Logic Design

Number Representation and Arithmetic
Circuits



Number representation

* Numbers that are positive only are called unsigned and
numbers that can be positive or negative are called signed

* Numbers could be integer or real

« Simplest: unsigned integer

e A decimal integer:

D=d, _d, _,..dd,
V(D)=d, _,x10"" +d ,x10"7 +..+d, x10" +d, x10"
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Number representation

* Binary numbers:

B=b, b ,.bb,
V(B)=b, , x2"" +b _,x2" "+ .+b x2" +b,x2°

1101
V=1x2* +1x2> +0x2' +1x2" =13
(1101), =(13),,
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Number representation

* In a binary number the right-most bit is called the least-
significant bit (LSB) and the left-most bit is called the most
significant bit (MSB)

* A group of 4 bits 1s called a nibble
* A group of 8 bits is called a byte
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Number representation

* Conversion from decimal to binary: successively divide by 2

 In each step the remainder 1s the next binary digit
* The process continue until the quotient becomes zero

V=>b_x2""+b ,x2"7+.+bx2 +b,x2"

Y _ b x2"+b x2"7 +. .+b x2" v

2 2
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Number representation

Convert (857)1¢

857 = 2
428 + 2
214 = 2
107 + 2
53 + 2
20 — 2
13 = 2
6= 2
3= 2
1+ 2

VicMaster

W

428
214
107
53
26
13
6

3
1
0

Remainder

1

—_—_ O = O = OO

LSB

MSB

Result is (1101011001)5
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Number representation

 The most common bases in addition to decimal are:
e base 2 (binary) 10,1}
* base 8 (octal) {0, 1,...7}

 base 16 (hexadecimal) {0,1,2,3,4,5,6,7,8,9, A, B,
C,D,E, F}

* Reason for using octal and hexadecimal systems: useful
shorthand notation for binary numbers
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Number representation

* One octal digit represents three bits

« Conversion from binary to octal: starting from the LSB
replace every group of three digits with their corresponding
octal digit

* Conversion from binary to hexadecimal: starting from the
LSB replace every group of four digits with their
corresponding hexadecimal digit

« Conversion from octal to binary: substitute each octal digit by
corresponding three bits

* Conversion from hexadecimal to binary: substitute each hex
digit by four bits
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Addition of Unsigned Numbers

X 0 0 1 1
+y +0 +1 +0 +1

cs 00 01 01 10
Carry—TT—Sum

(a) The four possible cases

Carry Sum

Xy c
0O O 0 0
0 1 0 1
1 O 0 1
1T 1 1 0
(b) Truth table
X »-)j : s
y 7 X —p —» S
HA
Y— > C
O

McMaster (c) Circuit (d) Graphical symbol
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Addition of Unsigned Numbers

X =x6x1% 01111 (13,9
+Y =ypayono 01010 (1040

S = 54.95525150 11001 (2510
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VicMaster
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(c) Circuit

XiVi
Ci 00 01 11 10
0 1 1
X; Y Civi S;
1 1 1
0 0 0 0
0 1 0 1 _
1 0 0 1 Si_xi@yi®ci
1 1 1 0
o0 0 | 1 iV
o1 | 1 0 ¢ N\_00 01 11 10
1 0 1 0
0 1
1 1 1 1
1 1 1 1
(a) Truth table
Cit1 = XY T X6, yic;
(b) Karnaugh maps
T
—rHD>
C;
Ci+1
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Decomposed Full Adder

R s | Ha c
w—e e ) >—
1

(a) Block diagram

Cl- \
' Si

DT
Vi 7

~

_J

(b) Detailed diagram
McMaster
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Ripple Carry Adder

Xn-1 Vn-1 X1 N X0 Yo

Cp FA +— Cy»| o0 () = FA I E— FA -— ()

MSB position LSB position
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Ripple Carry Adder

 When operands X and Y are applied as inputs to the adder, it
takes some time before its s; and c,,, are valid

 [f this delay 1s At the complete sum will be valid after a delay
of nAt

* Because of the way the carry signal “ripple” through the full-
adder, this circuit is called a ripple-carry adder

McMaster
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A a a
[} [ ] L] + ’
X7 X0 v Y7 Yo
¢7
S7 So
0
| [
\ A | y Y Y

