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Abstract— Linearized Reed-Solomon (LRS) codes are eval-
uation codes based on skew polynomials. They achieve the
Singleton bound in the sum-rank metric and therefore are known
as maximum sum-rank distance (MSRD) codes. In this work,
we give necessary and sufficient conditions for the existence
of MSRD codes with a support-constrained generator matrix.
The conditions on the support constraints are identical to those
for MDS codes and MRD codes. The required field size for an
[n, k]qm LRS codes with support-constrained generator matrix
is q ≥ ℓ + 1 and m ≥ maxl∈[ℓ]{k − 1 + logq k, nl}, where
ℓ is the number of blocks and nl is the size of the l-th block.
The special cases of the result coincide with the known results
for Reed-Solomon codes and Gabidulin codes. For the support
constraints that do not satisfy the necessary conditions, we derive
the maximum sum-rank distance of a code whose generator
matrix fulfills the constraints. Such a code can be constructed
from a subcode of an LRS code with a sufficiently large field size.
Moreover, as an application in network coding, the conditions
can be used as constraints in an integer programming problem
to design distributed LRS codes for a distributed multi-source
network.

Index Terms— GM-MDS, sum-rank metric, support con-
straints, linearized Reed-Solomon codes, multi-source network
coding.

I. INTRODUCTION

DESIGNING error-correcting codes with support-
constrained generator matrices is motivated by its
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application in weakly secure network coding for wireless
cooperative data exchange [1], [2], [3], [4], where each node
stores a subset of all messages and the nodes communicate
via broadcast transmissions to disseminate the messages in the
presence of an eavesdropper. It is closely related to designing
codes with sparse and balanced generator matrices in wireless
sensor networks [5] and multiple access networks [6], [7],
[8], motivated by the balanced computation load during the
encoding process while multiplying such a matrix [9], [10].
From both, the theoretical and the practical point of view,
the objective is to design codes with support-constrained
generator matrix achieving the largest possible minimum
distance. The support that we consider throughout this work
is the Hamming support. In the Hamming metric, research
focused on proving necessary and sufficient conditions for
the existence of MDS codes fulfilling the support constraints.
It was first conjectured in [11] (referred to as the GM–MDS
conjecture), further studied in [12] and [13], and finally
proven by Yildiz and Hassibi [14] and independently by
Lovett [15].

Theorem 1 (GM–MDS Condition [14], [15]): Let
Z1, . . . , Zk ⊆ {1, . . . , n} be such that for any nonempty
Ω ⊆ {1, . . . , k}, ∣∣∣∣∣⋂

i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ k . (1)

Then, for any prime power q ≥ n + k − 1, there exists
an [n, k]q generalized Reed–Solomon (GRS) code with a
generator matrix G ∈ Fk×n

q fulfilling the support constraint:

Gij = 0 , ∀i ∈ {1, . . . , k}, ∀j ∈ Zi . (2)

Moreover, if an MDS code has a generator matrix fulfilling
the support constraint (2), then the sets Zi’s satisfy (1).

Yildiz and Hassibi adapted the approach to Gabidulin codes
in [16] and derived the following GM–MRD condition.

Theorem 2 (GM–MRD Condition [16, Theorem 1]): Let
Z1, . . . , Zk ⊆ {1, . . . , n} fulfill (1) for any nonempty
Ω ⊆ {1, . . . , k}. Then, for any prime power q and integer
m ≥ max{n, k−1+logq k}, there exists an [n, k]qm Gabidulin
code with a generator matrix G ∈ Fk×n

qm fulfilling (2).

A. Related Work on Support-Constrained Generator Matrices

Other variants of MDS codes with a support-constrained
generator matrix have been studied. Apart from the condition
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in (1), the work in [17] considers the following two special
cases of conditions on Zi’s:

1) |
⋂s

i=1 Zi| = k − s for all s = 1, . . . , k. Note that when
s = k−1, it is required that

∣∣∣⋂k−1
i=1 Zi

∣∣∣ = 1, which means
that there is at least one column of the generator matrix
G containing k − 1 zeros. For this case an [n, k]q RS
code generated by G exists if q ≥ n.

2) |Zi| ≤ i−1 for all i = 1, . . . , k. Note that when i ≤ k−1,
|Zi| ≤ k − 2, which implies less zeros are allowed in G
than (1). For this case an [n, k]q RS code generated by
G exists if q ≥ n + 1.

In [18] and [19], the existence of an MDS code with a sparse
and balanced generator matrix G was studied. “Sparse” means
that each row of G has the maximum number of zeros, i.e.,
k−1 zeros, and “balanced” means that the number of zeros in
any two columns differs by at most one, i.e., the weight of each
column is either ⌈k(n− k + 1)/n⌉ or ⌊k(n− k + 1)/n⌋. It is
shown in [18] that for any 1 ≤ k ≤ n, if q ≥ n+⌈k(k − 1)/n⌉,
then there exists an [n, k]q generalized RS code with a sparse
and balanced generator matrix. More recently, [19] showed
that for any k ≥ 3, k

n ≥ 1
2 , and q ≥ n − 1, there exists an

[n, k]q MDS code with a sparse and balanced generator matrix.
It was shown in [20] that for any q ≥ n, every [n, k]q GRS

code has a systematic generator matrix Gsys =
(
I|A

)
where

A is a (generalized) Cauchy matrix, and conversely, any matrix
in the form of

(
I|A

)
where A is a (generalized) Cauchy

matrix generates a GRS code. This implies the following
result.

Proposition 1: Let Z1, . . . , Zk ⊆ {1, . . . , n} be such that
for any nonempty Ω ⊆ {1, . . . , k},∣∣∣∣∣⋂

i∈Ω

Zi

∣∣∣∣∣+ |Ω| = k . (3)

Then, for any prime power q ≥ n, there exists an [n, k]q GRS
with a generator matrix G fulfilling (2).

Proof: The goal is to show that for any G ∈ Fk×n
q

with zeros fulfilling (3), there is k × k submatrix forming
a generalized permutation matrix P

(i.e., a permutation matrix where the ones can be replaced
by any nonzero element in the field). Denote CΩ :=

⋂
i∈Ω Zi.

Note that CΩ ⊂ [n] and |CΩ| ≤ k.
• For any Ω such that |Ω| = k, |CΩ| = 0. This means there

is no zero column in G.
• For any Ω such that |Ω| = k − 1, |CΩ| = 1. This means

there is at least one column in G has k−1 zeros. Assume
for some Ω1 ̸= Ω2 of size k − 1 , CΩ1 = CΩ2 . Then for
Ω = Ω1 ∪Ω2 with |Ω| = k, |CΩ| = 1, which contradicts
the case above. Hence, we conclude that for every distinct
Ω of size k − 1, there is a distinct CΩ of size one, i.e.,
a unique column with k− 1 zeros. There are

(
k

k−1

)
such

Ω, therefore, there are k distinct columns with k−1 zeros.
Now we will show that for any two columns with k−1 zeros,
the nonzero elements are not in the same row. Assume the
opposite, i.e., there are two columns with k − 1 zeros, whose
nonzero elements are in the same row (equivalently, whose
zeros are in the same rows). Let Ω0 be the rows where the

zeros of two columns are. Then |Ω0| = k − 1 and |CΩ0 | = 2,
which contradicts (3). □

For codes in rank metric, it has been shown in [21, Th. 4.4]
that for any n ≤ m, every [n, k]qm Gabidulin code has a
systematic generator matrix Gsys =

(
I|A

)
where A is the

q-Cauchy matrix, and conversely, any matrix in the form of(
I|A

)
, where A is a q-Cauchy matrix, generates a Gabidulin

code. Similar to Proposition 1, the following result can be
derived for MRD codes.

Proposition 2: Let Z1, . . . , Zk ⊆ {1, . . . , n} fulfill (3) for
any nonempty Ω ⊆ {1, . . . , k}. Then, for any prime power q
and integer m ≥ n, there exists an [n, k]qm Gabidulin code
with a generator matrix G fulfilling (2).
We conjecture that the smaller sufficient field sizes also holds
for the general case.

Conjecture 1: Let Z1, . . . , Zk ⊆ {1, . . . , n} fulfill (1) for
any nonempty Ω ⊆ {1, . . . , k}. Then, for any prime power
q ≥ n, there exists an [n, k]q GRS with a generator matrix
fulfilling (2). Moreover, for any prime power q and integer
m ≥ n, there exists an [n, k]qm Gabidulin code with a
generator matrix fulfilling (2).

B. Related Work in the Sum-Rank Metric

The sum-rank metric was first considered in coding for
MIMO block-fading channels [22], [23] and the design of
AM-PSK constellations [24]. It was then explicitly introduced
in multi-shot network coding [25]. The minimum sum-rank
distance is a direct analogue to transmit diversity gain and the
maximum sum-rank distance property is a direct analogue to
rate-diversity optimality. An explicit construction of optimal
space-time codes from sum-rank metric codes over a finite
field was first given in [26]. Additionally, sum-rank metric
codes have been considered in applications such as network
streaming [27], distributed storage systems [28], [29], [30] and
post-quantum secure code-based cryptosystems.

Linearized Reed-Solomon (LRS) codes [31], [32] are a
class of evaluation codes based on skew polynomials [33],
achieving the Singleton bound in the sum-rank metric, and
therefore known as maximum sum-rank distance (MSRD)
codes. They have been applied in network coding [34], locally
repairable codes [28] and code-based cryptography. Extensive
research has been done in recent years in the subareas of
fundamental coding-theoretical properties of sum-rank met-
ric codes, e.g., [35], [36], [37], [38], [39], constructions of
perfect/optimal/systematic sum-rank metric codes [40], [41],
[42], [43], [44] and decoding algorithms for LRS codes, e.g.,
[45], [46], [47], [48], [49], [50], [51].

C. Our Contribution

Motivated by practical interest in codes with support-
constrained generator matrices and research on sum-rank
metric codes (in particular, LRS codes), we investigate the
existence of MSRD codes with a support-constrained genera-
tor matrices in this work. As a result, we show that (1) is also
the necessary and sufficient conditions for the existence of
MSRD codes with a generator matrix fulfilling (2). Further,
our main result is that for any prime power q ≥ ℓ + 1 and
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integer m ≥ maxl∈[ℓ]{k − 1 + logq k, nl}, there exists a
linearized Reed-Solomon code in Fqm of length n, dimension
k, and with ℓ blocks, such that its generator matrix satisfies
the support constraints. Moreover, if the conditions in (1)
are not satisfied, we show that the largest possible sum-rank
distance can be achieved by subcodes of LRS codes. For a
distributed multi-source network as introduced in [7] and [8],
where a supported-constrained generator matrix is required for
reliable communication against malicious (or failed) nodes in
the network, we introduce a scheme to design a distributed
LRS code for any network instance. The scheme illustrates
how the necessary and sufficient conditions derived in this
work can be used as constraints in a linear programming
problem to design the parameters of a desired distributed LRS
code.

The rest of the paper is organized as following: In Section II
we fix the notations used throughout the paper and give the
preliminaries on sum-rank metric, skew polynomials and LRS
codes that are needed to prove the main results. We present
in Section III our main result on the necessary and suffi-
cient conditions for the existence of MSRD codes with a
support-constrained generator matrix as in (2) and the suffi-
cient field size of an LRS code fulfilling the support constraint.
In Section IV we introduce the distributed multi-source net-
work model and present a scheme to design a distributed LRS
code for this network model, which uses the necessary and
sufficient conditions derived in Section III. Section V provides
the proof of the main result, which is presented as a claim in
Section III.

II. PRELIMINARIES

A. Notations

Denote by [a, b] the set of integers {a, a + 1, . . . , b− 1, b},
and let [b] := [1, b]. Let N be the set of natural numbers and
N0 := N∪{0}. Denote by Fq the finite field of size q, and by
Fqm its extension field of extension degree m. Fix an ordered
basis β = (β1, β2, . . . , βm) of Fqm over Fq . We define a
mapping from Fn

qm to Fm×n
q by

extβ : Fn
qm → Fm×n

q

c = (c1, c2, . . . , cn) 7→ C =

 c1,1 c1,2 . . . c1,n

...
...

. . .
...

cm,1 cm,2 . . . cm,n


(4)

where C is unique such that cj =
∑m

i=1 ci,jβi, for all j =
1, . . . , n. The Fq-rank of c is defined as rankq(c) := rank(C).

Given two vectors a = (a1, . . . , an), b = (b1, . . . , bn) ∈
Fn, we define their star-product as the element-wise multi-
plication, i.e., a ⋆ b := (a1b1, a2b2, . . . , anbn) ∈ Fn. Given a
vector a ∈ Fn, let diag(a) ∈ Fn×n be the diagonal matrix
with entries of a on its diagonal.

