
IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024 7757

Reconstruction From Noisy Substrings
Hengjia Wei , Moshe Schwartz , Fellow, IEEE, and Gennian Ge

Abstract— This paper studies the problem of encoding mes-
sages into sequences which can be uniquely recovered from
some noisy observations about their substrings. The observed
reads comprise consecutive substrings with some given minimum
overlap. This coded reconstruction problem has applications
in DNA storage. We consider both single-strand reconstruction
codes and multi-strand reconstruction codes, where the message
is encoded into a single strand or a set of multiple strands,
respectively. Various parameter regimes are studied. New codes
are constructed, some of whose rates asymptotically attain the
upper bounds.

Index Terms— DNA storage, sequence (string) reconstruc-
tion, substitution, substring-distant sequences, robust positioning
sequences.

I. INTRODUCTION

SEQUENCE (string) reconstruction refers to a large class
of problems of reconstructing a sequence from partial

(perhaps noisy) observations of it. Instances of this problem
include reconstruction from multiple erroneous copies of the
sequence [3], [12], [13], some substrings of the sequence [10],
[11], all the length-k subsequences [8], [15], [20], and com-
positions of the sequence’s substrings or prefixes/suffixes [1],
[18].

In this paper, we shall consider the problem of encoding
messages into sequences which can be uniquely recovered
from observations about their substrings. This coding prob-
lem is motivated by applications in DNA-based data storage
systems, where data are encoded to long DNA sequences.
In some DNA sequencing technologies (e.g., shotgun sequenc-
ing), a long DNA strand is first replicated multiple times, and
these replicas are then fragmented into some short substrings

Manuscript received 7 December 2023; revised 19 June 2024;
accepted 25 August 2024. Date of publication 3 September 2024; date of
current version 22 October 2024. This work was supported in part by the
National Key Research and Development Program of China under Grant
2020YFA0712100; in part by the National Natural Science Foundation of
China under Grant 11971325, Grant 12231014, and Grant 12371523; in part
by Beijing Scholars Program; in part by the Major Key Project of Peng
Cheng Laboratory under Grant PCL2024AS103; and in part by Zhejiang Lab-
oratory BioBit Program under Grant 2022YFB507. (Corresponding author:
Hengjia Wei.)

Hengjia Wei is with the School of Mathematics and Statistics, Xi’an Jiao-
tong University, Xi’an 710049, China, also with the Peng Cheng Laboratory,
Shenzhen 518055, China, and also with the Pazhou Laboratory (Huangpu),
Guangzhou 510555, China (e-mail: hjwei05@gmail.com).

Moshe Schwartz is with the Department of Electrical and Computer
Engineering, McMaster University, Hamilton, ON L8S 4K1, Canada,
on leave from the School of Electrical and Computer Engineering, Ben-
Gurion University of the Negev, Beer Sheva 8410501, Israel (e-mail:
schwartz.moshe@mcmaster.ca).

Gennian Ge is with the School of Mathematical Sciences, Capital Normal
University, Beijing 100048, China (e-mail: gnge@zju.edu.cn).

Communicated by C. Carlet, Associate Editor for Sequences and Cryptog-
raphy.

Digital Object Identifier 10.1109/TIT.2024.3454119

so that they could be read. In order to retrieve the data, the
original long sequence should be reconstructed based on the
observations about these short substrings.

This coded reconstruction problem has been studied in
different models with different assumptions on the substrings.
Gabrys and Milenkovic [10] considered the problem of recon-
structing a sequence of length n from its L-multispectrum, i.e.,
the multiset of all of its length-L substrings. They constructed
two classes of reconstruction codes with redundancies 2 and
O(log log n) for L > 2 log n and log n < L ⩽ 2 log n,
respectively. They also studied the noisy settings in which
some substrings/observations may be lost or be corrupted
by errors, and constructed codes to combat these effects.
Subsequently, Marcovich and Yaakobi [16] followed this noisy
setup and provided more code constructions. The constructions
in [10] and [16] are based on the so-called (L, d)-substring
distant (SD) sequence, a sequence in which every two length-
L substrings are of Hamming distance at least d apart. When
d = 1, such sequences are also known as L-substring unique
sequences or L-repeat free sequences. Efficient encoding algo-
rithms can be found in [9] for L > log n. For general d,
Marcovich and Yaakobi [16] proposed an encoding algorithm
of (L, d)-SD sequences for L > 2 log n.

Another model is the torn-paper channel, which randomly
tears the input sequence into small pieces of different sizes.
The output of this channel is a set of substrings of the input
sequence with no overlap, and the message which is carried
by the input sequence should be recovered from these sub-
strings. This problem has been researched in the probabilistic
setting in [17], [19], and [21]. Recently, Bar-Lev et al. [2]
considered this problem in the worst-case. They studied both
the noiseless setup and the noisy setup, and proposed a
couple of index-based constructions to encode messages into
sequences each of which can be uniquely recovered from its
non-overlapping substrings. Furthermore, motivated by DNA
sequencing technologies where multiple strings are sequenced
simultaneously, they extended the single-strand reconstruction
problem to a multi-strand reconstruction problem, where each
message is encoded into a set of multiple strings that need
to be reconstructed from the mix of their substrings. They
constructed multi-strand reconstruction codes whose rates
asymptotically behave like those of single-strand reconstruc-
tion codes. Another related paper is by Wang et al. [23], which,
unlike [2], does not restrict the length of the torn substrings,
but rather their number. For this setting they construct codes
that attain the upper bound on the rate up to asymptotically
small factors.

In a recent paper, Yehezkeally et al. [25] proposed a general
model, which includes the two models above as extreme cases.

0018-9448 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-8136-1489
https://orcid.org/0000-0002-1449-0026
https://orcid.org/0000-0002-1535-0754

7758 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

In this model, the reconstruction is based on the sequence’s
(Lmin, Lover)-trace, which is a multiset of substrings where
every substring has length at least Lmin and the overlap of
every two consecutive substrings has length at least Lover.
They focused on the noiseless setup, and constructed a class
of trace reconstruction codes whose rate can asymptotically
achieve the upper bound. They also studied the multi-strand
reconstruction problem in the L-multispectrum model, and
proposed reconstruction codes whose rates are asymptotically
1.

In this paper, we shall follow the model in [25] and study
the coding problem for both single-strand reconstruction and
multi-strand reconstruction in the noisy setup. We aim to
encode a message into a sequence which can be uniquely
recovered from its (Lmin, Lover, e)-erroneous trace, where
each substring may suffer from at most e substitution errors,
or to encode a message into a set of k sequences which can be
recovered from the union of their (Lmin, Lover, e)-erroneous
traces. Our contributions are listed as follows.

1) We first give an algorithm which can encode messages
into (L, d)-SD sequences for L = ⌈a log n⌉ where a >
1 is an arbitrary real constant. The rates of the encoded
sequences asymptotically approach 1. In contrast, the
encoding algorithm in [16] requires a single redundancy
bit but works only when L > 2 log n.

2) For single-strand reconstruction, by using the proposed
encoding algorithm for SD sequences, we construct
two classes of (Lmin, Lover, e)-trace reconstruction codes
whose rates asymptotically achieve the upper bound.

3) For multi-strand reconstruction, we present some upper
bounds on the rates of multi-strand (Lmin, Lover, e)-trace
reconstruction codes, as well as some code constructions.
In some parameter regimes, our constructions yield codes
whose rates asymptotically attain the upper bounds. Inter-
estingly, when log k = κn, Lmin = a log n and Lover =
γLmin, the maximal rates of multi-strand reconstruction
codes not only depend on κ, a, γ, but also depend on the
congruence class of n modulo Lmin − Lover.

II. PRELIMINARIES

For a positive integer n ∈ N, let [n] denote the set
{0, 1, 2, . . . , n−1}. Let Σ denote a finite alphabet. Throughout
this paper, we always consider the binary case, i.e., Σ =
{0, 1}, however, our results can be easily generalized to non-
binary cases. We use log x to denote the logarithm of x to
base 2. When generalizing our results to the q-ary alphabet
case, it suffices to replace the log with logq .

Assume x = (x0, x1, . . . , xn−1) ∈ Σn is a sequence over
Σ. We denote its length by |x| = n, and its Hamming weight
by wtH(x). Given two sequences x and y over Σ, we denote
their concatenation by x◦y. If x and y have the same length,
we use dH(x,y) to denote their Hamming distance.

A substring of x is a sequence of the form
(xa, xa+1, . . . , xb), where 0 ⩽ a ⩽ b < |x|, and
we use x[a, b] to denote it. We also use xi+[L],
where i ∈ [n − L + 1], to denote the substring of x
which starts at the position i and has length L, i.e.,
xi+[L] = (xi, xi+1, . . . , xi+L−1) = x[i, i + L− 1].

A code is simply a set C ⊆ Σn, whose elements are referred
to as codewords. We say n is the length of the code. The rate
of the code is defined as R(C) = 1

n log|C|, and the redundancy
of the code is n− n ·R(C).

A. Reconstruction From the L-Multispectrum

For a sequence x ∈ Σn and a positive integer L ⩽ n, the
L-multispectrum of x, denoted by SL(x), is the multiset of all
its length-L substrings, namely,

SL(x) =
{
x0+[L],x1+[L], . . . ,xn−L+[L]

}
.

Note that in this paper, we use a pair of curly brackets to
denote a multiset.

If x can be uniquely reconstructed from its L-
multispectrum, without knowledge of a proper subset of Σn

that contains x, then we say it is L-reconstructible. It was
proved in [22] that if all the length-(L − 1) substrings of x
are distinct, then x is L-reconstructible. Such a sequence is
referred to as an (L − 1)-substring unique sequence. In the
works [9], [10], algorithms were proposed to construct a set
of L-substring unique sequences of rate approaching 1, where
L = ⌈a log n⌉ for any constant real number a > 1.

In [10], Gabrys and Milenkovic further studied the problem
of reconstructing sequences from their noisy multispectra.
They first considered the scenario where some substrings are
not included in the readout spectrum. For a subset Ŝ ⊂ SL(x),
if the maximum number of consecutive substrings which are
not included in Ŝ is G, we say Ŝ has maximal coverage
gap G. A code is called an (L, G)-reconstruction code if
every codeword x can be uniquely reconstructed from any
subset Ŝ ⊂ SL(x) with maximal coverage gap G. Gabrys and
Milenkovic proposed a construction for such codes [10] by
restricting each codeword x to be L̂-substring unique with
L̂ < L−G and imposing some constraints on their prefixes.

Gabrys and Milenkovic also researched the scenario where
the observations about the substrings suffer from substitution
errors. Let Y = {y0,y1, . . . ,ym−1} be a multiset consist-
ing of m strings of length L. If there is a subset Ŝ =
{xi0 ,xi1 , . . . ,xim−1} ⊂ SL(x) with maximal coverage gap
G such that dH(yj ,xij

) ⩽ e for all j ∈ [m], then we say Y

is an (L, G, e)-constrained erroneous multispectrum of x.
Example 1: Consider the string x = (1, 1, 0, 1, 0, 0, 1) and

the multiset Y = {(0, 1, 1, 0), (1, 0, 0, 1)}. Then S4(x) =
{(1, 1, 0, 1), (1, 0, 1, 0), (0, 1, 0, 0), (1, 0, 0, 1)}. Thus, Y is a
(4, 2, 1)-constrained erroneous multispectrum of x, since the
subset Ŝ = {(0, 1, 0, 0), (1, 0, 0, 1)} ⊂ S4(x) matches Y. Note
that the substrings in Y cover the bit x4 twice. x4 was subjected
to a substitution error in the substring (0, 1,1, 0) but not in
the substring (1,0, 0, 1).

We note that an (L, G, e)-constrained erroneous multispec-
trum Y can be regarded as a product by the following process:
When sequencing the string x, the sliding window gives us

x0 x1 x2 x3 · · · xL−1

x1 x2 x3 · · · xL−1 xL

x2 x3 · · · xL−1 xL xL+1

x3 · · · xL−1 xL xL+1 xL+2

· · · · · · · · · · · · · · · · · ·

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7759

From this, some rows are erased, but nowhere more than G
consecutive rows. At most e errors are introduced in each
row. The rows are then mixed, and the indentation is for
presentation only. This process is called reliable if in every
column the majority is the original symbol. Furthermore,
we say Y is reliable if there is at least one reliable process
resulting in it.

Example 2: Consider the string x = (0, 1, 0, 1, 0, 1, 1) and
the multiset Y = {(1, 0, 1, 0), (0, 1, 1, 1), (1, 0, 1, 1)}. There
are two different processes to produce Y:
Process 1.

0101 −→ erased
1010 −→ 1010
0101 −→ 0111
1011 −→ 1011

Process 2.
0101 −→ 0111
1010 −→ 1010
0101 −→ erased
1011 −→ 1011

The first process is reliable, while the second one is not (since
after the third sliding window erasure, the correct value for
x2 has no majority). Hence, Y is a reliable (4, 1, 1)-constrained
erroneous multispectrum.

A code is called an (L, G, e)-reconstruction code if every
codeword can be uniquely reconstructed from any of its
reliable (L, G, e)-constrained erroneous multispectra.1 Gabrys
and Milenkovic constructed an (L, G, e)-reconstruction code
of redundancy O(log log n) for L = 6 log n + O(log log n).
Their construction is based on (L, d)-substring distant
sequences, whose definition is presented as follows.

Definition 3: A sequence w ∈ Σn is called (L, d)-substring
distant (SD) if the minimum Hamming distance of its L-
multispectrum is at least d, that is, dH(wi+[L],wj+[L]) ⩾ d
for any 0 ⩽ i < j ⩽ n− L.

Example 4: Consider the sequence w = (1, 1, 0, 1, 1, 1, 0).
Then

S4(w) = {(1, 1, 0, 1), (1, 0, 1, 1), (0, 1, 1, 1), (1, 1, 1, 0)}.

The distance between any two substrings of S4(w) is 2, and
so, w is a (4, 2)-SD sequence.

Remark: We observe that an (L, d)-substring distant
sequence is also (L′, d)-substring distant, for any L′ ⩾ L.
Thus, we may equivalently say that w ∈ Σn is (L, d)-substring
distant (SD) if dH(wi+[L′],wj+[L′]) ⩾ d for any integer
L′ ⩾ L and 0 ⩽ i < j ⩽ n − L′. This equivalent definition
allows L to be a non-integral rational number, which we shall
conveniently use in the future.

In [16], Marcovich and Yaakobi followed the noisy setup of
Gabrys and Milenkovic. They studied the case of G = 0, i.e.,
no substring losses. Instead of reconstructing x from a reliable
erroneous multispectrum, they aimed to reconstruct from an
(L, 0, e)-erroneous multispectrum Y, the so-called maximum
reconstructible-string, i.e., a string of length n that takes at

1We emphasize that the multispectrum Y = {y0,y1, . . . ,ym−1} is just
a multiset, and the order/index i of each yi cannot be directly read when
reconstructing.

every position i the majority value of the occurrences of xi in
Y. A sequence x is called (L, 0, e)-reconstructible2 if one can
always reconstruct a unique maximum reconstructible-string
from any of its (L, 0, e)-erroneous multispectra. Obviously,
if Y is reliable, then the maximum reconstructible-string is
equal to x. In [16], it is assumed that the number of erroneous
substrings, t, is less than L/2. Then all entries of x besides the
first and last 2t entries cannot appear in Y erroneously more
times than they appear correctly.

