory, 2017, pp. 3130-3134.

[47] A.S. Helberg and H. C. Ferreira, “On multiple insertion/
deletion correcting codes,” IEEE Trans. Inf. Theory, vol. 48,
no. 1, pp. 305-308, Jan. 2002.

[48] U. Irmak, S. Mihaylov, and T. Suel, “Improved single-round
protocols for remote file synchronization,” in Proc. IEEE 24th
Annu. Joint Conf. Comput. Commun. Soc., 2005, vol. 3,
pp. 1665-1676.

[49] S.]Jain, F. Farnoud, and J. Bruck, “Capacity and expressiveness
of genomic tandem duplication,” IEEE Trans. Inf. Theory,
vol. 63, no. 10, pp. 6129-6138, Oct. 2017.

[50]

[51]

[52]

(53]

(54]

[55]

[56]

[57]

(58]

[59]

[60]

(61]

[62]

[63]

[64]

S. Jain, F. Farnoud, M. Schwartz, and J. Bruck, “Duplication-
correcting codes for data storage in the DNA of living
organisms,” I[EEE Trans. Inf. Theory, vol. 63, no. 8,

pp- 4996-5010, Aug. 2017.

H. Jowhari, “Efficient communication protocols for deciding
edit distance,” in Proc. Algorithms-ESA 20th Annu. Eur. Symp.,
2012, pp. 648-658.

A. Kalai, M. Mitzenmacher, and M. Sudan, “Tight asymptotic
bounds for the deletion channel with small deletion
probabilities,” in Proc. IEEE Int. Symp. Inf. Theory, 2010,
pp- 997-1001.

Y. Kanoria and A. Montanari, “Optimal coding for the binary
deletion channel with small deletion probability,” IEEE Trans.
Inf. Theory, vol. 59, no. 10, pp. 6192-6219, Oct. 2013.

H. M. Kiah, G.]. Puleo, and 0. Milenkovic, “Codes for DNA
sequence profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6,
pp. 3125-3146, Jun. 2016.

A. Kirsch and E. Drinea, “Directly lower bounding the
information capacity for channels with LLD. deletions and
duplications,” IEEE Trans. Inf. Theory, vol. 56, no. 1,

pp. 86-102, Jan. 2010.

M. Kovacevi¢ and V. Y. Tan, “Codes in the space of multisets—
coding for permutation channels with impairments,”

IEEE Trans. Inf. Theory, vol. 64, no. 7, pp. 5156-5169, Jul.
2018.

M. Kovacevi¢ and D. Vukobratovi¢, “Perfect codes in the
discrete simplex,” Des., Codes Cryptogr., vol. 75, pp. 81-95,
2015.

M. Kovacevic, “Zero-error capacity of duplication channels,”
IEEE Trans. Commun., vol. 67, no. 10, pp. 6735-6742, Oct.
2019.

M. Kovacevi¢ and V. Y. F. Tan, “Asymptotically optimal codes
correcting fixed-length duplication errors in DNA storage
systems,” IEEE Commun. Lett., vol. 22, no. 11, pp. 2194-2197,
Nov. 2018.

E.S. Lander et al,, “Initial sequencing and analysis of the
human genome,” Nature, vol. 409, no. 6822, pp. 860-921,
2001.

M. Langberg, M. Schwartz, and E. Yaakobi, “Coding for the
£ -limited permutation channel,” IEEE Trans. Inf. Theory,
vol. 63, no. 12, pp. 7676-7686, Dec. 2017.

T. A. Le and H. D. Nguyen, “New multiple insertion-deletion
correcting codes for non-binary alphabets,” 2015,
arXiv:1502.02727.

A. Lenz and N. Polyanskii, “Optimal codes correcting a burst of
deletions of variable length,” in Proc. IEEE Int. Symp. Inf.
Theory, 2020, pp. 757-762.

A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Anchor-
based correction of substitutions in indexed sets,” in Proc.
IEEE Int. Symp. Inf. Theory, 2019, pp. 757-761.

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 91
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

[65] A. Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “Coding
over sets for DNA storage,” IEEE Trans. Inf. Theory, vol. 66,
no. 4, pp. 2331-2351, 2019.

[66] A.Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi, “An upper
bound on the capacity of the DNA storage channel,” in Proc.
IEEE Inf. Theory Workshop, 2019, pp. 1-5.