Throughout the paper, unless specified otherwise, the
indices of entries in vectors, elements in sets, etc., start from
1, while the coefficients of polynomials start from 0.

B. Sum-Rank Metric

Let ℓ ∈ N and nℓ = (n1, . . . , nℓ) ∈ Nℓ be an ordered
partition of n =

∑ℓ
l=1 nl. For a matrix

A=
(
A1 A2 . . . Aℓ

)
∈ Fm×n

q or B =


B1

B2

...
Bℓ

 ∈ Fn×m
q ,

where Ai ∈ Fm×ni
q and each Bi ∈ Fni×m

q , we say A has a
column-wise ordered partition with respect to nℓ and B has
a row-wise ordered partition w.r.t. nℓ. The sum-rank weight
w.r.t. nℓ is respectively

wtSR,nℓ
(A)=

ℓ∑
l=1

rank(Al) or wtSR,nℓ
(B)=

ℓ∑
l=1

rank(Bl).

We can find the following relation between the sum-rank
weight and the rank of a matrix.

Lemma 1: For a matrix A ∈ Fm×n
q and an ordered partition

nℓ = (n1, . . . , nℓ) of n, rank(A) ≤ wtSR,nℓ
(A) ≤ ℓ ·

rank(A). Similarly, for a matrix B ∈ Fn×m
q , rank(B) ≤

wtSR,nℓ
(B) ≤ ℓ · rank(B).

Proof: Denote by ⟨A⟩c the column space of a matrix A.
For the first inequality,

rank(A) = dim(⟨A⟩c) = dim(⟨A1⟩c + · · ·+ ⟨Aℓ⟩c)
≤ dim(⟨A1⟩c) + · · ·+ dim(⟨Aℓ⟩c)
= rank(A1) + · · ·+ rank(Aℓ) = wtSR,nℓ

(A).

For the second inequality,

wtSR,nℓ
(A) =

ℓ∑
i=1

rank(Ai) ≤
ℓ∑

i=1

rank(A) = ℓ · rank(A).

For the matrix B ∈ Fn×m
q with a row-wise ordered partition,

the proof is similar with considering the row space of B and
Bi’s. □

For the vector space Fn
qm , with an ℓ-ordered partition

(n1, . . . , nℓ) ∈ Nℓ, the sum-rank metric is defined as the
following. For simplicity of the notation, we abuse the notation
wtSR,nℓ

for the matrix space over Fq and the vector space over
Fqm .

Definition 1: The sum-rank weight on Fn
qm , with an ordered

partition nℓ = (n1, . . . , nℓ) of n, is defined as

wtSR,nℓ
(·) : Fn

qm → N0

x 7→
ℓ∑

i=1

rankq(xi)

where x = (x1|x2| . . . |xℓ) with xi ∈ Fni
qm . Moreover, the

sum-rank distance is defined as

dSR,nℓ
(·, ·) : Fn

qm × Fn
qm → N0

(a, b) 7→ wtSR,nℓ
(a− b).

For a linear code C ⊆ Fn
qm , its minimum sum-rank distance is

dSR,nℓ
(C) := min

c1,c2∈C
dSR,nℓ

(c1, c2) = min
0̸=c∈C

wtSR,nℓ
(c).
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It is well known that for ℓ = 1 the sum-rank metric coincides
with the rank metric and for ℓ = n, it is the Hamming metric
(see also [52, Proposition 1.4, 1.5]). The following lemma
gives a relation among the weights of a vector x ∈ Fn

qm in the
Hamming metric, the sum-rank metric and the rank metric.

Lemma 2 ([39]): For a vector x ∈ Fn
qm and any ordered

partition nℓ = (n1, . . . , nℓ) of n, wtR(x) ≤ wtSR,nℓ
(x) ≤

wtH(x), where wtR(x) = rankq(x) is the weight of x in the
rank metric and wtH(x) is the weight of x in the Hamming
metric.

C. Skew Polynomials

Denote by Fqm [x] a univariate (commutative) polynomial
ring with coefficients from Fqm and by Fqm [x1, . . . , xn] a
multivariate polynomial ring for n ≥ 1. The following lemma
gives a sufficient condition on the field size such that a nonzero
evaluation of a multivariate polynomial in the field always
exists.

Lemma 3 Combinatorial Nullstellensatz [53, Theorem 1.2]:
Let F be an arbitrary field and f be a nonzero polynomial
in F[x1, . . . , xn] of total degree deg(f) =

∑n
i=1 ti, where

ti ≥ 0, ∀i. Then, if X1, . . . ,Xn are subsets of F with |Xi| > ti,
then there are x̂1 ∈ X1, . . . , x̂n ∈ Xn so that

f(x̂1, . . . , x̂n) ̸= 0.

Let Fqm [X; θ] be a skew polynomial ring over Fqm with
automorphism θ : Fqm → Fqm . The degree of a skew
polynomial f(X) =

∑
i fiX

i ∈ Fqm [X; θ] is deg f(X) :=
max{i | fi ̸= 0} for f(X) ̸= 0, and deg f(X) = −∞
if f(X) = 0. The addition in Fqm [X; θ] is defined to be
the usual addition of polynomials and the multiplication is
defined by the basic rule X · α = θ(α) · X,∀α ∈ Fqm and
extended to all elements of Fqm [X; θ] by associativity and
distributivity. For two skew polynomials f(X) =

∑
i fiX

i

and g(X) =
∑

j gjX
j , their product is

f(X) · g(X) =
∑

i

∑
j

fiθ
i(gj)Xi+j . (5)

The degree of the product is deg (f(X) · g(X)) = deg f(X)+
deg g(X). For ease of notation, when it is clear from the
context, we may omit the variable notation in f(X) for
f ∈ Fqm [X; θ], and write only f .

Since skew polynomials are non-commutative under multi-
plication and division, we denote by |r and |l the right and
left divisibility respectively. The powers of θ are θi(α) =
θ(θi−1(α)). For any α ∈ Fqm , its i-th truncated norm is
defined as Ni(α) :=

∏i−1
j=0 θj(α) and N0(α) = 1. For the

Frobenius automorphism, σ : α 7→ αq , σi(α) = αqi

, and
Ni(α) = α(qi−1)/(q−1).

Definition 2 (θ-Conjugacy Classes): Two elements a, b ∈
Fqm are called θ-conjugate if there exists a nonzero element
c ∈ Fqm such that b = θ(c)ac−1. Otherwise, they are called
θ-distinct. The conjugacy class of a with respect to θ is the
set

Cθ(a) := {θ(c)ac−1 | c ∈ Fqm \ {0}} .

Theorem 3 Structure of σ-Conjugacy Classes [52, Theo-
rem 2.12]: Let γ be a primitive element of Fqm . For the Frobe-
nius automorphism σ, the q−1 elements 1, γ, γ2, . . . , γq−2 are
pair-wise σ-distinct. There are exactly q − 1 distinct nonzero
σ-conjugacy classes, each of size qm−1

q−1 , in Fqm , and

Fqm = Cσ(0) ∪ Cσ(γ0) ∪ · · · ∪ Cσ(γq−2),

where the union is disjoint.
Definition 3 (Remainder Evaluation of Skew Polynomi-

als [33]:) For f(X) ∈ Fqm [X; θ], α ∈ Fqm , since division
on the right is possible for any f(X) ∈ Fqm [X; θ], we may
write f(X) = qr(X)(X − α) + t, with t ∈ Fqm . The (right)
evaluation of f(X) is then defined as

f(α) = t.

The next lemma shows that the remainder evaluation can
be computed without using the division algorithm and it is
equivalent to the evaluation in Definition 3. A proof can also
be found in [54, Theorem 2.3].

Lemma 4 Explicit Expression of Remainder Evaluation of
Skew Polynomials [55, Lemma 2.4]: For f =

∑deg f
i=0 fiX

i ∈
Fqm [X; θ] and α ∈ Fqm , f(α) =

∑deg f
i=0 fiNi(α). In par-

ticular, if θ is the Frobenius automorphism σ, f(α) =∑deg f
i=0 fiα

(qi−1)/(q−1).
Similar to the evaluation of conventional polynomials, the

evaluation of a f ∈ Fqm [X; θ] at Ω = {α1, . . . , αn} ⊆ Fqm

can be written as (f(α1), . . . , f(αn)) = f · V θ
k(Ω), where k

is the degree of f , f = (f0, . . . , fk) contains the coefficients
of f , and V θ

k+1(Ω) is the first k + 1 rows of V θ(Ω) defined
below.

Definition 4 (θ-Vandermonde Matrix): Let θ be an auto-
morphism θ : Fqm → Fqm . Given a set Ω = {α1, . . . , αn} ⊆
Fqm , the θ-Vandermonde matrix of Ω is given by

V θ(Ω) :=


N0(α1) N0(α2) . . . N0(αn)
N1(α1) N1(α2) . . . N1(αn)

...
...

. . .
...

Nn−1(α1) Nn−1(α2) . . . Nn−1(αn)

 ,

where N0(α) = 1, and for i ≥ 1, Ni(α) =
∏i−1

j=0 θj(α) is the
i-th truncated norm of α.

Definition 5 (Minimal Polynomial): Given a nonempty set
Ω ⊆ Fqm , we say fΩ is a minimal polynomial of Ω if it is a
monic polynomial of minimal degree such that fΩ(α) = 0 for
all α ∈ Ω.

It was shown in [56, Lemma5] (see also [52, Theorem2.5])
that the minimal polynomial of any nonempty set Ω =
{α1, . . . , αn} ⊆ Fqm is unique. The minimal polynomial can
be constructed by an iterative Newton interpolation approach
as in [52, Proposition2.6] or by computingas follows (see also
[52, Proposition2.6]): First, set

g1 = X − α1.

Then for i = 2, 3, . . . , n, perform

gi =

{
gi−1 if gi−1(αi) = 0,(
X − αgi−1(αi)

)
· gi−1 otherwise,

(6)
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where αgi−1(αi) := θ(gi−1(αi))αigi−1(αi)−1 is the θ-
conjugate of α w.r.t. gi−1(αi). Upon termination, gn(X) =
fΩ(X).

It can be seen that the minimal polynomial of a set Ω can
be also constructed by computing

fΩ(X) = lclm
α∈Ω

{X − α}. (7)

where lclm is defined as follows.
Definition 6: The least common left multiple (lclm) of

gi ∈ Fqm [X; θ], denoted by lclmi{gi}, is the unique monic
polynomial h ∈ Fqm [X; θ] s.t. gi|rh,∀i.
The polynomial independence of a set is defined via its
minimal polynomial.

Definition 7 (P-Independent Set [52, Def. 2.6]): A set
Ω ⊆ Fqm is P-independent in Fqm [X; θ] if deg(fΩ) = |Ω|.
It has been shown that, for any P-independent set Ω,
deg(fΩ) = |Ω| = rank(V θ(Ω)) [56, Theorem 8], and its
subsets are all P-independent [52, Corollary 2.8].

Lemma 5: Given a P-independent set Ω, for any subset Z ⊂
Ω, let fZ(x) ∈ Fqm [X; θ] be the minimal polynomial of Z .
Then, for any element α ∈ Ω \ Z , fZ(α) ̸= 0.

Proof: Assume fZ(α) = 0, then the minimal polynomial
fZ∪{α} = fZ and deg(fZ∪{α}) = |Z| < |Z ∪ {α}|, which
contradicts to that Z ∪ {α} ⊆ Ω is P-independent.

D. Linearized Reed-Solomon Codes

The definition of LRS codes adopted in this paper follows
from the generalized skew evaluations codes [31, Section III]
with particular choices of the evaluation points and column
multipliers.