Proposition 5 ([16, Theorem 16]): If x is (L−1, 4e+1)-
SD, then it is (L, 0, e)-reconstructible.

The proof of the proposition is given by an explicit recon-
struction algorithm, see [16, Algorithm 3], which takes a noisy
L-multispectrum of x as input and computes the distance
between the length-(L − 1) suffix of a string and the length-
(L − 1) prefix of another string in the input set. Note that
for any two strings that come from consecutive length-L
substrings of x, the distance between their suffix and prefix is
at most 2e, since they share the same length-(L−1) substring
of x. Hence, in order to distinguish consecutive strings and
non-consecutive strings, x should be (L− 1, 4e + 1)-SD.

For positive integers n, d, L with d ⩽ L < n, we use
Zn(L, d) to denote the set of (L, d)-SD sequences of Σn.
For fixed d and a > 1, Marcovich and Yaakobi showed that
the asymptotic rate of the set Z(a log n, d) is 1, by using the
Lovász Local Lemma. Note that when a < 1, even a single
(a log n)-substring unique sequence of length n does not exist.

Theorem 6 ([16, Theorem 19]): For fixed d and a > 1,

lim
n→∞

log|Zn(a log n, d)|
n

= 1.

Marcovich and Yaakobi also presented a deterministic
algorithm which uses a single redundancy bit to encode
(a log n, d)-SD sequences for a > 2.

Theorem 7 ([16, Algorithm 4 and Theorem 25]): Let d >
0 be a fixed integer. There is an encoding algorithm which
uses a single redundancy bit to encode (L, d)-SD sequences
of length n, for

L = 2 log n + 2(d− 1 + ϵ) log log n,

where ϵ > 0 is a small constant number and n is sufficiently
large.

In Section III, we shall present an algorithm which can
encode (a log n, d)-SD sequences of length n for any a >
1, while its redundancy is o(n). According to Proposi-
tion 5, this implies an (L, 0, e)-reconstructible code whose rate
approaches 1, for L = ⌈a log n⌉+ 1 and e = ⌊d−1

4 ⌋.

B. Reconstruction From an (Lmin, Lover)-Trace

In [25], Yehezkeally et al. studied an extension of the
problem of reconstructing from substrings. Let x ∈ Σn be
a sequence. A substring trace of x is a multiset of substrings

2The notion here is a bit different from that in [16], where Marcovich and
Yaakobi further assumed that there are at most t substrings in Y each of
which is affected by at most e errors and referred to it as a (t, e)-erroneous
multispectrum. They proposed two constructions for reconstructible codes:
one is independent of t and thus can combat any number of erroneous
substrings, while the other one depends on t. In this paper, we focus on
reconstructible codes which are independent of t.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7760 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

{xi0+[L0],xi1+[L1], . . . ,xim−1+[Lm−1]} for some positive inte-
ger m, where i0 < i1 < · · · < im−1. If i0 = 0, ij+1 ⩽ ij +Lj

for all j < m− 1, and im−1 + Lm−1 = n, then the substring
trace is called complete. Let Lmin and Lover be two positive
integers such that Lover < Lmin < n. An (Lmin, Lover)-trace
is a complete trace such that:

1) every substring has length at least Lmin, i.e., Li ⩾ Lmin

for all i ∈ [m];
2) the overlap of every two consecutive substrings has length

at least Lover, i.e., ij + Lj − ij+1 ⩾ Lover for all j ∈
[m− 1].

For a sequence x, let TLover
Lmin

(x) denote the set of all
(Lmin, Lover)-traces of x. A code C is referred to as
an (Lmin, Lover)-trace reconstruction code if TLover

Lmin
(x) ∩

TLover
Lmin

(x′) = ∅ for all x ̸= x′ ∈ C.
Proposition 8 ([25, Lemma 1]): Let x be an Lover-

substring unique sequence. Then x can be uniquely recon-
structed from any of its (Lmin, Lover)-traces.

By refining the constructions of substring unique sequences,
Yehezkeally et al. obtained the following result.

Theorem 9 ([25, Corollary 6]): There is an (Lmin, Lover)-
trace reconstruction code of Σn whose rate approaches 1, for
Lover ⩾ ⌈log n⌉+ 3⌈log log n⌉+ 12 and sufficiently large n.

They also studied the other parameter regimes.
Lemma 10 ([25, Lemma 8]): If Lmin = a log n + O(1)

and Lover = γLmin + O(1) for some a > 1 and 0 ⩽ γ ⩽ 1
a ,

then for any (Lmin, Lover)-trace reconstruction code C ⊆ Σn,
its rate R(C) must satisfy

R(C) ⩽
1− 1/a

1− γ
+ O

(
log log n

log n

)
.

Theorem 11 ([25, Theorem 15]): Let Lmin = a log n and
Lover = γLmin for some a > 1 and 0 ⩽ γ ⩽ 1

a .
If n is sufficiently large, then there is an (Lmin, Lover)-trace
reconstruction code C ⊆ Σn with rate

R(C) ⩾
1− 1/a

1− γ
− (log n)ϵ

a
√

log n
−O

(
1√

log n

)
,

where ϵ > 0 is a small number which is independent of n.
In this paper, we shall study the problem of recon-

structing sequences from their noisy substring traces. Let
Y = {y0,y1, . . . ,ym−1} be a multiset of sequences over
Σ, and let Lj = |yj | for j ∈ [m]. We say Y is
an (Lmin, Lover, e)-erroneous trace of x if there exists
an (Lmin, Lover)-trace {xi0+[L0],xi1+[L1], . . . ,xim−1+[Lm−1]}
such that dH(yj ,xij+[Lj]) ⩽ e for all j ∈ [m]. Namely, each
string yj in Y is an erroneous copy of the substring xij+[Lj] in
x with at most e errors. The index ij is referred to as the loca-
tion of yj in x. We note that the location might not be unique
since there might be another process resulting in the same Y.
For a sequence x and any of its (Lmin, Lover, e)-erroneous
traces Y, if one can always determine a unique location for
every yi ∈ Y in x, then we say x is (Lmin, Lover, e)-trace
maximal reconstructible. Once all the locations of yj’s are
identified, by taking at every position i the majority value
of the occurrences of xi in Y, we can obtain a string which
is referred to as the maximum reconstructible-string of Y,
denoted by M(Y). Since Y is complete, the length of M(Y)

is n. Furthermore, if Y is reliable3, then x = M(Y), i.e., the
(Lmin, Lover, e)-trace maximal reconstructible sequence x can
be uniquely reconstructed as long as Y is reliable.

A code is called an (Lmin, Lover, e)-trace maximal recon-
struction code if every codeword x is (Lmin, Lover, e)-trace
maximal reconstructible4. In Section IV, we will give two
constructions for (Lmin, Lover, e)-trace maximal reconstruc-
tion codes where the number of errors e is fixed. Our results
are akin to Theorem 9 and Theorem 11. In particular, when
Lover = a log n for some a > 1, we construct a class
of (Lmin, Lover, e)-trace maximal reconstruction codes whose
rates approach 1. When Lmin = a log n and Lover = γLmin

for some a > 1 and 0 ⩽ γ ⩽ 1
a , the proposed (Lmin, Lover, e)-

trace maximal reconstruction codes have rates close to 1−1/a
1−γ .

These results are summarized in Table I. Our constructions
are based on robust positioning sequences and window-weight
limited sequences, which are reviewed in Section II-D.

As mentioned above, in order to recover x, we assume
that Y is reliable. This assumption is quite strong, since
there is a lack of control over the coverage. This is a
feature found in previous works [10], [16]. In this paper,
we also consider the case when the majority vote does not
correct all the errors, i.e., the case when the maximum
reconstructible-string M(Y) is different from x. Let x be an
(Lmin, Lover, e)-trace maximal reconstructible string. For an
(Lmin, Lover, e)-erroneous trace Y of x, if dH(M(Y),x) ⩽
τ , then Y is referred to as an (Lmin, Lover, e, τ)-erroneous
trace. An (Lmin, Lover, e)-trace maximal reconstruction code
is called an (Lmin, Lover, e, τ)-trace reconstruction code if
every codeword x can be reconstructed from any of its
(Lmin, Lover, e, τ)-erroneous traces. In Section IV, we will
modify our code construction to obtain (Lmin, Lover, e, τ)-
trace reconstruction codes. We note that a similar problem has
been addressed in the scenario where the DNA strands suffer
from substitution errors before sequencing. Bar-Lev et al. [2]
studied this problem in adversarial torn-paper channel, where
there is no overlap between any two adjacent substrings.
Yehezkeally and Polyanskii studied a similar problem for
the (L + 1, L)-trace reconstruction [26]. They introduced the
notion of a (t, L)-resilient repeat-free sequence, which retains
L-substring uniqueness even in the presence of up to t sub-
stitution errors. Additionally, they proposed an algorithm for
directly encoding such sequences. Interestingly, [26, Lemma
6] shows that an (L, 2t + 1)-SD sequence is (t, L)-resilient
repeat free.

C. Multi-Strand Reconstruction

Motivated by DNA sequencing technologies where multiple
DNA strands are sequenced simultaneously, the reconstruction
problem has been extended to the multi-strand case in [25] and
[2], i.e., reconstructing a multiset of k sequences of length n
from the union of their traces.

3Note that the Y in Example 2 is reliable, but not complete.
4Unlike the noiseless case, in an (Lmin, Lover, e)-trace reconstruction code

it might be possible that two codewords share a common (Lmin, Lover, e)-
erroneous trace. Nevertheless, they cannot have a common reliable trace.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7761

TABLE I
LOWER AND UPPER BOUNDS ON THE CODE RATE OF SINGLE-STRAND (Lmin, Lover, e)-TRACE MAXIMAL RECONSTRUCTION CODES OF Σn

Define

Xn,k ≜ {{x0,x1, . . . ,xk−1} : xi ∈ Σn for all i ∈ [k]}.

Then |Xn,k| =
(
k+2n−1

k

)
. The rate of a multi-strand code

C ⊆ Xn,k is defined as

R(C) ≜
log|C|

log|Xn,k|
.

For a multiset S = {x0,x1, . . . ,xk−1} ∈ Xn,k, its
(Lmin, Lover)-trace is a (multiset) union Y =

⋃k−1
i=0 Yi, where

each Yi is an (Lmin, Lover)-trace of xi. A code C ⊆ Xn,k is
referred to as a multi-strand (Lmin, Lover)-trace reconstruc-
tion code if every codeword can be reconstructed from its
(Lmin, Lover)-trace. Two classes of multi-strand trace recon-
struction codes whose rates asymptotically attain the upper
bound have been constructed in [2] and [25], for Lover = 0 or
Lover = Lmin − 1, respectively.

Theorem 12 ([2, Theorem 12]): Suppose that log k =
o(n) and Lmin = a log(nk) with a > 1. Then there is a
class of multi-strand (Lmin, 0)-trace reconstruction codes of
rate 1− 1/a− o(1).

Theorem 13 ([25, Corollary 23]): Suppose that
lim supn→∞ log k/n < 1 and Lmin ⩾ log(nk) +
3 log log(nk) + 12. Then there is a class of multi-strand
(Lmin, Lmin − 1)-trace reconstruction codes of rate 1− o(1).

In this paper, we will also study the problem of recon-
structing multiple strands from their noisy traces. For a
multiset S = {x0,x1, . . . ,xk−1} ∈ Xn,k, its (Lmin, Lover, e)-
erroneous trace is a (multiset) union Y =

⋃k−1
i=0 Yi, where

each Yi is an (Lmin, Lover, e)-erroneous trace of xi. We aim
to reconstruct S from its (Lmin, Lover, e)-erroneous trace.
If for any (Lmin, Lover, e)-erroneous trace Y of S and any
y ∈ Y, it is possible to determine a unique index i such
that y ∈ Yi as well as a unique location of y in xi, then
we say S is (Lmin, Lover, e)-trace maximal reconstructible.
A code C ⊆ Xn,k is called a multi-strand (Lmin, Lover, e)-
trace maximal reconstruction code if each of its codewords is
(Lmin, Lover, e)-trace maximal reconstructible.

Following the research in [25], we assume that
lim supn→∞ log k/n < 1, which is of great interest in
applications. In Section V, we shall present some upper
bounds on the rate of multi-strand trace reconstruction codes
and propose some codes whose rates asymptotically attain
these bounds. Our results are summarized in Table II and
Table III. Among others, when log k = κn with 0 < κ < 1 and
Lmin = ⌈a log(nk)⌉ with a > 1, we obtain a class of multi-
strand (Lmin, 0, e)-trace maximal reconstruction codes of

rate 1−1/a
1−κ + L∗

a(1−κ)n − o(1), where L∗ ≡ n (mod Lmin).
Note that L∗ ∈ [Lmin] and Lmin = a log(nk) = Θ(n). The
term L∗

n could be a non-vanishing number, depending on
the congruence class of n modulo Lmin. In contrast, when
log k = o(n), the rate of the multi-strand (Lmin, 0)-trace
maximal reconstruction codes in Theorem 40 is 1−1/a−o(1),
which is the same as that of single-strand reconstruction
codes.

D. Robust Positioning Sequences

An (L, d)-substring distant sequence x is also known as
an (L, d)-robust positioning sequence, since the contents of
any length-L substring can locate the substring’s position
in x, even if they are corrupted by at most ⌊(d − 1)/2⌋
errors. In the context of robust positioning sequences, given
L and d, it is of interest to construct a (single) long (L, d)-
robust positioning sequence with efficient locating algorithm.
This problem, as well as its 2-dimensional extension, has
been discussed in [4], [5], [6], [7], and [24]. Among others,
Chee et al. [6] constructed a class of (L, d)-robust positioning
sequences of length 2L/(cL3d+6.5) for some constant number
c > 0. Their construction was refined in [24] to obtain
sequences of length 2L/(cL⌈(d−1)/2⌉+8), whose redundancy5,
(⌈(d − 1)/2⌉ + 8) log L + O(1), is close to the lower bound
⌊(d − 1)/2⌋ log L + O(1). The constructions in [6] and [24]
require the following notions.

Theorem 14 (d-Auto-Cyclic Sequences [14]): Let
ℓ = d⌈log d⌉+ 2d. Set u to be the sequence

u=1d◦u0◦u1◦· · ·◦u⌈log d⌉, where ui =((12i

◦02i

)d)[0, d−1].

Then for all 1 ⩽ i ⩽ d, we have that

dH(u, 0i ◦ u[0, ℓ− i− 1]) ⩾ d,

and u is called a d-auto-cyclic sequence.
Definition 15: Let n, L, d be positive integers such that d <

L < n. We say a sequence x ∈ Σn satisfies the (L, d)-window
weight limited (WWL) constraint, and is called an (L, d)-WWL
sequence, if wtH(xi+[L]) ⩾ d for any i ∈ [n− L + 1].

Proposition 16 ([6, Construction 1 and Theorem 3.7]):
Given L and d, choose K such that ℓ < K and K + ℓ < L,
where ℓ = d⌈log d⌉ + 2d. Let u be a d-auto-cyclic vector
of length ℓ from Theorem 14 and set Lp = K + ℓ. Let
s0, s1, . . . , sM−1 be a collection of length-(L − Lp) binary
vectors satisfying the following conditions:

5The redundancy of an (L, d)-robust positioning sequence of length N is
defined as L− log N .