[67] A.Lenz, P. H. Siegel, A. Wachter-Zeh, and E. Yaakobi,
“Achieving the capacity of the DNA storage channel,” in Proc.
IEEE Int. Conf. Acoust,, Speech Signal Process., 2020,
pp. 8846-8850.

[68] A.Lenz, A. Wachter-Zeh, and E. Yaakobi, “Duplication-
correcting codes,” Des., Codes Cryptogr., vol. 87, pp. 277-298,
20109.

[69] V.I. Levenshtein, “Binary codes capable of correcting
deletions, insertions, and reversals,” in Proc. Sov. Phys.
Doklady, Sov. Union, 1966, vol. 10, no. 8, pp. 707-710.

[70] V. 1. Levenshtein, “Bounds for deletion/insertion correcting
codes,” in Proc. IEEE Int. Symp. Inf. Theory,, 2002, Art. no. 370.

[71] S. Liu and C. Xing, “Bounds and constructions for insertion
and deletion codes,” IEEE Trans. Inf. Theory, vol. 69, no. 2,
pp. 928-940, Feb. 2022.

[72] H. Lou, M. Schwartz, J. Bruck, and F. Farnoud, “Evolution of
k-MER frequencies and entropy in duplication and
substitution mutation systems,” IEEE Trans. Inf. Theory,
vol. 66, no. 5, pp. 3171-3186, May 2020.

[73] H. Mahdavifar and A. Vardy, “Asymptotically optimal sticky-
insertion-correcting codes with efficient encoding and
decoding,” in Proc. IEEE Int. Symp. Inf. Theory, 2017,
pp. 2683-2687.

[74] A. Makur, “Coding theorems for noisy permutation channels,”
IEEE Trans. Inf. Theory, vol. 66, no. 11, pp. 6723-6748, Nov.
2020.

[75] H. Mercier, V. K. Bhargava, and V. Tarokh, “A survey of error-
correcting codes for channels with symbol synchronization
errors,” IEEE Commun. Surveys Tuts., vol. 12, no. 1, pp. 87-96,
First Quarter 2010.

[76] M. Mitzenmacher, “A survey of results for deletion channels
and related synchronization channels,” 2009.

[77] L. Organick et al,, “Scaling up DNA data storage and random
access retrieval,” BioRxiv, 2017, Art. no. 114553.

[78] A. Orlitsky, “Interactive communication of balanced
distributions and of correlated files,” SIAM J. Discrete Math.,
vol. 6, no. 4, pp. 548-564, 1993.

[79] A.N. Ravi, A. Vahid, and I. Shomorony, “Capacity of the torn
paper channel with lost pieces,” in Proc. IEEE Int. Symp. Inf.
Theory, 2021, pp. 1937-1942.

[80] N. Raviv, M. Schwartz, and E. Yaakobi, “Rank-modulation
codes for DNA storage with shotgun sequencing,” IEEE Trans.
Inf. Theory, vol. 65, no. 1, pp. 50-64, Jan. 2019.

[81] D. Sankoff and J. B. Kruskal, Time Warps, String Edits, and
Macromolecules: The Theory and Practice of Sequence
Comparison. Reading, MA, USA:Addison-Wesley Publication,
1983.

[82] C. Schoeny, A. Wachter-Zeh, R. Gabrys, and E. Yaakobi, “Codes
correcting a burst of deletions or insertions,” IEEE Trans. Inf.
Theory, vol. 63, no. 4, pp. 1971-1985, Apr. 2017.

[83] L. J. Schulman and D. Zuckerman, “Asymptotically good
codes correcting insertions, deletions, and transpositions,”
IEEE Trans. Inf. Theory, vol. 45, no. 7, pp. 2552-2557, Nov.
1999.

[84] F. Sellers, “Bit loss and gain correction code,” IRE Trans. Inf.
Theory, vol. 8, no. 1, pp. 35-38, 1962.

[85] T. Shinkar, E. Yaakobi, A. Lenz, and A. Wachter-Zeh,
“Clustering-correcting codes,” IEEE Trans. Inf. Theory, vol. 68,
no. 3, pp. 1560-1580, Mar. 2021.