Definition 8 (Linearized Reed-Solomon (LRS) Codes): Let
ℓ ≤ q − 1 and (n1, . . . , nℓ) be an ordered partition of n
with ni ≤ m for all i = 1, . . . , ℓ. Let a1, . . . , aℓ ∈ Fqm be
from distinct σ-conjugacy classes of Fqm , and called block
representatives. Let

b = (β1,1, . . . , β1,n1

... · · ·
... βℓ,1, . . . , βℓ,nℓ

) ∈ Fn
qm

be a vector of column multipliers, where βl,1, . . . , βl,nl
are

linearly independent over Fq,∀l ∈ [ℓ].
Let the set of code locators be

L ={a1β
q−1
1,1 , . . . , a1β

q−1
1,n1

... · · ·
...aℓβ

q−1
ℓ,1 , . . . , aℓβ

q−1
ℓ,nℓ

} . (8)

An [n, k]qm linearized Reed-Solomon code is defined as

Cσ
k (L, b) := {b ⋆ (f(α))α∈L | f(X) ∈ Fqm [X; σ],

deg f(X) < k},

where the evaluation f(α) =
∑deg f

i=0 fiNi(α) is the remainder
evaluation as in Lemma 4.
The subset of L of the code locators for the l-th block,
i.e., {alβ

q−1
l,1 , . . . , alβ

q−1
l,nl

}, is P-independent, if and only if
βl,1, . . . , βl,nl

are linearly independent over Fq [55, Theo-
rem 4.5]. Since the union of P-independent sets which are
subsets of different conjugacy classes is P-independent, the
code locator set L in (8) is P-independent by construction
[52, Theorem 2.11].

A generator matrix of the LRS code in Definition 8 is given
by

G(LRS) =
(

G
(LRS)
1 | . . . | G

(LRS)
ℓ

)
∈ Fk×n

qm (9)

where for each l ∈ [ℓ],

G
(LRS)
l = V σ

k(L(l)) · diag(b(l))

=


1 . . . 1

N1(alβ
q−1
l,1 ) . . . N1(alβ

q−1
l,nl

)
...

. . .
...

Nk−1(alβ
q−1
l,1 ) . . . Nk−1(alβ

q−1
l,nl

)

 ·

βl,1

. . .
βl,nl



=

1
. . .

Nk−1(al)

 ·


βl,1 βl,2 . . . βl,nl

βq1

l,1 βq1

l,2 . . . βq1

l,nl

...
...

. . .
...

βqk−1

l,1 βqk−1

l,2 . . . βqk−1

l,nl

 ,

(10)

where L(l) := {alβ
q−1
l,1 , . . . , alβ

q−1
l,nl

} and b(l) :=
(βl,1, . . . , βl,nl

). Eq. (10) holds because for σ(a) = aq ,

Ni(β
q−1
l,t ) · βl,t =

(
βq−1

l,t

)(qi−1)/(q−1)

· βl,t = βqi

l,t.
In [32, Def. 31], LRS codes are defined in the notion of

linear operator evaluation with respect to the block represen-
tatives a = (a1, . . . , aℓ) and block basis bi = (βi,1, . . . , βi,ni).
It was shown in [52, Theorem 2.18] that these two definitions
are equivalent.

LRS codes are MSRD codes [52, Theorem 2.20] while they
are maximum distance separable (MDS) linear codes C ⊆ Fn

qm

and for small dimensions k ≤ min{n1, . . . , nℓ}, the punctured
codes Ci ⊆ Fni

qm at any block i = 1, . . . , ℓ are maximum rank
distance (MRD) codes [31, Section III.C].

III. LRS CODES WITH SUPPORT CONSTRAINTS

In this section we show that (1) is also a necessary and
sufficient condition that a matrix G fulfilling (2) generates an
MSRD code.

Since the sum-rank weight is at most the Hamming weight
for any vector in Fn

qm , an MSRD code is necessarily an MDS
code. Therefore, (1) is also a necessary condition for G to
generate an MSRD code.

Now we proceed to show the sufficiency of (1) for MSRD
codes, in particular, LRS codes. Note that for any Ω = {i},
we have |Zi| ≤ k− 1. One can add elements from [n] to each
Zi until |Zi| reaches k−1 while preserving (1) [16, Corollary
3]. This operation will only put more zero constraints on G but
not remove any. This means that the code we design under the
new Zi’s of size k−1 will also satisfy the original constraints.
Therefore, without loss of generality, along with (1), we will
further assume that

|Zi| = k − 1, ∀i ∈ [k] . (11)

Let G(LRS) be a generator matrix of an LRS code as given
in (9). Given the following matrix

G = T ·G(LRS), (12)
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if T ∈ Fk×k
qm has full rank, then G is another genera-

tor matrix of the same LRS code generated by G(LRS).
Recall that a1, . . . , aℓ ∈ Fqm are the block representatives,
β1,1, . . . , β1,n1 , . . . , βℓ,1, . . . , βℓ,nℓ

∈ Fqm are the column
multipliers, and L = {α1, . . . , αn} is the code locator set as
defined in Definition 8, where αj = alβ

q−1
l,t for some l ∈ [ℓ]

and t ∈ [nl], ∀j ∈ [n]. Let n0 = 0. Define the following
bijective map between the indices, φ : N× N → N,

(l, t) 7→ j = t +
l−1∑
r=0

nr, (13)

such that αj = alβ
q−1
t . The inverse map φ−1 : N → N × N

is j 7→ (l, t), where l = max{i |
∑i

r=1 nr ≤ j} and t =
j −

∑l−1
r=0 nr.

For all i ∈ [k], define the skew polynomials

fi(X) :=
k−1∑
j=0

Ti,j+1X
j ∈ Fqm [X; σ] , (14)

where Ti,j+1 is the entry at i-th (1 ≤ i ≤ k) row, (j + 1)-
th (1 ≤ j + 1 ≤ k) column in T . The entries of G will be
Gij = fi(alβ

q−1
l,t )βl,t, i ∈ [k], j = φ(l, t) ∈ [n]. Then, the

zero constraints in (2) become root constraints on fi’s:

fi(alβ
q−1
l,t ) = 0, ∀i ∈ [k], ∀j = φ(l, t) ∈ Zi . (15)

For brevity, we denote by

Zi := {alβ
q−1
l,t | φ(l, t) ∈ Zi} (16)

corresponding to the zero set Zi. Let fZi
(X) =

lclmα∈Zi
{(X −α)} be the minimal polynomial of Zi. It fol-

lows from (15) that fi(α) = 0, ∀α ∈ Zi and hence,
fZi(X)|rfi(X). Note that deg fZi(X) = deg fi(X) = k − 1,
therefore, fi(X) = c · fZi(X) for some c ∈ Fqm \ {0}. For
simplicity, let c = 1, i.e.,

fi(X) = fZi
(X) . (17)

Since L and any subset Zi ⊂ L are all P-independent,
it follows from Lemma 5 that fi(α) ̸= 0, for all α ∈
L \ Zi. Hence, there is no other zero in G than the required
positions in Zi’s. Moreover, by the assumption in (11), |Zi| =
|Zi| = k − 1, and deg fi(X) = k − 1,∀i ∈ [k]. Hence the
coefficients of fi(X) in (14) are uniquely determined (up to
scaling) in terms of a1β

q−1
1,1 , . . . , aℓβ

q−1
ℓ,nℓ

. In the following,
we assume a1, . . . , aℓ are fixed, nonzero, and from distinct σ-
conjugacy classes. We see βl,t’s as variables of the following
commutative multivariate polynomial ring

Rn :=Fqm [β1,1, . . . , βℓ,nℓ
], (18)

and the coefficients Ti,j+1 of fi(X) can be seen as polyno-
mials in Rn. Then the problem of finding βl,t’s such that G

generates the same LRS code as G(LRS) becomes finding βl,t’s
such that

P (β1,1, . . . , βℓ,nℓ
) :=PT (β1,1, . . . , βℓ,nℓ

)

·
ℓ∏

l=1

PM l
(βl,1, . . . , βl,nl

) ̸= 0 (19)

where PT is the determinant of T , whose entries are deter-
mined by the minimal polynomials fi’s, and

PM l
:= det


βl,1 βl,2 . . . βl,nl

βq1

l,1 βq1

l,2 . . . βq1

l,nl

...
...

. . .
...

βqnl−1

l,1 βqnl−1

l,2 . . . βqnl−1

l,nl

 .

Since the coefficient of the monomial
∏nl

i=1 βqi−1

l,i in PM l

is 1, PM l
is a nonzero polynomial in Rn. With Claim 1

below, we can conclude that P (β1,1, . . . , βℓ,nℓ
) is a nonzero

polynomial in Rn.
Claim 1: If the condition in (1) is satisfied, then PT is a

nonzero polynomial in Rn.
Now we proceed to present the result on the field size by
assuming Claim 1 is true. A more general version (Theorem 7)
of the claim is given in Section V-B.

For a fixed l ∈ [ℓ], t ∈ [nℓ], the degree in βl,t of
PM l

is degβl,t
PM l

= qnl−1 [57, Lemma3.51]. Moreover,
degβl,t

PT ≤ (k − 1)(q − 1) · qk−2, which can be shown by
extending the analysis of linearized polynomials for Gabidulin
codes in [16, Section II.F] to skew polynomials. The details of
this extension are provided in Appendix B. Then, the degree
of P (β1,1, . . . , βℓ,nℓ

) in (19) as a polynomial in βl,t is

degβl,t
P ≤ (k − 1)(q − 1) · qk−2 + qnl−1 .

Theorem 4: Let ℓ, nl be positive integers and n :=∑ℓ
l=1 nl. Let Z1, . . . , Zk ⊂ [n] fulfill (1) for any nonempty

Ω ⊆ [k]. Then for any prime power q ≥ ℓ + 1 and integer
m ≥ maxl∈[ℓ]{k − 1 + logq k, nl}, there exists an [n, k]qm

linearized Reed-Solomon code with ℓ blocks, and each block
of length nl, l ∈ [ℓ] with a generator matrix G ∈ Fk×n

qm

fulfilling the support constraints in (2).
Proof: Recall that a1, . . . , aℓ are fixed nonzero elements

from distinct σ-conjugacy classes. Claim 1 has shown that
P (β1,1, . . . , βℓ,nℓ

) is a nonzero polynomial. By the Combina-
torial Nullstellensatz [53, Theorem1.2], (see Lemma 3), there
exist β̂1,1, . . . , β̂ℓ,nℓ

in Fqm such that

P (β̂1,1, . . . , β̂ℓ,nℓ
) ̸= 0

if

qm > max
l∈[ℓ],t∈[nl]

{degβl,t
P}

= max
l∈[ℓ]

{(k − 1)(q − 1) · qk−2 + qnl−1} . (20)

If m ≥ maxl∈[ℓ]{k − 1 + logq k , nl}, we have

qm =(q − 1)qm−1 + qm−1

≥max
l∈[ℓ]

{k(q − 1) · qk−2 + qnl−1} > (20) .

To have a1, . . . , aℓ from different nontrivial σ-conjugacy class
of Fqm , by the structure of σ-conjugacy classes [52, Theo-
rem2.12]Theorem 3, we require q − 1 ≥ ℓ.

Remark 1: Consider the extreme cases:
1) For ℓ = 1, the sum-rank metric is the rank metric and

LRS codes are Gabidulin codes.
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2) For ℓ = n and nl = 1,∀l ∈ [ℓ], the sum-rank metric is the
Hamming metric. In addition, with θ = Id, LRS codes
are generalized RS codes with distinct nonzero a1, . . . , aℓ

as code locators and nonzero βl,t’s as column multipliers
(see [52, Theorem 2.17], [34, Table II]).

For the first case, our result on the field size in Theorem 4 coin-
cides with [16, Theorem1]. For the second case, by adapting
the setup in (18)-(19) to θ = Id, and the proof in Appendix B
with the usual evaluation of commutative polynomials, one
can obtain the same results as in [14, Theorem 2].

If the necessary and sufficient condition on Z1, . . . , Zk

in (1) is not satisfied, we cannot obtain an MSRD code
fulfilling the zero constraints. The following result shows that
the largest possible sum-rank distance can be achieved given
any zero constraints. In fact, the largest sum-rank distance can
be achieved by subcodes of LRS codes with large enough
field sizes. This result is an analogue to those for MDS
codes [14] and MSRD codes [16]. In [14, Theorem 1], the
following upper bound on the Hamming distance of a code
with support-constrained generator matrix is given

dH ≤ n− k̃ + 1

where

k̃ := max
∅ ̸=Ω⊆[k]

∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ |Ω|. (21)

Note that k̃ > k if the condition on Z1, . . . , Zk in (1) is not
satisfied. For any ordered partition nℓ = (n1, . . . , nℓ) of n,
according to Lemma 2, we have

dSR,nℓ
≤ n− k̃ + 1 . (22)

Theorem 5: Given zero constraints Z1, . . . , Zk ⊆ [n], for
any prime power q ≥ ℓ + 1 and integer m ≥ maxl∈[ℓ]{k̃ −
1+logq k̃, nl}, there exists a subcode of an [n, k̃]qm linearized
Reed-Solomon code with ℓ blocks, and each block of length
nl, l ∈ [ℓ] such that its generator matrix satisfies (2).

