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ers non-trivial cases for which previous known methods do not

apply. The main idea is to use the elements of the first row and

column, which determine the entire Toeplitz matrix, to construct

a digraph in which certain paths correspond to permutations that

thepermanent andHafnian count. Since countingpaths canbedone

efficiently, the permanent and Hafnian for those matrices is easily

obtainable.
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1. Introduction

Efficiently computing the permanent and its counterpart, the Hafnian, of matrices is a notoriously

difficult problem. Even if we restrict ourselves to (0, 1)matrices, it was shown by Valiant in [22,21] that

computing the permanent is a #P-complete problem. The class #P consists of those problems which

compute a function f ,where f is thenumberof acceptingpathsof anon-deterministic polynomial-time

(NP) Turing machine. Thus, efficiently computing the permanent of just (0, 1) matrices would imply

not only polynomial-time machines to NP problems, but also counting the number of their solutions.
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The most efficient algorithm to date for computing the permanent of a general n × n matrix is due to

Ryser [18], with a complexity of O(n2n).

The permanent and Hafnian are connected to the well-known combinatorial problems of cycle

covers and perfect matchings in graphs. They also have applications in numerous other problems (see

[14,2] and references therein).

Since the problem of computing the permanent and Hafnian of general matrices is unlikely to be

solved efficiently, attention has been given tomore limited classes ofmatriceswith a special structure.

One such notable case is that of matrices whose permanent and Hafnian may be computed by the

determinant and the Pfaffian, respectively, of a matrix with the same size. This was shown in the early

work of Temperley and Fisher [20], and (independently and concurrently) in the work of Kasteleyn

[7,8] – works which were all motivated by a problem from statistical mechanics. For the current state

of these methods the reader is referred to [3,10] and references therein. These techniques were lately

adopted in other areas, such as holographic reductions by Valiant [23], and constrained coding by

Schwartz and Bruck [19].

Another family of matrices with special structure is that of circulants and Toeplitz matrices. Some

explicit solutions or recurrence formulas for somecases of (0, 1) circulantsmaybe found in [9,13,15,16].

Other (0, 1) circulants and very sparse Toeplitz matrices are further discussed in [4].

In this paper, we present novel algorithms for computing the permanent and Hafnian of banded

Toeplitz matrices for cases which were not covered by previously-known methods. The narrower the

band, themoreefficient our algorithmsare. For ann × nToeplitzmatrixA, anda2n × 2nToeplitzmatrix

A′, both of bandwidth m, the algorithms to compute per(A) and Hf(A′) run in time O

((
2m
m

)3
log n

)

and O(23m log n), respectively. At the extreme, for a constant bandwidth, the algorithms run in time

logarithmic in the size of the matrix. Furthermore, in that case, the technique we present also allows

us to compute both limn→∞ per(A)1/n as well as limn→∞ Hf(A′)1/n efficiently. These are important in

a variety of applications, see for example [6,1,19], as well as the running example we show which is a

packing problem described in [12].

Loosely speaking, the main idea behind our algorithms is to construct a digraph which depends

only onm and the specific non-zero diagonals in thematrices. Certain paths in that digraph correspond

to permutations used by the permanent and Hafnian. Since counting paths can be done efficiently, we

are able to compute the permanent and Hafnian using simple matrix multiplication of the weighted

adjacency matrix of the constructed digraph.

Thepaper isorganizedas follows. InSection2,wepresent thedefinitionsandnotationused through-

out the paper. A simple motivating problem is also presented, which will be later used as a running

example.We continue in Section 3 to describe in full detail the algorithm for computing the permanent

of banded Toeplitz matrices, and analyze it. We conclude in Section 4 by showing the analogous

algorithm for computing the related Hafnian.

2. Preliminaries and motivation

For two integers, m,n ∈ Z, m � n, let [m,n] denote the set {m,m + 1, . . .,n}, and let [n] be defined

as [1,n]. Denote by Sn the set of all permutations over [n]. Any permutation σ ∈ Sn may be written as

σ = [σ(1), . . ., σ(n)].
Let A = (ai,j) be an n × nmatrix over some ring R. The permanent of A is defined as

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i).

