
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008 2179

Constrained Codes as Networks of Relations
Moshe Schwartz, Member, IEEE, and Jehoshua Bruck, Fellow, IEEE

Abstract—We address the well-known problem of determining
the capacity of constrained coding systems. While the one-dimen-
sional case is well understood to the extent that there are techniques
for rigorously deriving the exact capacity, in contrast, computing
the exact capacity of a two-dimensional constrained coding system
is still an elusive research challenge. The only known exception in
the two-dimensional case is an exact (however, not rigorous) solu-
tion to the �����-run-length limited (RLL) system on the hexag-
onal lattice. Furthermore, only exponential-time algorithms are
known for the related problem of counting the exact number of
constrained two-dimensional information arrays.

We present the first known rigorous technique that yields an
exact capacity of a two-dimensional constrained coding system.
In addition, we devise an efficient (polynomial time) algorithm for
counting the exact number of constrained arrays of any given size.
Our approach is a composition of a number of ideas and tech-
niques: describing the capacity problem as a solution to a counting
problem in networks of relations, graph-theoretic tools originally
developed in the field of statistical mechanics, techniques for ef-
ficiently simulating quantum circuits, as well as ideas from the
theory related to the spectral distribution of Toeplitz matrices.

Using our technique, we derive a closed-form solution to the
capacity related to the Path–Cover constraint in a two-dimen-
sional triangular array (the resulting calculated capacity is
����������). Path-Cover is a generalization of the well known
one-dimensional ��� ��-RLL constraint for which the capacity is
known to be ��
���� 	 	 	.

Index Terms—Capacity of constrained systems, capacity of two-
dimensional constrained systems, Fisher–Kasteleyn–Temperley
(FKT) method, holographic reductions, networks of relations,
spectral distribution of Toeplitz matrices.

I. INTRODUCTION

WHILE most storage devices record information on a two-
dimensional surface, they emulate a one-dimensional

environment by spacing tracks of recorded data. The distance
between adjacent tracks in common devices is an order of
magnitude larger than the distance between adjacent symbols
along the track. The next big leap in storage density may be
achieved by reducing the distance between tracks. This in turn,
requires a two-dimensional constrained-coding scheme to be
employed.

A two-dimensional constrained system is simply the union
where denotes the set of arrays that

satisfy some property. The common example of such a system

Manuscript received August 5, 2007; revised January 6, 2008. This work was
supported in part by the Caltech Lee Center for Advanced Networking.

M. Schwartz was with the Department of Electrical Engineering, California
Institute of Technology, Pasadena, CA, USA. He is now with the Department
of Electrical and Computer Engineering, Ben-Gurion University, Beer-Sheva
84105, Israel (e-mail: schwartz@ee.bgu.ac.il).

J. Bruck is with the Department of Electrical Engineering, California Institute
of Technology, Pasadena,CA 91125 USA (e-mail: bruck@paradise.caltech.edu).

Communicated by T. J. Richardson, Associate Editor for Coding Theory.
Digital Object Identifier 10.1109/TIT.2008.920245

is the -run-length limited (RLL) constraint in which each
row and each column of the array has runs of zeroes whose
length is at least and at most . Other two-dimensional con-
straints forbid certain patterns in the arrays, such as the no-
isolated-bit constraint in which every bit agrees with at least one
of its four neighbors in the two-dimensional array.

An important measure associated with a constrained system
is its capacity. Introduced by Shannon [30], the capacity of a
constrained system is defined as

While the capacity of one-dimensional constraints is well un-
derstood, amazingly, there is still very little known about the
capacity of two-dimensional systems.

In the case of two-dimensional -RLL systems, Ito et al.
[16] characterized the values of and for which the capacity
is zero. General bounds on the capacity of -RLL were
given by Kato and Zeger [19], constructive lower bounds for

-RLL by Halevy et al. [15], and nonconstructive asymp-
totically tight bounds for -RLL by Schwartz and Vardy
[29]. For the specific case of -RLL, Calkin and Wilf [6]
gave a numerical estimation method for the capacity using the
transfer matrix method. Only for the -RLL constraint on
the hexagonal lattice, Baxter [3] gave an exact but not rigorous1

analytical solution for the capacity using the corner transfer ma-
trix method.

Other two-dimensional constraints do not fare any better.
Several estimates for the capacity of the two-dimensional
no-isolated-bit constraint exist. Halevy et al. [15] considered
bit-stuffing encoders to constructively estimate this capacity.
Non-constructively, Forchhammer and Laursen [12] estimated
this capacity using random fields.

The method we present in this work is general enough to
encompass a wide variety of constraints (both local and global),
however, its expressive power is yet undetermined. We use
only mathematically rigorous tools to obtain exact capacity
solutions and polynomial-time algorithms, while pointing out
places where nonrigorous practices were common. The method
is based on a series of reductions:

1) A constrained system is first reduced to a network of re-
lations in a way which enables us to connect the number
of satisfying assignments to the network with the number
of constrained arrays. Though this is usually done in a
one-to-one manner, it is not mandated.

2) This network of relations is transformed to a weighted
graph using holographic reductions in such a way that the

1As Baxter notes in [4, p. 409]: “It is not mathematically rigorous, in that cer-
tain analyticity properties � � � are assumed, and the results � � � (which depend on
assuming that various large-lattice limits can be interchanged) are used. How-
ever, I believe that these assumptions � � � are in fact correct.”

0018-9448/$25.00 © 2008 IEEE

2180 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

Fig. 1. A simple network of relations.

number of satisfying assignments to the network equals the
weighted perfect matching of the graph. This is a many-to-
many reduction in which the individual perfect matchings
do not correspond in any one-to-one way to satisfying as-
signments, and the “interference” and cancellations be-
tween different matchings is the reason for the name holo-
graphic reductions.

3) Finally, the weighted perfect matching of the graph is ex-
pressed as a Pfaffian (or a linear combination of Pfaffians)
of a certain skew-symmetric matrix, completing the se-
ries of reductions. Using the theory of spectral distribution
of Toeplitz matrices, a limit involving the Pfaffian gives
a closed-form solution for the capacity. The Pfaffian itself
also provides a polynomial-time algorithm for counting the
exact number of constrained arrays of any given size.

The paper is written with the goal of explaining our new
method in a self-contained manner. We start by providing
the background needed for the three key steps in Section II,
starting with networks of relations, going through holographic
reductions, and ending with the Fisher–Kasteleyn–Temperley
(FKT) method which computes the weighted perfect matching
of a graph. In Section III, we apply this background to an
example constrained coding system and demonstrate how to
derive its exact capacity using the theory of spectral distribution
of Toeplitz matrices. We continue in Section IV by presenting
a polynomial-time algorithm for counting the number of con-
strained arrays while taking the opportunity to introduce two
generalizations to the method involving constraints on a torus
and generalized relations. We conclude in Section V with a
summary of the results and a list of open questions.

II. BACKGROUND AND DESCRIPTION OF THE NEW TECHNIQUE

The background we are about to provide is described in a
relatively self-contained manner, and is therefore quite lengthy.
It is divided into three subsections, for which the following tiny
example is an appetizer and also serves as a table of contents.

Suppose we are given a graph whose edges may be assigned
either a or a . Only not any assignment is possible: every
vertex implements a local constraint on the values assigned to
edges incident to it. Such graphs are called networks of relations
and are described in Section II-A. In Fig. 1, we see a simple
network whose three outer vertices are satisfied with any as-
signment to their single incident edge, while the middle vertex
forbids all three incident edges to be assigned the same value.