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7762 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

TABLE II
LOWER AND UPPER BOUNDS ON THE CODE RATE OF MULTI-STRAND (Lmin, Lover, e)-TRACE MAXIMAL RECONSTRUCTION

CODES OF Xn,k , WHERE log k = o(n)

TABLE III
LOWER AND UPPER BOUNDS ON THE CODE RATE OF MULTI-STRAND (Lmin, Lover, e)-TRACE MAXIMAL RECONSTRUCTION CODES OF Xn,k , WHERE

log k = κn + o(n) AND L∗ = (n− Lover) mod (Lmin − Lover). TO SAVE SPACE, SOME TERMS OF o(1) ARE OMITTED

(P1) si is a (K, d)-WWL vector for i ∈ [M];
(P2) si+1[0, j−1]◦si[j, L−Lp−1] is a (K, d)-WWL vector

for i ∈ [M − 1] and j ∈ [L− Lp − 1]; and
(P3) the concatenation s0◦s1◦s2◦· · ·◦sM−1 is an (L−Lp, d)-

modular robust positioning sequence6.

Then the sequence

s ≜ 0K ◦ u ◦ s0 ◦ 0K ◦ u ◦ s1 ◦ · · · ◦ 0K ◦ u ◦ sM−1

is an (L, d)-robust positioning (substring distant) sequence.
Theorem 17 ([6, Construction 1A and Corollary 3.12]):

Given d and L, set K = 3⌈(3 log L)/2⌉ = 9
2 log L + O(1).

There is an explicit construction of sequences
s0, s1, . . . , sM−1 of length L − K − ℓ, where
log M = L − 3d log L − 7.5 log L − O(1), such that
the conditions (P1)–(P3) in Proposition 16 are satisfied.

Remark: We note that for each i ∈ [M], the concatenation
0K ◦ u ◦ si is an (Lp, d)-WWL sequence, since the length-d
prefix of u is 1d and si is (K, d)-WWL.

The sequence s in Proposition 16 features an efficient
locating algorithm, see [6, Algorithm 3.1]. In Section IV and
Section V, we will give several constructions of reconstruc-
tion codes. These constructions rely on robust positioning
sequences, leveraging the aforementioned locating algorithm
to reconstruct codewords from their traces.

6A sequence w is an (L − Lp, d)-modular robust positioning sequence
if dH(wi+[L−Lp],wj+[L−Lp]) ⩾ d for any i ≡ j (mod L − Lp) and
i ̸= j.

III. ENCODING OF (a log n, d)-SUBSTRING DISTANT
SEQUENCES FOR a > 1

In this section we shall present an encoding method which
can generate a set of (a log n, d)-SD sequences of length
n (with a > 1, a real number) whose rate asymptotically
approaches 1. We shall, in fact, construct (L, d)-SD sequences
with L = log n+(6d+7) log log n+O(1), but using the remark
following Definition 3, we shall find it more convenient to
denote these sequences as (a log n, d)-SD.

We first require some notations. For a sequence w ∈ Σn,
we say that (i, j) (where 0 ⩽ i < j ⩽ n − L) is an (L, ρ)-
close window pair in w if dH(wi+[L],wj+[L]) ⩽ ρ. Moreover,
(i, j) is called primal, if for any other (L, ρ)-close window
pair (i′, j′) in w we have j ⩽ j′. Let x,x′ ∈ ΣL be two
sequences with dH(x,x′) ⩽ ρ for some integer ρ ⩽ L. Let
p1, p2, . . . , pdH(x,x′) denote the indices of the entries where x
and x′ do not agree. For every 1 ⩽ i ⩽ ρ let

bi =

{
b(pi) if i ⩽ dH(x,x′),
0⌈log(L+1)⌉ otherwise,

(1)

where b(i) is the binary representation of i with ⌈log(L + 1)⌉
symbols. Let

EncDistL,ρ(x,x′) ≜ b1 ◦ b2 ◦ · · · ◦ bρ.

Then EncDistn,ρ(x,x′) encodes the difference between x and
x′, and its length is ρ⌈log(L + 1)⌉. We note that it requires at
least log(

∑ρ
i=1

(
L
i

)
) bits to encode the difference between x

and x′ as dH(x,x′) ⩽ ρ. Thus when ρ is fixed, the length of
EncDist is close to the lower bound.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7763

Given a fixed d and a sufficiently large n, we are going to
present an encoding algorithm which can encode (L, d)-SD
sequences of length n. Our method involves concatenation of
a sequence w̄, which is both (L1, d)-SD and (K1, d)-WWL,
and a sequence s̄, which is obtained by invoking Theorem 17
with parameters “K = K2” and “L = L2”. The parameters
L1, K1, L2, K2 are defined as follows:

L1 ≜ ⌈log n⌉+ (2d− 1)⌈log⌈log n⌉⌉+ 6d + ⌈log(d + 1)⌉,
K1 ≜ d⌈log⌈log n⌉⌉+ d,

L2 ≜ ⌈log n⌉+ (3d + 7)⌈log⌈log n⌉⌉,

K2 ≜ 3
⌈

3
2

log L2

⌉
.

The parameter L for the desired (L, d)-SD sequence is deter-
mined by these parameters:

L ≜ max{L1 + K2 + Kmax + ℓ, L2 + 2K1 + Kmax + ℓ},

where Kmax ≜ max{K1, K2}, and ℓ ≜ d⌈log d⌉ + 2d as per
Proposition 16 and Theorem 17. In the end of this section,
we will show that L = log n+(6d+7) log log n+O(1) when
d ⩾ 5 is fixed and n is sufficiently large.

Our encoder resembles the encoding algorithms in [10] and
[9] and consists of the following three parts:

1) We first use the encoder presented in [14] to encode a
message sequence m ∈ Σn′ into a (d⌈log⌈log(n)⌉⌉, d)-
WWL sequence w of length n − K1 − K2. According
to [14, Corollary 20], this encoder, denoted by E1,
requires approximately 2d · 2F(n−K1−K2,d)−d⌈log⌈log n⌉⌉

redundancy symbols, where

F(n, d) = ⌈log n⌉+ (d− 1)(⌈log⌈log n⌉⌉+ C) + 2

for some constant C. Hence,

n′ = n−K1 −K2 − 2d·2F(n−K1−K2,d)−d⌈log⌈log n⌉⌉

⩾ n−K1 −K2−
2d·2⌈log(n−K1−K2)⌉−⌈log⌈log(n−K1−K2)⌉⌉+(d−1)C+2

⩾ n−K1 −K2−d · 2(d−1)C+4 · n−K1 −K2

log(n−K1 −K2)
= n−K1 −K2 −Θ(n/ log n), (2)

where the last equality holds as K1+K2 = O(log log n).
We note that the complexity of E1 is O(n), see [14,
Lemma 19] and the discussion after it.

2) Then we encode the (d⌈log⌈log n⌉⌉, d)-WWL sequence
w into an (L1, d)-SD sequence w̄ by eliminating the
pairs of substrings of small distance and attaching some
information about their positions and difference. This
encoder, denoted by E2, is presented in Algorithm 1,
and it can additionally guarantee the output sequence is
(K1, d)-WWL.

3) As an output of Algorithm 1, the sequence w̄ is usually
shorter than the sequence w. Thus, we need an expan-
sion step to increase the sequence length while keeping
the substring-distant property. Let s0, s1, . . . , sM−1 be a
collection of (K2, d)-WWL sequences of length L2−Lp

as in Theorem 17. Set

s̄ ≜ 0Kmax ◦u◦s0 ◦0Kmax ◦u◦s1 ◦· · ·◦0Kmax ◦u◦sM−1,

where u is the d-auto-cyclic vector of length ℓ from
Theorem 14. Finally, let

ŵ ≜ E3(w̄) ≜ (w̄ ◦ 0K2 ◦ s̄)[0, n− 1].

We shall show ŵ is the required (L, d)-SD sequence of length
n.

We first describe the encoding presented in Algorithm 1.
This procedure encodes a (d⌈log⌈log n⌉⌉, d)-WWL sequence
w into a sequence w̄ that is simultaneously (L1, d)-SD and
(K1, d)-WWL. Initiate w̄ = w. If there are no (L1, d − 1)-
close window pairs in w̄, then the algorithm returns w̄ as the
output. We observe that since w is (d⌈log⌈log n⌉⌉, d)-WWL
and K1 ⩾ d⌈log⌈log n⌉⌉, then w is also (K1, d)-WWL.

Otherwise, we choose a primal (L1, d − 1)-close window
pair, say (i, j). We replace the substring w̄j+[L1] with the
sequence

1d ◦ 0d⌈log⌈log n⌉⌉ ◦ 1d ◦B(i) ◦ 1d◦
EncDistL1,d−1(w̄i+[L1], w̄j+[L1]) ◦ 0⌈log(d+1)⌉ ◦ 1d, (3)

where B(i) : [n] −→ Σ⌈log n⌉+d is the encoding function
in [14, Algorithm 2], which can encode integers in [n] into
(d⌈log⌈log n⌉⌉, d)-WWL sequences in O(n) time. We will
show later that the length of this sequence is at most L1 − 1.
We note that this sequence is (K1, d)-WWL and contains the
information about the position i and the difference between
w̄i+[L1] and w̄j+[L1]. Moreover, the substring 0d⌈log⌈log n⌉⌉

serves as a marker which indicates the position j of the
removed substring w̄j+[L1].

We shall repeat this procedure until there are no (L1, d−1)-
close window pairs in w̄. But in order to ensure that w can
be recovered from the output of the algorithm, we need more
tricks. We note that in [10] the inserted sequences always start
with a marker 02 log log n and end with a symbol ‘1’. This
pattern together with the rule that only the primal pairs can
be chosen and replaced guarantees that after each replacement
the latest inserted substring always starts with the rightmost
02 log log n in w̄. Due to this property, we have a decoding
algorithm which can recover w from w̄: Let w̄(k) denote the
sequence w̄ after the k-th replacement. One can search for
the rightmost 02 log log n in w̄(k) to find the position j of the
inserted substring in the k-th replacement. By replacing the
inserted substring with the removed substring, one can recover
w̄(k−1) from w̄(k). Doing this iteratively, one can eventually
recover w from w̄.

In our encoding, the inserted substring should always con-
tain 1d as both prefix and suffix to maintain the property
of being (K1, d)-WWL. We have to modify the substring
0⌈log(d+1)⌉ in (3) to ensure the latest inserted substring always
starts with the rightmost 1d ◦ 0d⌈log⌈log n⌉⌉ in w̄. Let jp and
j be the positions of the removed substrings in the previous
replacement and in the current replacement, respectively. Since
we only choose the primal pairs, necessarily, j > jp − L1.
If j > jp−L1 +d, then we still replace the substring w̄j+[L1]

with the sequence in (3), since the marker 0d⌈log⌈log n⌉⌉ which

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7764 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

is inserted in the previous replacement will be destroyed by the
suffix 1d of this inserted sequence. If jp−L1 < j ⩽ jp−L1+d,
we first set w̄[jp +d] to be ‘1’ to destroy the previous marker
0d⌈log⌈log n⌉⌉. Then we replace w̄j+[L1] with the sequence

1d ◦ 0d⌈log⌈log n⌉⌉ ◦ 1d ◦B(i) ◦ 1d◦
EncDistL1,d−1(w̄i+[L1], w̄j+[L1]) ◦ b(j − jp + L1) ◦ 1d,

(4)

where b(j−jp+L1) is the binary encoding of j−jp+L1 with
⌈log(d + 1)⌉ symbols, since 1 ⩽ j − jp + L1 ⩽ d.

Note that the substring B(i) and the substring
EncDistL1,d−1(w̄i,L1 , w̄j,L1) have length ⌈log n⌉ + d
and length at most (d − 1)(⌈log⌈log n⌉⌉ + 1), respectively.
It follows that in the loop we replace substrings of length
L1 with substrings of length at most

4d + d⌈log⌈log n⌉⌉+ (⌈log n⌉+ d)
+ (d− 1)⌈log(L1 + 1)⌉+ ⌈log(d + 1)⌉

⩽ 4d + d⌈log⌈log n⌉⌉+ (⌈log n⌉+ d)
+ (d− 1)(⌈log⌈log n⌉⌉+ 1) + ⌈log(d + 1)⌉

= L1 − 1,

where the first inequality is obtained by noting that for all
sufficiently large n we have L1 + 1 ⩽ 2⌈log n⌉. Hence, the
loop will execute at most |w|−L1+1 times and the algorithm
will terminate eventually.

Algorithm 1 Primal Pair Elimination Encoder E2 for Gener-
ating (L1, d)-SD Sequences

Input: a (d⌈log⌈log n⌉⌉, d)-WWL sequence w∈Σn−K1−K2

Output: a sequence w̄ ∈ Σ⩽n−K1−K2

Set w̄ = w and jp = 0
while there are two length-L1 substrings in w̄ whose
Hamming distance is at most d− 1 do

Suppose (i, j) is a primal (L1, d− 1)-close window pair
in w̄ (then necessarily j > jp − L1)

if j > jp − L1 + d then
Remove the substring of length L1 starting at position

j and replace it with the sequence

1d ◦ 0d⌈log⌈log n⌉⌉ ◦ 1d ◦B(i) ◦ 1d◦
EncDistL1,d−1(w̄i+[L1], w̄j+[L1]) ◦ 0⌈log(d+1)⌉ ◦ 1d

else
Set w̄[jp + d] to be ‘1’
Remove the substring of length L1 starting at position

j and replace it with the sequence

1d ◦ 0d⌈log⌈log n⌉⌉ ◦ 1d ◦B(i) ◦ 1d◦
EncDistL1,d−1(w̄i+[L1], w̄j+[L1]) ◦ b(j − jp + L1) ◦ 1d

end if
jp ← j

end while
return w̄

Lemma 18: The output sequence w̄ is (K1, d)-WWL and
(L1, d)-SD, and the input sequence w can be recovered from
w̄, for all sufficiently large n.

Proof: The while loop ensures that the output w̄ of
Algorithm 1 is an (L1, d)-SD sequence. Moreover, since w
is (d⌈log⌈log n⌉⌉, d)-WWL and K1 = d⌈log⌈log n⌉⌉+ d, one
can tediously verify that for all large enough n, w̄ is (K1, d)-
WWL. In particular, even if EncDistL1,d−1(w̄i+[L1], w̄j+[L1])
is all zeros, for all large enough n

K1 −
∣∣∣EncDistL1,d−1(w̄i+[L1], w̄j+[L1]) ◦ 0⌈log(d+1)⌉

∣∣∣ ⩾ d,

and a substring of length K1 containing
EncDistL1,d−1(w̄i+[L1], w̄j+[L1]) ◦ 0⌈log(d+1)⌉ must also
contain at least d of the surrounding 1’s.

Next, we show after each replacement the latest inserted
substring always starts with the rightmost 1d ◦ 0d⌈log⌈log n⌉⌉.
Let w̄(k) be the sequence w̄ after the k-th replacement.
We prove this by induction. When k = 1, since w = w̄(0) is
(d⌈log⌈log n⌉⌉, d)-WWL, the marker 1d◦0d⌈log⌈log n⌉⌉ appears
exactly once in w̄(1), and so the claim holds. Now, in the k-th
replacement, j denotes the position of the substring removed
in this replacement, while jp denotes the position of the
substring removed in the (k − 1)-th replacement. According
to the inductive assumption, the rightmost 1d ◦ 0d⌈log⌈log n⌉⌉

in w̄(k−1) starts at the position jp. If j ⩾ jp, then the
rightmost 1d ◦ 0d⌈log⌈log n⌉⌉ in w̄(k) is w̄(k)

j+[d⌈log⌈log n⌉⌉+d].