The usual combinatorial interpretation of the permanent views A as the weighted adjacencymatrix of

a digraph GA, i.e., theweight of edge i → j is ai,j . In that case, per(A) is simply theweighted cycle cover1

of GA. Another common interpretation defines G′
A
to be a bi-partite graph over a set of n left vertices,

1 A cycle cover is a subset of the edges covering all the vertices by disjoint simple cycles. Each cycle cover is scored by the

product of the weights of its edges. The weighted cycle cover is the sum of the scores over all cycle covers.
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VL , and a set of n right vertices, VR, with an edge of weight ai,j connecting vi ∈ VL with v′
j
∈ VR. In that

case, per(A) is the weighted perfect matching2 of the graph G′
A
.

Consider an infinite sequence {tk}∞k=−∞ over a ring R. An n × n Toeplitz matrix A = (ai,j) induced

by {tk} is a matrix for which ai,j = tj−i. We call the set T = {k ∈ Z|tk /= 0}, the support set of {tk}. A
permutation σ ∈ Sn is said to be of type T , for some T ⊆ Z, if σ(i) − i ∈ T for all i ∈ [n]. If there exists a

constant m ∈ N0 such that tk = 0 for all |k| > m, i.e., the support T of {tk} satisfies T ⊆ [−m,m], then
we say the matrix is banded and that its bandwidth ism. We can now write

per(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i) =
∑
σ∈Sn

n∏
i=1

tσ(i)−i.

If we define a score function for permutations, ω : Sn → R, as ω(σ) = ∏n
i=1 tσ(i)−i, then per(A) is simply

the sum of the scores of all permutations. We note that only permutations of type T contribute to this

sum. Furthermore, since for any i, j ∈ [n] we have −n < j − i < n, if we define T ′ = T ∩ [−n + 1,n − 1],
then only permutation of type T ′ contribute to the above-mentioned sum. Thus

per(A) =
∑
σ∈Sn

σ of type T ′

ω(σ). (1)

Finally, we present one motivating problem for this work which will be used as a running

example – the open problem of calculating the size of balls in Sn under the l∞-norm (see [5]). Given

two permutations σ , σ ′ ∈ Sn, their l∞-distance is defined as

d∞(σ , σ ′) = max
i∈[n]

|σ(i) − σ ′(i)|.

A ball of radius r centered about σ ∈ Sn is defined as

Br(σ ) = {σ ′ ∈ Sn|d∞(σ , σ ′) � r}.
It is well known (see [5]) that the size of a ball, |Br(σ )|, does not depend on the choice of the center,

σ . Therefore, if ε ∈ Sn denotes the identity permutation, we can examine |Br(ε)|. By our previous

definitions it is now evident that |Br(ε)| = per(A) where A is a (0, 1) Toeplitz matrix of size n × n

induced by {tk}

tk =
{
1, −r � k � r,

0, otherwise,

which is of type T = {−r, . . .,−1, 0, 1, . . ., r} = [−r, r]. Expressions for |Br(ε)| are known only for r = 1

and for r = 2 (see [11]). Knowing the ball size, as well as limn→∞ n
√|Br(ε)|, is essential for bounding

the efficiency of ball packing in Sn under the l∞-norm (see [12] for an application).

3. Method description

Fix some n × n Toeplitz matrix A induced by {tk}, and let T = {p1, . . ., p�}, p1 < p2 < · · · < p�, be

the support set of {tk}. It is obvious that per(A) = 0 if p1 > 0 or p� < 0. Therefore, we will assume

p1 � 0 � p�. Loosely speaking, the method we propose constructs a digraph in which certain paths

correspond to permutations of type T . We will start by intuitively describing the construction of the

digraph, and then follow with rigorous definitions and proofs.

We want to construct all the permutations σ = [σ(1), . . ., σ(n)] ∈ Sn of type T by setting σ(1) in the

first step, then σ(2) in the second step, all the way to σ(n) in the nth step. Let us closely examine the

ith step: we would like to choose a valid value for σ(i) such that σ is of type T . Hence, only values in

the set {i + p1, i + p2, . . ., i + p�} are possible. From these, however, we have to remove those values

2 A perfectmatching is a subset of the edgeswhose induced subgraph contains all the vertices, eachwith degree 1. Each perfect

matching is scored by the product of the weights of its edges. The weighted perfect matching is the sum of the scores over all

perfect matchings.
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Fig. 1. GT for T = {−2,−1, 0, 1, 2}.

which have been used in previous steps. If we assume that all the previous steps have chosen valid

values, then it is guaranteed that i + p� has not been used in previous steps.