Proof: Let Zk+1 = · · · = Zk̃ = ∅. Then for any
nonempty Ω ⊆ [k̃], we have∣∣∣∣∣⋂

i∈Ω

Zi

∣∣∣∣∣+ |Ω| ≤ k̃ .

Then, by Theorem 4, there exists an LRS code of dimension
k̃ with a k̃ × n generator matrix G having zeros specified by
Z1, . . . , Zk̃. Since it is an MSRD code, its sum-rank distance
is n − k̃ + 1. The first k rows of G will generate a subcode
whose sum-rank distance is as good as the LRS codes, i.e.,
dSR,nℓ

≥ n − k̃ + 1, where nℓ = (n1, . . . , nℓ). Hence, the
subcode achieves the largest possible distance given in (22).

IV. APPLICATION TO DISTRIBUTED MULTI-SOURCE
NETWORK CODING

Consider a distributed multi-source network as illustrated
in Fig. 1. The receiver at the sink intends to obtain all the
messages in a set M by downloading through an Fq-linear

Fig. 1. Illustration of the distributed multi-source network model.

network from multiple source nodes, where each of them
has access to only a few messages in M. This source node
access is assumed to have unlimited link capacity (e.g., the
source nodes store the subset of M locally) and marked
by the dashed line in Fig. 1. The capacity1 of the link
between each source node SJi

and the Fq-linear network is
nJi

, the capacity of a link between any pair of node in the
Fq-linear network is 1, and the capacity of the link between
the Fq-linear network and the sink is N . The topology of the
Fq-linear network is not known to the source nodes nor to the
sink; therefore, it is a noncoherent communication scenario.
This model can find its applications in data sharing platforms,
sensor networks, satellite communication networks and MIMO
(massive input and output) attenna communication systems,
etc.

The set M contains h messages. The message mj , j ∈ [h]
is composed of rj symbols over Fqm , i.e., mj ∈ Frj

qm . The
source node SJi

, i ∈ [s] has access only to the messages
indexed in Ji, e.g., if J2 = {3, 6}, then SJ2 only has the
access to the messages m3 and m6. Let S = {J1, . . . ,Js}.
For any J ∈ S , the source node SJ encodes the messages
mj , j ∈ J , into nJ symbols over Fqm , denoted by cJ ∈
FnJ

qm . It then extends them to their matrix representation
over Fq , denoted by CJ ∈ Fm×nJ

q , and then generates
XJ = (0 · · · InJ 0 · · · C⊤

J ) ∈ FnJ×(n+m)
q , where

n =
∑
J∈S nJ . We call each row of XJ a packet. Denote

X =

XJ1

...
XJs

 ∈ Fn×(n+m)
q , where the rows are the packets

transmitted by all the source nodes into the Fq-linear network.
The task is to design nJ for all J ∈ S such that the sink can
recover all the messages mi. The goal of the design is that the
total number of packets n is minimized. A concrete example
can be found in Section IV-B.

In the Fq-linear network, whenever there is a transmission
opportunity, a relay node in the network produces and sends
an arbitrary Fq-linear combination of all the incoming packets
they have received. Suppose that there are at most t malicious

1The number of symbols in Fqm or the number of vectors in Fm
q can be

sent in one time slot.
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nodes that inject erroneous packets and at most ρ frozen nodes
that do not send any packet, which we refer as a (t, ρ)-
adversary. The sink collects N ≥ n − ρ packets, which are
represented by the rows of Y ∈ FN×(n+m)

q . The transmitted
packets (rows of X) and the received packets (rows of Y )
can be related via the following network equation:

Y = AX + E (23)

where A ∈ FN×n
q is the transfer matrix of the network

and the difference between the number of columns and its
row-rank is at most ρ. In other words, n − rank(A) ≤ ρ.
E ∈ FN×M

q is an error matrix of rank(E) ≤ t. Note that the
matrices A and E are not known to any of the source nodes
or the sink since we consider a noncoherent communication
scenario.

The capacity region of a multi-source network with h
messages is a set {(r1, . . . , rh)} ⊆ Nh such that the receiver
at the sink can recover every message mj ∈ Frj

qm , j ∈ [h].
The capacity region of a multi-source network against a (t, ρ)-
adversary has been given in [58, Theorem 2] (for ρ = 0)
and [59, Corollary 66]. To present the result, we require the
following definitions of min-cut.

Definition 9: Min-Cut Between a Set of Nodes and Another
Node: For a directed graph G(V, E) composed of a set of
nodes V and a set of edges E , a cut between a set of nodes
V ′ ⊂ V and another node t ∈ V \ V ′ is a subset EV′,t ⊆ E
such that after removing the edges in EV′,t, there is no path
from any of the nodes in V ′ to t. The capacity of a cut is
the sum of the capacity of each edge in the cut. The min-cut
between V ′ and t is the smallest cardinality of a cut between
V ′ and t.

Definition 10: Min-Cut Between a Subset of Messages and
the Sink: Consider the multi-source network with h messages,
as above. Given a subset of messages, J ′ ⊆ [h], consider the
set of source nodes V ′ that contain messages in J ′, namely,

V ′ = {SJ ∈ S : J ∩ J ′ ̸= ∅}.

We define the min-cut between J ′ and the sink as the min-cut
between V ′ and the sink, and denote it by wJ ′ .

Theorem 6 ([58], [59]): Consider a multi-source network
with h messages. For any (r1, . . . , rh) ∈ Nh in the capacity
region against a (t, ρ)-adversary, we have

∀∅ ̸= J ′ ⊆ [h],
∑
i∈J ′

ri ≤ wJ ′ − 2t− ρ , (24)

where wJ ′ is the min-cut between the set J ′ of messages and
the sink.
In addition to the general setting, we further assume the
following setup of the noncoherent network:
• The communication capacity of the non-coherent linear

network is large enough so that the min-cut wJ ′ for all
J ′ ⊆ [h] is determined by the number of encode symbols
nJ sent by the source node SJ for all J ∈ S . I.e.,

wJ ′ = n−
∑
J∈S

J⊆[h]\J ′

nJ .

Note that the term
∑

J∈S
J⊆[h]\J ′

nJ is the total number

of encoded symbols that do not contain any information
about the messages in J ′.

• Although the encoding is distributed (since each source
node may access only a few messages), there is a cen-
tralized coordination unit designing the overall code, and
the sink knows the distributed code.

A. Sum-Rank Weight of Error and Erasure With Constrained
Rank Weight

In the following, we intend to use LRS codes for the
distributed multi-source linear network model. Note that the
errors and erasures in the (t, ρ)-adversarial model are mea-
sured in the rank metric. However, LRS codes are used to
deal with errors and erasures in the sum-rank metric. Hence,
we first look into the sum-rank deficiency of the network
transfer matrix A ∈ FN×n

q and the sum-rank weight of the
error matrix E ∈ FN×M

q .
Let ℓ ∈ N and nℓ = (n1, . . . , nℓ) be an ordered partition

of n. By Lemma 1, we have

wtSR,nℓ
(A) ≥ rank(A) ≥ n− ρ . (25)

Hence the sum-rank weight of the erasure induced by the rank-
deficient A is at most ρ.

For the error E, consider an ordered partition N ℓ =
(N1, . . . , Nℓ) of N such that AX + E =

A1,1 A1,2 · · · A1,ℓ

A2,1 A2,2 · · · A2,ℓ

...
...

...
...

Aℓ,1 Aℓ,2 · · · Aℓ,ℓ




X1

X2

...
Xℓ


 +

E1

E2

...
Eℓ




n1 n2 nℓ

N1

N2

Nℓ

n1

n2

n4

M M

N1

N2

Nℓ

Given rank(E) ≤ t, by Lemma 1, we have

wtSR,Nℓ
(E) =

ℓ∑
i=1

rank(Ei) ≤
ℓ∑

i=1

rank(E) = ℓt . (26)

This upper bound holds for any arbitrary ℓ-ordered par-
tition N ℓ of N . A lower bound on Pr[wtSR,Nℓ

(E) =
ℓt | rank(E) = t] (i.e., the probability that (26) is tight)
for small t (t ≤ Ni,∀i ∈ [ℓ]) is given in [60, Theorem 1].
In particular, if q ≥ ℓ + 1, Pr[wtSR,Nℓ

(E) = ℓt | rank(E) =
t] > 1/4 [60, Corollary 1].

It can been seen from (25) and (26) that the network model
in (23) results in an erasure of sum-rank weight at most ρ and
an error of sum-rank weight at most ℓt. It has been shown
in [34, Theorem 1, Eq.(4), Proposition 2] that a code with
sum-rank distance d can guarantee reliable communication
against errors of sum-rank weight at most ℓt and erasures with
sum-rank weight at most ρ in the noncoherent communication
if d ≥ 2ℓt + ρ + 1. Therefore, an LRS code with sum-rank
distance d ≥ 2ℓt + ρ + 1 can correct any error of rank weight
at most t and erasure of rank weight at most ρ.
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B. Example of Distributed LRS Codes

We first give a toy example to show the usage of LRS codes
for a distributed multi-source network. In Section IV-C we
provide the general scheme to design the LRS codes for an
arbitrary distributed multi-source network.

Suppose that there are h = 4 messages inM. The lengths of
messages are (r1, r2, r3, r4) = (1, 3, 2, 3). There are 4 source
nodes and each can access to only 3 messages, i.e., J1 =
{1, 2, 3},J2 = {1, 2, 4},J3 = {1, 3, 4},J4 = {2, 3, 4}.
Suppose there is a (t = 2, ρ = 2)-adversary in the Fq-linear
network.

The number of encoded packets from each source node
is (nJ1 , nJ2 , nJ3 , nJ4) = (6, 7, 2, 8) (see in Section IV-C
how these values are obtained) and n =

∑4
i=1 nJi

= 23.
Let m = (m1, m2, m3, m4) be a concatenated vector of all
messages. Some entries in a encoding matrix G are forced to
be 0, as shown in Fig. 2, so that m ·G represents the overall
encoding at all source nodes.

Let q = 4, m = 9. We can obtain the support-constrained
encoding matrix G from a generator matrix of a [23, 9, 15]49

LRS code with ℓ = 3 blocks. The lengths of blocks
are (n1, n2, n3) = (8, 7, 8). Let γ be a primitive element
of F49 . The block representatives of the LRS code are
(a1, a2, a3) = (1, γ, γ2) and the column multipliers are b =
(1, γ, . . . , γ7, γ, γ2, . . . , γ7, γ2, γ3, . . . , γ9). Construct a gen-
erator matrix G(LRS) of the LRS code according to (9) and find
a full-rank matrix T ∈ F9×9

49 such that the support-constrained
encoding matrix G is given by G = T · G(LRS). It can
be verified by Theorem 4 that such a matrix T exists over
F49 and it can be found by solving a linear system of
equations. For brevity, we omit the explicit solution of T
here.

Remark 2: With the choice of ℓ and (n1, . . . , nℓ) for this
toy LRS code we intend to show that the number of blocks ℓ
does not need to be the same as the number of source nodes
s. The value of ℓ determines the upper bound in (26) on the
sum-rank weight of E. We listed several other parameters
of the LRS codes in Table I that can be used for this
network example. It can be seen larger the ℓ is, larger the
error-correction capability required for the LRS code, which
results in a larger total length n. However, larger ℓ may result
in smaller field size. For instance, the messages mi’s are
over F311 . According to Table I, setting ℓ = 1 (i.e., using a
distribued Gabidulin code [8]) requires a field size qm = 315

while using the distributed LRS codes with ℓ = 2 requires a
field size qm = 311 (note that the field size of the messages
is 311).

In Table II, we list the parameters of LRS codes for
several different S = {J1,J2,J3,J4}. It can be seen that
encoding each message independently requires longer code
(hence, larger alphabet size) than allowing jointly encoded
subsets of all messages.

Now we proceed to apply the lifting technique [61]
to deal with the noncoherent situation. Supposing
(cJ1 , cJ2 , cJ3 , cJ4) = (m1, m2, m3, m4) · G. Each
source node SJi

generates CJi
= extβ(cJi

) ∈ Fm×nJi
q

by the map defined in (4) and lifts the C⊤
Ji

by adding the

identity and zero matrices as below to obtain the transmitted
packets (rows of X):

X =

InJ1 C⊤
J1

InJ2 C⊤
J2

InJ3 C⊤
J3

InJ4 C⊤
J4



 n

m
n =

∑4
i=1 nJi

Each row is a packet of length n + m (= 23 + 9 = 31 in
this toy example) over Fq (F4) transmitted into the network.
Note that for the lifting step, a centralized coordination unit
is also needed to instruct the source nodes where to put the
identity matrix in their packets.