Xg X7 X0 A yg V7 Yo
S8 S0

(a) Naive approach
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(b) Efficient design
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Signed Numbers

* One of the bits (usually the left-most bit) is reserved for the
sign of the number.

e Usually a 1 indicates negative and 0 indicates positive.

b,_ b by

T Magnitude

(a) Unsigned number

bnfl bn72 bl bO

Sign 1 Magnitude

0 denotes +
1 denotes — MSB

\I( \] l\g (b) Signed number
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Signed Numbers

* Extending the natural' binary representation of positive
integers to negative integers can be done in at least 3 different
schemes: sign-magnitude, one's complement and two's
complement.

 Sign-and-magnitude: The most significant bit (MSB) is
reserved to the sign, 0 is positive, 1 1s negative. All other bits
are used to store the magnitude in the natural representation.
« Addition and subtraction are complicated.

* There are two representations for zero!

McMaster
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Signed Numbers

* One’s complement Positive integers are like 1n the natural
representation, negative numbers are obtained by
complementing each bit of the corresponding positive number
(i.e. the absolute value).

« There are two representations for zero! Bitwise addition of N
and -N gives -0.

* Positive integers still have MSB = 0, and negative integers
have MSB=1.

* 1’s complement of an n-bit negative number K 1s obtained by
subtracting its equivalent positive number P from 2°-1

. K,=(2"-1)-P

McMaster
University £

* Copyright S. Shirani



Signed Numbers

 Two's complement Like one's complement, but negative
numbers are having 1 added after complementation.

* Bitwise addition of N and -N gives 0 if you 1gnore the carry
out of the MSB.

« Positive integers still have MSB = 0, and negative integers
have MSB=1. Only one representation for zero!

« 2’s complement of an n-bit negative number K 1s obtained by
subtracting its equivalent positive number P from 28

¢ K2:21'1_P
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Signed Numbers

» Relationship between 2’s complement and 1’°s complement

« K=K,+1

* A simple way of finding the 2’s complement is to find 1’s
complement and add 1

* Rule for finding 2’s complement:
— Given signed number B=b,__b_,...b,b,
— 2’s complement: K=k, k. ,...k/k,

— Examine bits of B from right to left, copy all bits of B that are 0 and
the first bit that 1s 1, then complement the rest of the bits

McMaster
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2’s complement signed numbers

B=b_,b ,...b,b,

n-1

V=(=b_x2"")Y+b ,x2"7+.+b x2" +b,x2"

Largest negative number: -2/

Largest positive number: 2! -1

\I(\I \ILI
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1’s complement addition

(+5) 0101 (-5) 1010
+(+2)  +0010 +(+2)  +0010
+7) 0111 (-3) 1100
(+5) 0101 5 1010
+(=2)  +1101 +(=2 +1101
+3) 10010 7) 10111

VicMaster
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Addition and Subtraction

* Addition of 1’s complement numbers might need a correction

* Time needed to add two 1’s complement numbers may be
twice as long as time needed to add two unsigned numbers

McMaster
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2’s complement addition

(+5) 0101 (-5) 1011
+ (+2) +0010 + (+2) + 0010
(+7) 0111 (-3) 1101
(+5) 0101 (-5) 1011
+ (=2) + 1110 + (=2) + 1110
(+3) 10011 (=7) 11001
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VicMaster
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2’s complement subtraction

(+35)
—(+2)

(+3)

(-5)
—(+2)

(=7)

0101
-0010

1011
-0010

0101
- 1110

1011
- 1110

0101
+ 1110

10011

1011
+ 1110

11001

0101
+ 0010

0111

1011
+ 0010

1101
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Adder and Subtractor Unit

Add /Sub

o U QU
L | A | \/V L Y
C, n-bit adder
Sp—1 S S0
McMaster
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control
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Radix-complement schemes

 (Complements — general theory

e The r’s complement of an n-digit number N 1n base r 1s:

K=r"-N for N =0
(0 for N=0)
* The (r-1)’s complement, K_, is defined as:
K=("-1)-N

* The concept of subtracting a number by adding its radix-
complement 1s general

McMaster
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Arithmetic Overflow