To that end, the algorithmwe propose stores a “state” in the form of a binary string of length p� − p1
which is indexed by [p1, p� − 1]. The string is interpreted in the ith step as the availability map of the

interval i + [p1, p� − 1]: a “0” in position j indicates that symbol i + j has not been used so far, while

a “1” indicates that it has. We now append a “0” at the end of string, since as we noted before, we

are guaranteed that i + p� has not been chosen yet. After our choice of σ(i) we update the string by

changing the relevant “0” to a “1”, and by left shifting it to represent the availability map for step i + 1.

Weneed a fewmore definitions before describing the construction. Let b = b1b2· · ·bm be a length-m

binary string, bi ∈ {0, 1} for all i ∈ [m]. By bq, q ∈ N0, we denote a concatenation of b to itself q times.

Thus, for example, 13(01)20 denotes the string 11101010. Theweight of b, denotedw(b), is the number

of non-zero entries in it, i.e., w(b) = |{i|bi /= 0}|. By b0 we denote the binary string of length m + 1

constructed by appending to b a “0” as the (m + 1)st bit. We also define the left-shift operator denoted

L, operating on a length-m binary string as follows: for b = b1b2· · ·bm we define L(b) = b2b3· · ·bm, i.e.,
the string of length m − 1 which is created from b by removing the leftmost bit. Finally, given two

length-m strings, b and b′, we denote by b + b′ the symbol-wise addition over the ring R.

We are now ready to describe the construction of the digraph.

Construction 1. Let T = {p1, . . ., p�} ⊆ Z, where p1 < p2 < · · · < p�, and where p1 � 0 � p�. We con-

struct a digraphGT = (V , E) in the following way: we first define the vertex set V as

V = {b = bp1bp1+1· · ·bp�−1 ∈ {0, 1}p�−p1 |w(b) = −p1},
where for convenience, we will index the bits in each string by [p1, p� − 1].

Let ek , for k ∈ [p1, p�], denote a length-(p� − p1 + 1) binary string of all zeros, except for a “1” in the

position with index k. We define the edge set E in the following way: for every b ∈ V we construct all

the edges of the form b → L(b0 + ek), where k ∈ T and (b0)k = 0, i.e., we change exactly one “0” in b0

to a “1”, and in a position allowed by T . Therefore, we may write the edge set as

E = {b → L(b0 + ek)|b, L(b0 + ek) ∈ V ∧ k ∈ T ∧ (b0)k = 0}.
We note that if bp1 = 0, i.e., the leftmost bit is “0”, for L(b0 + ek) to be in V we can only choose k = p1.

In that case L(b0 + ep1 ) = L(b0), and b has a single outgoing edge.

Finally, given a sequence {tk} over a ring R, with support T , we assign weights to each of the edges.

We define the edge-weight function, W : E → R, as

W(b → L(b0 + ek)) = tk.
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Example 1. Motivated by the problem of computing the size of balls in Sn under the l∞-norm, we start

our running example by considering balls of radius r = 2. Fig. 1 shows GT for T = {−2,−1, 0, 1, 2} =
[−r, r]. The edges are marked with the appropriate weights from the sequence {tk}.

The next theorem shows a correspondence between permutations of type T and certain paths in

the graphGT .

Theorem 1. Let T = {p1, . . ., p�} ⊆ Z,where p1 < p2 < · · · < p�, andwhere p1 � 0 � p�. Then there exists

a bijection between the set of permutations from Sn of type T , and the paths of length n inGT starting and

ending in the vertex 1−p10p� .

Proof. In the first direction we show that appropriate paths inGT correspond to permutations of type

T . Let us examine a path of length n inGT , starting and ending in 1−p10p� :

1−p10p� = vi0
k1→ vi1

k2→ vi2
k3→ · · · kn→ vin = 1−p10p� ,

where the integer kr ∈ [p1, p�] above each edge is uniquely determined from the construction by the

equation vir = L(vir−1
0 + ekr ), for all r ∈ [n]. We construct σ = [σ(1), . . ., σ(n)] by setting σ(r) = r + kr

for every r ∈ [n], and we contend that σ is a permutation in Sn of type T .

If σ were a permutation in Sn, then by our construction, not only is kr ∈ [p1, p�], but also kr ∈ T .

Thus, σ(r) − r ∈ T for all r ∈ [n] and the permutation is of type T . It follows that we only have to show

that indeed σ is a permutation in Sn.