Fig. 2. The weighted graph corresponding to the network of relations from
Fig. 1.

Obviously, the number of satisfying assignments in this example
is 6.

Counting the number of satisfying assignments seems to be
difficult when stated this way. But we can reduce this problem
to a problem of finding the weighted perfect matching of some
other graph. This is done using holographic reductions which
are described in Section II-B. For this tiny example, the re-
sulting weighted graph is shown in Fig. 2. The weighted per-
fect matching of the graph, which is the sum over all perfect
matchings of the product of the weights of edges in the perfect
matching, is indeed 6, as is the number of satisfying assignments
to the original network of relations.

Finally, the weighted perfect matching of the graph is calcu-
lated using the FKT method, which is described in Section II-C.
Loosely speaking, the adjacency matrix of the graph is modified
by changing the signs of the entries to make it skew-symmetric

The weighted perfect matching is then the Pfaffian of the mod-
ified matrix, which is (up to a sign) the square root of the deter-
minant of the matrix. As if by magic, we again get

A. Networks of Relations

We start our journey by introducing networks of relations.
These networks were used in the context of relational databases
and constraint-satisfaction problems, see, for example, [14], [8],

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2181

[9]. For more on the subject, the reader is referred to [7] and
references therein.

Given some ground set , a relation on variables is a subset
. Throughout the paper, we assume . As will

be apparent later on, by abuse of notation we will also consider
a relation to be a function which is simply the
characteristic function associated with the subset . We also
define the signature of the relation to be the column vector

...

A network of relations is a graph where we asso-
ciate with each vertex a relation on variables
being the ordered set of incident edges on . We can now as-
sign every edge a value from and check whether all
the relations are satisfied. For every such assignment of values
to edges , every vertex , and edges incident
on denoted , we define to be

We say that assignment is a satisfying assignment if for every
, the relation is satisfied, i.e., . If we denote

, we will usually specify by the vector of
assignments to through . Throughout the paper, we will
be interested in counting the number of satisfying assignments
to networks of relations.

Example 1: Let us take as a running example the network
of relations shown in Fig. 3. We use the ground set ,
define to be the not-all-equal relation on three variables, and

to be the accept-all relation on one variable

We can easily see that there are exactly 18 distinct satisfying
assignments to this network which we list as follows:

Fig. 3. The network of relations of Example 1.

If we wanted to be completely accurate, we should have in-
cluded a numbering of the incident edges to each vertex of
Fig. 3. However, since all the relations in this example are sym-
metric,2 this is unnecessary.

B. Holographic Reductions

Holographic reductions were introduced by Valiant in [36]
and [37] to show certain counting problems may be solved
in polynomial time. In a slightly different version they were
introduced also by Valiant [35] to simulate quantum circuits
efficiently in polynomial time. Though the notion of networks
of relations does not appear as such in his work, Valiant shows
a many-to-many reduction from such networks to weighted
graphs. This reduction preserves the total number of solutions,
i.e., the number of satisfying assignments to the original net-
work of relations equals the weighted perfect matching of the
resulting graph. The reduction itself is realized by replacing
each of the vertices of the original network with a small gadget.
In what follows, we will describe this reduction in practical
terms. For a rigorous treatment of the method the reader is
encouraged to read [36].

Let be a graph. A perfect matching is a subset of
edges such that every vertex is incident to ex-
actly one of the edges in . The set of all perfect matchings will
be denoted . We can now assign complex weights3 to the
edges , and define the weighted perfect matching of

to be

Our aim is to replace the vertices in the network of relations
graph with gadgets (small subgraphs) which somehow capture
the original relations. The gadgets are called matchgates and
the resulting graph (the network of relations graph with vertices

2A symmetric relation is one that is closed under all permutations, i.e., if
�� � � � � � � � � � then so is �� � � � � � � � � � where � is any per-
mutation on ��� � � � � ��.

3Throughout the paper, we use complex weights, though the method applies
equally well to other fields.

2182 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

replaced by matchgates) is called a matchgrid. At this point,
just like in [36], we require the network of relations graph to
be planar as well as all the matchgates we use, resulting in a
planar matchgrid graph. This is perhaps the most restrictive re-
quirement we face during the process. We are, however, able
to use nonplanar graphs (either for the network of relations or
for the matchgates), though at a cost of increased computational
complexity. Such a nonplanar matchgrid will be introduced in
Section IV. For now, however, we assume all graphs are planar.

A matchgate is defined as a graph with
vertex set , edge set , a set of input nodes , and
a set of output nodes , where and are disjoint and

equals the number of variables in the original relation.
For convenience, we can think of and as drawn on the outer
face4 of the graph. The edges in the network of relations are
copied to the matchgrid with weight , and are placed so as to
connect input vertices of gadgets with output vertices of gadgets
such that every input/output vertex is incident to exactly one of
those edges.

The interaction of the matchgate with the outside world, i.e.,
the matchgrid, which should encapsulate the original relation, is
given by a matrix, called the signature of the match-
gate, in the following manner: for each possible
there is an entry containing , where by
we denote the graph with the vertices of removed as well
as their incident edges. This is meant to simulate all possible
ways of a global perfect matching (on the entire matchgrid) in-
teracting with the matchgate, where the subset depends on
whether edges between matchgates are chosen to be part of the
global perfect matching. Such chosen edges already cover some
of the interfacing input/output vertices of the matchgate, and
so these are removed from and a perfect matching of the re-
maining uncovered vertices in is calculated. For convenience,
we index the rows and columns of the signature of the match-
gate by binary vectors in the obvious way, where for example,
for the rows, means no input vertex was removed
(i.e., no input vertex is in), means the last input
vertex was removed, up to which means all input
vertices were removed.

Matchgates with only input vertices are called recognizers,
those with only output vertices are called generators, and those
with both are called transducers. The examples we show in this
paper will only use recognizers and generators. This obviously
restricts our networks of relations to be bipartite since we may
only connect inputs with outputs. This, however, is not a severe
restriction since most useful networks are bipartite by their na-
ture, and when they are not, we could add auxiliary vertices on
the edges (equality on two variables) to make them bipartite.
By definition, the signature of a recognizer is a column vector,
while the signature of a generator is a row vector.

Example 2: The recognizer matchgate seen in Fig. 4 contains
four vertices and six edges. Three of the vertices (depicted as
white circles) are input vertices and lie on the outer face of the

4Loosely speaking, a planar graph may be drawn on the two-dimensional Eu-
clidean plane by mapping vertices to distinct points, and edges to curves con-
necting them such that the curves do not intersect. Regions of the plane com-
pletely bounded by edges and vertices are called inner faces. The single un-
bounded face is called the outer face and is the region “outside” the graph.

Fig. 4. The matchgate of example 2.

graph. The shaded area is just used to highlight the perimeter
of the matchgate and has no mathematical meaning to it. The
signature of the matchgate is the following column vector:

index signature

At this point, we note that had we said the matchgate was
a generator instead of a recognizer, we would have gotten the
exact same signature only as a row vector.

Let us examine a few of the entries in the signature. For the
entry indexed by we have which simu-
lates a global perfect matching which already covers and ,
so contains only two surviving vertices which are and
the inner vertex. Thus, because there
is exactly one perfect matching covering and the inner vertex,
and it contains just the edge with weight .

For the entry indexed by we have and it fol-
lows that there are three different perfect matchings covering
the four vertices of . For each perfect matching we take
the product of the weights of its edges, and sum over all perfect
matchings to get .