[86] S. L. Shipman, J. Nivala, J. D. Macklis, and G. M. Church,
“CRISPR-Cas encoding of digital movie into the genomes of a
population of living bacteria,” Nature, vol. 547, pp. 345-349,
Jul. 2017.

[87] 1. Shomorony and R. Heckel, “DNA-based storage: Models and
fundamental limits,” IEEE Trans. Inf. Theory, vol. 67, no. 6,
pp. 3675-3689, Jun. 2021.

[88] I. Shomorony et al., “Information-theoretic foundations of
DNA data storage,” Found. Trends Commun. Inf. Theory,
vol. 19, no. 1, pp. 1-106, 2022.

[89] I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Trans.
Inf. Theory, vol. 67, no. 12, pp. 7904-7913, 2021.

[90] J. Sima and J. Bruck, “On optimal k-deletion correcting codes,”
IEEE Trans. Inf. Theory, vol. 67, no. 6, pp. 3360-3375, Jun.
2021.

[91] J. Sima, R. Gabrys, and J. Bruck, “Optimal systematic t-deletion
correcting codes,” in Proc. IEEE Int. Symp. Inf. Theory, 2020,
pp. 769-774.

[92] J. Sima, N. Raviv, and J. Bruck, “Two deletion correcting codes
from indicator vectors,” IEEE Trans. Inf. Theory, vol. 66, no. 4,
pp. 2375-2391, Apr. 2020.

[93] J. Sima, N. Raviv, and J. Bruck, “Robust indexing-optimal codes
for DNA storage,” in Proc. IEEE Int. Symp. Inf. Theory, 2020,
pp. 717-722.

[94] J. Sima, N. Raviv, and J. Bruck, “On coding over sliced
information,” IEEE Trans. Inf. Theory, vol. 67, no. 5,
pp- 2793-2807, May 2021.

[95] N.]. Sloane, “On single-deletion-correcting codes,” Codes
Designs, vol. 10, pp. 273-291, 2002.

[96] W. Song, K. Cai, and K. A. S. Immink, “Sequence-subset
distance and coding for error control in DNA-based data
storage,” IEEE Trans. Inf. Theory, vol. 66, no. 10,
pp. 6048-6065, Oct. 2020.

1
0
92 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

[97] W. Song, N. Polyanskii, K. Cai, and X. He, “On multiple-deletion
multiple-substitution correcting codes,” in Proc. IEEE Int.
Symp. Inf. Theory, 2021, pp. 2655-2660.

[98] Y. Sun, Y. Zhang, and G. Ge, “Improved constructions of
permutation and multi-permutation codes correcting a burst
of stable deletions,” IEEE Trans. Inf. Theory, vol. 69, no. 7,
pp. 4429-4441, Jul. 2023.

[99] S.T.Yazdi, Y. Yuan, J. Ma, H. Zhao, and O. Milenkovic, “A
rewritable, random-access DNA-based storage system,” Sci.
Rep., vol. 5, no. 1, pp. 1-10, 2015.

[100] I Tal, H. D. Pfister, A. Fazeli, and A. Vardy, “Polar codes for the
deletion channel: Weak and strong polarization,” IEEE Trans.
Inf. Theory, vol. 68, no. 4, pp. 2239-2265, Apr. 2022.

[101] L. G. Tallini, N. Algwaifly, and B. Bose, “Deletions and
insertions of the symbol “0” and asymmetric/unidirectional
error control codes for the | metric,” IEEE Trans. Inf. Theory,
vol. 69, no. 1, pp. 86-106, Jan. 2023.

[102] J. Tang and Y. Polyanskiy, “Capacity of noisy permutation
channels,” IEEE Trans. Inf. Theory, vol. 69, no. 7,
pp. 4145-4162, Jul. 2023.

[103] Y. Tang and F. Farnoud, “Error-correcting codes for noisy
duplication channels,” IEEE Trans. Inf. Theory, vol. 67, no. 6,
pp. 3452-3464, Jun. 2021.

[104] Y. Tang and F. Farnoud, “Error-correcting codes for short
tandem duplication and edit errors,” IEEE Trans. Inf. Theory,
vol. 68, no. 2, pp. 871-880, Feb. 2021.

[105] Y. Tang, S. Wang, H. Lou, R. Gabrys, and F. Farnoud, “Low-
redundancy codes for correcting multiple short-duplication
and edit errors,” IEEE Trans. Inf. Theory, vol. 69, no. 5,
pp. 2940-2954, May 2023.