C. The General Scheme: Distributed LRS Codes

This section provides a general scheme at the centralized
coordination unit to design the overall distributed LRS codes,
given:
• the total number of messages h and their lengths

r1, . . . , rh;
• the set S = {J1, . . . ,Js}, where each Ji ⊂ [h] contains

the indices of the messages that the source node SJi has
access to;

• the maximum number of malicious nodes t and frozen
nodes ρ in the network;

• the number of blocks ℓ of LRS codes.
The task is to design the nJ , for all J ∈ S , such that the
sink can recover all h messages. The goal of the design is to
minimize the total number n of the encoded symbols.

The general scheme contains the following steps:
1) Solving the following integer linear programming problem

for (nJ1 , . . . , nJs):
Minimize n = nJ1 + · · ·+ nJs

Subject to

∀∅ ̸= J ′ ⊆ [h],
∑
i∈J ′

ri + 2t + ρ ≤ n−
∑
J∈S

J⊆[h]\J ′

nJ ,

(27)

∀∅ ̸= Ω ⊆ [h],
∑
J∈S

[h]\J⊇Ω

nJ +
∑
i∈Ω

ri ≤ n− 2ℓt− ρ,

∀J ∈ S, nJ ≥ 0 . (28)

Remark: Recall that we assume the min-cut wJ ′ = n −∑
J∈S

J⊆[h]\J ′
nJ , for all ∅ ̸= J ′ ⊆ [h]. With the constraints

in (27), the choice of (nJ1 , . . . , nJs) guarantees that the
message lengths (r1, . . . , rh) are in the capacity region
given in Theorem 6.
Let

k̃ := max
∅̸=Ω⊆[h]

∑
J∈S

[h]\J⊇Ω

nJ +
∑
i∈Ω

ri .
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Fig. 2. Illustration of the support-constrained generator matrix of the [23, 9, 15]49 LRS code for the distributed multi-source network.

TABLE I
RESULTING PARAMETERS OF DISTRIBUTED LRS CODES FOR THE TOY EXAMPLE WHILE INCREASING ℓ. THE q AND m ARE THE MINIMAL VALUE OF

THE REQUIRED PARAMETERS OF THE FIELD OVER WHICH THE [n, k, d] DISTRIBUTED LRS CODE CAN BE CONSTRUCTED

TABLE II
RESULTING PARAMETERS OF DISTRIBUTED LRS CODES FOR THE TOY EXAMPLE WHILE CHANGING S

By Theorem 5, there exist a subcode of an [n, k̃] LRS
code whose generator matrix fulfills the support constraints
of the encoding matrix G for the distributed multi-
source network. The constraints in (28) guarantees that
k̃ ≤ n − 2ℓt − ρ, which guarantees that the [n, k̃] LRS
code can decode the rank-metric errors and erasures (see
Section IV-A).

2) Determine the field size qm required for the [n, k̃] LRS
code with ℓ blocks according to Theorem 5. (Tip: The total
length should be distributed as evenly as possible into ℓ
blocks so that the extension degree m is minimized.)

3) Construct a generator matrix G(LRS) of the [n, k̃]qm LRS
code according to (9) and (10).

4) Find a full-rank T ∈ Fk×k̃
qm (where k =

∑h
i=1 ri) such that

the support-constrained encoding matrix G can be obtained
from G = T ·G(LRS). (This can be done by solving a linear
system of equations for the entries of T .)

V. PROOF OF CLAIM 1

A. Problem Setup

Let Rn be the multivariate commutative polynomial ring as
defined in (18). Note that R0 = Fqm . Let σ be the Frobenius
automorphism of R0, which we extend to any a =

∑
i∈Nn

0
ai ·

βi1
1,1 · · ·β

in

ℓ,nℓ
∈ Rn by

σ : Rn → Rn∑
i∈Nn

0

ai · βi1
1,1 · · ·β

in

ℓ,nℓ
7→
∑
i∈Nn

0

σ(ai) · σ(βi1
1,1) · · ·σ(βin

ℓ,nℓ
) .

Let Rn[X; σ] be the univariate skew polynomial ring with
indeterminate X , whose coefficients are from Rn, i.e.,

Rn[X; σ] :=

{
d∑

i=0

ciX
i

∣∣∣∣∣ d ≥ 0, c0, . . . , cd ∈ Rn,

}
.

For ease of notation, when it is clear from the context, we may
omit the variable notation in f(X) for f ∈ Rn[X; σ], and
write only f . The degree of f =

∑d
i=0 ciX

i ∈ Rn[X; σ] is
deg f = d if d is the largest integer such that cd ̸= 0. We define
deg 0 = −∞.

Similar to skew polynomials over a finite field, addition is
commutative and multiplication is defined using the commu-
tation rule

X · a = σ(a) ·X, ∀a ∈ Rn, (29)

which is naturally extended by distributivity and associativity.
Just like (5), the product of f, g ∈ Rn[X; σ] with deg f = df
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and deg g = dg is

f · g =
df∑
i=0

dg∑
j=0

fiσ
i(gj)Xi+j , (30)

and the degree of the product is deg (f · g) = df + dg . Note
that in general, f · g ̸= g · f , for f, g ∈ Rn[X; σ].

By abuse of notation, in the following, we also denote by

L={a1β
q−1
1,1 , . . . , a1β

q−1
1,n1

... . . .
... aℓβ

q−1
ℓ,1 , . . . , aℓβ

q−1
ℓ,nℓ

} ⊆ Rn

the P-independent set as a subset of Rn. Let Zi ⊆ L be the
set as in (16) corresponding to Zi and fZi

∈ Rn[X; σ] be the
minimal polynomial of Zi. We note the following properties
of Rn[X; σ], which will be useful for the proof of the main
result in Section V-B. The detailed proofs of these properties
can be found in Appendix A.
P1 Rn[X; σ] is a ring without zero divisors.
P2 For any sets Z1,Z2 ⊆ Rn s.t. Z1 ∪Z2 is P-independent,

let f1, f2 ∈ Rn[X; σ] be the minimal polynomials of
Z1,Z2, respectively. Then the greatest common right
divisor gcrd(f1, f2) is the minimal polynomial of Z =
Z1 ∩ Z2, denoted by fZ1∩Z2 . In particular, Z1 ∩ Z2 =
∅ ⇐⇒ gcrd(f1, f2) = 1.

P3 For t ∈ N and any f ∈ Rn[X; σ], Xt|lf ⇐⇒ Xt|rf .
In this case, we may write just Xt|f .

P4 For t ∈ N and any f1, f2 ∈ Rn[X; σ] such that X f2,
then Xt|(f1 · f2) if and only if Xt|f1.

In the main result in Theorem 7, we are interested in skew
polynomials in the following form: for any Z ⊆ [n], τ ≥ 0

f(Z, τ) := Xτ · lclm
α∈{alβ

q−1
l,t |

φ(l,t)∈Z}

{(X − α)} ∈ Rn[X; σ] , (31)

where φ(l, t) is as defined in (13).
Define the set of skew polynomials of this form:

Sn,k := {f(Z, τ) | τ ≥ 0, Z ⊆ [n]
s.t. |Z|+ τ ≤ k − 1} ⊆ Rn[X; σ].

(32)

Note that deg f ≤ k−1,∀f ∈ Sn,k. We also note the following
properties of polynomials in Sn,k, whose proofs are given in
Appendix A.
P5 For any f1 = f(Z1, τ1), f2 = f(Z2, τ2) ∈ Sn,k, we have

gcrd(f1, f2) = f(Z1 ∩ Z2, min{τ1, τ2}) ∈ Sn,k .

P6 Let f = f(Z, τ) ∈ Sn,k and let f ′ = f |βℓ,nℓ
=0 ∈

Rn−1[X; σ] (namely, we substitute βℓ,nℓ
= 0 in each

coefficient of f ). Then f ′ ∈ Sn−1,k and

f ′ =

{
f(Z, τ) n ̸∈ Z,

f(Z \ {n}, τ + 1) n ∈ Z.

B. Main Result

The following theorem is a more general statement than
Claim 1 and it is the analog of [16, Theorem 3.A] for skew
polynomials.

Theorem 7: Let k ≥ s ≥ 1 and n ≥ 0. For any
f1, f2, . . . , fs ∈ Sn,k, the following are equivalent:

(i) For all g1, g2, . . . , gs ∈ Rn[X; σ] such that deg(gi ·fi) ≤
k − 1, we have

s∑
i=1

gi · fi = 0 =⇒ g1 = g2 = · · · = gs = 0 .

(ii) For all nonempty Ω ⊆ [s], we have

k − deg(gcrd
i∈Ω

fi) ≥
∑
i∈Ω

(k − deg fi) . (33)

The proof of Theorem 7 is given in Appendix C. We will
show in Corollary 1 that Claim 1 is a special case of Theo-
rem 7. For this purpose, we give an equivalent way of writing
it in terms of matrices with entries from Rn. This is done in
Theorem 8, which is an analog to [16, Theorem 3.B].

We first describe the multiplication between skew polyno-
mials in matrix language. Let u =

∑
i uiX

i ∈ Rn[X; σ]. For
b− a ≥ deg u, define the following matrix in Ra×b

n

Sa×b(u):=


u0 · · · ub−a

σ(u0) · · · σ(ub−a)
. . . . . . . . .

σa−1(u0) · · · σa−1(ub−a)

 .

In particular, for a = 1, denote by Rn[X; σ]<b the set of skew
polynomials of degree strictly less than b. The map

S1×b(·) : Rn[X; σ]<b → Rb
n

u 7→ (u0, . . . , ub−1)
(34)

is bijective and S1×b(0) = 0,∀b ∈ N. For any skew
polynomial v =

∑
i viX

i ∈ Rn[X; σ], we have

Sa×b(v · u) = Sa×c(v) · Sc×b(u) , (35)

where a, b, c ∈ N are such that c− a ≥ deg v, b− c ≥ deg u.
As a special case, when v = Xτ , τ ∈ N, we can write

Sa×(b+τ)(Xτ · u) =Sa×(a+τ)(Xτ ) · S(a+τ)×(b+τ)(u)
= (0a×τ Ia×a) · S(a+τ)×(b+τ)(u)
. (36)

By the definition in (31), f(Z, τ) = Xτ · u for some u ∈
Rn[X; σ]. It can be readily seen from (36) that the first τ
columns of Sa×(b+τ)(f(Z, τ)) are all zero.

For s ∈ [k], i ∈ [s], let fi = f(Zi, τi) ∈ Sn,k. We write
S(fi) instead of S(k−τi−|Zi|)×k(fi) for ease of notation.
By (36), S(fi) looks like

S(fi) =


0 · · · 0 × × · · · ×
0 · · · 0 × × · · · ×
...

...
. . . . . . . . .

︸ ︷︷ ︸
τi

0 · · · 0 ︸ ︷︷ ︸
k−1−τi−|Zi|

︸ ︷︷ ︸
|Zi|+1

× × · · · ×


 k−τi−|Zi|

where the × ’s represent possibly non-zero entries. Then,
applying (35) to the expression gi · fi in Theorem 7 yields

S1×k(gi · fi) = ui · S(fi) ,
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where ui = S1×(k−τi−|Zi|)(gi) is a row vector. Therefore,
we can write

S1×k(
s∑

i=1

gi · fi) = (u1, · · · , us) ·

S(f1)
...

S(fs)


︸ ︷︷ ︸

=:M(f1,...,fs)

(37)

which is a linear combination of the rows of M(f1, . . . , fs).
The following theorem is an equivalent statement to Theo-

rem 7, in matrix language.
Theorem 8: Let k ≥ s ≥ 1 and n ≥ 0. For i ∈ [s], let

Zi ∈ [n], τi ≥ 0 such that τi+|Zi| ≤ k−1 and fi = f(Zi, τi) ∈
Sn,k. The matrix M(f1, . . . , fs) defined in (37) has full row
rank if and only if, for all nonempty Ω ⊆ [s],

k −

∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣−min
i∈Ω

τi ≥
∑
i∈Ω

(k − τi − |Zi|) . (38)

Proof: For brevity, we write M instead of M(f1, . . . , fs)
in the proof. The logic of the proof is as following

M has full row rank (I)⇐⇒ (i) Theorem 7⇐⇒ (ii) (II)⇐⇒ (38) holds

where (i) and (ii) are shown to be equivalent in Theorem 7.
We only need to show the equivalence (I) and (II).