Finally, for the entry indexed by we have
and so contains three surviving vertices. Obviously,
there is no perfect matching in a graph with an odd number of
vertices and thus this entry is , as are the entries indexed by

and .

Now, it would be extremely useful if we could get matchgates
with signatures which equal the signatures of the relations we
aim to replace. However, by Example 2, it is clearly seen that
entries with an index of odd (even) weight are forced to be
if the matchgate has an even (odd) number of vertices. Unfortu-
nately for us, a quick glance at the signature of a relation such as
the not-all-equal relation on three variables seen in Example 1

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2183

reveals that it contains nonzero entries in both odd-weight and
even-weight indices. To extend the expressive power of match-
gates we now introduce a change of basis.

Without knowing it, all our examples thus far used the stan-
dard basis. A basis is an ordered set of vectors. In what fol-
lows, we will restrict ourselves to bases made up of two vectors
of length which are also linearly independent. It should be
noted though, that in the general case those restrictions are un-
necessary, and a basis should not be confused with the linear-
algebra notion of a basis. The standard basis is defined as

. We will always denote the first vector in the basis
as which will play the role of a “logical” , and the second
vector as which will be a “logical” .

Let be some basis. We define
the basis translation matrix as

Let be some matchgate with input/output vertices. Using
this matrix, we can define the signature of under the basis ,
which we denote as , using two different equations de-
pending on whether the matchgate is a generator or a recognizer

for a generator (1)

for a recognizer (2)

where is times the Kronecker product.
We can also query the value of individual entries in

using the and operators for generators and recog-
nizers, respectively. Given some , we associate
with it an index vector by substituting for and for . For
example, with we associate the index vector .
We now define to be the entry in with the
index associated with . By (1), this is simply the coefficient
of in the linear combination making up . Similarly,

is defined as the entry in with the index as-
sociated with . By (2), this is simply the dot product .

Example 3: Returning to our running example, we shall build
a generator matchgate for and also a recognizer matchgate
for . We have already noted that using the standard basis
will not work in this case since the signature of has nonzero
entries in both odd-weight and even-weight indices.

We will choose a basis and set to be equal to the
signature of the relation we want to replace. We will then calcu-
late using (1) or (2) (depending on whether we want a
generator or a recognizer) and hope that all the nonzero entries
fall in either the even-weight indices, or the odd-weight indices.

We choose a basis which works well for self-dual relations
(as is) which is

(3)

We notice that is a Hadamard matrix. We start by building
a generator for . Substituting the values in (1) we get

Fig. 5. Using the basis ��� � ���� ��� ������� we get weighted graphs for (a) a
generator for � , and (b) a recognizer for � .

Indeed, as seen on the right, all the nonzero entries are in even-
weight indices. We choose the matchgate used in Example 2
and so we need to equate the matchgate’s signature with the
signature of the relation under the basis

Choosing values for that solve this equation is easy

and

There is more than one solution to this underconstrained set of
equations, but any solution will do.

We also want a recognizer for and using (2)

we again see all the nonzero values move to even-weight in-
dices. Like before, we choose the matchgate used in Example 2
and therefore, we need to solve

We can now choose weights for the recognizer matchgate

and

It is interesting to note that using this Hadamard basis we get
signatures that contain the Walsh transform of the signatures of
the original relations (up to a missing normalizing factor).

The weighted graphs for the generator matchgate for and
the recognizer matchgate for are shown in Fig. 5.

2184 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

Finally, we zoom out to examine the entire matchgrid. Let
be some matchgrid made up of recognizers , and
generators , and let it contain a total of connecting
edges between the matchgates. We can think of each edge as
carrying a value from , and so each possible assign-
ment to edges is of the form . By abuse of notation, let

and stand for the normal and
operators when we restrict to the edges incident to or

appropriately. We define a global property of the matchgrid
called the Holant, as

We now have all the necessary definitions in place to state the
main result of Valiant [36].

Theorem 4: For any matchgrid over any basis , if has
weighted graph then

While the connections between matchgrids and perfect
matchings have been evident throughout this section, the con-
nection to satisfying assignments for networks of relations is a
little more subtle. Given a matchgrid built using this method,
we can view edges between matchgates as carrying values
from the basis , which we can think of as “logical”

and “logical” . The operators and in this basis
query the signatures of the matchgates over , which are
simply the signatures of the original relations. Thus, the Holant
goes over all possible assignments of “logical” ’s and ’s
to the edges between matchgates (which are the edges of the
original network of relations), and queries the signatures of the
relations for that assignment getting a value of either or for
being unsatisfied or satisfied, respectively. Since we take the
product of and , only if all relations are satisfied we
get a contribution of to the sum, thus counting exactly the
satisfying assignments.

On the other hand, Theorem 4 is invariant under a change of
bases, and it is the different handling of generators and recog-
nizers which makes this possible. Thus, if we choose to view
the same matchgrid using the standard basis, then by definition,

and depend on the perfect matchings of the graph.
This establishes a connection between and the
number of satisfying assignments to the original network of re-
lations. For the rigorous proof of Theorem 4 the reader is re-
ferred to [36].

Example 5: We complete the matchgrid for the network of
relations of Example 1. From Example 3, under the basis

we already have a generator matchgate for
and a recognizer matchgate for . The remaining relation is

, but we note that we need both a generator and a recognizer
for it. The resulting matchgrid is shown in Fig. 6. The skep-
tical reader is encouraged to verify that the weighted perfect
matching of this graph is indeed 18, as is the total number of
satisfying assignments to the original network of relations.

C. The FKT Method

Unless weighted perfect matchings are easier to handle, the
reduction described in the previous section is useless. Fortu-
nately for us, the FKT method gives a simple expression for the
weighted perfect matching of certain graphs which is also com-
putable efficiently. The method was developed independently
and concurrently by Fisher and Temperley [31], [10], and by
Kasteleyn [17]. The motivation for their work was to find an al-
ternative solution to the Ising problem, simpler than the original
solution given by Onsager [26]. The solution more commonly
used today, and the one we describe in this work, is due to the
general method developed by Kasteleyn in [17] and in more de-
tail in [18]. It is also interesting to note that very simple gadgets
were employed in some occasions [11], [2] without reaching
the general treatment given by Valiant which we described in
the previous section.

Let be a graph with weights on the edges, and let
be its adjacency matrix where is the weight of

the edge between vertices and . Since we are interested in
graphs with perfect matchings we assume is even. A perfect
matching can obviously be described by the unordered partition

of the numbers into pairs, which we denote by
. Using this notation it follows

that

where goes over all such unordered partitions. Since we only
consider unordered partitions, we select for each partition a
canonical representation in which , , up until

(i.e., each pair is in ascending order), as well as
(i.e., the first elements of the pairs are in

ascending order). Using this convention, we note that we only
use the entries strictly above the main diagonal of the matrix .

This expression seems very similar to another expression
known as the Pfaffian which is defined as

where again goes over all the canonical partitions and
is the sign of when considered as the permutation sending

. This in itself is again reminiscent of the more widely
used determinant. Indeed, since we only use the entries above
the main diagonal, if we complete so as to make it skew-
symmetric, that is , then we get the well-known
identity

Thus, the Pfaffian of a skew-symmetric matrix is easily com-
puted up to its sign by taking the square root of the determinant.