Using the observation that σ(r) ∈ r + [p1, p�] and the fact that we start with the state 1−p10p� , it

is easily seen that in the first |p1| steps we do not assign a non-positive value to any σ(r). Thus, it is

assured that σ(r) � 1 for all r ∈ [n]. In a similar fashion, since the path ends in state 1−p10p� , we can

be certain that σ(r) � n for all r ∈ [n]. Hence, it only remains to show that σ(r) /= σ(r′) for every r < r′
and r, r′ ∈ [n]. Let us assume to the contrary that σ(r) = σ(r′) for some r < r′ and r, r′ ∈ [n]. Necessarily
(r + [p1, p�]) ∩ (r′ + [p1, p�]) /= ∅, whichmeans that r′ − r � p� − p1. Following our construction, at step

r we chose kr from T , but more importantly, we took vir−1
0 and changed the krth bit from a “0” to a “1”.

Thus, after r′ − r � p� − p1 more steps, the (kr + r − r′)th bit of vir′−1
remained set as “1”, and so we

could not have chosen kr′ = kr + r − r′. It follows that kr′ /= kr + r − r′ and also that σ(r′) = r′ + kr′ /=
r′ + kr + r − r′ = σ(r), a contradiction. Therefore,σ is indeedapermutation in Sn. Tofinish thisdirection

of the proof, it is obvious that different appropriate paths correspond to different permutations.

In the other direction we show that any permutation from Sn of type T corresponds to some appro-

priatepath inGT . Letσ ∈ Sn beapermutationof typeT .Wecontend that the followingpathexists inGT :

1−p10p� = vi0 → vi1 → vi2 → · · · → vin = 1−p10p� ,

where vir = L(vir−1
0 + eσ(r)−r) for all r ∈ [n]. Assume to the contrary such a path does not exist, and let

r be the smallest integer in [n] for which vir−1
→ vir does not exist as above. There are two possible

reasons for vir−1
→ vir to not exist, and we will rule them both out to reach a contradiction.

The first reason we check is that σ(r) − r /= p1 and at the same time the leftmost bit of vir−1
is a

“0”. We remember that in such a case, the only edge leaving vir−1
is the edge vir−1

→ L(vir−1
0 + ep1 ).

We first note that this cannot happen in the first |p1| steps of the path since we start with the vertex

vi0 = 1−p10p� . Wemay therefore assume that r > |p1|. Furthermore, this means that the symbol r + p1
has not been assigned to any of the positions σ(1), . . ., σ(r − 1). Since σ(r) − r /= p1, it follows that r + p1
is assigned to some σ(r′), r′ > r. But then we get σ(r′) − r′ = r + p1 − r′ < p1, a contradiction to the

fact that σ is of type T .

The second reason we check is that (vir−1
0)σ(r)−r = 1. We first note that this cannot happen due to

the |p1| “1”s in the initial state vi0 = 1−p10p� since these correspond to the symbols of [p1 + 1, 0]which

we do not use in any permutation in Sn. Thus, the only way (vir−1
0)σ(r)−r = 1 may happen, is that in

some previous step r′ < r, where r′ ∈ [n], that “1” was set, and in the following steps leading to step

r, shifted to its current position. Hence, σ(r′) − r′ − (r − r′) = σ(r) − r, which reduces to σ(r′) = σ(r), a

contradiction.

Lastly, having made sure the path exists, we still need to show that the last vertex reached, vin , is

indeed 1−p10p� . This is easily proved by noting that any “1” in the rightmost p� bits of vn represents a
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symbol from [n + 1,n + p�] having been assigned in one of the last p� steps. To complete the proof, it

is also evident that different permutations result in different paths. �

Let us now define the score function for paths, ω : E∗ → R, as

ω(vi0 → vi1 → · · · → vin ) =
n∏

r=1

W(vir−1
→ vir ).

Lemma 2. Let {tk} be a sequence of support T ⊆ Z over a ring R. For every permutation σ ∈ Sn of type T

and its corresponding path vi0 → vi1 → · · · → vin in GT (defined as in the proof of Theorem 1) we have

ω(σ) = ω(vi0 → vi1 → · · · → vin ), i.e., the score of the permutation equals the score of its corresponding

path.

Proof. By the correspondence defined in the proof of Theorem 1 it is obvious that for every r ∈ [n]
W(vir−1

→ vir ) = W(vir−1
→ L(vir−1

0 + eσ(r)−r)) = tσ(r)−r ,

which immediately implies the lemma. �

Before introducing the main theorem, we define the weighted adjacency matrix of GT , denoted

A(GT ) = (wi,j), as the |V | × |V | matrix

wi,j =
{
W(vi → vj) if the edge vi → vj exists,

0 otherwise.