(I): Assuming M has full row rank, it is equivalent to write

∀u ∈ R
1×

∑s
i=1(k−τi−|Zi|)

n , u ·M = 0 =⇒ u = 0 . (39)

Partition u into s blocks (u1, . . . ,us), where ui ∈
R

1×(k−τi−|Zi|)
n . Note that u = 0 ⇐⇒ ∀i ∈ [s], ui = 0.

For each i ∈ [s], the set {gi | S1×(k−τi−|Zi|)(gi) = ui,∀ui ∈
R

1×(k−τi−|Zi|)
n } is Rn[X; σ]<(k−τi−|Zi|), which is the set

of skew polynomials of degree less than (k − τi − |Zi|),
since the map S1×∗(·) as in (34) is bijective. Therefore,
ui = 0 ⇐⇒ gi = 0,∀i ∈ [s]. It can be further
inferred that every u ∈ R

1×
∑s

i=1(k−τi−|Zi|)
n corresponds to

a unique tuple (g1, . . . , gs) ∈ Rn[X; σ]<(k−τ1−|Z1|) × · · · ×
Rn[X; σ]<(k−τs−|Zs|). We denote the Cartesian product by G.
Since deg fi = τi + |Zi|,∀i ∈ [s], for any tuple (g1, . . . , gs) ∈
G, deg(gi · fi) ≤ k − 1,∀i ∈ [s].

By the equality in (37), u ·M = S1×k(
∑s

i=1 gi · fi) and
S1×k(

∑s
i=1 gi · fi) = 0 ⇐⇒

∑s
i=1 gi · fi = 0. Hence it is

equivalent to write (39) as:

∀g1, . . . , gs ∈ Rn[X; σ] such that deg(gi · fi) ≤ k − 1 ,
s∑

i=1

gi · fi = 0 =⇒ gi = 0,∀i ∈ [s] ,

which is exactly the statement (i). (II): It follows from P5 that
for any nonempty set Ω ⊆ [s],

deg(gcrd
i∈Ω

fi) =

∣∣∣∣∣⋂
i∈Ω

Zi

∣∣∣∣∣+ min
i∈Ω

τi .

Then the left hand side of (33) k − deg(gcrdi∈Ω fi) = k −
|
⋂

i∈Ω Zi| − mini∈Ω τi, which is the left hand side of (38).
By the definition of fi = f(Zi, τi) in (31), the right hand side
of (33) is

∑
i∈Ω(k− deg fi) =

∑
i∈Ω(k− (|Zi|+ τi)), which

is the right hand side of (38).

As a special case, when s = k, τi = 0 and |Zi| = k−1,∀i ∈
[k], each block S(fi) becomes a row vector with entries
being the coefficients of fi = f(Zi, τi) =

∑k−1
j=0 fi,j+1X

j ∈
Rn[X; σ] and

M(f1, . . . , fk) =


f11 f12 · · · f1k

f21 f22 · · · f2k

...
...

. . .
...

fk1 fk2 · · · fkk

 ∈ Rk×k
n . (40)

Note that M(f1, . . . , fk) coincides with the matrix T in (12).
Hence we have Corollary 1 below, which is Claim 1.

Corollary 1: For i ∈ [k], let Zi ⊆ [n] with |Zi| = k − 1.
Then det M(f1, . . . , fk) is a nonzero polynomial in Rn if and
only if for all nonempty Ω ⊆ [k], k −

∣∣⋂
i∈Ω Zi

∣∣ ≥ |Ω|.
VI. CONCLUSION AND OUTLOOK

In this work, we extended the previous work on MDS codes
and MRD codes with a support-constrained generator matrix

to MSRD codes. We first investigated the minimum required
field size to construct an MSRD code (particularly an LRS
code) with a support-constrained generator matrix. For this
purpose, we proved that the conditions on the support con-
straints such that an MDS/MRD code exists are also the
necessary and sufficient conditions for the existence of an
MSRD code via the framework of skew polynomials. For any
support constraints fulfilling the conditions, an [n, k]qm LRS
code with a support-constrained generator matrix exists, for
any prime power q ≥ ℓ + 1 and integer m ≥ maxl∈[ℓ]{k −
1 + logq k, nl}, where ℓ is the number of blocks and nl is
the length of the l-th block of the LRS code. With these
results, we proposed an application of LRS codes with a
support-constrained generator matrix in the distributed multi-
source networks, where a collection of messages is to be sent
via a linearly coded network with unknown topology, and
each source node only has access to a subset of the messages.
The provided LRS codes with a support-constrained generator
matrix enable the correction of errors and erasures that occur
in the network.

A recent work [43] has provided new constructions of
MSRD codes that generalize LRS codes. Several constructions
require smaller field sizes than LRS codes. Investigating these
new constructions for the support constraints may result in a
smaller required field size to obtain an MSRD code with a
support-constrained generator matrix.

APPENDIX A
PROOFS OF PROPERTIES OF SKEW POLYNOMIALS

P1: Rn[X; σ] is a ring without zero divisors.
Proof: The ring properties of Rn[X; σ] are trivial, we only

need to show that it has no zero divisors.
Note that for any a, b ∈ Rn, σ(a + b) = σ(a) + σ(b).

It can be seen from (30) that if f, g ̸= 0, then f · g ̸= 0 since
the leading coefficients of fdf

, gdg
are nonzero and therefore

fdf
σdf (gdg ) is nonzero. Hence, Rn[X; σ] does not have zero

divisors.
P2: For any sets Z1,Z2 ⊆ Rn s.t. Z1∪Z2 is P-independent,

let f1, f2 ∈ Rn[X; σ] be the minimal polynomials of
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Z1,Z2, respectively. Then the greatest common right divisor
gcrd(f1, f2) is the minimal polynomial of Z = Z1 ∩ Z2,
denoted by fZ1∩Z2 . In particular, Z1 ∩ Z2 = ∅ ⇐⇒
gcrd(f1, f2) = 1.

Proof: We can write the minimal polynomial of the set
Z1 ∩ Z2 by the least common left multiplier as in (7), i.e.,
fZ1∩Z2 = lclm

a∈Z1∩Z2
{(X − a)}. Then we can write f1 = g1 ·

lclm
a∈Z1∩Z2

{(X − a)} and f2 = g2 · lclm
a∈Z1∩Z2

{(X − a)}, for

some g1, g2 ∈ Rn[X; σ]. Therefore, it is clear that fZ1∩Z2 |
gcrd(f1, f2).

Now we only need to show that deg fZ1∩Z2 =
deg gcrd(f1, f2). Since Z1∪Z2 is P-independent, Z1,Z2 and
Z1∩Z2 are also P-independent. Then deg fZ1∪Z2 = |Z1∪Z2|,
deg fZ1 = |Z1|, degZ2

= |Z2| and deg fZ1∩Z2 = |Z1 ∩
Z2|. It follows from [62, Proposition 5.12] that the minimal
polynomial of Z1 ∪ Z2 is

fZ1∪Z2 = lclm(f1, f2)

and from [33, Eq.(24)] that

deg gcrd(f1, f2) =deg f1 + deg f2 − deg lclm(f1, f2)
=|Z1|+ |Z2| − |Z1 ∪ Z2|
=|Z1 ∩ Z2| = deg fZ1∩Z2

P3: For t ∈ N and any f ∈ Rn[X; σ], Xt|lf ⇐⇒ Xt|rf .
In this case, we may write just Xt|f .

Proof: If Xt|lf , then with some g ∈ Rn[X; σ] we can
write f = Xt · g = σt(g) ·Xt, where σt(g) =

∑
i σt(gi)Xi.

Then it is obvious that Xt|rf . Similarly, if Xt|rf , we can
write f = g ·Xt = Xt · σ−t(g) and it is obvious that Xt|lf .
This property has been also shown in [33, Theorem 7].

P4: For t ∈ N and any f1, f2 ∈ Rn[X; σ] such that X f2,
then Xt|(f1 · f2) if and only if Xt|f1.

Proof: We first show Xt|(f1 · f2) ⇐= Xt|f1. Suppose
Xt|f1, then we can write f1 = Xt · f ′1 with some f ′1 ∈
Rn[X; σ]. Then f1 · f2 = Xt · f ′1 · f2 and it can be seen
that Xt|l(f1 · f2). By P3:, we have Xt|(f1 · f2).

For the other direction, we first show that X|(f1 · f2) =⇒
X|f1 by contradiction. Assume X f1, then we can write
f1 = f ′1 + a with some f ′1 ∈ Rn[X; σ] such that X|f ′1 and
a ∈ Rn \ {0}. Since X f2, we can write f2 = f ′2 + b, with
some f ′2 ∈ Rn[X; σ] such that X|f ′2 and b ∈ Rn \ {0}. Then,

f1 · f2 = (f ′1 + a)(f ′2 + b)
= f ′1 · f ′2 + a · f ′2 + f ′1 · b + a · b

where the first three summands are all divisible by X but
a·b ̸= 0 (since Rn is a ring without zero divisor) and X a·b.
This implies X (f1 · f2), which is a contradiction. We can
then extend the following steps t times and the statement is
proven. Note that X2|(f1 · f2) =⇒ X|(f1 · f2) =⇒ X|f1.
Write f1 = X · g with some g ∈ Rn[X; σ], then

X2|(f1 · f2) =⇒ X|(g · f2) =⇒
X f2

X|g

=⇒ (X ·X)|(X · g) =⇒ X2|f1 .

For any Zi ⊆ [n], i ∈ [k], l ∈ [ℓ], we denote Z
(l)
i :=

{t | φ(l, t) ∈ Zi} and Z(l)
i = {alβ

q−1
l,t | t ∈ Z

(l)
i }. We need

some properties of the set of roots of skew polynomials in
order to prove P5:. It follows from Lemma 5 that fZi

only vanishes on Zi while evaluating on L. The following
lemma gives the structure of the roots of fZi while evaluating
on Rn.

Lemma 6 ( [31, Theorem 4]): For l = 1, . . . , ℓ, let f
(l)
i

be the minimal polynomial of Z(l)
i and Z(l)

i := {α ∈
Rn | f

(l)
i (α) = 0}. Then, for all l = 1, . . . , ℓ,

Z(l)
i = {alβ

q−1 | β ∈ ⟨βl,t⟩t∈Z
(l)
i
\ {0}} ⊆ Cσ(al) (41)

|Z(l)
i | = q|Z

(l)
i | − 1 (42)

where Cσ(al) is the σ-conjugacy class of al as defined in
Definition 2.

Theorem 9: Let fi be the minimal polynomial of Zi.
Denote the set of roots of fi while evaluating on Rn by
Zi := {α ∈ Rn | fi(α) = 0}. Then

Zi =
ℓ⋃

l=1

Z(l)
i , where Z(l)

i is as in (41) (43)

|Zi| =
ℓ∑

l=1

|Z(l)
i | =

ℓ∑
l=1

q|Z
(l)
i | − ℓ. (44)

Proof: Note that for all l = 1, . . . , ℓ, Z(l)
i are

P-independent and they are from different conjugacy classes.
It follows from [63, Corollary 4.4] that for such sets,⋃ℓ

l=1Z
(l)
i =

⋃ℓ
l=1Z

(l)
i .

It is clear that the α’s in (31) are P-independent. It follows
from Definition 7 that deg f(Z, τ) = |Z|+ τ . By Theorem 9,
the set of roots of f(Z, τ) is

{0}τ ∪
ℓ⋃

l=1

{alβ
q−1 | β ∈ ⟨βl,t⟩t∈Z(l) \ {0}} (45)

where Z(l) = {t | φ(l, t) ∈ Z}. The notation {0}τ is to imply
that Xτ f(Z, τ) and Xτ+1 ∤ f(Z, τ).

P5: For any f1 = f(Z1, τ1), f2 = f(Z2, τ2) ∈ Sn,k, we have

gcrd(f1, f2) = f(Z1 ∩ Z2, min{τ1, τ2}) ∈ Sn,k .

Proof: We prove the property by showing that the skew
polynomials on both side have the same set of roots. Denote by
Z1,Z2,Z1,2 ⊆ Rn the set of all roots in Rn of f1, f2, f(Z1 ∩
Z2, min{τ1, τ2}), respectively. By the structure of roots of
f(Z, t) given in (45),

Zi={0}τi ∪
ℓ⋃

l=1

{alβ
q−1 | β ∈ ⟨βl,t⟩t∈Z

(l)
i
\ {0}}, i=1, 2

Z1,2 = {0}min{τ1,τ2} ∪
ℓ⋃

l=1

{alβ
q−1 | β ∈ ⟨βl,t⟩t∈Z

(l)
1,2
\ {0}}

where Z
(l)
i := {t | φ(l, t) ∈ Zi} and Z

(l)
1,2 := {t | φ(l, t) ∈

Z1 ∩ Z2}. The set of roots of gcrd(f1, f2) is

Z1 ∩ Z2 = {0}min{τ1,τ2}
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∪
ℓ⋃

l=1

{alβ
q−1 | β ∈ ⟨βl,t⟩t∈Z

(l)
1 ∩Z

(l)
2
\ {0}} .