Returning to our problem of calculating the weighted perfect
matching, we are faced with the problem caused by the added

in the expression for the Pfaffian. This causes some of
the perfect matchings to be counted with the wrong sign. It was

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2185

Fig. 6. The matchgrid for the network of relations from example 1.

the ingenious solution of Kasteleyn [17] to flip the signs of some
of the entries of the original matrix to compensate for
and make the Pfaffian count all the original perfect matchings
with the same sign.5

An orientation of an undirected graph is simply an assign-
ment of a direction to each of the edges of the graph. The solu-
tion given by Kasteleyn [17] requires a special orientation which
we will now describe. Let and be two perfect matchings
in the graph , and let denote the symmetric difference op-
eration between sets. Then is a set of cycles of even
length in . If we traverse any of those cycles in some direction,
then some of the edges will be oriented in agreement with our
traversal direction, and some will not. A Pfaffian orientation of
a graph is an orientation such that for each and , any
cycle in has an odd number of edges oriented in agree-
ment with the traversal direction. Note that since the cycles are
always of even length, the traversal direction does not change
the parity of the number of edges agreeing with it.

5The reader may notice at this point that ��������	
�� is simply the Haf-
nian of the matrix�, i.e., the Pfaffian without �
�
��. In fact, the Hafnian is to
the Pfaffian as the permanent is to the determinant. However, both the Hafnian
and the permanent are notoriously hard to handle and so it is worth the trouble
to work with the Pfaffian and correct the sign problems.

Given a weighted graph , and a Pfaffian orientation of its
edges, we build a modified skew-symmetric adjacency matrix

as follows:
no edge between and
if
if

where denotes the edge between vertices and is ori-
ented from to . Note that is not the adjacency matrix of the
graph in the usual sense. Using this construction, Kasteleyn
[17] showed that

where, using the Pfaffian orientation, either all perfect match-
ings are counted with a positive sign or all with a negative sign,
depending on the chosen Pfaffian orientation only. Since in most
cases we know the sign of the outcome, this unknown degree of
freedom may be easily fixed.

It now remains a matter of finding out which graphs allow a
Pfaffian orientation. Such graphs are called Pfaffian orientable.
In his later work, Kasteleyn [18] showed that all planar graphs
are Pfaffian orientable, which is the reason we required match-
grids to be planar in the previous section. For planar graphs, it
was shown in [18] that if we orient the edges such that every

2186 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

clockwise walk on a face of the graph has an odd number of
edges agreeing, then that orientation is a Pfaffian orientation. As
a result, a simple polynomial-time algorithm which finds such
an orientation was also shown by Kasteleyn.

For further reading on generalized dimer problems with
boundary conditions, the reader is referred to the excellent
survey in [20] (and references therein). Planar graphs are not
the only Pfaffian-orientable graphs. More results on Pfaf-
fian-orientable graphs are given by the survey in [33], and the
work in [25]. Advances in Pfaffians and perfect matchings
may be found in [21]. Pfaffian orientations are also used to
efficiently calculate some permanents, see [38], [27].

Example 6: For the last part of our running example we orient
the edges of the graph to create a Pfaffian orientation. The re-
sulting oriented graph is shown in Fig. 7. If we write down the
modified adjacency matrix for the graph (after fixing some ar-
bitrary ordering of the vertices) we get the matrix shown at the
bottom of the page. Again, the skeptical reader will find out that

which is both the weighted perfect matching of the graph and
the total number of satisfying assignments to the network of
relations.

III. EXACT CALCULATION OF THE CAPACITY OF THE

PATH-COVER CONSTRAINED SYSTEM

In this section, we address a specific two-dimensional con-
strained coding system and demonstrate how to apply our new
technique (described in Section II) to derive an expression for
its exact capacity. The derivation consists of the following steps.

A. Definition of the constrained system.
B. Reduction to a network of relations.
C. Holographic reduction to a matchgrid.
D. Pfaffian orientation of the graph.
E. Derivation of a closed-form expression for the exact

capacity.

A. The Path-Cover Constrained System

Most constrained systems are easily defined by a finite set of
forbidden patterns. For example, the no-isolated-bit constraint
forbids a bit to be surrounded on all four sides by its comple-
ment. The famous -RLL constraint, a variant of which
will be discussed in the next section, forbids two adjacent ’s.
For our example, we choose a constraint we call the Path-Cover
constraint (PC constraint), and which we motivate by first ex-
amining its one-dimensional version. If we are given a graph

, a path-cover for the graph is a set of simple paths
(open or closed) of positive length, which are vertex disjoint,
and which cover all the vertices. An alternative way of stating
this constraint is that given a graph, we assign either a or a
to each of the edges, such that when removing the edges with a

, all the vertices remain with degree of either one or two.
In the one-dimensional case the graph is simply the

one-dimensional lattice with vertices
and edges . It is easily
seen that a valid PC assignment of values to edges is any
assignment which does not contain two adjacent ’s. Thus,
the one-dimensional PC constraint is the famous one-di-
mensional -RLL constraint (and with bit-flipping, the

-RLL constraint). The capacity in this case is known to
be .

Turning to two dimensions, we choose the two-dimensional
triangular grid as the graph : we tile the plane with regular tri-
angles, place a vertex at the center of each triangle, and draw
an edge between vertices whose triangles share a face. Again,
we assign either a or a to the edges of the graph such
that after removing the edges assigned a , all the remaining
vertices are of degree either or . We note that this time,
the PC constraint is different from the usual two-dimensional
RLL constraint. Also, unlike the two-dimensional RLL and the
no-isolated-bit constraints, where values are assigned to ver-
tices, in the PC constraints values are assigned to edges. See
Fig. 8 for an illustration of the forbidden patterns in these three
constraints.

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2187

Fig. 7. The matchgrid for the network of relations from Example 1 with a Pfaffian orientation of the edges.

Fig. 8. The forbidden patterns of (a) the no-isolated-bit constraint, (b) the
�����-RLL constraint on the square lattice, and (c) the PC constraint on the
triangular lattice.

B. The Network of Relations

There is a multitude of possible reductions of a constrained
two-dimensional array on the plane to a network of relations. We
show a simple reduction for which the constrained arrays are
in an “almost” one-to-one correspondence with the satisfying
assignments to the network.

We think of the triangular grid as drawn on a plane. We re-
place each vertex of the grid with the relation on three vari-
ables. This relation makes sure that the three adjacent cells do
not contain the same bit, i.e., it eliminates the forbidden patterns
of PC. It is easy to be convinced that, if we ignore the perimeter
of the array, every constrained array induces exactly one satis-

fying assignment and vice versa. The resulting network of rela-
tions is shown in Fig. 9.

We do however have to take care of the perimeter of the array
as well. To do so, we connect dangling edges to extra vertices
of the accept-all relation . Each such vertex has the potential
of multiplying the number of satisfying assignments by a factor
of . But since we have only such vertices, this does not
change the capacity as calculated by counting the total number
of satisfying assignments. The extra accept-all vertices are also
shown in Fig. 9.

C. The Matchgrid

It is easily seen that the network of relations we built in the
previous section is a bipartite graph by noting that the upright
triangles share faces only with the inverted triangles, and vice
versa. Conveniently for us, for the bulk of the network, we have
just one type of relation, but we do have to specify some as
recognizers and some as generators. We arbitrarily choose to
build a generator in inverted triangles, and a recognizer
in upright triangles. Those were already realized in Example 3
using the basis given in (3).

For the perimeter of the network, we need to implement
both as a generator and as a recognizer. Again, this was already
realized in Example 3.