* [fn bits are used to represent signed numbers, result must be
in the range —2™! to 2™!-1

 If the result does not fit in this range, we say that arithmetic
overflow has happened

« We should be able to detect overflow

* The key to determining the overflow i1s carry-out from MSB
position and carry-out from the sign bit

 [f they are the same no overflow has happened.

overf lon=c,_ ®@c,
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Arithmetic Overflow

(+7) O111 (-7) 1001
+(+2) +0010 + (+2) + 0010
(+9) 1001 (-5) 1011
C4:O C4=O
C3=1 c3=0
(+7) 0111 (—7) 1001
+ (-2) +1110 + (=2) +1110
(+5) 10101 (-9) 10111
C4:1 C4=1
C3=1 C3=
McMaster
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Performance Issue

* Speed of any circuit 1s limited by the longest delay along the
paths through the circuit

» This 1s called the critical path delay

* Critical path for the ripple adder is from mput y, through the
XOR gate and through the carry circuit of each stage.

Yn-1 N yo

e o zrdd / Sub
control
! Y

Cn { n-bit adder /L €o

r R
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Fast Adders

Xi Vi [ Ci+r | S
00 0 0
0 1 0 1
10 0 1
11 1 0
00 0 1
0 1 1 0
10 1 0
11 1 1
(a) Truth table

Yi

XiYi

Ci 00 01 11 10
0 1 1
111 1

;= x,®@y;®c

XiVi

Ci 00 01 11 10
0 1
1 1 1 1

Civl T XY TXCH Y

(b) Karnaugh maps

(c) Circuit

[ D—
D=
D=
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Fast Adders

Civ =XV +XC +).C,

1+

Civp =X, +('xi +yi)ci

=4;+ P
g =XV,
pi =X+,

=g, tP. 81 tP P& T PPy -PoP180 T PiPi1---P1PoCo
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Fast Adders

X ¥ X0 Yo

g1 2| Lo Po

U U

Stage | Stage 0

5 S

Figure 5.15. A ripple-carry adder based on expression 5.3.
IA\;Ic;\'Iast@gm;l;
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Fast Adders

Jy [ 99

I
UV U

S]

McMa  Figure 5.16. The first two stages of a carry-lookahead adder.
University £
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Fast Adders

* In an n-bit carry-look ahead adder the final carry-out signal
would be produced after three gate delays

* The total delay in an n-bit carry-look ahead adder is four gate
delays.

e Complexity of an n-bit carry look ahead adder increases
rapidly as n becomes larger

* We can use a hierarchical approach in designing large adders.

McMaster
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Fast Adders

X31-24  V31-24 X15-8 Vis-8  X7-0 Y7-0
Y 1 A | A
€y
J , l
§31-24 S15.8 57-0

Figure 5.17. A hierarchical carry-lookahead adder with
ripple-carry between blocks.
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Fast Adders

* A faster circuit can be designed in which a second-level carry-
look-ahead 1s performed to produce quickly the carry signals
between blocks.

 Instead of producing a carry-out signal from the most
significant bit of the block, each block produces generate and
propagate signals for the entire block

McMaster
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Fast Adders

Co =87t P8¢t P1Ps8s T P1PsPs8at P1PsPsPa83 T P1PsPsPsP38> T
P1PsPsPsP3 P28+ P1PsPsPasP3PrP180 + P1PsPsPaP3PrPrPoCo

By = D1DsPsP4P3P2P1 Py
Gy =87+ D186+ D7DPc&s + DD Ps84 + P1PsPs P83+ PP PsPsP38, +
P71PsPsPasP3Pr81 t+ P7PsPsPaP3Pr P18

¢ =G, + Fic,
¢ =G0, + By =G+ RG, + BF,

MicMaster
| 0 Copyright S. Shirani



Fast Adders

X31-24 V31-24 X15-8 Vi5-8 X7-0 V7-0
- Block | c oo = Block | Block | o — co
3 Coy 1 0
G| P G| P l Go|Po
S31-24 cee _ S15-8 S$7_0
o 00 o 0 0 . J
o 0 0 L 2 s J
vV vy |7 y v\ l vy
— g b e ]
€32 Cl6 cg
o 0 0

Second-level lookahead
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Technology Considerations