It can be seen that Z
(l)
1 ∩ Z

(l)
2 = Z

(l)
1,2,∀l ∈ [ℓ]. Hence, Z1 ∩

Z2 = Z1,2.
P6: Let f = f(Z, τ) ∈ Sn,k and let f ′ = f |βℓ,nℓ

=0 ∈
Rn−1[X; σ] (namely, we substitute βℓ,nℓ

= 0 in each coeffi-
cient of f ). Then f ′ ∈ Sn−1,k and

f ′ =

{
f(Z, τ) n ̸∈ Z,

f(Z \ {n}, τ + 1) n ∈ Z.

Proof: Denote by Z the subset of L corresponding to Z
as in (16). It is trivial that f ′ ∈ Sn−1,k and f ′ = f(Z, τ)
when n ̸∈ Z. Suppose n ∈ Z, then aℓβ

q−1
ℓ,nℓ

∈ Z . Let g =
lclm

α∈Z\{aℓβℓ,nℓ
}
{X − α}, then

f ′ =Xτ · (lclm
α∈Z

{X − α})|βℓ,nℓ
=0

=Xτ ·
((

X − (aℓβ
q−1
ℓ,nℓ

)g(aℓβq−1
ℓ,nℓ

)
)
· g
)
|βℓ,nℓ

=0

=Xτ ·X · g
=Xτ+1 · g
=Xτ+1 · ( lclm

α∈Z\{aℓβq−1
ℓ,nℓ

}
{X − α})

=f(Z \ {n}, τ + 1) ∈ Sn−1,k ,

where the second line holds by Newton interpolation in (6).

APPENDIX B
DERIVATION OF degβl,t

PT

From (14), the entry Ti,j+1 in T is the coefficient of Xj

in fi(X). By (17), it can be seen that fi(X) is monic, and
therefore Tik = 1. For 1 ≤ h < k, Tih is a commutative
multivariate polynomial in the variables βl,t’s and

degβl,t
Tih ≤ degβl,t

fi(X) .

For any l = 1, . . . , ℓ and t = 1, . . . , nl, to find degβl,t
fi(X),

consider the property of fi(X) in (15). Suppose that φ(l, t) ∈
Zi, otherwise degβl,t

fi(X) = 0. Given j ∈ Zi, let (l, t) =
φ−1(j) s.t. αj = alβ

q−1
l,t , then

fi(X) = lclm
α∈{al′β

q−1
l′,t′ | φ(l′,t′)∈Zi}

{(X − α)} .

Let f ′i ∈ Fqm [X; σ] be the minimal polynomial of Z ′i :=
Zi \ {j}, i.e.,

f ′i(X) = lclm
α∈{al′β

q−1
l′,t′ | φ(l′,t′)∈Z′i}

{(X − α)} ,

whose degree in X is degX f ′i(X) = |Z ′i| = k − 2. Since
j = φ(l, t) ̸∈ Z ′i, the coefficients of f ′i(X) are independent of
βl,t, i.e., degβl,t

f ′i(X) = 0.
By the remainder evaluation of skew polynomials in

Lemma 4,

f ′i(alβ
q−1
l,t ) =

k−2∑
h=0

f ′i,hNh(alβ
q−1
l,t ) ,

and we have

degβl,t
f ′i(alβ

q−1
l,t ) = degβl,t

Nk−2(alβ
q−1
l,t )

= degβl,t
(alβ

q−1
l,t )

qk−2−1
q−1

= qk−2 − 1 .

By the Newton interpolation in (6), we can write

fi(X) =
(

X − σ(f ′i(alβ
q−1
l,t )) · alβ

q−1
l,t ·

(
f ′i(alβ

q−1
l,t )

)−1
)

· f ′i(X)

=
(

X −
(
f ′i(alβ

q−1
l,t )

)q−1

· alβ
q−1
l,t

)
· f ′i(X)

= X · f ′i(X)−
(
f ′i(alβ

q−1
l,t )

)q−1

· alβ
q−1
l,t · f ′i(X) .

Since degβl,t
f ′i(X) = 0 and so is degβl,t

(X ·f ′i(X)), we have

degβl,t
fi(X)=(q − 1) · degβl,t

f ′i(alβ
q−1
l,t ) + degβl,t

(alβ
q−1
l,t )

= (q − 1) · (qk−2 − 1) + (q − 1)

= (q − 1) · qk−2 ,

for all l, t such that φ(l, t) ∈ Zi. Hence, degβl,t
Tih ≤

degβl,t
fi(X) = (q − 1)qk−2,∀h ∈ [k − 1]. Then,

degβl,t
PT = degβl,t

det T (46)

≤ max
π∈ξk

k∑
h=1

degβl,t
Tπ(h),h (47)

≤ (k − 1)(q − 1) · qk−2 , (48)

where ξk denotes the set of permutations of [k] and the
(k − 1) in the last inequality is because Tik = 1 and hence
degβl,t

Tik = 0.

APPENDIX C
PROOF OF MAIN RESULT IN THEOREM

Denote fΩ := gcrdi∈Ω fi. By P2, fΩ is equal to the minimal
polynomial of the set ZΩ :=

⋂
i∈Ω Zi.

We first show the direction (i) =⇒ (ii). Suppose (ii) does
not hold and w.l.o.g., assume that for Ω = {1, 2, . . . , ν} ⊆ [k],
k − deg fΩ <

∑
i∈Ω(k − deg fi). For i ∈ Ω, let fi = qi · fΩ

for some qi ∈ Rn[X; σ]. Then for g1, . . . , gν ∈ Rn[X; σ] such
that deg(gi · fi) ≤ k − 1, the equation

∑
i∈Ω gi · qi = 0 gives

a homogeneous linear system of equations in coefficients of
the gi’s. The number of variables is at least

∑
i∈Ω(k−deg fi)

and the number of equations is at most k − deg fΩ, which
is smaller than the number of variables by the assumption.
Therefore, one can find g1, . . . , gν , not all zero, that solve the
linear system of equations, which contradicts (i).

We then show the direction (ii) =⇒ (i) by induction.
We do induction on the parameters (k, s, n) considered in
lexicographical order ≺.

For the induction basis, when (k ≥ s = 1, n ≥ 0), (i)
always holds due to P1, i.e., g1 · f1 = 0 implies g1 = 0.

For (k ≥ s ≥ 2, n = 0), both (i) and (ii) never hold
therefore they are equivalent. Note that n = 0 =⇒ fi = Xτi

for all i ∈ [k]. For any fi = Xτi and fj = Xτj with
τi ̸= τj (w.l.o.g. assuming τi > τj), there exist gi = 1 and
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Fig. 3. Proof logic for (ii) =⇒ (i) with initial hypothesis H1 and H2.

gj = −Xτi−τj such that gifi + gjfj = 0 and hence (i)
never holds. Suppose τ1 ≤ τ2, then for Ω = {1, 2}, (33)
becomes k− τ1 ≥ (k− τ1)+ (k− τ2), which contradicts with
deg fi = |Zi|+ τi ≤ k − 1. Hence, (ii) never holds.

For (k ≥ s ≥ 2, n ≥ 1), we do the induction with the
following hypotheses:
H1 Assume that (ii) =⇒ (i) is true for all parameters

(k′, s′, n′) ≺ (k, s, n).
H2 Take any f1, . . . , fs ∈ Sn,k for which (ii) is true for

(k, s, n).
The logic of the proof is summarized in Figure 3.
Starting from H2, we have that for all the subsets ∅ ̸= Ω ⊆

[s], the inequality (33) holds. We will prove that (i) is true for
(k, s, n) via (Step 1) → H1 → (Step 2) under different cases:
Case 1 For s ≥ 3 and n ≥ 2,

Case 1a ∀i ∈ [s], τi ≥ 1 (i.e., |Zi| ≤ k−2). (In this case,
we do induction by reducing k.)

Case 1b ∃ a unique i ∈ [s] such that τi = 0. (In this case,
we do induction by reducing k. We may need to
reduce s as well.)

Case 1c ∃Ω ⊂ [s] with 2 ≤ |Ω| ≤ s − 1 such that (33)
holds with equality. (In this case, we do induction
by reducing s.)

Case 1d ∀Ω ⊂ [s] with 2 ≤ |Ω| ≤ s−1, (33) holds strictly
and ∃ at least two i ∈ [s] such that τi = 0. (In
this case, we do induction by reducing n.)

Case 2 For s = 2 and n ≥ 2,
Case 2a ∀i ∈ {1, 2}, τi ≥ 1 (i.e., |Zi| ≤ k − 2). (The

same as Case 1a.)
Case 2b ∃ a unique i ∈ {1, 2} such that τi = 0. (The

same as Case 1b.)
Case 2c ∀i ∈ {1, 2}, τi = 0. (In this case, we do induction

by reducing n.)
Case 3 For s ≥ 2 and n = 1,

Case 3a ∀i ∈ [s], τi ≥ 1 (i.e., |Zi| ≤ k − 2). (The same
as Case 1a.)

Case 3b ∃ a unique i ∈ {1, 2} such that τi = 0. (The
same as Case 1b.)

Case 3c ∃ at least two i ∈ [s], τi = 0. (We show that this
case cannot happen if (ii) is true for (k ≥ s ≥
2, n = 1).)

We illustrate the reduction of s and n of the induction under
these cases in Fig. 4. We omitted the parameter k for clarity
and simplicity, since only s, n are essential in classifying the
different cases.

In the following we demonstrate the induction for each case
in detail.

Fig. 4. Illustration of the induction for (ii) =⇒ (i) under difference cases.

Case 1a: We conveniently denote k′ = k−1. For all i ∈ [s],
we can write fi = X ·f ′i , where f ′i = f(Zi, τi−1) ∈ Sn,k−1 =
Sn,k′ . Note that since mini∈[s] τi ≥ 1, we have deg fΩ ≥ 1 for
any Ω ⊆ [s]. For Ω = [s], (ii) implies k − 1 ≥ k − deg f[s] ≥∑

i∈[s](k − deg fi) ≥ s.
(Step 1) (ii) holds for (f ′1, . . . , f

′
s) because for any nonempty

Ω ⊆ [s],

k′ − deg f ′Ω =k − deg fΩ

≥
∑
i∈Ω

(k − deg fi)

=
∑
i∈Ω

(k′ − deg f ′i) (49)

where (49) holds because (ii) holds for (f1, . . . , fs) by
H2. By H1, (i) then holds for (f ′1, . . . , f

′
s) ∈ Sn,k′ . Note

here that we used the induction hypothesis by reducing
k to k′.

(Step 2) We then show that (i) also holds for (f1, . . . , fs).
Suppose that for g1, . . . , gs ∈ Rn[X; σ] with deg(gi · fi) ≤
k − 1, we have

∑s
i=1 gi · fi = 0 =

∑s
i=1 gi · (X · f ′i)

P2,P2
=⇒∑s

i=1 gif
′
i = 0, which implies that g1 = · · · = gs = 0 since

(i) holds for (f ′1, . . . , f
′
s) ∈ Ss

n,k′ .
Case 1b: Suppose w.l.o.g. τs = 0 and write f ′s = fs ∈ Sn,k.

For i ∈ [s− 1], τi ≥ 1, then we can write fi = X · f ′i , where
f ′i = f(Zi, τi − 1) ∈ Sn,k−1. Note that f ′s = fs ∈ Sn,k−1 if
and only if deg fs ≤ k − 2, in which case for Ω = [s], H2
implies

k ≥ k − deg fΩ ≥
∑
i∈Ω

(k − deg fi) ≥ s + 1.

(Step 1) We show that (ii) holds for (f ′1, . . . , f
′
s) when k is

replaced by k′ = k−1. First consider the case of Ω ⊆ [s−1].
Since ∀i ∈ [s − 1], τi ≥ 1, the claim follows similarly
to Case 1a. Additionally, by the induction hypothesis for
(k′ = k−1, s−1, n) we get that (i) is true for (f ′1, . . . , f

′
s−1).