2188 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

Fig. 9. The top image shows part of a network of relations for the PC constraint.
Each filled circle represents the � relation. The gray triangles show the orig-
inal cells of the triangular grid. The bottom image shows the top left corner of
the array with the filled squares representing the � relation.

D. The Pfaffian Orientation

Finding a Pfaffian orientation for the graph is an easy task.
The orientation is not necessarily unique and some may in fact
be quite complex to describe. However, the extremely regular
nature of the graph suggests the existence of a simple orientation.

If we closely examine the network of relations in Fig. 9, we
see that, apart from the perimeter of the array, it is made up of a
single basic block and its translations. The simplest basic block
is just a recognizer vertex and a generator vertex. This
basic block may be oriented as shown in Fig. 10. It is also easy
to verify Kasteleyn’s orientation rule for planar graphs: every
clockwise walk on an inner face has an odd number of edges
agreeing. This may be verified both for the inner faces of the
block, and the inner faces created by the joining of a few blocks.

Finally, we also have to orient the edges which correspond to
the matchgates which lie on the perimeter of the array. Those
matchgates do not contain any inner face themselves, and do not
form an inner face with the rest of the graph. Thus, they may be
oriented arbitrarily.

E. The Exact Capacity

For mathematical convenience, from now on when we say “an
array” we mean an set of basic blocks. In our case,

the basic block depicted in Fig. 10 contains two vertices
and (when viewed periodically) three edges from the original
network which are to be assigned either a or a . In light of
the previous sections, the capacity of the constrained system
we are now examining is given by

where is the skew-symmetric adjacency matrix of the match-
grid corresponding to the constrained array. The in the
denominator comes from the fact that a basic block contains

three bit storage positions (three edges from the original net-
work to be assigned a value).

A derivation of an expression for the exact capacity largely de-
pends on the ease of manipulating the matrix . The first simplifi-
cation is based on the observation that the matchgates for con-
tain just one edge which must be taken in any perfect matching,
which also forces the edge connecting the matchgate to its single
neighboring matchgate to be dropped. Since the weight of the
edge is a constant (depending on whether it is a generator or a rec-
ognizer), and since we have only such matchgates along the
perimeter, we may ignore them altogether without changing the
resulting capacity calculation. So from now on, by abuse of no-
tation, let denote the skew-symmetric adjacency matrix with
the matchgates and their connecting edges removed.

The components for a compact representation of are the
skew-symmetric matrix for the basic block (where the vertices
are indexed as in Fig. 10)

and the matrix (of the same dimensions as) which is
all zeroes except for position which is . Furthermore, we
need , the identity matrix, and the matrix

. . .
. . .

with the unspecified positions being zero as well.
We have an array of basic blocks which we order in

the natural way (i.e., from left to right, and from the bottom
up). This part of the graph is represented by the skew-symmetric
adjacency matrix

We still have to represent the edges between basic blocks in the
same row

and the edges between basic blocks in different rows

Thus, we get an expression for the skew-symmetric adjacency
matrix

(4)

For the last step, we rely on the theory of spectral dis-
tribution of Toeplitz matrices (see Tilli [34]). Let us denote

. For natural numbers , let an integrable
-variate function and a multi-index

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2189

Fig. 10. A Pfaffian orientation of the basic block. The dotted edges denote the edges between translations of the basic block. The numbers in squares index the
vertices.

, be given. The -level Toeplitz matrix
is defined as

where denotes the matrix of order whose , entry equals
1 if and equals zero otherwise, and where

is a matrix in and . The following theorem is
due to Tilli [34].

Theorem 7: If is an integrable Hermitian
matrix-valued function, then for any function , uniformly con-
tinuous and bounded over it holds that

where denotes the th eigenvalue of .

To apply this theorem to our needs we notice the following:
First, for an matrix we have

. Second, we notice that from (4) is a
two-level Toeplitz matrix, but it is skew-symmetric and not
Hermitian as required. This is easily fixed by noting that
is Hermitian, and since the order of is a multiple of , then

. Thus, where we define

Before we continue, we need a lemma to connect the eigen-
values of with those of .

Lemma 8: If is an integrable Hermitian
matrix-valued function, and are constants such that

for all , then

for all .
Proof: First, it is an easy exercise to show that when

is Hermitian then is Hermitian as well. Since the eigen-
values of a Hermitian matrix are all real, let and denote

2190 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

the minimal and maximal eigenvalues, respectively. It is well
known that for a Hermitian matrix

and (5)

where denotes the conjugate transpose of .
Let be a lower bound on the eigenvalues of . By

(5), for every vector (including the vector), .
From now on it is a matter of keeping track of the indices prop-
erly. Let and be multi-indices.
By the definition of we have . Let

be a vector of length which we divide into con-
tiguous blocks of length that we index by the same multi-in-
dices. Thus

(6)

We also have

(7)

Combining (6) and (7) it now follows that

as we wanted to prove. The proof for the upper bound is
symmetric.

Getting back to our problem, since we are interested in
, we want to bound the

magnitude of the eigenvalues of . We do
this by bounding the magnitude of the eigenvalues of
and using Lemma 8. We do not really need to find the exact
values of such that , but
show that and .

Our first observation is that there exists such that
, since is a matrix of con-

stant size and bounded magnitude entries. Thus, using standard
bounding techniques (for example, Gershgorin circle theorem),
the maximal magnitude of an eigenvalue is bounded by a con-
stant. To continue, a simple calculation shows that

Thus, we have . Since we also know that
and

and we have a constant number of elements in the product, it
follows that there is a constant , , such that

.
Now that we have bounded the magnitude of the eigenvalues

of , and by Lemma 8, those of , we are
ready to use Theorem 7. Let us define the function
as

.

The function is uniformly continuous and bounded over .
Furthermore

and also

By Theorem 7, it now follows that

As far as we know, the number that we just calculated,
namely, , is the first known nontrivial exact
capacity of a two-dimensional constrained system.

A couple of remarks regarding the calculation: If the eigen-
values of were not bounded away from , then we could
not set from Theorem 7 to behave like on the in-
terval containing the eigenvalues and still be bounded and uni-
formly continuous. This creates a problem6 in using Theorem 7.
It might be possible to get an equivalent result to Theorem 7
for which are trigonometric polynomials of degree (see
[5]). If all else fails and the eigenvalues are not bounded away
from , we can convert the equality of Theorem 7 to an in-
equality, stating that the limit is less than or equal to the integral.
This is done by choosing the sequence of functions

(where obviously), using
Theorem 7, and finally using monotone convergence as .

6It should be noted that physicists have been using this claim without rigorous
proof for over 40 years. The earliest examples to our knowledge are [24], and
also [23] in which an early incorrect form of asymptotic matrix equivalence is
used as proof.

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2191

IV. A POLYNOMIAL-TIME ALGORITHM FOR COUNTING

CONSTRAINED ARRAYS

In this section, we describe an algorithm for counting the
exact number of constrained arrays of size that runs in
time polynomial in . Though this algorithm applies to the ex-
ample from the last section, we use the opportunity to switch
examples and show two generalizations which extend the reach
of our method. The first one we call generalized relations, and
the second is the use of nonplanar graphs.

The constraint we use throughout this section may seem con-
trived, but it is instrumental in showing the added degrees of
freedom provided by being able to count constrained arrays on
other surfaces, such as a torus in this case, and the benefit of
generalized relations. It is also interesting in the sense that local
constraints enforced by the relations result in a global constraint.
The constraint we examine is similar to the -RLL con-
straint defined by the forbidden patterns shown in Fig. 8. A vi-
olation of the -RLL constraint is a pair of adjacent ’s
where we have two kinds of violations: horizontal and vertical.
We define the balanced-violation -RLL constraint as the
set of all binary arrays such that the number of horizontal
violations equals the number of vertical violations.