[106] Y. Tang, Y. Yehezkeally, M. Schwartz, and F. Farnoud, “Single-
error detection and correction for duplication and
substitution channels,” IEEE Trans. Inf. Theory, vol. 66, no. 11,
pp. 6908-6919, Nov. 2020.

[107] G. Tenengolts, “Nonbinary codes, correcting single deletion or
insertion (corresp.),” IEEE Trans. Inf. Theory, vol. 30, no. 5,
pp. 766-769, Sep. 1984.

[108] J. Ullman, “On the capabilities of codes to correct
synchronization errors,” IEEE Trans. Inf. Theory, vol. 13, no. 1,
pp. 95-105, Jan. 1967.

[109] R. R. Varshamov and G. M. Tenengolts, “Codes which correct
single asymmetric errors,” Autom. Remote Control, vol. 26,
no. 2, pp. 286-290, 1965.

[110] R. Venkataramanan, S. Tatikonda, and K. Ramchandran,
“Achievable rates for channels with deletions and insertions,”
IEEE Trans. Inf. Theory, vol. 59, no. 11, pp. 6990-7013, Nov.
2013.

[111] J. M. Walsh and S. Weber, “Capacity region of the permutation
channel,” in Proc. IEEE 46th Annu. Allerton Conf. Commun.,
Control, Comput., 2008, pp. 646-652.

[112] S. Wang, Y. Tang, R. Gabrys, and F. Farnoud, “Permutation
codes for correcting a burst of at most ¢ deletions,” in Proc.
IEEE 58th Annu. Allerton Conf. Commun., Control, Comput.,
2022, pp. 1-6.

[113] S. Wang, V. K. Vu, and V. Y. Tan, “Codes for correcting ¢
limited-magnitude sticky deletions,” 2023, arXiv:2302.02754.

[114] H. Wei and M. Schwartz, “Improved coding over sets for DNA-
based data storage,” IEEE Trans. Inf. Theory, vol. 68, no. 1,
pp. 118-129, Jan. 2022.

[115] N. Weinberger and N. Merhav, “The DNA storage channel:
Capacity and error probability bounds,” IEEE Trans. Inf.
Theory, vol. 68, no. 9, pp. 5657-5700, Sep. 2022.

[116] Wikipedia, “Edit distance,” [Online]. Available: https://en.
wikipedia.org/wiki/Edit_distance

[117] P.C. Wong, K.-K. Wong, and H. Foote, “Organic data memory
using the DNA approach,” Commun. ACM, vol. 46, no. 1,
pp. 95-98, 2003.

[118] S. Yazdi, R. Gabrys, and O. Milenkovic, “Portable and
error-free DNA-based data storage,” Sci. Rep., vol. 7, no. 1,
pp. 1-6, 2017.

[119] S. H.T. Yazdi, H. M. Kiah, E. Garcia-Ruiz,]. Ma, H. Zhao, and O.
Milenkovic, “DNA-based storage: Trends and methods,” [EEE
Trans. Molecular, Biol. Multi-Scale Commun., vol. 1, no. 3,
pp. 230-248, Sep. 2015.

[120] Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi,
“Generalized unique reconstruction from substrings,” I[EEE
Trans. Inf. Theory, vol. 69, no. 9, pp. 5648-5659, Sep. 2023.

[121] Y. Yehezkeally and M. Schwartz, “Reconstruction codes for
DNA sequences with uniform tandem-duplication errors,”
IEEE Trans. Inf. Theory, vol. 66, no. 5, pp. 2658-2668, May
2020.

[122] Y. Yehezkeally and M. Schwartz, “Uncertainty and
reconstruction with list-decoding from uniform-tandem-
duplication noise,” IEEE Trans. Inf. Theory, vol. 67, no. 7,
pp. 4276-4287, Jul. 2021.

[123] S.S.Yim, R. M. McBee, A. M. Song, Y. Huang, R. U. Sheth, and
H. H. Wang, “Robust direct digital-to-biological data storage in
living cells,” Nature Chem. Biol,, vol. 17, no. 3, pp. 246-253,
2021.