It is well known that the sum of the scores of all the paths of length n in GT from vi to vj is given by

(A(GT )n)i,j , i.e.,∑
p∈Pi→j(n)

ω(p) = (A(GT )n)i,j , (2)

where Pi→j(n) denotes the set of all paths of length n from vi to vj . This leads us to the main theorem.

Theorem 3. Let {tk} be a sequence over a ring R, let T ⊆ Z be its support, and let A be its induced n × n

Toeplitz matrix. Let us denote T ′ = T ∩ [−n + 1,n − 1] = {p1, . . ., p�}, with p1 < · · · < p�, and −n < p1 �
0 � p� < n. Furthermore, let us index the vertices ofGT ′ such that v1 = 1−p10p� . Then

per(A) = (A(GT ′ )n)1,1.

Proof. Let P1→1(n) denote the set of all paths of length n in GT ′ starting and ending in v1 = 1−p10p� .

We now have

per(A) =
∑
σ∈Sn

σ of type T ′

ω(σ) =
∑

p∈P1→1(n)

ω(p) = (A(GT ′ )n)1,1,

where the first equality is (1), the second is by Lemma 2, and the last is by (2). �

We can now analyze the resulting complexity of the suggested algorithm.We are only interested in

the number of additions and multiplications over the ring R, since we see those as atomic operations.

A more detailed analysis is required if more basic operations are assumed, for example, if we were to

look at the representation of ring elements and the cost of manipulating it to create the operations of

addition and multiplication.

Theorem 4. Let A be an n × n banded Toeplitz matrix with bandwidth m. The complexity of computing

per(A) using Construction 1 and Theorem 3 is O

((
2m
m

)3
log n

)
.
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Proof. The input to the algorithm may be given as a support set T ′ ⊆ [−m,m], and the list of ring

elements corresponding to this interval, {tk}mk=−m
, aswell as an unary representation of n, i.e., the string

1n. The digraphGT ′ has O
((

2m
m

))
vertices so building its weighted adjacency matrix takes O

((
2m
m

)2)

time. We then need to raise the matrix to its nth power. Using a trivial multiplication algorithm of

complexity O

((
2m
m

)3)
and needing O(log n) such multiplications, we reach the result. �

Corollary 5. For m = O(1) the banded Toeplitz permanent algorithm we presented runs in time O(log n),

and form = O(log log n) it runs in timeO((log n)4)–bothpolynomial in the lengthof abinary representation

of n. For m = O(log n) the algorithm runs in time O(n3 log n), which is polynomial in the value of n.

An added benefit of this algorithm is the fact that it allows us, in some cases, to compute

limn→∞(per(A))1/n easily. This is shown in the next example.

Example 2. Continuing our running example, we remember the size of balls in Sn under the l∞-norm

is given by per(A), where A is the n × n banded Toeplitz matrix induced by the binary sequence {tk}
with support T = [−r, r]

tk =
{
1, −r � k � r,

0, otherwise.

For this example, let us fix r = 2. The digraphGT defined by Construction 1was shown in Fig. 1.We

note thatGT does not depend on the choice of n. Furthermore, its weighted adjacency matrix,A(GT )

has onlynon-negative entries, and is primitive.3 ByPerron–Frobenius theory (see, for example, Chapter

1 in [17]), the spectral radius ofA(GT ), denoted λ(A(GT )), is achieved by a real positive eigenvalue of

A(GT ). There also exist a left (row) eigenvector x, and a right (column) eigenvector y, both associated

with λ(A(GT )), and both with strictly positive entries, such that x · y = 1. For these two vectors

lim
n→∞

1

(λ(A(GT )))n
A(GT )n = yx.

It follows that

lim
n→∞

n
√
per(A) = lim

n→∞
n

√
(A(GT )n)1,1 = λ(A(GT )).

For this example, with r = 2, the resulting λ(A(GT )) is the largest positive root of the polynomial

det(λI −A(GT )) = λ6 − λ5 − 2λ4 − λ3 − λ2 + λ + 1.

4. Computing the Hafnian

In this section, we show an efficient method for computing the Hafnian. The method is a simple

adaptation of the one shown in the previous section for the permanent. Since the proofs in this section

are very similar to those of the previous section, we will only sketch them briefly.