We will consider arrays which are placed on a torus. To be
mathematically exact, we index the array by ,
and since we are now working on the square grid, the positions
adjacent to are (working modulo of course)

Thus, an array is balanced-violation -RLL con-
strained, if

where all indices are taken modulo . We note that the famous
-RLL constraint is a subset of this constraint in which the

number of violations is further constrained to be zero.

A. Generalized Relations

Given a network of relations on a graph , with
every vertex representing a relation , we
have considered assignments of values to the edges .
We called assignment a satisfying assignment if every relation
was satisfied, i.e., for every , .

Fig. 11. Part of a network of relations for the balanced-violation �����-RLL
constraint. Circles represent the � relation and squares represent the �

relations. Filled vertices are of the � variant while empty ones are of the �
variant. The gray squares show the original cells of the rectangular grid.

If we remember that we can think of a relation on variables
as a function , then the number of satisfying
assignments is also represented by

(8)

where the sum is over all assignments. Obviously, only if
all vertices are satisfied then the product is . Thus, the sum is
counting only satisfying assignments.

The generalization is now immediately clear. A generalized
relation on variables is a function . The “number
of satisfying assignments” is still defined by (8) but is not neces-
sarily a nonnegative integer anymore. Intuitively, every assign-
ment gets scored by the product of the “amount of satisfaction”
of individual generalized relations. We also note that, although
we only use , it may be replaced by other algebraic structures.

We now turn to designing the network of relations for our con-
strained system. We still use . Let be some
integer. We will construct a set of networks
where in , , we will use the following four re-
lations shown at the bottom of the page, where .
The network of relations is shown in Fig. 11.

2192 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

The first thing to note about this network of relations is that
the -cycles with two and two will zero out an assign-
ment unless the wires incident to it are all or all . Further-
more, in the case of an all- assignment, the score of the as-
signment is multiplied twice by and twice by and
so, in total, both the all- assignment and the all- assignment
contribute a multiplicative factor of to the score of the assign-
ment. Essentially, the -cycle is simply an equality relation on
four variables. If we look at the gray cells of Fig. 11, which rep-
resent the original cells of the square lattice, then the -cycle
inside each cell makes sure a single value, either a or a , is
assigned to edges exiting the cell in assignments with nonzero
contribution. This value reflects the value of the cell in the con-
strained array.

We also have to somehow check for violations, i.e., two hor-
izontally or vertically adjacent cells with value of in the con-
strained array. To this end, the relations and are
placed between the gray squares of Fig. 11. They check the value
of two adjacent cells as reflected by the assignment to the edges
exiting the two adjacent gray squares. Whenever two adjacent

’s are detected, the relations penalize the number of satisfying
assignments by a multiplicative factor of either for a vertical
violation, or for a horizontal one.

Now assume some assignment has vertical violations and
horizontal ones. The score of this assignment is obviously

. If we denote by the number of arrays with
vertical violations and horizontal violations, and by the
number of satisfying assignments to , then

It follows that

Since , if we choose any then

which is exactly what we wanted to count in the first place. Two
major issues remain to be dealt with: the fact that we have a
nonplanar graph because of the torus, and the fact that we can
calculate the above expression in polynomial time.

B. Counting Arrays on a Torus

We start in the usual manner: we arbitrarily choose to realize
and as generators, while and as recog-

nizers. For the network , , we choose the
basis and the resulting matchgate
realizations are shown in Fig. 12.

If we ignore the fact that we are working on a torus, then
finding a Pfaffian orientation for the graph is a task which may
be done in polynomial time (see [18]). We now turn to handle
the problem of working on a torus. If we can draw the graph
on a surface with genus without any edges crossing we call

Fig. 12. Using the basis ��� � ���� ��� �� ��� �� we get weighted graphs
for (a) a generator for � , (b) a recognizer for � , (c) a generator for � ,
and (d) a recognizer for � .

Fig. 13. A drawing of a graph � of genus � on the plane with only the hori-
zontal wraparound edges � crossing the vertical wraparound edges � .

it a graph of genus . Kasteleyn stated, without proof, that the
perfect matching of a graph of genus may be calculated using
a linear combination of Pfaffians. A proof of this statement
may be found in [13], and for more general surfaces, in [32].

In our case, a torus is a surface with genus , and the linear
combination takes on a very simple form. First, it is a well-
known fact that any graph of genus we can draw on the
plane with no edges crossing, except for a set of horizontal wrap-
around edges and vertical wraparound edges which do
cross.7 See Fig. 13 for a sketch.

It was shown in [32], that for any graph there exists what
is called a crossing orientation of the edges such that

(9)

where is the skew-symmetric adjacency matrix of and
is the number of crossings in the perfect matching

. If not for , this would be the expression for
. Since the only possible crossings occur in the

wraparound edges, for a perfect matching let denote
the number of horizontal wraparound edges in , and the
number of vertical wraparound edges in . Obviously, the

7In the general genus-� case this is called a plane model or a pasting map (see
[32] and references therein).

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2193

TABLE I
THE SIGNS GIVEN TO PERFECT MATCHINGS OF � BY ���� �� � � � ����� �

number of crossings in is . We partition all
the perfect matchings according to the parity of and
calling them , , , , where stands for even,
and stands for odd, while the first entry is the parity of .

The crossing orientation for a torus was shown in [32] to take
on a very simple form. We orient all the edges of except for
those in . This is always possible since no other edges are
crossing. Then we orient the edges of as if did not exist.
Again, this is possible since is planar. To complete the
orientation, we also orient the edges of as if did not exist.
We call the resulting skew-symmetric adjacency matrix . By
(9), counts all the perfect matchings with the correct sign
except for those of type , since that is the only case with
an odd number of crossings. We may now flip the signs of the
weights on while keeping the orientation (hence, keeping the
same as in (9)), and get a matrix . If we just flip the signs of
the weights on we get . And finally, if we flip the signs of
the weights on both and we get . In Table I, we see how
the different Pfaffians count the four types of perfect matchings
of the original graph . It is easily seen now that

It follows that each of the , , may be
calculated up to a sign by a linear combination of four Pfaffians.
Moreover, we note that the Pfaffian orientation of the graph is
the same for which correspond to the networks

. Thus, the is the same for all and the linear
combination of Pfaffians will give us up to a sign.

C. Algorithm Complexity

Our task is now to show that we can calculate the linear com-
bination of Pfaffians in time polynomial in . We choose
the smallest possible , i.e., , and then we have

Pfaffians of matrices of size where is the
number of vertices in the basic block, a constant. Thus, if we
can show that we can calculate a Pfaffian of an matrix in
time polynomial in , then we are done.

There is, however, another complication we have to take care
of. The entries of our matrices are complex numbers with in-
finite precision. We, on the other hand, may only work with
some fixed precision of binary digits before and after the bi-
nary point, i.e., represent numbers which are with absolute
error . Thus, to make sure our algorithm is indeed poly-
nomial in , we will have to show we can calculate the entries
with precision in polynomial time, run a polynomial-time al-
gorithm with fixed precision, and then recover the correct result
in spite of the initial error of approximation and the accumulated
error while running the algorithm.

We start by describing the algorithm for calculating the
Pfaffian. There are several known polynomial-time algorithms,

but in order to easily bound the error, we prefer to use a divi-
sion-free algorithm. Such algorithms are described in [28] and
[22]. We will use the algorithm by Rote [28] and describe it for
completeness.