If jp−L1 + d < j < jp, the overlap of w̄(k−1)
j+[L1]

and w̄(k−1)
jp+[L1]

has length greater than d. Since the sequence which is inserted
in the k-th replacement ends with a symbol ‘1’, it can destroy
the marker in w̄(k−1)

jp+[L1]
. If jp − L1 < j ⩽ jp − L1 + d,

we set w̄(k)[jp+d] to be ‘1’ to destroy the marker in w̄(k−1)
jp+[L1]

.
In all cases, the rightmost 1d ◦ 0d⌈log⌈log n⌉⌉ in w̄(k) is always
w̄(k)

j+[d⌈log⌈log n⌉⌉+d].
Now, given the sequence w̄(k), we first search for the

rightmost 1d ◦ 0d⌈log⌈log n⌉⌉ in w̄(k) to determine the position
j. Then from the substring w̄(k)

j+[L1−1] we can decode i, the

difference between w̄(k−1)
i+[L1]

and w̄(k−1)
j+[L1]

, and b(j − jp + L1).

Note that w̄(k−1)
i+[min{L1,j−i}] = w̄(k)

i+[min{L1,j−i}]. So we can

recover w̄(k−1)
j+[L1]

. We remove w̄(k)
j+[L1−1] from w̄(k) and replace

it with w̄(k−1)
j+[L1]

. If b(j − jp + L1) ̸= 0⌈log(d+1)⌉, we further
set the symbol in the position jp + d to be ‘0’. In this way,
we recover the sequence w̄(k−1). We repeat this procedure
until there is no substring 0d log log n. Then the resulting
sequence is the required w.

Now, we need to extend the sequence w̄ to a long sequence
of length n while keeping the property of being (L, d)-SD.

Lemma 19: Assume n is sufficiently large. Let w̄ be an
output of Algorithm 1. Recall that K2 = 3⌈ 32 log L2⌉.
By invoking Theorem 17 with parameters “K = K2” and
“L = L2”, we get a collection of (K2, d)-WWL sequences
s0, s1, . . . , sM−1 of length L2 − Lp, where Lp = K2 +
d⌈log d⌉+ 2d. Let

s̄ ≜ 0Kmax ◦ u ◦ s0 ◦ 0Kmax ◦ u ◦ s1 ◦ · · · ◦ 0Kmax ◦ u ◦ sM−1,

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7765

where Kmax = max{K1, K2}. Set

ŵ = E3(w̄) ≜ (w̄ ◦ 0K2 ◦ s̄)[0, n− 1].

Then ŵ is a (K, d)-WWL and (L, d)-SD sequence where K =
2(K1 +K2) and L = max{L1 +K2 +Kmax + ℓ, L2 +2K1 +
Kmax + ℓ}. Moreover, w̄ can be recovered from ŵ.

Proof: We first prove that s̄ is a (Kmax + K2, d)-WWL
and (L2 + Kmax −K2, d)-SD sequence of length at least n.
According to the construction, the length of s̄ is M(L2 +
Kmax −K2) ⩾ ML2. Recall that log M = L2 − 3d log L2 −
7.5 log L2 − O(1) and L2 = ⌈log n⌉ + (3d + 7)⌈log⌈log n⌉⌉.
Then

ML2 = 2L2−3d log L2−6.5 log L2−O(1) =
2L2

2O(1)L3d+6.5
2

⩾
n(log n)3d+7

2O(1)(log n + (3d + 6.5) log log n)3d+6.5
> n. (5)

Hence, s̄ has length at least n. Note that each si is a (K2, d)-
WWL sequence and the length-d prefix of u is 1d. It follows
that s̄ is a (Kmax+K2, d)-WWL sequence. Moreover, note that
the sequences s0, s1, . . . , sM−1 satisfy the conditions (P1)-
(P3) with “K = K2”. If K2 ⩾ K1 (namely, Kmax = K2),
then by Proposition 16, the sequence s̄ is an (L2, d)-SD
sequence, hence also an (L2 + Kmax −K2, d)-SD sequence.
If K2 < K1, since the property of being (K2, d)-WWL
implies the property of being (Kmax, d)-WWL, the sequences
s0, s1, . . . , sM−1 also satisfy the conditions (P1)-(P3) with
“K = Kmax”7. Again, by Proposition 16, the sequence s̄ is
an (L2 + Kmax −K2, d)-SD sequence.

We have shown that s̄ is a (Kmax +K2, d)-WWL sequence
in the above paragraph and w̄ is a (K1, d)-WWL sequence
in Lemma 18. By using the fact that K1 > d and that the
u substring of s̄ starts with 1d, it follows that the sequence
ŵ = (w̄ ◦ 0K2 ◦ s̄)[0, n− 1] is (K1 + K2 + Kmax, d)-WWL.
Since 2(K1+K2) ⩾ K1+K2+Kmax, it is also (K, d)-WWL,
where K = 2(K1+K2) as stated in this lemma. Now, we shall
show that it is also (L, d)-SD. For any two substrings ŵi+[L]

and ŵj+[L] with i, j ∈ [n−L+1] and i < j, we consider the
following cases:

Case 1: i < j ⩽ |w̄| − L1. Then

dH(ŵi+[L], ŵj+[L]) ⩾ dH(w̄i+[L1], w̄j+[L1]) ⩾ d,

where the first inequality holds since L ⩾ L1 and the second
inequality holds since w̄ is an (L1, d)-SD sequence.

Case 2: i ⩽ |w̄| − L1 and |w̄| − L1 + 1 ⩽ j ⩽ |w̄|. Since
L − L1 ⩾ K2 + Kmax + ℓ, where ℓ is the length of u, then
ŵj+[L] must contain 0K2+Kmax ◦ u as a substring. Assume
that ŵj+δ+[K2+Kmax+ℓ] = 0K2+Kmax ◦ u for some δ ∈ [L1].
If j − i ⩽ d, then

dH(ŵi+[L], ŵj+[L])

⩾ dH(ŵi+δ+K2+Kmax+[ℓ], ŵj+δ+K2+Kmax+[ℓ])

= dH(0j−i ◦ u[0, ℓ− (j − i)− 1],u) ⩾ d,

7In this case, we take “L = L2 + Kmax −K2”, “K = Kmax”, “Lp =
K + ℓ”, and so, “L− Lp = L2 −K2 − ℓ”, which is equal to the length of
the si’s.

where the last inequality follows from the definition of a d-
auto-cyclic sequence. If d < j − i ⩽ K2 + Kmax, since the
prefix of u is 1d, then

dH(ŵi+[L], ŵj+[L])

⩾ dH(ŵi+δ+K2+Kmax+[d], ŵj+δ+K2+Kmax+[d])

= dH(0d, 1d) = d.

If j − i > K2 + Kmax, then i + δ + K2 + Kmax < j + δ, and
so, ŵi+δ+[K2+Kmax] is a substring of w̄. Hence,

dH(ŵi+[L], ŵj+[L])

⩾ dH(ŵi+δ+[K2+Kmax], ŵj+δ+[K2+Kmax])

= dH(ŵi+δ+[K2+Kmax], 0K2+Kmax) ⩾ d,

where the last inequality holds since w̄ is a (K1, d)-WWL
sequence.

Case 3 and Case 4, which now follow, together cover the
case of i ⩽ |w̄|−L1 and j > |w̄| and the case of |w̄|−L1 <
i < |w̄| and i < j,

Case 3: i ⩽ |w̄| − (L2 + 2K1 − K2) (⩽ |w̄| − L1) and
j > |w̄|. Denote L′ ≜ (L2 −K2) + 2K1. Then L ⩾ L′. Note
that ŵj+[L′] always contains 0K1 as a substring, and ŵi+[L′]

is a substring of w̄, which is (K1, d)-WWL. Hence,

dH(ŵi+[L], ŵj+[L]) ⩾ dH(ŵi+[L′], ŵj+[L′]) ⩾ d.

Case 4: |w̄| − (L2 + 2K1 − K2) + 1 ⩽ i < |w̄| and i <
j. Since L ⩾ (L2 + 2K1 − K2) + K2 + Kmax + ℓ, ŵi+[L]

must contain 0K2+Kmax ◦ u as a substring. If j − i ⩽ K2 +
Kmax, then ŵj+[L] must contain u as a substring, and so,
with the same argument as that in Case 2, one can show that
dH(ŵi+[L], ŵj+[L]) ⩾ d. If j − i > K2 + Kmax, assume
that ŵi+δ′+[K2+Kmax] is the all-zero substring of length K2 +
Kmax. Then j + δ′ > i + δ′ + K2 + Kmax. It follows that
ŵj+δ′+[K2+Kmax] is a substring of s̄, which is (K2+Kmax, d)-
WWL. Hence,

dH(ŵi+[L], ŵj+[L])
⩾ dH(ŵi+δ′+[K2+Kmax], ŵj+δ′+[K2+Kmax])
⩾ d.

Case 5: |w̄| ⩽ i < j. Then

dH(ŵi+[L], ŵj+[L])
⩾ dH(ŵi+K2+[L−K2], ŵj+K2+[L−K2])
= dH(s̄i−|w̄|+[L−K2], s̄j−|w̄|+[L−K2]) ⩾ d,

where the second inequality holds since L − K2 ⩾ L2 +
Kmax −K2 and s̄ is (L2 + Kmax −K2, d)-SD.

Finally, note that in the sequence ŵ there is exactly one run
of ‘0’ which has length at least K2 +Kmax. So we can search
for the rightmost 0K2+Kmax in ŵ and remove this substring
as well as the suffix after it to recover the sequence w̄.

Theorem 20: Let ESD(·) ≜ E3(E2(E1(·))). Then, for fixed
d and sufficiently large n, ESD : Σn′ → Σn is invertible and
can encode sequences of Σn′ into (K, d)-WWL and (L, d)-SD
sequences where K = (2d + 9) log log n + O(1) and

L = ⌈log n⌉+ (6d + 7)⌈log⌈log n⌉⌉+ d⌈log d⌉+ 5d

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7766 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

when d ⩾ 5, or

L ⩽ ⌈log n⌉+ (5d + 11.5)⌈log⌈log n⌉⌉+ d⌈log d⌉+ 4d + 7.5,

otherwise.
Moreover, n− n′ = Θ(n/ log n), and so, we have that

lim
n→∞

n′

n
= 1.

Proof: The statement about ESD follows from Lemma 18
and Lemma 19. Recall that the encoder E1 requires
Θ(n/ log n) redundancies (see (2)) and K1 + K2 =
Θ(log log n). Hence,

n− n′ = K1 + K2 + Θ(n/ log n) = Θ(n/ log n).

It remains to estimate the value of L. Since d is fixed and
n is sufficiently large, L1 + K2 < L2 + 2K1. It follows that
L = max{L1 + K2 + Kmax + ℓ, L2 + 2K1 + Kmax + ℓ} =
L2 + 2K1 + Kmax + ℓ. Note that K1 > K2 if and only if
d ⩾ 5. Hence,

L =

{
L2 + 3K1 + ℓ if d ⩾ 5,

L2 + 2K1 + K2 + ℓ otherwise.

Substituting the values of K1, L2 and ℓ, and noting that

K2 = 3⌈1.5 log L2⌉ ⩽ 3⌈1.5 log⌈log n⌉+ 1.5⌉
⩽ 4.5⌈log⌈log n⌉⌉+ 7.5,

the conclusion then follows.

IV. GENERALIZED RECONSTRUCTION FROM NOISY
SUBSTRING TRACE

In this section, we are going to give constructions of
(Lmin, Lover, e)-trace (maximal) reconstruction codes. Our
first result generalizes Proposition 5 and Proposition 8, which
shows that the property of being (Lover, d)-substring distant
implies the property of being (Lmin, Lover, e)-trace maximal
reconstructible.

Proposition 21: Suppose that Lmin > Lover. If a sequence
x ∈ Σn is (Lover, 4e + 1)-substring distant, then x is
(Lmin, Lover, e)-trace maximal reconstructible.

Proof: Let Y = {y(0),y(1), . . . ,y(m−1)} be an
(Lmin, Lover, e)-erroneous trace of x where the location of
each y(j) in x is ij . Since x is (Lover, 4e + 1)-substring
distant, for any two substrings y(j) and y(j′) and their any
two subsubstrings y(j)

k+[Lover]
and y(j′)

k′+[Lover]
, we have that

dH

(
y(j)

k+[Lover]
,y(j′)

k′+[Lover]

){⩾ 2e + 1 if ij + k ̸= ij′ + k′,

⩽ 2e if ij + k = ij′ + k′.

Therefore, y(0) can be identified as the unique substring
y ∈ Y whose length-Lover prefix is of Hamming distance at
least 2e+1 from every length-Lover subsubstring of any other
y′ ∈ Y\{y}. Denote the length-Lover suffix of y(0) as s0.
Then we can identify the substrings y’s in Y which overlap
y(0) at least Lover positions, since each of them contains a
unique length-Lover subsubstring w whose distance from s0

is at most 2e. Furthermore, the locations of these substrings
in x can be determined by aligning the subsubstring w and

the suffix s0. Assume that there are m′ such substrings.
Then we have identified the substrings y(1), . . . ,y(m′) ∈ Y.
Next, we consider the length-Lover suffix of y(m′) and we
can identify all the substrings in Y which overlap y(m′) at
least Lover positions. We repeat the procedure above. Finally,
we can determine the location of every substring y ∈ Y in x.

Combining Theorem 20 and Proposition 21, we have the
following result.

Corollary 22: Suppose that Lover = ⌈log n⌉ + (24e +
13)⌈log⌈log n⌉⌉ + (4e + 1)⌈log(4e + 1)⌉ + 20e + 5 and
Lmin > Lover. If n is sufficiently large, then there is
an (Lmin, Lover, e)-trace maximal reconstruction code of Σn

whose rate is 1− o(1).
Now, we consider another parameter regime. Suppose that

Lmin = ⌈a log n⌉,
Lover = ⌈γLmin⌉,

where a > 1 and 0 < aγ ⩽ 1 are real constants. We are going
to construct an (Lmin, Lover, e)-trace maximal reconstruction
code whose rate approaches 1−1/a

1−γ . The basic idea of our code
construction is similar to the one in [16] for the noiseless
scenario: A message m is encoded into a codeword w =
w0 ◦w1 ◦ · · · ◦w2I−1 such that

(i) the index i can be decoded from any length-Lmin sub-
string of wi or wi◦wi+1 even if the substring is corrupted
by at most e errors;

(ii) wi can be reconstructed from any of its (Lmin, Lover, e)-
erroneous traces.