A canonical permutation σ ∈ S2n is one for which

σ(1) < σ(2) σ (3) < σ(4) · · · σ(2n − 1) < σ(2n),

as well as

σ(1) < σ(3) < σ(5) < · · · < σ(2n − 1).

The set of all canonical permutations is denoted by C2n.

3 A non-negative square matrix B is said to be primitive if there exists an integer m ∈ N such that all the entries in Bm are

strictly positive.
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Let A = (ai,j) be a 2n × 2nmatrix over some ring R. The Hafnian of A is defined as

Hf(A) =
∑

σ∈C2n

n∏
i=1

aσ(2i−1),σ(2i).

Wenote that theHafniandependsonlyon theelementsofApositionedstrictlyabove themaindiagonal.

Just like the permanent, theHafnian also has a simple combinatorial interpretation. Assume thematrix

A is symmetric,4 and let GA be the graph whose weighted adjacency matrix is A. It can be easily seen

that Hf(A) is the weighted perfect matching of GA. Since the permanent is also related to the weighted

perfect matching of graphs, we have the following well known (see, for example, Chapter 8 in [14])

connection between the two:

per(A) = Hf

(
0 A

A 0

)
.

This does not, however, make the previous section on permanents unnecessary, since the matrix on

the right is not necessarily Toeplitz, and its bandwidth might be significantly higher.

Let A be a 2n × 2n Toeplitz matrix induced by the infinite sequence {tk}. Since the Hafnian uses only

elements positioned strictly above the main diagonal, we are interested in sequences whose support,

T , is strictly positive. We say a canonical permutation σ ∈ C2n is of H-type T, if σ(2i) − σ(2i − 1) ∈ T

for all i ∈ [n]. Let us further define the H-score function for canonical permutations, ω̄ : C2n → R, as

ω̄(σ ) = ∏n
i=1 tσ(2i)−σ(2i−1). It is clearly seen that

Hf(A) =
∑

σ∈C2n

n∏
i=1

aσ(2i−1),σ(2i) =
∑

σ∈C2n

n∏
i=1

tσ(2i)−σ(2i−1) =
∑

σ∈C2n
σof H�type T ′

ω̄(σ ),

where T ′ = T ∩ [2n − 1], since only canonical permutations of H-type T ′ contribute to the sum.

Fix some 2n × 2n Toeplitz matrix A induced by {tk}, and let T = {p1, . . ., p�}, 1 � p1 < p2 < · · · < p�,

be the support of {tk}. Let us define the operator L, operating on a length-m binary string, as fol-

lows: for b = b1b2· · ·bm we define L(b) = b2· · ·bm0, i.e., L(b) = L(b)0. We will now show the analog of

Construction 1.

Construction 2. Let T = {p1, . . ., p�} ⊆ Z, where 1 � p1 < p2 < · · · < p�. We construct a digraphHT =
(V , E) in the following way: we first define the vertex set V as

V = {b = b1b2· · ·bp�
∈ {0, 1}p� |bp�

= 0},
where for convenience, we will index the bits of each vertex by [p�].

Let ek , k ∈ [p�], denote a length-p� binary string of all zeros, except for a “1” in the position with

index k. We define the edge set E in the followingway: for every b ∈ V we construct all the edges of the

form b → L
j+1

(b + ek), where k ∈ T , bk = 0, and j is the largest integer such that b + ek = 1j{0, 1}p�−j .

In other words, we change exactly one “0” in b to a “1” in a position allowed by T . We then remove the

longest prefix of “1”s in the state string, and append the same number of “0”s to the right of the state

string. Finally, we remove the leftmost bit (which must be a “0”), and append a “0” to the right of the

string. We may write the edge set as

E =
{
b → L

j+1
(b + ek) |b ∈ V ∧ k ∈ T ∧ bk = 0 ∧

j is the largest integer such that b + ek = 1j{0, 1}p�−j
}

.

We note that if b + ek = 1p� , then state b has a single outgoing edge 1p� → 0p� .

Finally, given a sequence {tk} of support T over a ring R, we assign weights to each of the edges. We

define the edge-weight function, W : E → R, as

4 Since the Hafnian only depends on the elements strictly above the main diagonal, given those elements we can always

complete the matrix to be symmetric.
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Fig. 2. HT for T = {1, 2, 3}.

W

(
b → L

j+1
(b + ek)

)
= tk ,

where j and k are determined as defined above.