Let be an skew-symmetric matrix, even,8 and of
the form

with being an skew-symmetric matrix.
Let us also define the skew-symmetric “identity” matrix

by

. . .

Finally, given , we define the formal power series as

Given these definitions, it was shown in [28] that is the
coefficient of in the formal power series , defined
recursively by

Several observations regarding this algorithm may be easily
made. We use very loose bounds which are good enough
to show that the algorithm is indeed polynomial with the
desired accuracy, while allowing a very simple analysis. We
have to find the coefficients of the terms in power series

, and in each of those it suffices to com-
pute the coefficients of the terms up to that of . Hence, we
need to compute coefficients of the form .
Each of these is made up of a product of up to
(for) matrices of size at most . We can use a simple
tree for finding the product: in the first round, we partition the
matrices into pairs and take their product. In the second round,
we take the resulting matrices and repeat the process, and
so on. In each round, we use the results from the previous
round, and in total we have at most rounds.

In the next stage, after computing all the coefficients we need
to convolve them to compute the coefficient of in . This,
again, may be implemented by taking the product of at most ma-
trices of size at most in rounds as we did in the
previous stage. The matrices simply hold the coefficients in stag-
gered rows padded with zeroes, to simulate the convolution. This
process is then repeated for each of the Pfaffians and the resulting
numbers summed, and since the number of Pfaffians required in
our case is also , we have a polynomial-time algorithm.

8We note that the restriction to even � does not hurt us since our graphs will
always have an even number of vertices or else no perfect matching exists.

2194 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 54, NO. 5, MAY 2008

In summary, we need to compute the linear combination of
Pfaffians, a constant, where for each Pfaffian we take the

product of matrices of size at most in at most
rounds. It remains for us to prove that we can do so with fixed
precision arithmetic using a polynomial number of digits. As
mentioned before, let us work with some fixed precision of
binary digits before and after the binary point, i.e., represent
numbers which are with absolute error . If we show
that for some which is polynomial in we can still recover the
wanted result despite the errors introduced along the way, then
we are done.

We now follow a similar line of reasoning used by Valiant in
[36], which we describe here for completeness, and adapt it to
our case. Let denote the set of all values appearing as en-
tries in the initial matrices whose Pfaffians we want to compute.
Define . We note that because of the
edges between matchgates with weight , we have . We
now run the above mentioned algorithm with a fixed precision
of binary digits before and after the binary point, resulting in
absolute error of at most in each roundoff operation.

We need to bound both the largest modulus of any entry in the
matrices used during the algorithm, as well as the resulting max-
imal absolute error. Before we do that, let denote an upper
bound on the largest modulus of any value computed in the th
round of the exact algorithm, i.e., with infinite precision. Ob-
viously and we can use since we are
taking the product of two matrices with entries with
maximal modulus . Certainly, taking gives
an upper bound which is strong enough for our needs. We note
that necessarily.

Now let denote an upper bound on the absolute error in
the modulus of any entry in the th round of the fixed precision
algorithm, which is caused by the roundoff operations. We can
take , and we will make sure that ,
where we recall that is the number of Pfaffians in the linear
combination. These bounds on will be kept throughout the
computation by noting that and by bounding the error
in the last round by choosing a suitable precision .

Let and denote the modulus of two entries after
rounds in the exact algorithm. Then in the fixed precision al-
gorithm, the maximal error in modulus when multiplying the
corresponding values is bounded by taking

Thus, after summations (which incur an added error) we
get the maximal absolute error in the modulus of an entry after
the th round to be at most , i.e.,

where we used the fact that and
.

Since we are interested in rounds, then for
binary places after the binary point, the

absolute error in modulus in any of the entries is small, .

Furthermore, since no entry is larger in magnitude than
, then binary places to the

left of the binary point will suffice as well. It now follows that the
sum of Pfaffians, each computed to within an absolute error
of , has an absolute error of magnitude at most . Since we
know the sum of the Pfaffians should be an integer, we can easily
round the result to the nearest one and get the correct value.

Finally, we have to consider whether we can compute the en-
tries of the initial matrices, whose Pfaffians we want to compute,
to digits of precision in polynomial time. The entries which
contain integer constants or even rational numbers, are obviously
easy to compute to within a polynomial number of binary digits
in polynomial time. The slightly more complicated case is that
of the entries which contain and . The
constant is easily computed to within a polynomial number
of digits using, for example, the Bailey, Borwein, and Plouffe
(BBP) algorithm [1]. Then may be computed using
a simple Maclaurin series, only we have to consider two sources
for error: the error in the approximation of , and the error
caused by computing only the first terms in the series.

Let , and let us examine
where is a function of the absolute error introduced by the
computation of :

where

We can assume . By the Stirling approximation we have
for . Now

since . Thus, the absolute error in computing is
at most

but since may be made exponentially small in polynomial
time, so is . A similar analysis applies to as well.

V. CONCLUSION AND OPEN PROBLEMS

We presented a general method that enables the calculation of
the exact capacityof some two-dimensional constrainedsystems,
as well as a polynomial-time algorithm for counting the exact
number of constrained arrays in the system. The method uses a
series of reductions, from a given constrained system to a net-
work of relations and then to a weighted graph. It is the theory of
spectral distribution of Toeplitz matrices that allows us to find the
limit of the determinant of the modified adjacency matrix of that
weighted graph and in turn yields the capacity of the system.

While we were able to rigorously compute the exact capacity
of the PC constraint in a two-dimensional system, sadly, we
have not been able thus far to come up with an exact and rig-
orous closed-form solution to the hard-square entropy constant,
i.e., the capacity of the two-dimensional -RLL constraint.

SCHWARTZ AND BRUCK: CONSTRAINED CODES AS NETWORKS OF RELATIONS 2195

This raises the key open question: What is the expressive power
of our proposed method?

While performing the reductions associated with the pro-
posed method, one may “get stuck” at two different stages: i)
not being able to find a basis for the holographic reduction,
or ii) getting a modified adjacency matrix with eigenvalues
not bounded away from . Without knowing the expressive
power of this method we do not know whether we reached a
dead end, or simply took the wrong path in fixing some of the
many degrees of freedom the method offers. Those degrees of
freedom generate some more open problems.

• Is there a systematic or best way of reducing a constrained
system to a network of relations (perhaps generalized rela-
tions)? The wrong reduction may lead to a dead end in any
of the next stages of the reduction.

• Given a certain basis, what are the sets of matchgates that
are realizable together?

• Can we generalize holographic reductions to nonbinary al-
phabets? This would perhaps enable us to create planar
networks of relations for “wider” constraints such as the
currently binary nonplanar no-isolated-bit and the general

-RLL constraints.
• How do we choose generators, recognizers, or transducers?

Can we break down relations on a large number of vari-
ables, to smaller relations (perhaps creating generator/rec-
ognizer conflicts)? For example, the -cycles in Fig. 11 are
essentially emulating a transducer matchgate with two in-
puts and two outputs. Replacing it with a single equality
matchgate which is either a generator or a recognizer elim-
inates all possible bases for a holographic reduction.

We trust and hope that these interesting open problems will
be the subject of future research.