To this end, our construction leverages the map ESD in
Section III, which can encode WWL and SD sequences,
as well as some coded indices ci’s. Roughly speaking, our
coded indices are obtained by applying Theorem 17 with L =
I+rI and d = dI so that the concatenation c0◦c1◦· · ·◦c2I−1

is an (I + rI , dI)-SD sequence. The parameters I, rI and dI

are defined as follows:

I ≜

⌈
1− γa

1− γ
log n + (log n)0.5+ϵ

⌉
,

rI ≜ ⌈(3dI + 8) log I⌉,
dI ≜ 2e + 1,

where 0 < ϵ < 0.5 is an arbitrary fixed number which
is independent of n. In our construction, we require that
some segments of each wi are (K, dI)-WWL, where K ≜⌈√

log n
⌉
. Then, we are able to use coded indices / robust

positioning sequences to decode the index i from any length-
Lmin substring of wi or wi ◦ wi+1, even if e errors occur.
To reconstruct wi from its any (Lmin, Lover, e)-erroneous
trace, we use Proposition 21 and require that some subse-
quence vi of wi is substring distant, where the distance
between any two substrings of vi should be at least

dS ≜ 4e + 1.

The subsequence vi is obtained by applying the map ESD

and the sequence wi is obtained by partitioning ci into small
segments and interspersing them among vi.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7767

Construction A (Index Construction): Let I, rI and dI be
defined as above. Since e, a, γ, ϵ are constants, and n → ∞,
we have

(I + rI)− (3dI + 7.5) log(I + rI)−O(1)
= I + 0.5 log I −O(1) > I.

Applying Theorem 17 with L = I +rI and d = dI , there is an
explicit construction of sequences c0, c1, . . . , c2I−1 ∈ ΣI+rI ,
which are actually 0K ◦ u ◦ si in Theorem 17, such that the
concatenation

c ≜ c0 ◦ c1 ◦ · · · ◦ c2I−1

is an (I + rI , dI)-SD sequence. Moreover, according to the
remark following Theorem 17, each ci is (3

⌈
3
2 log(I + rI)

⌉
+

ℓdI
, dI)-WWL where

ℓdI
≜ dI⌈log dI⌉+ 2dI

is the length of the dI -auto-cyclic sequence u. Denote

K ≜
⌈√

log n
⌉
,

F ≜

⌈
I + rI

K

⌉
.

For each i ∈ [2I], we partition the sequence ci into segments
c(0)

i , c(1)
i , . . . , c(F−1)

i , each of length ⌈ I+rI

F ⌉ or ⌊ I+rI

F ⌋. ■
In the following, we first consider the case of Lmin | n and

give the code construction. Then we will show how to modify
this construction to settle the other cases.

A. The Case of Lmin | n

Let us define

r ≜ I + rI + K + ℓdI
+ dI ,

L ≜⌈(
Lover −K−ℓdI

− dI−2
⌈

I + rI

F

⌉)
Lmin − r

Lmin − r+I + rI

⌉
.

We note that by our choice of parameters, Lmin > r for all
sufficiently large n. Assume that Lmin | n and denote nL ≜

n
Lmin

. For each i ∈ [2I], let

Ni ≜

{
⌈nL/2I⌉(Lmin − r) if i < nL mod 2I ,
⌊nL/2I⌋(Lmin − r) otherwise.

(6)

Then
∑

i∈[2I] Ni = nL(Lmin − r).
Lemma 23: Let K, L,Ni be defined as above, and assume

n is large enough. Then for each i ∈ [2I] there is an integer
m(Ni) with Ni −m(Ni) = Θ(Ni/ log Ni) and an invertible
map E

(i)
SD : Σm(Ni) → ΣNi which can encode sequences of

Σm(Ni) into (⌊K/4⌋, dS)-WWL and (L, dS)-SD sequences.
Proof: We shall apply Theorem 20 to prove this lemma.

To this end, we first need to verify that Ni can be arbitrarily
large. As noted before, Lmin − r > 0. Additionally, nL =
Θ(n/ log n), and 2I = n

1−γa
1−γ (1+o(1)) and by our choice of

parameters, 1−γa
1−γ < 1 is a constant. Hence, Ni → ∞ as

n→∞.

Next, we need to verify that ⌊K/4⌋ and L satisfy the two
conditions in Theorem 20. Regarding the value of K, we need
to show that ⌊K/4⌋ ⩾ (2dS+9) log log Ni+O(1). Noting that
rI = ⌈(3dI + 8) log I⌉ = O(log log n) and K = O(

√
log n),

we have that

1− r

Lmin

= 1− I + rI + K + ℓdI
+ dI

Lmin

= 1−
(1−γa

1−γ) log n + (log n)0.5+ϵ + O(
√

log n)

a log n + O(1)

= 1−
(

1/a− γ

1− γ
+

1
a(log n)0.5−ϵ

+ O

(
1√

log n

))
× a log n

a log n + O(1)

= 1−
(

1/a− γ

1− γ
+

1
a(log n)0.5−ϵ

+ O

(
1√

log n

))
×
(

1−O

(
1

log n

))
=

1− 1/a

1− γ
− 1

a(log n)0.5−ϵ
−O

(
1√

log n

)
.

It follows that

log Ni = log
(nL

2I
(Lmin − r)

)
±O(1)

= log
(

n

2I

(
1− r

Lmin

))
±O(1)

= log n−I ±O(1)

=
γa− γ

1− γ
log n− (log n)0.5+ϵ ±O(1).

Since K =
⌈√

log n
⌉
, we have that ⌊K/4⌋ is substantially

larger than (2dS + 9) log log Ni + O(1).
Now, we verify the condition on L, namely that L ⩾

log Ni + (6dS + 7) log log Ni + O(1). Note that

I + rI

Lmin − r
=

I + O(log log n)
Lmin − I −O(

√
log n)

=
I

Lmin − I
· 1 + O(log log n/log n)

1−O(1/
√

log n)

=
I

Lmin − I

(
1 + O

(
1√

log n

))
=

I

Lmin − I
+ O

(
1√

log n

)
,

and⌈
I + rI

F

⌉
=
⌈

I + rI

⌈(I + rI)/K⌉

⌉
⩽

I + rI

(I + rI)/K
+ 1 = K + 1.

Hence, we have that

L ⩾

(
Lover −K − ℓdI

− dI − 2
⌈

I + rI

F

⌉)
· Lmin − r

Lmin − r + I + rI

⩾
Lover − 3K − ℓdI

− dI − 2
1 + (I + rI)/(Lmin − r)

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7768 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

=
Lover −O(

√
log n)

Lmin
Lmin−I + O

(
1/
√

log n
)

=
Lover(Lmin − I)

Lmin
· 1−O(1/

√
log n)

1 + O(1/
√

log n)

⩾ γ

(
a log n− 1− γa

1− γ
log n− (log n)0.5+ϵ − 1

)
·
(

1−O

(
1√

log n

))
=

γa− γ

1− γ
log n− γ(log n)0.5+ϵ −O(

√
log n).

It follows that

L− log Ni = (1− γ)(log n)0.5+ϵ −O(
√

log n)

= ω(log log Ni).

We can conclude that L is substantially larger than log Ni +
(6dS + 7) log log Ni + O(1).

Now, we present our code construction.
Construction B: Let m(Ni)’s be defined as in Lemma 23.

We now describe a mapping from Σ
∑

i∈[2I] m(Ni) to Σn.
For any message m ∈ Σ

∑
i∈[2I] m(Ni), partition m into 2I

substrings:
m = m0 ◦m1 ◦ · · · ◦m2I−1,

where each mi has length m(Ni). For each i ∈ [2I], let

vi = E
(i)
SD (mi) ∈ ΣNi ,

where E
(i)
SD is the map mentioned in Lemma 23. We partition

each vi into substrings of length Lmin − r:

vi =

vi,0 ◦ vi,1 ◦ · · · ◦ vi,⌈nL/2I⌉−1 if i < nL mod 2I ,

vi,0 ◦ vi,1 ◦ · · · ◦ vi,⌊nL/2I⌋−1 otherwise.

Then the total number of vi,j’s is nL. We further partition each
vi,j into F segments of lengths ⌈(Lmin− r)/F ⌉ or ⌊(Lmin−
r)/F ⌋:

vi,j = v(0)
i,j ◦ v

(1)
i,j ◦ · · · ◦ v

(F−1)
i,j .

Recall c(m)
i from the index construction, Construction A. Let

wi,j ≜

0dI ◦ v(0)
i,j ◦ c

(0)
i ◦ · · · ◦ v

(F−1)
i,j ◦ c(F−1)

i if j = 0,

1dI ◦ v(0)
i,j ◦ c

(0)
i ◦ · · · ◦ v

(F−1)
i,j ◦ c(F−1)

i otherwise.

Finally, if i < nL mod 2I , let

wi = p ◦wi,0 ◦ p ◦wi,1 ◦ · · · ◦ p ◦wi,⌈nL/2I⌉−1,

otherwise, let

wi = p ◦wi,0 ◦ p ◦wi,1 ◦ · · · ◦ p ◦wi,⌊nL/2I⌋−1,

where p ≜ 0K ◦ u and u is the dI -auto-cyclic sequence in
Theorem 14. Denote

w ≜ w0 ◦w1 ◦ · · · ◦w2I−1.

The constructed code, CTrace, is the image of the mapping
described above. ■

Lemma 24: Let CTrace be the code obtained by Construc-
tion B. Then CTrace ⊆ Σn and its rate is

R(CTrace) =
1− 1/a

1− γ
− 1

a(log n)0.5−ϵ
−O

(
1√

log n

)
.

Proof: In our construction, every sequence wi,j has length
Lmin−r+dI+|ci| = Lmin−K−ℓdI

, and so, the concatenation
p ◦wi,j has length Lmin. It follows that the codeword w has
length nLLmin = n. Noting that the map ESD is invertible,
we can uniquely recover m from w. Therefore, the code
CTrace has rate

∑
i∈[2I] m(Ni)/n.

We have shown in the proof of Lemma 23 that

1− r

Lmin
=

1− 1/a

1− γ
− 1

a(log n)0.5−ϵ
−O

(
1√

log n

)
,

and for each i ∈ [2I],

log Ni = Θ(log n).

Hence,

R(CTrace) =

∑
i∈[2I] m(Ni)

n
=

∑
i∈[2I] Ni −Θ(Ni/ log Ni)

n

=

∑
i∈[2I] Ni

n

(
1−Θ

(
1

log n

))
=

nL(Lmin − r)
n

(
1−Θ

(
1

log n

))
=
(

1− r

Lmin

)(
1−Θ

(
1

log n

))
=

1− 1/a

1− γ
− 1

a(log n)0.5−ϵ
−O

(
1√

log n

)
.

In the following, we shall show that the code CTrace is an
(Lmin, Lover, e)-trace maximal reconstruction code.

Lemma 25 (Construction 3 and Lemma 3.6 in [6]): Let
w = p ◦ w0,0 ◦ p ◦ w0,1 ◦ · · · ◦ p ◦ w2I−1,⌊nL/2I⌋−1 be a
codeword of CTrace. Assume that the substrings wi,j’s satisfy
the following conditions:

(P1) wi,j is a (K, dI)-WWL sequence for each (i, j); and
(P2) wi,j [0, µ−1]◦wi′,j′ [µ, Lmin−K−ℓdI

−1] is a (K, dI)-
WWL sequence for (i, j), (i′, j′) such that (i, j) ̸=
(i′, j′) and µ ∈ [Lmin −K − ℓdI

].

Then for every substring y = wi0+[Lmin] in w and each8

i ∈ [Lmin], the following hold:

(i) If i + i0 ≡ 0 (mod Lmin), then yi+[K+ℓdI
] = p.

(ii) If i+i0 ̸≡ 0 (mod Lmin), then dH(yi+[K+ℓdI
],p) ⩾ dI .

Lemma 26: Assume n is sufficiently large. Let y be an
arbitrary length-Lmin substring of w ∈ CTrace. Then y
contains a length-(I + rI − µ) suffix of a coded index ci

and a length-µ prefix of either ci or ci+1 for some i ∈ [2I]
and µ ∈ [I + rI]. Furthermore, even if y is corrupted by at
most e errors, we can still identify the positions where the
said suffix and prefix appear, and so reconstruct them with at
most e errors.

8If i ∈ [Lmin − K + ℓdI
, Lmin − 1], we let yi+[K+ℓdI

] denote the
concatenation y[i, Lmin − 1] ◦ y[0, K + ℓdI

− (Lmin − i)− 1].

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7769

Proof: We note that the length of p◦wi,j is Lmin, and that
w is a concatenation of such strings. Hence, the first statement
follows directly from the code construction. Now, assume that
y is corrupted by at most e errors. We shall use Lemma 25
to identify the location of the marker p in y. Recall that
every ci is (3

⌈
3
2 log(I + rI)

⌉
+ ℓdI

, dI)-WWL (see the index
construction, Construction A) and every vi is (⌊K/4⌋, dS)-
WWL (see Lemma 23). Since 3

⌈
3
2 log(I + rI)

⌉
+ ℓdI

<

⌊K/4⌋ and dI < dS , all the segments c(h)
i ’s and v(h)

i,j ’s are
(⌊K/4⌋, dI)-WWL. Note that the length of each c(h)

i is at least
⌊ I+rI

F ⌋ = ⌊ I+rI

⌈ I+rI
K ⌉
⌋ ⩾ K

2 . Hence, wi,j’s satisfy the conditions
in Lemma 25. This follows since any substring of length K
contains a substring of length ⌊K/4⌋ that is fully contained
within a segment of the form c(h)

i or v(h)
i,j , thus providing the

minimum weight of dI as claimed.
Since y suffers from at most e errors and dI = 2e + 1,

by Lemma 25 there is a unique index i ∈ [Lmin] such that

dH(yi+[K+ℓdI
],p) ⩽ e.

Hence, by comparing the distance between the marker p and
each length-(K + ℓdI

) substring of y, we can identify the
location of the marker in y. Once the marker p is located,
the positions in which the symbols of the coded indices c(h)

i ’s
appear can also be determined. Then we can reconstruct a
prefix ci[µ, I + rI − 1] and a suffix ci[0, µ− 1] or ci+1[µ− 1]
for some µ ∈ [I + rI] with at most e errors.

The following lemma ensures that every length-Lover sub-
string of w contains a long-enough substring of the (L, dS)-SD
sequence vi.

Lemma 27: Assume n is sufficiently large. Let w be a
codeword of CTrace. Then every length-Lover substring of w
contains at least L consecutive symbols of v = v0 ◦v1 ◦ · · · ◦
v2I−1.

Proof: Note that the concatenation

v(0)
i,j ◦ c

(0)
i ◦ · · · ◦ v

(F−1)
i,j ◦ c(F−1)

i

consists of |vi,j |+ |ci| = Lmin − r + I + rI symbols, out of
which |vi,j | = Lmin− r symbols are from v. Then according
to the construction, every length-Lover substring of w contains
at least(

Lover − (K + ℓdI
)− dI − 2

⌈
I + rI

F

⌉)
Lmin − r

Lmin − r + I + rI

consecutive symbols of v, where Lover − (K + ℓdI
) − dI −

2
⌈

I+rI

F

⌉
accounts for the worst case where the substring both

begins and ends with some segments of the coded indices (of
length

⌈
I+rI

F

⌉
or
⌊

I+rI

F

⌋
) and contains a copy of p ◦ 0dI or

p ◦ 1dI .
Theorem 28: The code CTrace obtained in Construction B is

an (Lmin, Lover, e)-trace maximal reconstruction code of Σn

with rate

R(CTrace) =
1− 1/a

1− γ
− 1

a(log n)0.5−ϵ
−O

(
1√

log n

)
.