[124] M. Zeraatpisheh, M. Esmaeili, and T. A. Gulliver, “Construction
of tandem duplication correcting codes,” IET Commun.,
vol. 13, no. 15, pp. 2217-2225, 2019.

[125] M. Zeraatpisheh, M. Esmaeili, and T. A. Gulliver, “Construction
of duplication correcting codes,” IEEE Access, vol. 8,
pp. 96150-96161, 2020.

1
0
IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023 93
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

https://en.wikipedia.org/wiki/Edit_distance
https://en.wikipedia.org/wiki/Edit_distance

Jin Sima received the B.Eng.
and M.Sc. degrees in elec-
tronic engineering from
Tsinghua University, Beijing,
China, in 2013 and 2016,
respectively, and the Ph.D.
degree in electrical engineer-
ing from California Institute
of Technology Pasadena, CA,
USA, in 2022.

He is a Postdoctoral
Researcher with the Depart-
ment of Electrical and Com-
puter Engineering, University of Illinois Urbana-Champaign.
His research interests include information and coding theory,
machine learning, and theory of computation.

Dr. Sima is a recipient of the 2019 IEEE Jack Keil Wolf
ISIT Student Paper Award, the 2020-2021 IEEE Communica-
tion Society Data Storage Best Paper Award, the 2022 Caltech
Charles Wilts Prize for best doctoral thesis, and the 2023
Thomas M. Cover Dissertation Award.

Netanel Raviv (Senior Mem-
ber, IEEE) received the B.Sc.
degree in mathematics and
computer science and the
M.Sc. and Ph.D. degrees in
computer science from the
Technion-Israel Institute of
Technology, Haifa, Israel,
in 2010, 2013, and 2017,
respectively.

He is an Assistant Profes-
sor with the Department of
Computer Science and Engi-
neering, Washington University in St. Louis, St. Louis, MO,
USA. His research interests include applications of coding
techniques to privacy, distributed computations, and
machine learning.

Dr. Raviv was an awardee of the IBM Ph.D. fellowship for
the academic year of 2015-2016, the first prize in the Feder
family competition for best student work in communication
technology in 2017, and the Lester-Deutsche Postdoctoral
Fellowship.

Moshe Schwartz (Senior
Member, IEEE) received the
B.A. (summa cum laude) and
M.Sc. and Ph.D. degrees in
computer science from the
Technion, Haifa, Israel, in
1997, 1998, and 2004 respec-
tively.

He is a Professor with
McMaster University. His
research interests include
algebraic coding, combinato-
rial structures, and digital
sequences. He was a Fulbright Postdoctoral Researcher with
UCSD and Caltech, and then a Professor at Ben-Gurion Uni-
versity of the Negev.

Dr. Schwartz received the 2009 IEEE Communications
Society Best Paper Award in Signal Processing and Coding
for Data Storage, and the 2020 NVMW Persistent Impact
Prize. He has been serving as an Associate Editor and Area
Editor for IEEE TRraNsAcTIONS ON INFORMATION THEORY since 2014,
and as an Editorial Board Member for the Journal of Combi-
natorial Theory Series A since 2021.

Jehoshua Bruck (Life Fellow,
IEEE) received the B.Sc. and
M.Sc. degrees in electrical
engineering from the Techn-
ion, Haifa, Israel, in 1982 and
1985, respectively, and the
Ph.D. degree in electrical engi-
neering from Stanford Univer-
sity, Stanford, CA, USA, in
1989.

He is the Gordon and
Betty Moore Professor of
computation and neural sys-
tems and electrical engineering with the California Institute
of Technology, Pasadena, CA, USA. His current research inter-
ests include information theory and systems and the theory
of computation in nature. His industrial experiences include
working for IBM Research, cofounding and serving as
the Chairman of: Rainfinity (acquired by EMC), XtremlO
(acquired by EMC), and of MemVerge.

Dr. Bruck is a recipient of the Feynman Prize for Excel-
lence in Teaching, the Sloan Research Fellowship, the
National Science Foundation Young Investigator Award, the
IBM Outstanding Innovation Award, and the IBM Outstand-
ing Technical Achievement Award.

T
o 01,
94 IEEE BITS THEINFORMATION THEORY MAGAZINE SEPTEMBER 2023
Authorized licensed use limited to: McMaster University. Downloaded on August 30,2024 at 00:50:22 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