Then consider the case of Ω such that s ∈ Ω. Since fs =
lclmα∈{alβ

q−1
l,t |φ(l,t)∈Zs}{(X −α)} has no factor X , we have

gcrd{fs, fi} = gcrd{f ′s, f ′i},∀i ∈ [s − 1], hence fΩ = f ′Ω
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where we define f ′Ω = gcrdi∈Ω{f ′i}. Then

k − 1− deg f ′Ω = −1 + k − deg fΩ

≥ −1 +
∑
i∈Ω

deg(k − deg fi)

= k − 1− deg fs +
∑

i∈Ω\{s}

(k − deg fi)

= k − 1− deg f ′s +
∑

i∈Ω\{s}

(k − 1− deg f ′i)

=
∑
i∈Ω

(k − 1− deg f ′i) , (50)

where (50) holds from H2. By H1, (ii) =⇒ (i) is true for
(f ′1, . . . , f

′
s) with parameters (k′ = k − 1, s, n) if deg f ′s ≤

k − 2., which implies k ≥ s + 1.
(Step 2) Suppose that for some g1, . . . , gs ∈ Rn[X; σ] with

deg(gi · fi) ≤ k − 1 we have
∑s

i=1 gi · fi = 0. Then 0 =∑s
i=1 gi · fi = gs · fs +

∑s−1
i=1 gi · (X · f ′i), which implies

X|(gs · fs). However, since X fs, by P4, X|gs. Then we
can write gs = g′s ·X for some g′s ∈ Rn[X; σ] with deg g′s =
deg gs − 1.

If deg fs = k−1, then deg g′s = −1, implying gs = 0. Since
(i) holds for (f ′1, . . . , f

′
s−1) ∈ Ss−1

n,k−1 with the parameter tuple
(k−1, s−1, n), g1, . . . , gs−1 are also zero. Note that here we
used the induction hypothesis by reducing k to k− 1 and s to
s− 1.

If deg fs ≤ k − 2, we have

0 =
s∑

i=1

gi · fi

=(g′s ·X) · fs +
s−1∑
i=1

gi · (X · f ′i)

=(g′s ·X) · f ′s +
s−1∑
i=1

(gi ·X) · f ′i .

Then g1 = · · · = gs−1 = g′s = 0 since (i) holds for
(f ′1, . . . , f

′
s) ∈ Ss

n,k−1 with the parameter tuple (k − 1, s, n).
Note that here we used the induction hypothesis by reducing
k to k − 1. Hence, all g1 = · · · = gs = 0.

Case 1c: W.l.o.g., assume that (33) holds with equality for
Ω′ = {1, . . . , ν}, 1 < ν < s, i.e.,

k − deg f0 =
∑
i∈Ω′

(k − deg fi) , (51)

where f0 = fΩ′ = gcrdi∈Ω′ fi. Since f0|rfi,∀i ∈ Ω′, there
exists f ′i ∈ Rn[X; σ] such that fi = f ′i · f0. Since ν < s
and s − ν + 1 < s, we split (f1, . . . , fs) ∈ Ss

n,k into two
smaller problems (f1, . . . , fν) ∈ Sν

n,k with the parameter tuple
(k, ν < s, n) and (f0, fν+1, . . . , fs) ∈ Ss−ν+1

n,k with the tuple
(k, s− ν + 1 < s, n).

(Step 1) Note that by H2, (ii) is true for (f1, . . . , fν) and for
(f0, fν+1, . . . , fs) when 0 ̸∈ Ω′′ ⊆ {0, ν+1, . . . , s}. We show
in the following that (ii) is also true for (f0, fν+1, . . . , fs) with
0 ∈ Ω′′:

k − deg fΩ′′ =k − deg gcrd{f0, fΩ′′\{0}}
=k − deg gcrd{fΩ′ , fΩ′′\{0}}

=k − deg gcrd
i∈Ω′∪Ω′′\{0}

fi

≥
∑

i∈Ω′∪Ω′′\{0}

(k − deg fi) (52)

=
∑
i∈Ω′

(k − deg fi) +
∑

i∈Ω′′\{0}

(k − deg fi)

=k − deg f0 +
∑

i∈Ω′′\{0}

(k − deg fi)

=
∑
i∈Ω′′

(k − deg fi) (53)

Note that Ω′ ∪ Ω′′ \ {0} is a subset of Ω. Therefore, the
inequality in (52) follows from H2. The equality (53) fol-
lows from (51). Now we can conclude that (ii) is true for
(f1, . . . , fν) and for (f0, fν+1, . . . , fs).

By H1, (i) is true for both smaller problems (f1, . . . , fν) ∈
Sν

n,k and (f0, fν+1, . . . , fs) ∈ Ss−ν+1
n,k .

(Step 2) Then we show (i) is also true for (f1, . . . , fs).
Suppose that for some g1, . . . , gs ∈ Rn[X; σ] with deg gi·fi ≤
k − 1,∀i ∈ [s], we have

s∑
i=1

gi · fi = 0 . (54)

Since f0|rfi for all i ∈ Ω′ = [ν], f0 is a right factor
∑ν

i=1 gi·fi

and we can then write
∑ν

i=1 gi · fi = g0 · f0, for some g0 ∈
Rn[X; σ]. Then

0 =
s∑

i=1

gi · fi

=
ν∑

i=1

gi · fi +
s∑

i=ν+1

gi · fi

=g0 · f0 +
s∑

i=ν+1

gi · fi (55)

From the conclusion that (i) is true for (f0, fν+1, . . . , fs), (55)
holds only if g0 = gν+1 = · · · = gs = 0. Similarly, since (i)
is true for (f1, . . . , fν), 0 = g0 · f0 =

∑ν
i=1 gi · fi only if

g1 = · · · = gν = 0. Therefore, (54) holds only if g1 = · · · =
gs = 0 and (i) is proven for (f1, . . . , fs) ∈ Ss

n,k with the
parameter tuple (k, s, n).

Case 1d: Assume w.l.o.g. that τs−1 = τs = 0. Then for i =
s−1, s, deg fi = |Zi|. If Zs−1 = Zs, then for Ω = {s−1, s},
(ii) implies

k − deg fs =k − deg fs−1

=k − deg gcrd{fs−1, fs}
≥k − deg fs−1 + k − deg fs

which contradicts with deg fi ≤ k− 1 for any i ∈ [s]. Hence,
Zs−1 ̸= [n] or Zs ̸= [n]. W.l.o.g., assume Zs ̸= [n] and
n ̸∈ Zs.

Note that n = φ(ℓ, nℓ). We will substitute the variable
βℓ,nℓ

= 0. For all i ∈ [s], let f ′i := fi|βℓ,nℓ
=0. Since n ̸∈ Zs,

we have f ′s = fs ∈ Sn−1,k. For other i ∈ [s − 1], by P6,
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f ′i ∈ Sn−1,k and

f ′i =

{
f(Zi, τi) n ̸∈ Zi

f(Zi \ {n}, τi + 1) n ∈ Zi

. (56)

In the first case of (56) we denote Z ′i = Zi and τ ′i = τi,
whereas in the second we denote Z ′i = Zi\{n} and τ ′i = τi+1.
Additionally, we define f ′Ω = gcrdi∈Ω f ′i .

(Step 1) We will first show that (f ′1, . . . , f
′
s) satisfies (ii).

That is, we show that ∀∅ ̸= Ω′ ⊆ [s], k − deg f ′Ω′ ≥∑
i∈Ω′(k − deg f ′i).
For |Ω′| = 1, it is trivial.
For 2 ≤ |Ω′| ≤ s− 1,

k − deg f ′Ω′ =k − |
⋂

i∈Ω′

Z ′i| −min
i∈Ω′

τ ′i

≥k − |
⋂

i∈Ω′

Zi| −min
i∈Ω′

τi − 1 (57)

=k − deg fΩ′ − 1

≥
∑
i∈Ω′

(k − deg fi) (58)

=
∑
i∈Ω′

(k − deg f ′i) . (59)

The inequality (57) is because |
⋂

i∈Ω Z ′i| ≤ |
⋂

i∈Ω Zi| and
mini∈Ω τ ′i ≤ mini∈Ω τi + 1. The inequality (58) is because
we assume the inequality (33) in (ii) holds strictly for all
2 ≤ |Ω| ≤ s − 1. The equality (59) holds because deg f ′i =
deg fi,∀i ∈ [s] by observing (56).

For |Ω′| = s, (33) is not necessarily strict. However, since

n ̸∈ Zs =⇒ n ̸∈
⋂

i∈[s]

Zi

=⇒ |
⋂

i∈[s]

Z ′i| = |
⋂

i∈[s]

Zi| =⇒ f ′[s] = f[s],

we have

k − deg f ′[s] =k − deg f[s]

≥
∑
i∈[s]

(k − deg fi)

=
∑
i∈[s]

(k − deg f ′i) .

Hence, (ii) holds for (f ′1, . . . , f
′
s) ∈ Ss

n−1,k. By H1, (i)
holds for (f ′1, . . . , f

′
s) ∈ Ss

n−1,k with the parameter tuple (k ≥
s ≥ 3, n − 1) where n ≥ 2. Note that here we used the
induction hypothesis by reducing n to n− 1.

(Step 2) Suppose that for some g1, . . . , gs ∈ Rn[X; σ], not
all zero, with deg(gi · fi) ≤ k − 1, we have

∑s
i=1 gi · fi = 0.

Let g′i = gi|βℓ,nℓ
=0 ∈ Rn−1[X; σ]. Further assume that at least

one coefficient of some gi is not divisible by βℓ,nℓ
(otherwise,

divide them by βℓ,nℓ
). Then g′i are not all zero. We can write

s∑
i=1

g′i · f ′i =

(
s∑

i=1

gi · fi

)
|βℓ,nℓ

=0 = 0|βℓ,nℓ
=0 = 0 .

However, this contradicts (i) being true for (f ′1, . . . , f
′
s) with

the parameter tuple (k, s, n − 1). Therefore, g1, . . . , gs ∈
Rn[X; σ] must be all zero to have

∑s
i=1 gi · fi = 0.

Case 2c: In this case we have Ω = {1, 2} and τ1 = τ2 = 0.
Similar to Case 2d, Z1 ̸= [n] or Z2 ̸= [n]. W.l.o.g., assume
Z2 ̸= [n] and n ̸∈ Z2. Note that n = φ(ℓ, nℓ). We substitute
the variable βℓ,nℓ

= 0. For i = 1, 2, let f ′i := fi|βℓ,nℓ
=0

and f ′Ω := gcrd{f ′1, f ′2}. Since n ̸∈ Z2, f ′2 = f2. By P6,
f ′1 ∈ Sn−1,k and

f ′1 =

{
f(Z1, 0) n ̸∈ Z1

f(Z1 \ {n}, 1) n ∈ Z1

.

(Step 1) We first show that (f ′1, f
′
2) ∈ S2

n−1,k satisfies (ii).
That is, we show that ∀∅ ̸= Ω′ ⊆ Ω, k−deg f ′Ω′ ≥

∑
i∈Ω′(k−

deg f ′i).
For |Ω′| = 1, it is trivial.
For Ω′ = {1, 2}, since

n ̸∈ Z2 =⇒ n ̸∈ Z1 ∩ Z2 =⇒ |Z ′1 ∩ Z ′2| = |Z1 ∩ Z2|
=⇒ deg f ′Ω′ = deg fΩ′ ,

we have

k − deg f ′Ω′ =k − deg fΩ′

≥
∑
i∈Ω′

(k − deg fi)

=
∑
i∈Ω′

(k − deg f ′i) .

Hence, (ii) holds for (f ′1, f
′
2) ∈ S2

n−1,k. By H1, (i) holds for
(f ′1, f

′
2) ∈ S2

n−1,k with parameter tuple (k ≥ s = 2, n −
1) where n ≥ 2. Here we used the induction hypothesis by
reducing n to n− 1.

(Step 2) This step can be shown in the same manner as in
Case 1d.

Case 1c: W.l.o.g., assume that τ1 = τ2 = 0. Since n = 1,
|Zi| ≤ n = 1,∀i ∈ [s]. By the definition of fi ∈ S1,k in (32),
deg fi ≤ n = 1. Assume (ii) is true for this case, then for
Ω = {1, 2}, we have

k − deg fΩ ≥ k − deg f1 + k − deg f2. (60)

If Z1 = Z2 = ∅ or {1}, then deg fΩ = deg f1 = deg f2 ≤
n = 1 and (60) implies deg f1 ≥ k, which contradicts k ≥
s ≥ 2. Otherwise, w.l.o.g., assume Z1 = ∅ and Z2 = {1},
then deg fΩ = 0 and (60) implies 1 = deg f2 ≥ k, which
contradicts k ≥ s ≥ 2. Therefore, if (ii) is true for (k ≥ s ≥
2, n = 1), this case cannot happen.
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