Proof: The code rate has been calculated in Lemma 24.
Let w be a codeword of CTrace and Y be an (Lmin, Lover, e)-
erroneous trace of w. For each y in Y, since the length of
y is at least Lmin, according to Lemma 26, we can extract a

corrupted copy csuf of the length-(I + rI − µ) suffix of ci,
and a corrupted copy cpre of a length-µ prefix of either ci or
ci+1, with the total number of errors being no more than e.
Consider the following cases.

1) If µ = 0, then csuf is a corrupted copy of ci, and
so, we can run the locating algorithm of the robust
positioning sequence c = c0 ◦ c1 ◦ · · · ◦ c2I−1 on the
corrupted csuf to determine the index i.

2) If µ > 0 then y contains a copy of either p ◦ 0dI or
p ◦ 1dI with at most e errors. Since dI = 2e + 1, we can
distinguish these two cases.

a) If y contains a copy of p ◦ 0dI , then cpre is a prefix
of ci+1, and so, we run the locating algorithm of c on
csuf ◦ cpre to decode the index i.

b) If y contains a copy of p ◦ 1dI , then cpre is a prefix
of ci, and so, we run the locating algorithm of c on
cpre ◦ csuf to decode the index i.

The discussion above shows that for every string y ∈ Y,
we can decode the index i. If y intersects both vi and vi+1,
then we can determine its location in w by identifying the
location of the marker p in y. For the other strings with
index i, since vi is an (L, 4e + 1)-SD sequence, according
to Lemma 27 and Proposition 21, there is a unique way to
determine the correct order of these strings and match correctly
the suffix and the prefix of consecutive strings. By taking the
majority value at every position, we can reconstruct a sequence
w′

i. Recalling that w′
i is reconstructed from the substrings of

Y that have index i and do not intersect with wi−1 and wi+1,
it constitutes a substring of wi, possibly with some errors,
missing a prefix and a suffix of wi. It remains to determine
the location of w′

i in wi, which can be done as follows.
1) If w′

i contains a corrupted copy of p◦0dI with at most e
errors, then the location this marker in w′

i determines the
location of w′

i in wi, since wi only contains one copy
of p ◦ 0dI .

2) If w′
i does not contain any corrupted copy of p ◦ 0dI

with up to e errors, then there is a string ŷ ∈ Y which
intersects both wi−1 and wi and contains p ◦ 0dI as a
substring with at most e errors, since the length of p◦0dI

is less that Lover.
a) If ŷ overlaps wi in at most Lover positions, since

Lover < Lmin, w′
i must contain a copy of the first

p ◦ 1dI of wi, and so, the location of w′
i in wi can be

determined by identifying the first occurrence of the
marker p in w′

i.
b) If ŷ overlaps wi in at least Lover positions, then ŷ and

the length-Lover prefix of w′
i share a length-L substring

of vi. Since vi is (L, 4e + 1)-SD, we can match the
suffix of ŷ and the prefix of w′

i correctly. Then the
location of w′

i in w can be deduced from the location
of ŷ in w.

B. The Case of Lmin ∤ n

Now, we consider the case that Lmin does not divide n. Take
nL = ⌊n/Lmin⌋. Construction B can yield a trace maximal
reconstruction code of block length nLLmin. Our approach

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7770 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

is to extend this code to have length n. Let Ni be defined as
in (6) and m(Ni) be defined as in Lemma 23. For any message
m ∈ Σ

∑
i∈[2I] m(Ni), partition m into 2I substrings, each of

length m(Ni):

m = m0 ◦m1 ◦ · · · ◦m2I−1.

For each i ∈ [2I − 1], let

vi = E
(i)
SD (mi) ∈ ΣNi .

The main difference from the previous case is the encoding
of m2I−1. We recall that the encoder E

(i)
SD first encodes the

message mi to an SD and WWL sequence of length probably
less than Ni. Then it extends the sequence by appending a
sequence s̄ and taking the first Ni bits of the concatenation.
For i = 2I − 1, we modify the encoder E

(2I−1)
SD by taking the

first N2I−1 + Lmin − r bits of the concatenation. Recalling
that

log(N2I−1) = log n− I ±O(1) = Θ(log n)

and Lmin = ⌈a log n⌉, this is possible since asymptotically the
length of s̄ is larger than N2I−1+Lmin − r, see (5). We denote
this modified encoder as E

(2I−1)
SDE and let

v2I−1 = E
(2I−1)
SDE (m2I−1).

Then v2I−1 is (⌊K/4⌋, dS)-WWL and (L, dS)-SD and has
length N2I−1+Lmin−r = (⌊nL/2I⌋+1)(Lmin−r). Moreover,
the message m2I−1 can be decoded from the first N2I−1 bits
of v2I−1. In other words, the last Lmin−r bits are redundant.

Then, we proceed similarly as in Construction B and
obtain an (Lmin, Lover, e)-trace maximal reconstruction code
of block length (nL + 1)Lmin. Note that the last Lmin bits
are redundant, and so, we delete (nL + 1)Lmin − n of them
to form an (Lmin, Lover, e)-trace maximal reconstruction code
of length n, with code rate∑

i∈[2I] m(Ni)

n
=
(

1− 1/a

1− γ
− o(1)

)
nLLmin

n

=
1− 1/a

1− γ
− o(1).

C. Handling Noise Which Occurs Before Sequencing

Up to now, we have studied (Lmin, Lover, e)-trace recon-
struction codes, which allow reconstructing the maximum
reconstructible-string from an erroneous trace Y of a
codeword w. We use M(Y) to denote the maximum
reconstructible-string of Y. If Y is reliable, then M(Y) = w.
However, if Y is not reliable, then M(Y) is different from
w. This may happen especially when some symbols are
covered by a small number of substrings or when the sequence
w is subject to errors before its substrings are sampled.
In the remainder of this section, we modify Construction B
to combat such errors. Our construction, which is presented
below, borrows the idea from [2, Construction B].

Construction C: Assume that Lmin | n and take nL =
n/Lmin. Let N ≜ ⌊nL/2I⌋(Lmin − r). According to
Lemma 23, there is an integer m(N) with N − m(N) =
Θ(N/ log N) and an invertible map ESD : Σm(N) → ΣN

which can encode sequences of Σm(N) into (⌊K/4⌋, dS)-
WWL and (L, dS)-SD sequences. Let ESDE : Σm(N) →
ΣN+Lmin−r be an encoder which modifies9 ESD by taking the
first N + Lmin − r bits of the concatenation.

For any message m ∈ Σ(2I−2τ)m(N), we first use a [2I , 2I−
2τ, 2τ + 1]2m(N) Reed-Solomon code10 to encode m into a
codeword m̄ ∈ Σ2Im(N). We partition m̄ into sequences of
length Lmin − r:

m̄ = m̄0 ◦ m̄1 ◦ · · · ◦ m̄2I−1.

For each i ∈ [2I], let

vi ≜

{
ESDE(m̄i) ∈ ΣN+Lmin−r if i < nL mod 2I ,

ESD(m̄i) ∈ ΣN otherwise.

Then we proceed similarly as in Construction B to obtain
a sequence w of length n. We use ĈTrace to denote the code
produced by this construction. ■

Lemma 29: Let w be a codeword of ĈTrace and Y be an
(Lmin, Lover, e, τ)-erroneous trace of w. Then we can recover
m from Y.

Proof: With the same argument as the proof of Theo-
rem 28, we can show that ĈTrace is an (Lmin, Lover, e)-trace
reconstruction code of Σn. Since Y is also an (Lmin, Lover, e)-
erroneous trace of w, the maximum reconstructible-substring
M(Y) can be decoded from Y. By reversing the operations in
Construction C, we obtain a sequence m̄′ ∈ Σ2Im(N) from
M(Y). We partition m̄′ into 2I segments of the same length,
i.e., m̄′ = m̄′

0 ◦ m̄′
1 ◦ · · · ◦ m̄′

2I−1. Since dH(M(Y),w) ⩽ τ ,
then there are at most τ indices i ∈ [2I] such that m̄i ̸= m̄′

i.
Hence, we can run the decoder of the Reed-Solomon code on
m̄′ to recover m̄.

Theorem 30: Suppose that τ = O
(
n

1−γa
1−γ

)
. Then the code

ĈTrace obtained in Construction C is an (Lmin, Lover, e, τ)-
trace reconstruction code of Σn with rate

R(ĈTrace) =
1− 1/a

1− γ
− o(1).

Proof: Since τ = O
(
n

1−γa
1−γ

)
, we have 2τ/2I = o(1).

Hence, the code rate

R(ĈTrace)

=
(2I − 2τ)m(N)

n

=
2Im(N)

n
− 2τN

n

(
1−Θ

(
1

log N

))
⩾

2Im(N)
n

− 2τ

2I

(
1− r

Lmin

)(
1−Θ

(
1

log N

))
=

2Im(N)
n

− o(1).

9This encoder closely resembles the encoder E
(2I−1)
SDE with the only

difference being the message length.
10The Reed-Solomon code is over the finite field of size 2m(N). The

message is partitioned into groups of m(N) bits, and each group is translated
to a single symbol from the finite field. After encoding the reverse translation
to bits is performed. Note that m(N) = N − Θ(N/ log N), log(N) =
Θ(log n) and I = O(log n). Hence, m(N) > I and so, the Reed-Solomon
code exists.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7771

Consider the Ni’s which are defined in (6). We have that

Ni ≜

{
N + Lmin − r if i < nL mod 2I ,

N otherwise.

Hence,

R(ĈTrace) =
2Im(N)

n
− o(1)

⩾

∑
i∈[2I] m(Ni)− 2I(Lmin − r)

n
− o(1)

= R(CTrace)− o(1) =
1− 1/a

1− γ
− o(1).

D. (Lmin, 0, e)-Trace Maximal Reconstruction Codes

In this subsection, we consider the case of Lover = 0.
Construction D: Suppose that Lmin = ⌈a log n⌉, Lover =

0 and Lmin | n. As before, we denote nL ≜ n
Lmin

and K ≜⌈√
log n

⌉
. However, this time, we let I ≜ ⌈log nL⌉ and rI ≜

⌈(3d+8) log I⌉ where d = 2e+1 and ℓ = d⌈log d⌉+2d. Then
according to Theorem 17, there is a collection of (3⌈ 32 log(I +
rI)⌉+ ℓ, d)-WWL sequences c0, c1, . . . , c2I−1 ∈ ΣI+rI such
that the concatenation c0 ◦c1 ◦ · · · ◦c2I−1 is an (I +rI , d)-SD
sequence.

Denote m′ ≜ Lmin − (I + rI + K + ℓ). Let EWWL be the
encoder in [14, Algorithm 2] which can encode sequences
of Σm′−d into (⌈K/4⌉, d)-WWL sequences11 of Σm′ . For a
message m = m0 ◦m1 ◦ · · · ◦mnL−1 where mi ∈ Σm′−d for
i ∈ [nL], let wi ≜ EWWL(mi) for all i ∈ [nL].

Denote p ≜ 0K ◦u where u is a d-auto-cyclic sequence of
length ℓ. Let

w = p ◦ c0 ◦w0 ◦ p ◦ c1 ◦w1 ◦ · · · ◦ p ◦ cnL−1 ◦wnL−1.

Output w as the codeword which encodes the message m.
The image under this mapping is the code that we construct.
■

Theorem 31: The code obtained in Construction D is an
(Lmin, 0, e)-trace maximal reconstruction code of Σn with rate

1− 1
a
−O

(
1√

log n

)
.

Sketch of Proof: The code has rate

nL(m′ − d)
n

=
m′ − d

Lmin
=

Lmin − (I + rI + K + ℓ + d)
Lmin

= 1− 1
a
−O

(
1√

log n

)
.

Now, let y be a length-Lmin substring of some codeword
w. Then y must contain either a copy of p ◦ ci or a suffix
of p ◦ ci together with a prefix of p ◦ ci+1. Note that wi’s
and cj’s are (K/4, d)-WWL sequences and each has length
Θ(log n). Since K = ⌈

√
log n⌉, it can be checked that the

concatenations ci ◦wi’s satisfy the conditions in Lemma 25.
Thus, even if y suffers from e errors, we can still locate the

11Note that m′ = Θ(log n) and K =
⌈√

log n
⌉

. Hence, K/4 ≫
F(m′, d) = log m′+(d−1) log log m′+O(1). Then according to Lemma 35
in [14], the encoder EWWL does work.

marker p in y. Then we can run the locating algorithm of the
robust positioning sequence c0 ◦ c1 ◦ · · · ◦ c2I−1 to determine
the index i or i + 1, and hence the location of y. ■

For the case of Lmin ∤ n, let nL = ⌈n/Lmin⌉. We first
construct an (Lmin, 0, e)-trace maximal reconstruction code of
ΣnLLmin , where the length-Lmin suffix of every codeword is
fixed. This can be achieved by using Construction D with
messages m = m0 ◦ m1 ◦ · · · ◦ mnL−2 ◦ 0m′−d, where
mi ∈ Σm′−d for i ∈ [nL − 1]. Then we truncate it to be
of length n. In this way, we get a code of rate

⌊n/Lmin⌋(Lmin − (I + rI + K + ℓ + d))
n

⩾

(
1− Lmin − 1

n

)(
1− I + rI + K + ℓ + d

Lmin

)
= 1− 1

a
−O

(
1√

log n

)
.

For (Lmin, 0, e, τ)-erroneous trace reconstruction, we pro-
ceed similarly as in [2, Construction B]. We first use an
(nL, 2(m′−d)(nL−r), 2τ + 1)2m′−d code to encode a message
m = m0◦m1◦· · ·◦mnL−r−1 ∈ Σ(m′−d)(nL−r) to a sequence
m̄ = m̄0 ◦ m̄1 ◦ · · · ◦ m̄nL−1 ∈ Σ(m′−d)nL . Then we use
the encoder outlined in Construction D to get a codeword w.
We note that Construction B in [2] only concerns errors before
sequencing, while our construction incorporates errors both
before and after sequencing.

V. MULTI-STRAND RECONSTRUCTION

In this section, instead of reconstructing a single sequence,
we consider the problem of reconstructing a multiset of k
sequences of length n from the union of their traces. The
following construction of multi-strand (Lmin, Lover, e)-trace
maximal reconstruction codes is adapted from [25, Construc-
tion C].

Construction E: Let N ≜ k(n−Lover)+Lover. We take an
(Lmin, Lover, e)-trace maximal reconstruction code C of ΣN .
For each codeword x ∈ C, let

S(x) ≜ {x0+[n],xn−Lover+[n],x2(n−Lover)+[n], . . . ,

x(k−1)(n−Lover)+[n]} ∈ Xn,k.

The code we construct is D, defined as,

D ≜ {S(x) : x ∈ C} ⊆ Xn,k.

■
Lemma 32: Let Lmin > Lover. Then the code D from Con-

struction E is a multi-strand (Lmin, Lover, e)-trace maximal
reconstruction code of Xn,k.

Proof: It is easy to see that an (Lmin, Lover, e)-erroneous
trace Y of S(x) is also an (Lmin, Lover, e)-erroneous trace of x.
Since C is a trace maximal reconstruction code, then for each
y ∈ Y, we can determine its location in x. Hence, we can
determine the index i such that y ∈ Yi and determine the
location of y in xi.