ACKNOWLEDGMENT

The first author would like to thank Matthew Cook for intro-
ducing him to networks of relations. Both authors would like
to thank Albrecht Böttcher, Paolo Tilli, and Harold Widom, for
providing help with the theory of Toeplitz determinants. The au-
thors also wish to thank Peter Keevash and Eyal Rozenman for
commenting on earlier versions of this work. Finally, the au-
thors would like to thank the two anonymous reviewers, whose
comments improved the presentation of this paper.

REFERENCES

[1] D. Bailey, P. Borwein, and S. Plouffe, “On the rapid computation of
various polylogarithmic constants,” Math. Comp., vol. 66, no. 218, pp.
903–913, Apr. 1997.

[2] F. Barahona, “On the computation complexity of Ising spin glass
models,” J. Phys. A: Math. Gen., vol. 15, pp. 3241–3252, 1982.

[3] R. J. Baxter, “Hard hexagons: Exact solution,” J. Phys. A: Math. Gen.,
vol. 13, pp. L61–L70, 1980.

[4] R. J. Baxter, Exactly Solved Models in Statistical Mechanics. New
York: Academic, 1982.

[5] A. Böttcher, personal communication, Jan. 2007.
[6] N. Calkin and H. Wilf, “The number of independent sets in the grid

graph,” SIAM J. Discr. Math., vol. 11, pp. 54–60, 1998.
[7] M. Cook, “Networks of Relations,” Ph.D. dissertation, Calif. Inst.

Technol., Pasadena, CA, 2005 [Online]. Available: http://paradise.cal-
tech.edu/papers/thesis011.pdf

[8] N. Creignou, S. Khanna, and M. Sudan, Complexity Classifications of
Boolean Constraint Satisfaction Problems. Philadelphia, PA: SIAM,
2001.

[9] R. Dechter, Constraint Processing. San Francisco, CA: Morgan
Kaufmann, 2003.

[10] M. E. Fisher, “Statistical mechanics of dimers on plane lattice,” Phys.
Rev., vol. 124, no. 6, pp. 1664–1672, Dec. 1961.

[11] M. E. Fisher, “On the dimer solution of planar Ising models,” J. Math.
Phys., vol. 7, no. 10, pp. 1776–1781, Oct. 1966.

[12] S. Forchhammer and T. V. Laursen, “A model for the two-dimen-
sional no isolated bit constraint,” in Proc. IEEE Int. Symp. Information
Theory, Seattle, WA, Jul. 2006, pp. 1189–1193.

[13] A. Galluccio and M. Loebl, “On the theory of Pfaffian orientations. I.
Perfect matchings and permanents,” Elec. J. Comb., vol. 6, 1999.

[14] D. Geiger, “Closed systems of functions and predicates,” Pacific J.
Math., vol. 27, pp. 95–100, 1968.

[15] S. Halevy, J. Chen, R. M. Roth, P. H. Siegel, and J. K. Wolf, “Improved
bit-stuffing bounds on two-dimensional constraints,” IEEE Trans. Inf.
Theory, vol. 50, no. 5, pp. 824–838, May 2004.

[16] H. Ito, A. Kato, Z. Nagy, and K. Zeger, “Zero capacity region of
multidimensional run length constraints,” Elec. J. Comb., vol. 6,
1999.

[17] P. W. Kasteleyn, “The statistics of dimers on a lattice. I. The number
of dimer arrangements on a quadratic lattice,” Physica, vol. 27, pp.
1209–1225, 1961.

[18] P. W. Kasteleyn, “Graph theory and crystal physics,” in Graph Theory
and Theoretical Physics, F. Harary, Ed. New York: Academic, 1967,
pp. 43–110.

[19] A. Kato and K. Zeger, “On the capacity of two-dimensional run-length
constrained channels,” IEEE Trans. Inf. Theory, vol. 45, no. 5, pp.
1527–1540, Jul. 1999.

[20] R. Kenyon, “The planar dimer model with boundary: A survey,” in
CRM Monograph Series, M. Baake and R. Moody, Eds. Providence,
RI: AMS, 2000, pp. 307–328.

[21] G. Kuperberg, “An exploration of the permanent-determinant method,”
Elec. J. Comb., vol. 5, 1998.

[22] M. Mahajan, P. R. Subramanya, and V. Vinay, “The combinatorial ap-
proach yields an NC algorithm for computing Pfaffians,” Discr. Appl.
Math., vol. 143, pp. 1–16, 2004.

[23] E. W. Montroll, “Lattice statistics,” in Applied Combinatorial Mathe-
matics, E. F. Beckenbach, Ed. New York: Wiley, 1964, pp. 96–143.

[24] E. W. Montroll, R. B. Potts, and J. C. Ward, “Correlations and spon-
taneous magnetization of the two-dimensional Ising model,” J. Math.
Phys., vol. 4, no. 2, pp. 308–322, 1963.

[25] S. Norine, “Drawing Pfaffian graphs,” in Lecture Notes in Computer
Science. Berlin, Germany: Springer-Verlag, 2005, vol. 3383, pp.
371–376.

[26] L. Onsager, “Crystal statistics. I. A two-dimensional model with an
order-disorder transition,” Phys. Rev., vol. 65, pp. 117–149, 1944.

[27] N. Robertson, P. D. Seymour, and R. Thomas, “Permanents, Pfaffian
orientations, and even directed circuits,” Ann. Math., vol. 150, pp.
929–975, 1999.

[28] G. Rote, “Division-free algorithms for the determinant and the Pfaffian:
Algebraic and combinatorial approaches,” in Lecture Notes in Com-
puter Science. Berlin, Germany: Springer-Verlag, 2001, vol. 2122,
pp. 119–135.

[29] M. Schwartz and A. Vardy, “Tight asymptotic bounds on the capacity of
multi-dimensional ��� ��-RLL,” in Proc 16th AAECC , Las Vegas, NV,
Feb. 2006 (Lecture Notes in Computer Science). Berlin, Germany:
Springer-Verlag, 2006, vol. 3857, pp. 225–234.

[30] C. E. Shannon, “A mathematical theory of communication,” Bell Syst.
Tech. J., vol. 27, pp. 379–423, Jul. 1948.

[31] H. N. V. Temperley and M. E. Fisher, “Dimer problem in statistical
mechanics—An exact result,” Phil. Mag., vol. 6, pp. 1061–1063, 1960.

[32] G. Tesler, “Matchings in graphs on nonorientable surfaces,” J. Combin.
Theory Ser. B, vol. 78, pp. 198–231, 2000.

[33] R. Thomas, “A survey of Pfaffian orientations of graphs,” in Proc.
Int. Congress of Mathematicians, ICM2006, Madrid, Spain, 2006, pp.
963–984.

[34] P. Tilli, “A note on the spectral distribution of Toeplitz matrices,”
Linear and Multilinear Algebra, vol. 45, pp. 147–159, 1998.

[35] L. G. Valiant, “Quantum circuits that can be simulated classically in
polynomial time,” SIAM J. Comput., vol. 31, no. 4, pp. 1229–1254,
2002.

[36] L. G. Valiant, “Holographic algorithms,” in Proc. 45th Annu. IEEE
Symp. Foundations of Computer Science (FOCS2004), Rome, Italy,
Oct. 2004, pp. 306–315.

[37] L. G. Valiant, “Holographic circuits,” in Proc. ICALP32 (Lecture Notes
in Computer Science). Berlin, Germany: Springer-Verlag, 2005, vol.
3980, pp. 1–15.

[38] V. V. Vazirani and M. Yannakakis, “Pfaffian orientations, 0–1 perma-
nents, and even cycles in directed graphs,” Discr. Appl. Math., vol. 25,
pp. 179–190, 1989.