So far we assumed gates with any number of inputs can be
used

Fan-in 1s limited to a small number
More gates should be used to implement the logic

Example: max fan-in 1s four

Cs =87+ P8¢+ P1Pc8s5s+ P1PsPs84+ P1PsPsPs83 t P1PsPsPsP38r +
P71PsPsPsP3 P28+ P1PsPsPsP3sPrP180 T P1P6sPsPaP3 P> P1PoCo

Cq

=(g7 + P86+ D1Ps8s + P1DsPs84) +

[P PsPsP4(&5 + D38y + P3P2&1 + P3P P180) ] +

(P1D6PsPs ) P3P0 P0)Co
McMaster
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* Because fan-in limitation reduces the speed of carry-look-
ahead adder, some devices with low fan-in include dedicated
circuit for implementing fast adders

 Example: FPGA

McMaster
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Multiplication
« A number is multiplied by 2k by shifting it left by k bit
positions
* This 1s true both for unsigned and signed numbers
« Shifting to the right by k bit, is equivalent to dividing by 2
* For unsigned numbers the empty bit positions are filled with
Zero

* For signed numbers, in order to preserve the sign, the empty
bit positions are filled with the sign bit

McMaster
University =8
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« B=011000=24
* B/2=001100=12
* B/4=000110=6

 B=101000=-24
 B/2=110100=-12
 B/4=111010=-6

McMaster
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Multiplication of unsigned numbers

Each multiplier bit 1s examined: if 1, a shifted version of
the multiplicand 1s added to form the partial product; if

zero nothing 1s added

Multiplicand M (14) 1110
Multiplier Q (11) x 1011

1110
1110
0000
1110

Product P (154) 10011010

\k \1 Nu o
(a) Multiplication by hand

Copyright S. Shirani



Multiplication of unsigned numbers

Multiplicand M (11) 1110
Multiplier Q (14) x 1011

1110
+ 1110

10101
+ 0000

01010
+ 1110

Product P (154) 10011010

(b) Multiplication for implementation in hardware

McMaster
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M = msm,mm,

0 = 4:9,9,9,
PPO = pp0, pp0, pp0, pp0,

PPO 0 ppO; ppO, pp0,  ppo,
+ myq, myq, mgq, myq, 0
PP1 pply pply ppl, ppl, ppl

VicMaster
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Cout

I.\Ic\l;Ncr

University B8

R

(b) A block in the top row

(c) A block in the bottom two row:

0 m m m
%
~— 0
Gt
-— 0 %
«— 0 %
Ps bs Py P3 b2 Y|
(a) Structure of the circuit
M1 mi
M
%
» q 4 g;
JJ
FA Cin Cout FA Cin
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Multiplication of Signed Numbers

* [If multiplier 1s positive essentially the same scheme as
unsigned numbers can be used

* Since shifting the multiplicand to the left results in one of the
operands having n+1 bits, the addition has to be performed
using the second operand represented in n+1 bits

* An n bit signed number 1s represented as an n+1 bit number
by replicating the sign bit
« Replication of the sign bit is called sign extension

McMaster
University B8
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Multiplicand M (+14) 01110
Multiplier Q (+11) X 01011

01110
+ 001110

010101
+ 000000

001010
+ 001110

010011
+ 000000

0010011010

Product P (+154)

(a) Positive multiplicand

\k \1 NCI
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Multiplicand M
Multiplier Q

10010
x 01011

14)
(+11)

10010
+ 110010

101011
+ 000000

110101
+ 110010

101100
+ 000000

1101100110

Product P —154)

(b) Negative multiplicand

\k \1 NCI
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Fixed point
* A fixed point number consists of integer and fraction parts.
* The position of radix point 1s fixed

B=b b _,.bbb b,..b,

n-1"n

n-1
V(B)= Y b,x2'
i=—k

McMaster
University =8
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Floating point

* Fixed point numbers: limited range

* Floating point: numbers are represented by a mantissa and an
exponent:  Mantissa x RExponent

* Normalized: radix point is the right of fist nonzero digit
« Example: 5.234 x 104
* For binary R=2

 How mantissa and exponent are represented has been
standardized by IEEE

« Single precision (32 bits) and double precision (64 bits)