Lemma 33 ([25, Lemma 16]): log|Xn,k| = k(n −
log(k/e)) + o(k)12.

12We use e to denote exp(1) in order to avoid confusion with e which
denotes the number of errors.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7772 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Theorem 34: Suppose that lim supn→∞ log k/n < 1,
Lover = ⌈log(nk)⌉ + (24e + 13)⌈log⌈log(nk)⌉⌉ + (4e +
1)⌈log(4e + 1)⌉+ 20e + 5 and Lmin > Lover. For sufficiently
large n, there is a multi-strand (Lmin, Lover, e)-trace maximal
reconstruction code of Xn,k whose rate is 1− o(1).

Proof: Let N = k(n − Lover) + Lover. Then Lover ⩾
⌈log N⌉ + (24e + 13)⌈log⌈log N⌉⌉ + (4e + 1)⌈log(4e +
1)⌉ + 20e + 5. According to Corollary 22, there is an
(Lmin, Lover, e)-trace maximal reconstruction code C of Σn

whose rate is 1 − o(1). Applying Construction E with this
code, we obtain a multi-strand (Lmin, Lover, e)-trace maximal
reconstruction code D of Xn,k with |D| = |C|. Note that

N

log|Xn,k|
=

k(n− Lover) + Lover

k(n− log(k/e)) + o(k)

=
n− Lover + Lover/k

n− log k + O(1)

= 1− Lover − log k − Lover/k + O(1)
n− log k + O(1)

= 1−O

(
log n

n

)
.

Hence, the code rate is

R(D) =
log|D|

log|Xn,k|
=

log|C|
N

N

log|Xn,k|

= (1− o(1))
(

1−O

(
log n

n

))
= 1− o(1).

Now, we consider the case of Lover ⩽ log(nk). When
(Lmin, Lover) = (ℓ, ℓ−1), it has been shown in [25, Corollary
17] that if ℓ = log(nk) − ω(1), then the code rate of any
multi-strand (Lmin, Lover)-trace reconstruction code is o(1).

In the following, we assume that Lmin = a log(nk) and
Lover = γLmin where a > 0 and 0 ⩽ aγ ⩽ 1. Let

L∗ ≜ (n− Lover) mod (Lmin − Lover).

We first present some upper bounds on the rate of multi-
strand (Lmin, Lover)-trace reconstruction codes with Lover ⩽
log(nk): Lemma 36 and Lemma 39 address the cases of
Lmin = ⌈a log(nk)⌉ with a > 1 and a < 1, respectively,
while Corollary 37 and Lemma 38 handle the case of Lmin =
log(nk) + o(log(nk)).

Lemma 35 ([25, In the proof of Lemma 8]): For all v ⩾
u ⩾ 0, log

(
u+v

u

)
< u(2 log e + log v − log u).

Lemma 36: Suppose that Lmin = ⌈a log(nk)⌉ and Lover =
⌈γLmin⌉ where a > 1 and 0 ⩽ aγ ⩽ 1. Let C be a multi-
strand (Lmin, Lover)-trace reconstruction code of Xn,k. Then
it holds that

log|C|
nk

⩽

(
1− 1/a

1− γ

)(
1− γ

Lmin

n

)
+

1/a− γ

1− γ
· L

∗

n
+ O

(
log n

n

)
.

In particular, if log k = o(n), then the code rate satisfies

R(C) ⩽
1− 1/a

1− γ
+ o(1),

and if log k = κn + o(n) where 0 < κ < 1 is a real constant,
then the code rate satisfies

R(C) ⩽
1− aγκ

1− κ

(
1− 1/a

1− γ

)
+

1/a− γ

(1− γ)(1− κ)
· L

∗

n
+ o(1).

Proof: For a sequence x ∈ Σn, let

Ŷ(x) ≜

{
xi(Lmin−Lover)+[Lmin] :

i ∈
[
n− Lover − L∗

Lmin − Lover
− 1
]}

∪ {x[n− Lmin − L∗, n− 1]}.

For a codeword S = {x0,x1, . . . ,xk−1} ∈ C, let

Ŷ(S) ≜
k−1⋃
i=0

Ŷ(xi).

Then Ŷ(S) is an (Lmin, Lover)-trace of S.
Since C is an (Lmin, Lover)-trace reconstruction code, nec-

essarily Ŷ(S) ̸= Ŷ(S′) for any two different codewords S and
S′. It follows that

|C| ⩽
∣∣∣{Ŷ(S) : S ∈ C

}∣∣∣.
Note that Ŷ(S) is a multiset consisting of k n−Lmin−L∗

Lmin−Lover

sequences of ΣLmin and k sequences of ΣLmin+L∗ . Hence,

|C| ⩽
(

k
(

n−Lmin−L∗

Lmin−Lover

)
+ 2Lmin − 1

2Lmin − 1

)
·
(

k + 2Lmin+L∗ − 1
2Lmin+L∗ − 1

)
.

(7)

We denote the first binomial coefficient in (7) as A and the
second one as B. Since 2Lmin ⩾ (nk)a > k(n−Lmin)

Lmin−Lover
and

2Lmin+L∗ > k, according to Lemma 35, we have that

log A

nk

<
k

nk

(
n− Lmin − L∗

Lmin − Lover

)
×
(

2 log e + Lmin − log
(

k(n− Lmin − L∗)
Lmin − Lover

))
=

1− (Lmin + L∗)/n

Lmin − Lover
(Lmin − log(nk) + O(log log(nk)))

=
(

1− Lmin + L∗

n

)
Lmin − log(nk)
Lmin − Lover

+ O

(
log log(nk)

log(nk)

)
=

1− 1/a

1− γ

(
1− Lmin + L∗

n

)
+ O

(
log log(nk)

log(nk)

)
, (8)

and
log B

nk
<

1
n

(2 log e + Lmin + L∗ − log k)

=
(1− 1/a)Lmin

n
+

L∗

n
+ O

(
log n

n

)
. (9)

Combining (7), (8) and (9), we have that

log|C|
nk

⩽

(
1− 1/a

1− γ

)(
1− γ

Lmin

n

)
+

1/a− γ

1− γ
· L

∗

n
+ O

(
log n

n

)
. (10)

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7773

If log k = o(n), then Lmin/n = a log(nk)/n = o(1) and
L∗/n < Lmin/n = o(1). It follows that

log|C|
nk

⩽

(
1− 1/a

1− γ

)
(1− o(1)) + o(1) =

1− 1/a

1− γ
+ o(1).

Recall that log|Xn,k| = k(n − log(k/e)) + o(k). Hence, the
code rate

R(C) =
log|C|

log|Xn,k|
=

log|C|
nk

· nk

k(n− log(k/e)) + o(k)

⩽

(
1− 1/a

1− γ
+ o(1)

)
1

1− o(1)
=

1− 1/a

1− γ
+ o(1).

If log k = κn + o(n) where 0 < κ < 1 is a real constant,
then

nk

log|Xn,k|
=

nk

k(n− log(k/e)) + o(k)

=
1

1− κ− o(1)
=

1
1− κ

+ o(1).

Therefore, it follows from (10) that the code rate satisfies

R(C)

=
log|C|

log|Xn,k|
=

log|C|
nk

nk

log|Xn,k|

⩽

((
1− 1/a

1− γ

)
(1− aγκ) +

1/a− γ

1− γ

L∗

n
+ O

(
log n

n

))
×
(

1
1− κ

−O

(
1
n

))
=

1− aγκ

1− κ

(
1− 1/a

1− γ

)
+

1/a− γ

(1− γ)(1− κ)
· L

∗

n
+ o(1).

We note that Lemma 36 generalizes [25, Lemma 8], which
focuses on the case of k = 1 and states that the rate of
any single-strand (Lmin, Lover)-trace reconstruction code is at
most 1−1/a

1−γ + O
(

log log n
log n

)
.

Corollary 37: Suppose that log k = o(n). Let C be a
multi-strand (Lmin, Lover)-trace reconstruction code of Xn,k.
If Lmin ⩽ log(nk) + o(log(nk)), then R(C) = o(1).

Proof: Since C is also a multi-strand (⌈a log(nk)⌉, 0)-trace
reconstruction code for any a > 1, it follows from Lemma 36
that R(C) ⩽ 1−1/a+o(1) for all a > 1. Hence, R(C) = o(1).

Lemma 38: Suppose that k ⩽ 2n. Let C be a multi-strand
(Lmin, Lover)-trace reconstruction code of Xn,k. If Lmin ⩽
log(nk) + o(log(nk)) and Lmin − Lover = Θ(log(nk)), then
R(C) = o(1).

Proof: It suffices to consider the case of Lmin = log(nk)+
o(log(nk)). The proof is similar to that of Lemma 36. In this
case, we denote

Ŷ(x) ≜

{
xi(Lmin−Lover)+[Lmin] : i ∈

[
n− Lover − L∗

Lmin − Lover

]}
∪ {x[n− Lmin, n− 1]}.

Since Lmin − L∗ ⩾ Lover, each Ŷ(S) =
⋃k−1

i=0 Ŷ(xi) is still
an (Lmin, Lover)-trace, and it consists of k

(
n−Lover−L∗

Lmin−Lover
+ 1
)

sequences of ΣLmin . Hence, we have that

|C| ⩽
(k(n+Lmin−2Lover−L∗)

Lmin−Lover
+ 2Lmin − 1

2Lmin − 1

)
.

Since Lmin = log(nk) + o(log(nk)), we have

k(n + Lmin − 2Lover − L∗)
Lmin − Lover

< 2Lmin .

Using the inequality in Lemma 35 and noting that n+Lmin−
2Lover − L∗ ⩾ n− Lover, we get that

1
nk

log
(k(n+Lmin−2Lover−L∗)

Lmin−Lover
+ 2Lmin − 1

2Lmin − 1

)
⩽

k(n + Lmin − 2Lover − L∗)
(Lmin − Lover)nk

×
(

2 log e + Lmin − log
(

k(n− Lover)
Lmin − Lover

))
. (11)

Since Lmin ⩽ log(nk) + o(log(nk)) and Lmin − Lover =
Θ(log(nk)), we have that Lover ⩽ c1 log(nk) ⩽ c2n for some
constants c1, c2 < 1. It follows that log(k(n − Lover)) =
log(nk)−O(1). Hence,

2 log e + Lmin − log
(

k(n− Lover)
Lmin − Lover

)
⩽ 2 log e + Lmin − log(nk) + O(log log(nk))
= o(log(nk)).

Continuing (11), we have that

1
nk

log
(k(n+Lmin−2Lover−L∗)

Lmin−Lover
+ 2Lmin − 1

2Lmin − 1

)
⩽

(
1 +

Lmin − 2Lover − L∗

n

)
o(log(nk))

Lmin − Lover
= o(1).

Hence,

R(C) =
log|C|

log|Xn,k|
=

log|C|
nk

· nk

log|Xn,k|
= o(1).

Remark: We note that the condition Lmin − Lover =
Θ(log(nk)) in Lemma 38 cannot be removed. A counterex-
ample is the (Lmin, Lover, e)-trace reconstruction codes of rate
1 − o(1) in Theorem 34, where Lover = ⌈log nk⌉ + (24e +
13)⌈log⌈log nk⌉⌉ + (4e + 1)⌈log(4e + 1)⌉ + 20e + 5 and
Lmin ⩾ Lover + 1.

Lemma 39: Suppose that k ⩽ 2n. Let C be a multi-strand
(Lmin, Lover)-trace reconstruction code of Xn,k. If Lmin =
⌈a log(nk)⌉ for some a < 1, then R(C) = o(1).

Proof: The proof is similar to that of Lemma 36. In this
case, we denote

Ŷ(x) ≜ {x0+[Lmin],x1+[Lmin], . . . ,xn−Lmin+[Lmin]}.

Then each Ŷ(S) =
⋃k−1

i=0 Ŷ(xi) is still an (Lmin, Lover)-trace,
and it consists of k(n− Lmin + 1)) sequences of ΣLmin , and
so,

|C| ⩽
(

k(n− Lmin + 1) + 2Lmin − 1
2Lmin − 1

)
.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7774 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

We observe that k(n−Lmin +1) ⩾ k(n−a log n−a log k) ⩾
k((1− aκ)n− a log n) ⩾ cnk for some constant c and
2Lmin ⩽ 2(nk)a. Since a < 1, when n is sufficiently large,
we have that k(n− Lmin + 1) ⩾ 2Lmin . Using the inequality
in Lemma 35, we get that

1
nk

log
(

k(n− Lmin + 1) + 2Lmin − 1
2Lmin − 1

)
⩽

2Lmin

nk
(2 log e + log(k(n− Lmin + 1))− Lmin). (12)

Noting that kn > k(n − Lmin + 1) ⩾ cnk, we have that
log(k(n− Lmin + 1)) = log(nk)−O(1). Continuing (12),

1
nk

log
(

k(n− Lmin + 1) + 2Lmin − 1
2Lmin − 1

)
⩽

2Lmin

nk
(2 log e + log(k(n− Lmin + 1))− Lmin)

⩽
2Lmin

nk
((1− a) log(nk) + O(1))

=
(1− a) log(nk) + O(1)

(nk)1−a
= o(1).

Hence,

R(C) =
log|C|

log|Xn,k|
=

log|C|
nk

· nk

log|Xn,k|
= o(1).

Note that a multistrand (Lmin, Lover, e)-trace maximal
reconstruction code is also a multistrand (Lmin, Lover)-trace
reconstruction code. Hence, the upper bounds in Lemmas 36–
39 also work for multistrand (Lmin, Lover, e)-trace maximal
reconstruction codes.

In the following, we study the lower bounds.
Theorem 40: Let Lmin = ⌈a log(nk)⌉ and Lover =

⌈γLmin⌉, where a > 1 and 0 ⩽ aγ ⩽ 1. For all sufficiently
large n,

1) if log k = o(n), then there is a multi-stand
(Lmin, Lover, e)-trace maximal reconstruction code D of
Xn,k of rate

R(D) =
1− 1/a

1− γ
− o(1);

2) if log k = κn + o(n) where 0 < κ < 1 is a real
constant, then there is a multi-strand (Lmin, Lover, e)-
trace maximal reconstruction code D of Xn,k of rate

R(D) =
1− aγκ

1− κ

(
1− 1/a

1− γ

)
− o(1).

Proof: Let N = k(n − Lover) + Lover. Then Lmin ⩾
⌈a log N⌉. According to Theorem 28 and Theorem 31, there
is an (Lmin, Lover, e)-trace maximal reconstruction code C of
ΣN whose rate is 1−1/a

1−γ − o(1). Applying Construction E
with this code, we obtain a multi-strand (Lmin, Lover, e)-trace
maximal reconstruction code D of Xn,k with |D| = |C|. Note
that

N

log|Xn,k|
=

k(n− Lover) + Lover

k(n− log(k/e)) + o(k)

=
n− Lover + Lover/k

n− log k + O(1)

= 1− Lover − log k − Lover/k + O(1)
n− log k + O(1)

= 1− (aγ − 1) log k + O(log n)
n− log k + o(1)

.

If log k = o(n), then N/log|Xn,k| = 1 − o(1), and so,
we have that

R(D) =
(

1− 1/a

1− γ
− o(1)

)
(1− o(1)) =

1− 1/a

1− γ
− o(1).