Example 3. Fig. 2 showsHT for T = {1, 2, 3}. The edges aremarkedwith the appropriateweights from

the sequence {tk}.

Theorem 6. Let T = {p1, . . ., p�} ⊆ Z,where 1 � p1 < p2 < · · · < p�. Then there exists a bijection between

the set of canonical permutations from C2n of type T , and the paths of length n inHT starting and ending

in the vertex 0p� .

Proof (Sketch). The proof is very similar to the proof of Theorem 1. The basic bijection is as follows:

consider a path of the form

0p� = vi0
j1,k1→ vi1

j2,k2→ vi2
j3,k3→ · · · jn ,kn→ vin = 0p� ,

where the integers kr ∈ [p�] and jr ∈ Z above each edge are uniquely determined from the construction

by the equation vir = L
jr+1

(vir−1
+ ekr ), for all r ∈ [n]. To this path we map the canonical permutation

σ = [σ(1), . . ., σ(2n)] where

σ(2r − 1) = r +
r−1∑
i=1

ji and σ(2r) = σ(2r − 1) + kr

for all r ∈ [n]. Showing that this is indeed a bijection as required, is done in a similar fashion to the

proof of Theorem 1. �

Lemma 7. Let {tk} be a sequence of support T ⊆ Z over a ring R. For every canonical permutation σ ∈ C2n
of H-type T and its corresponding path vi0 → vi1 → · · · → vin in HT (defined as in the proof of Theorem

6) we have ω̄(σ ) = ω(vi0 → vi1 → · · · → vin ), i.e., the H-score of the permutation equals the score of its

corresponding path.

Proof. By the correspondence defined in the proof of Theorem 6 it is obvious that for every r ∈ [n]

W(vir−1
→ vir ) = W

(
vir−1

→ L
jr+1

(vir−1
+ eσ(2r)−σ(2r−1))

)
= tσ(2r)−σ(2r−1),

which immediately implies the lemma. �
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The following theorem is the analog of Theorem 3 for the Hafnian.

Theorem 8. Let {tk} be a sequence over a ring R, let T ⊆ Z be its support, and let A be its induced 2n × 2n

Toeplitz matrix. Denote T ′ = T ∩ [2n − 1] = {p1, . . ., p�}, with 1 � p1 < · · · < p� < 2n. Furthermore, let us

index the vertices ofHT ′ such that v1 = 0p� . Then

Hf(A) = (A(HT ′ )n)1,1.

Proof. Let P1→1(n) denote the set of all paths of length n in HT ′ starting and ending in v1 = 0p� . We

now have

Hf(A) =
∑
σ∈Cn

σ of H�type T ′

ω̄(σ ) =
∑

p∈P1→1(n)

ω(p) = (A(GT ′ )n)1,1. �

Theorem 9. Let A be a 2n × 2n banded Toeplitz matrix with bandwidth m. The complexity of computing

Hf(A) using Construction 2 and Theorem 8 is O(23m log n).

Proof. The proof is essentially the same as that of Theorem 4. We feed the algorithm a support set

T ′ ⊆ [m], the ring elements {tk}mk=1
, and an unary representation of n. This time, the digraphHT ′ has

O(2m) vertices and so its weighted adjacency matrix has O(22m) elements. Raising this matrix to its

nth power may be done trivially in O(23m log n) time. �

Corollary 10. Form = O(1) the banded Toeplitz Hafnian algorithmwe presented runs in timeO(log n), and

for m = O(log log n) it runs in time O((log n)4) – both polynomial in the length of a binary representation

of n. For m = O(log n) the algorithm runs in time O(n3 log n), which is polynomial in the value of n.

Again, the algorithm allows us, in some cases, to compute limn→∞(Hf(A))1/n efficiently, as seen in

the following example.

Example 4. We extend Example 3, in which T = {1, 2, 3}, by further defining the binary sequence {tk}
as

tk =
{
1, k ∈ T ,

0, otherwise.

Theweighted adjacencymatrixA(HT ) of the digraphHT (shown in Fig. 2) turns out to be primitive.

If A is the 2n × 2n banded Toeplitz matrix induced by {tk}, then
lim
n→∞

n
√
Hf(A) = lim

n→∞
n

√
(A(HT )n)1,1 = λ(A(HT )),

where λ(A(HT )) is the largest positive root of the polynomial

det(λI −A(HT )) = λ4 − 2λ3 − λ2 + 1.
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