McMaster
University =8
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L

~ 32 bits >
S E M
R v v ,
Sign —1 . _ .
0 denotes + 8-bit 23 bits of mantissa
1 denotes — excess-127
exponent
(a) Single precision
- 64 bits -
S E M
) J b V 7\ Y, ,
Sign
11-bit excess-1023 52 bits of mantissa
exponent
(c) Double precision
VIch 'i;_l*\i_&fl'
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« Single precision
— Exponent=E-127
— Value=(+ or -)1.M x2E-127

e Double precision
— Exponent=E-1023
— Value=(+ or -)1.M x2E-1023

McMaster
University g8
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Binary coded decimal (BCD)

* Each digit in a decimal number 1s represented by its binary
form

 Since there are 10 digits we need 4 bits per digit

Decimal digit BCD code

0000
0001
0010
0011
0100
0101
0110
0111

1000
\I(\] l\ILI 1001

r R
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BCD

« BCD representation was used in some early computers

* Drawback: complexity of circuits that perform arithmetic
operations

« BCD addition:

« Xand Y two BCD digits (each four bits)

o S=X+Y

e If X +Y <9 the addition is the same as the addition of 2
unsigned binary numbers

o If X+Y > 9 the result requires two BDC digits and the four-
bit sum may be incorrect.

McMaster
University =8
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\k\]\

er

*5

X 0111 7
+Y +0101 + 5
Z 1100 12
carry —=
\—V—I
S=2
X 1000 8
+Y + 1001 +9
Z 10001 17
carry —=
\—V—I
S=7

Copyright S. Shirani



McMast

8 0

carry-out

Detect if
sum 9

4-bit adder [« Cin

<

1

Adjust

Cout -—

y

g

U

£ 4

4-bit adder |[*=— O
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ASCII code

* ASCII code: the most popular code for representing
information in digital systems used for letters numbers and
some control characters.

* Control characters: those needed in computer systems to
handle and transfer data, e.g., return character

* ACII representation of numbers 1s not convenient for
arithmetic operations

[t 1s best to covert ASCII numbers to binary for arithmetic
operations

McMaster
University =8
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Bit
positions Bit positions 654
3210 000 001 010 011 100 101 110 111
0000 NUL DLE SPACE 0 @ P ’ p
0001 SOH DC1 ! 1 A Q a q
0010 STX DC2 " 2 B R b r
0011 ETX DC3 # 3 C S c s
0100 EOT DC4 $ 4 D T 4 t
0101 ENQ NAK % 5 E U e u
0110 ACK SYN & 6 F VvV f v
0111 BEL ETB ! T G W g w
1000 BS CAN ( 8§ H X h X
1001 HT EM ) 9 1 Y iy
1010 LF SUB . J Z j P
1011 VT  ESC + ; K [ k {
1100 FF FS , < L \ 1 |
1101 CR GS - = M | m }
1110 SO RS N > N . n -
1111 SI US / ? O — o DEL
NUL Null/Idle SI Shift in
SOH Start of header DLE Data link escape
STX Start of text DC1-DC4 Device control
ETX End of text NAK Negative acknowledgement
EOT End of transmission =~ SYN Synchronous idle
ENQ Enquiry ETB End of transmitted block
ACQ Acknowledgement CAN Cancel (error in data)
BEL Audible signal EM End of medium
BS Back space SUB Special sequence
HT Horizontal tab ESC Escape
LF Line feed FS File separator
vT Vertical tab GS Group separator
FF Form feed RS Record separator
CR Carriage return Us Unit separator
McMaster 80 Shift out DEL Delete/Idle

University Bit positions of code format = [6]5]4]3[2]1]0] . o
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ASCII code

* ASCII uses 7-bit, natural size in computer systems 1n one-
byte (8-bits)
* Two common ways on going to 8-bits
— Set the eight bit to 0
— Use the eight-bit to indicate the parity of the other bits

« Even parity: the parity bit is given a value such that total
number of 1’s 1s even

* (Odd parity: the parity bit is given a value such that total
number of 1’°s 1s odd

« Even parity generator: P=26D 5D ... BT
* Parity checker: c=p P xg P 25D ... B 0

McMaster
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