If log k = κn + o(n), then

N

log|Xn,k|
= 1− (aγ − 1)κ

1− κ
− o(1) =

1− aγκ

1− κ
− o(1),

and so, we have that

R(D) =
(

1− 1/a

1− γ
− o(1)

)(
1− aγκ

1− κ
− o(1)

)
=

1− aγκ

1− κ

(
1− 1/a

1− γ

)
− o(1).

When log k = o(n) or when log k = κn + o(n) and L∗ =
o(n), the lower bounds in Theorem 40 asymptotically achieve
the upper bound in Lemma 36.

Next, we show that when log k = κn+o(n) and Lover = 0,
if L∗ ⩽ Lmin − (1 + ϵ) log(nk) = (a − 1 − ϵ) log(nk) for a
positive ϵ which is independent of n, then the upper bound in
Lemma 36 still can be achieved.

Construction F: Suppose that Lmin = ⌈a log(nk)⌉ and
Lover = 0. Denote n̄ ≜ n−L∗

Lmin
and K ≜ ⌈

√
log(nk)⌉.

Let I ≜ ⌈log(n̄k)⌉ and rI ≜ ⌈(3d + 8) log I⌉ where d =
2e+1. Then according to Theorem 17, there is a collection of
(3⌈ 32 log(I +rI)⌉+ℓ, d)-WWL sequences c0, c1, . . . , c2I−1 ∈
ΣI+rI such that the concatenation c0 ◦ c1 ◦ · · · ◦ c2I−1 is an
(I + rI , d)-SD sequence.

Denote n′ ≜ n̄(Lmin− (I + rI +K + ℓ))+L∗. Let EWWL be
the encoder in [14, Algorithm 2] which can encode sequences
of Σn′−d into (⌈K/4⌉, d)-WWL sequences13 of Σn′ . For a
message m = m0 ◦m1 ◦ · · · ◦mk−1 where mi ∈ Σn′−d for
i ∈ [k], let vi ≜ EWWL(mi) for all i ∈ [k]. We partition each
vi into n̄ + 1 substrings as follows:

vi = vi,0 ◦ vi,1 ◦ · · ·vi,n̄−1 ◦ vi,n̄

where |vi,j | = Lmin − (I + rI + K + ℓ) for j ∈ [n̄] and
|vi,n̄| = L∗.

Denote p ≜ 0K ◦u where u is a d-auto-cyclic sequence of
length ℓ. For each i ∈ [k], let

wi = vi,0 ◦ p ◦ cin̄ ◦ vi,1 ◦ p ◦ cin̄+1 ◦ · · ·
◦ vi,n̄−1 ◦ p ◦ c(i+1)n̄−1 ◦ vi,n̄.

Output {w0,w1, . . . ,wk−1} as the codeword which
encodes the message {m0,m1, . . . ,mk−1}. The image of the
mapping described here is the constructed code. ■

13Note that n′ = Θ(n) and K =
√

log(nk) = Θ(
√

n). Hence, K/4 ≫
F(n′, d) = log n′+(d−1) log log n′+O(1). Then according to Lemma 35
in [14], the encoder EWWL does work.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

WEI et al.: RECONSTRUCTION FROM NOISY SUBSTRINGS 7775

Lemma 41: Suppose that L∗ ⩽ Lmin−(1+ϵ) log(nk) for a
positive ϵ which is independent of n. Then the code obtained
in Construction F is a multi-strand (Lmin, 0, e)-trace maximal
reconstruction code of Xn,k.

Proof: [Sketch of proof] Let y be a length-Lmin substring
of wi for some wi ∈ {w0,w1, . . . ,wk−1}. Note that L∗ ⩽
Lmin− (1 + ϵ) log(nk) and |p ◦ cj | = K + ℓ + I + rI < (1 +
ϵ) log(nk). Then y must contain either a copy of p ◦cin̄+j or
a suffix of p◦cin̄+j together with a prefix of p◦cin̄+j+1. Note
that vi,j’s and ci’s are (K/4, d)-WWL sequences and each has
length Θ(log(nk)), except vi,n̄’s which are of length L∗. Since
K = ⌈

√
log(nk)⌉, it can be checked that the concatenations

cin̄+j−1 ◦ vi,j’s satisfy the conditions in Lemma 25. Thus,
even if y suffers from e errors, we can still locate the marker
p in y. Then we can run the locating algorithm of the robust
positioning sequence c0 ◦ c1 ◦ · · · ◦ c2I−1 to determine the
index in̄ + j or in̄ + j + 1, and hence the location of y.

Theorem 42: Suppose that log k = κn + o(n), Lmin =
⌈a log(nk)⌉ and Lover = 0, where 0 < κ < 1 and a > 1.
If L∗ ⩽ Lmin− (1+ ϵ) log(nk) for a fixed positive ϵ which is
independent of n, then there is a multi-strand (Lmin, 0, e)-trace
maximal reconstruction code which has code rate

1− 1/a

1− κ
+

1
a(1− κ)

· L
∗

n
− o(1)

Proof: Note that

n′ − d

n

=
n̄(Lmin − (I + rI + K + ℓ)) + L∗ − d

n

=
n− n̄(I + rI + K + ℓ)− d

n

= 1− 1− L∗/n

Lmin
(I + rI + K + ℓ)−O

(
1
n

)
= 1−

(
1− L∗

n

)
log(nk) + O(

√
log(nk))

a log(nk)
−O

(
1
n

)
= 1− 1

a
+

L∗

an
−O

(
1√

log(nk)

)
.

Hence, the code rate is

(n′ − d)k
log|Xn,k|

=
(n′ − d)k

nk

nk

log|Xn,k|

=
(

1− 1
a

+
L∗

an
− o(1)

)(
1

1− κ
− o(1)

)
=

1− 1/a

1− κ
+

1
a(1− κ)

L∗

n
− o(1).

Finally, we note that the multi-strand (Lmin, 0, e)-trace
reconstruction code in Construction F only guarantees recov-
ering message from reliable (Lmin, 0, e)-erroneous traces, the
occurrence of which might be rare since Lover = 0 and each
symbol is usually included in a small number of substrings in
Y. Nevertheless, we can use a (k, 2(n′−d)(k−ro), 2τ + 1)2n′−d

code to encode the message, like what we have done in
Construction C, so that even if there are in total τ errors in
Y, we still can decode the message. The rate of this trace

reconstruction code is(
1− ro

k

)(1− 1/a

1− κ
+

1
a(1− κ)

· L
∗

n

)
− o(1).

REFERENCES

[1] J. Acharya, H. Das, O. Milenkovic, A. Orlitsky, and S. Pan, “String
reconstruction from substring compositions,” SIAM J. Discrete Math.,
vol. 29, no. 3, pp. 1340–1371, 2015.

[2] D. Bar-Lev, S. Marcovich, E. Yaakobi, and Y. Yehezkeally, “Adversarial
torn-paper codes,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Espoo,
Finland, Jun. 2022, pp. 2934–2939.

[3] T. Batu, S. Kannan, S. Khanna, and A. McGregor, “Reconstructing
strings from random traces,” in Proc. ACM-SIAM Symp. Discrete Algo-
rithms (SODA), New Orleans, LA, USA, Jan. 2004, pp. 910–918.

[4] R. Berkowitz and S. Kopparty, “Robust positioning patterns,” in Proc.
27th Annu. ACM-SIAM Symp. Discrete Algorithms, Arlington, VA, USA,
2016, pp. 1937–1951.

[5] A. M. Bruckstein, T. Etzion, R. Giryes, N. Gordon, R. J. Holt, and
D. Shuldiner, “Simple and robust binary self-location patterns,” IEEE
Trans. Inf. Theory, vol. 58, no. 7, pp. 4884–4889, Jul. 2012.

[6] Y. M. Chee, D. T. Dao, H. M. Kiah, S. Ling, and H. Wei, “Robust
positioning patterns with low redundancy,” SIAM J. Comput., vol. 49,
no. 2, pp. 284–317, Jan. 2020.

[7] D. T. Dao, H. Mao Kiah, and H. Wei, “Maximum length of robust
positioning sequences,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Los Angeles, CA, USA, Jun. 2020, pp. 108–113.

[8] M. Dudík and L. J. Schulman, “Reconstruction from subsequences,”
J. Combinat. Theory, A, vol. 103, no. 2, pp. 337–348, 2003.

[9] O. Elishco, R. Gabrys, E. Yaakobi, and M. Médard, “Repeat-free codes,”
IEEE Trans. Inf. Theory, vol. 67, no. 9, pp. 5749–5764, Sep. 2021.

[10] R. Gabrys and O. Milenkovic, “Unique reconstruction of coded strings
from multiset substring spectra,” IEEE Trans. Inf. Theory, vol. 65, no. 12,
pp. 7682–7696, Dec. 2019.

[11] H. M. Kiah, G. J. Puleo, and O. Milenkovic, “Codes for DNA sequence
profiles,” IEEE Trans. Inf. Theory, vol. 62, no. 6, pp. 3125–3146,
Jun. 2016.

[12] V. I. Levenshtein, “Efficient reconstruction of sequences from their
subsequences or supersequences,” J. Combinat. Theory A, vol. 93, no. 2,
pp. 310–332, 2001.

[13] V. I. Levenshtein, “Efficient reconstruction of sequences,” IEEE Trans.
Inf. Theory, vol. 47, no. 1, pp. 2–22, Jan. 2001.

[14] M. Levy and E. Yaakobi, “Mutually uncorrelated codes for DNA stor-
age,” IEEE Trans. Inf. Theory, vol. 65, no. 6, pp. 3671–3691, Jun. 2019.

[15] B. Manvel, A. Meyerowitz, A. Schwenk, K. Smith, and P. Stockmeyer,
“Reconstruction of sequences,” Discrete Math., vol. 94, no. 3,
pp. 209–219, 1991.

[16] S. Marcovich and E. Yaakobi, “Reconstruction of strings from their
substrings spectrum,” IEEE Trans. Inf. Theory, vol. 67, no. 7,
pp. 4369–4384, Jul. 2021.

[17] S. Nassirpour, I. Shomorony, and A. Vahid, “Reassembly codes for the
chop-and-shuffle channel,” 2022, arXiv:2201.03590.

[18] S. Pattabiraman, R. Gabrys, and O. Milenkovic, “Coding for polymer-
based data storage,” IEEE Trans. Inf. Theory, vol. 69, no. 8,
pp. 4812–4836, Aug. 2023.

[19] A. N. Ravi, A. Vahid, and I. Shomorony, “Capacity of the torn paper
channel with lost pieces,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT),
Melbourne, VIC, Australia, Jul. 2021, pp. 1937–1942.

[20] A. D. Scott, “Reconstructing sequences,” Discrete Math., vol. 175,
nos. 1–3, pp. 231–238, 1997.

[21] I. Shomorony and A. Vahid, “Torn-paper coding,” IEEE Trans. Inf.
Theory, vol. 67, no. 12, pp. 7904–7913, Dec. 2021.

[22] E. Ukkonen, “Approximate string-matching with q-grams and maximal
matches,” Theor. Comput. Sci., vol. 92, no. 1, pp. 191–211, 1992.

[23] C. Wang, J. Sima, and N. Raviv, “Break-resilient codes for forensic 3D
fingerprinting,” 2023, arXiv:2310.03897.

[24] H. Wei, “Nearly optimal robust positioning patterns,” IEEE Trans. Inf.
Theory, vol. 68, no. 1, pp. 193–203, Jan. 2022.

[25] Y. Yehezkeally, D. Bar-Lev, S. Marcovich, and E. Yaakobi, “Generalized
unique reconstruction from substrings,” IEEE Trans. Inf. Theory, vol. 69,
no. 9, pp. 5648–5659, Sep. 2023.

[26] Y. Yehezkeally and N. Polyanskii, “On codes for the noisy substring
channel,” 2021, arXiv:2102.01412.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

7776 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 70, NO. 11, NOVEMBER 2024

Hengjia Wei received the Ph.D. degree in applied mathematics from Zhejiang
University, Hangzhou, China, in 2014.

He was a Post-Doctoral Fellow with Capital Normal University, Beijing,
China; a Research Fellow with the School of Physical and Mathematical
Sciences, Nanyang Technological University, Singapore; and a Post-Doctoral
Fellow with the School of Electrical and Computer Engineering, Ben-Gurion
University of the Negev, Israel. He is currently a Professor with the School of
Mathematics and Statistics, Xi’an Jiaotong University, Xi’an, China. He is also
an Associate Researcher with the Peng Cheng Laboratory, Shenzhen, China.
His research interests include combinatorial design theory, coding theory, and
their intersections.

Dr. Wei received the 2017 Kirkman Medal from the Institute of Combina-
torics and its Applications.

Moshe Schwartz (Fellow, IEEE) received the B.A. (summa cum laude),
M.Sc., and Ph.D. degrees from the Computer Science Department, Technion—
Israel Institute of Technology, Haifa, Israel, in 1997, 1998, and 2004,
respectively.

He was a Fulbright Post-Doctoral Researcher with the Department of
Electrical and Computer Engineering, University of California San Diego; and
a Post-Doctoral Researcher with the Department of Electrical Engineering,
California Institute of Technology. While on sabbatical 2012–2014, he was
a Visiting Scientist with Massachusetts Institute of Technology (MIT). He is
currently a Professor with the School of Electrical and Computer Engineering,
Ben-Gurion University of the Negev, Israel (on a leave of absence), and the
Department of Electrical and Computer Engineering, McMaster University,
Canada. His research interests include algebraic coding, combinatorial struc-
tures, and digital sequences.

Prof. Schwartz received the 2009 IEEE Communications Society Best
Paper Award in Signal Processing and Coding for Data Storage and
the 2020 NVMW Persistent Impact Prize. He served as an Associate Editor
for Coding Techniques and Coding Theory of IEEE TRANSACTIONS ON
INFORMATION THEORY from 2014 to 2021. Since 2021, he has been
an Area Editor for Coding and Decoding of IEEE TRANSACTIONS ON
INFORMATION THEORY. He has been an Editorial Board Member of Journal
of Combinatorial Theory, Series A, since 2021.

Gennian Ge received the M.S. and Ph.D. degrees in mathematics from Suzhou
University, Suzhou, Jiangsu, China, in 1993 and 1996, respectively. After
that, he became a member of Suzhou University. He was a Post-Doctoral
Fellow with the Department of Computer Science, Concordia University,
Montreal, QC, Canada, from September 2001 to August 2002; and a Visiting
Assistant Professor with the Department of Computer Science, University
of Vermont, Burlington, VT, USA, from September 2002 to February 2004.
He was a Full Professor with the Department of Mathematics, Zhejiang
University, Hangzhou, Zhejiang, China, from March 2004 to February 2013.
Currently, he is a Full Professor with the School of Mathematical Sciences,
Capital Normal University, Beijing, China. His research interests include
combinatorics, coding theory, information security, and their interactions.
He received the 2006 Hall Medal from the Institute of Combinatorics and its
Applications. He is on the editorial board of Journal of Combinatorial Theory,
Series A, IEEE TRANSACTIONS ON INFORMATION THEORY, Designs Codes
and Cryptography, Journal of Combinatorial Designs, Journal of Algebraic
Combinatorics, Science China Mathematics, and Applied Mathematics−A
Journal of Chinese Universities.

Authorized licensed use limited to: McMaster University. Downloaded on October 27,2024 at 14:26:10 UTC from IEEE Xplore. Restrictions apply.

