Lab #5 Design of a Register File and Datapath

Objectives:

- to gain insight into the internal logic for data movement between registers in a computer

- to introduce the concept of a control word for implementing an elementary set of micro-
operations.

- to gain experience with the use of VHDL constructs

- to gain experience with incremental, modular design

Preparation:

Read the following experiment and study the circuits as shown. Study the ALU (example 6.24, p.360)
and D flipflop (examples 7.2 and 7.3, p423) described in the textbook. Familiarize yourself with the
VHDL code at the end of the lab that contains examples of the VHDL constructs: "SELECT",
"PROCESS", "WHEN-ELSE" and "CASE". There are also several examples of the use of
"STD_LOGIC_VECTOR" for defining a multi-bit input or output. Bring your textbook to the lab!

Devices used:

MAX7000 EPM7128SLC84-7 CPLD

Introduction:

The internal registers of a microprocessor characterize its architecture. For example, a 32-bit
microprocessor has (mostly) 32-bit registers internally. Moving data among these registers is
the single most frequent operation that takes place in a computer. In this session, we will

construct a 4x4 "register file" comprising registers Ro, R1, R2 and R3 (as shown in the figure of

Sf% 45) to demonstrate the concept of register transfer logic. We will also implement a simple

arithmetic and logic unit (ALU) and then combine the ALU and the register file to construct a
simple computer datapath.

Moving data from one register to another may be more accurately described as a "copy"
operation. The destination register takes on the value of the source register which itself remains
unchanged after the operation. The source and destination registers may be the same register.
These register transfers are designated using register transfer notation. For example, copying

the contents of a register Rs
into another register Ra would be written as:

Rd<_ Rs

where Rs is the source register (and remains unchanged) and Rgq is the destination register.

A register file comprises a decoder which chooses a destination register and a multiplexer to
direct the outputs of any register through to the data output lines. The decoder select lines may
then be viewed as the destination "address" and the multiplexer select lines as the source
"address".

Experiment:

This datapath circuit to be built requires several components that we will design and implement
and test individually. To facilitate successful implementation, verification and documentation of
complex designs, one should proceed in an incremental, modular fashion whereby each
component of a circuit is built and verified independently. The components are then put
together and may form another, larger component at the next level of the design hierarchy.
These combined components may then be combined to from even larger components and so on.
This continues to the top level of the design. This practice applies to the design of hardware,
software or any other system for that matter! Our final goal here is to design and implement the
logic for a hardware datapath that contains a simple arithmetic and logic unit (ALU) that can
perform low level processing.

Proceed methodically and slowly and be mindful of bit ordering for the 4-bit bus connections.
Use neatly arranged, colour-coded wiring to aid in debugging and masking tape to affix
temporary labels for the toggle switches on the breadboards. We start by designing the register
file.

Stop 7 Decoder

The register file requires a 2-line to 4-line decoder with HI-true outputs and one HI-true enable

input as shown in the circuit of Sf% 4‘ This is similar to the decoder you designed in a

previous lab. Implement this component using the graphic design editor and test it in the
MAX7000 device. Generate a symbol for this decoder which you will use later. See appendix B.5,
page 851.

Stop 2 Quad 4:7 MULX

The register file also requires a Quad 4:1 multiplexer. A Quad 4:1 MUX has four 4-bit data

select
2

A —+—00
B %01
CcC =10

D —+—1

inputs, a 4-bit data output and two select lines as shown below. Study the VHDL source code
given at the end of this lab that implements a Quad 4:1 multiplexer. Be sure you understand the
logic of the VHDL code. Compile this program, implement and test using the MAX7000 device.
Generate a symbol for this MUX which you will use later.

What would an Octal 4:1 MUX look like? a Quad 2:1 MUX ? Draw a block diagram.

S L‘% S @ésf&m

The four registers Ro, R1, R2 and R3 in the diagram below are to be implemented using the
VHDL code at the end of this lab (similar to Figure 7.46, p. 429 of the textbook). Each register
comprises 4 positive edge-triggered D flipflops. Each register has a 4-bit input data and a 4-bit
output data. The clock input to all flipflops in the register is defined as Clk. Compile this code
and make a symbol for the register.

Step 4 7?%0;; ter Fils

Now we will design the register file using the graphic design editor by connecting the

multiplexer, decoder and four registers

as shown below. Compile and test the register file circuit

in the MAX7000 chip to ensure that all four registers can be loaded using toggle switches on the

Data In lines, and read using LEDs

connected at the Data Out lines. Be sure that you

understand the timing of the "load enable" input relative to all the other inputs and outputs.

Data In
4 Register File
. *§ 2 destination
2to4line 3 register selec
Decoder_ ./ 1
0123 - load enable
I
Clk Clk Clk Clk
Ro R1 R Rs
00 01 10 11
Quad 4:1 2, source
MUX / selects 4 register selec
4//
v
Data Out

Make a symbol for this circuit for use later.
Show this working circuit to a Lab Demonstrator before proceeding.

Sf% 5 Dm‘%f/

The register file forms the basis of a "datapath” which is a fundamental building block of a
computer. See the diagram below. Data is selected from any register then stored back into any
other register in the register file, all in a single clock cycle (a lo-hi-lo pulse applied to the load
enable LE input). A Quad 2:1 MUX included as shown below allows external data to be inserted
into the datapath. Data can thus be transferred between any two registers of our register file or
any register can be loaded with external data. This datapath can execute the following
operations:

(a) any register can be loaded with external data from switches R4 < data (4-bits)
(where d=0,1,2 or 3)

(b) any register can be loaded with the data contained in any one of the other registers,
including itself (register-to-register transfer) = Rq <= Rs (whered,s=0, 1, 2 or 3)

The implementation is shown below. The inputs [D1, DO, S1, SO, DS] form a 5-bit "control”
word which specifies the source (S1, SO) and destination (D1, DO) registers of the register file
and an operation (DS) that is to take place. For DS=0, external data from switches is loaded into
the destination register; for DS=1, data is transferred from the source register to the destination
register. Once the control word and data input (if appropriate) are set on the level switches,
execution is achieved by applying a load enable (LE) input to the register file. This LE input may
be considered as the clock to the entire system. You can view the results of each operation using
four LEDs connected to the output of the register file as shown.

Design this data path using the graphic design editor. VHDL code for the Quad 2:1 MUX design is
given at the end of this lab. Test the circuit for various combinations of the register transfers
summarized in the following table.

Data In
< 2 destination register select (D1,D0)
4x4 ,
Register < source register select (S1,S0)
File
< 1 load enable (LE)
Data Out
4
4 » data output (LEDs)
4 data input (switches)
vy
1 0 1
Quad 21 /J&——4—— data source select (DS)
MUX
4

Summary of register transfer operations

Data Register

Sourc | Source Register | Destination Register | data input Transfer
e S1 SO D1 DO Operation

DS

0 XX 00 abcd RO <—abcd
0 XX 01 abcd R1 < abcd
0 XX 10 abcd R2 < abcd
0 XX 11 abcd R3 < abcd
1 00 00 XXXX RO < RO
1 00 01 XXXX R1 < RO
1 00 10 XXXX R2 < RO
1 00 11 XXXX R3 < RO
1 01 00 XXXX RO < R1
1 01 01 XXXX R1 < R1
1 01 10 XXXX R2 < R1
1 01 11 XXXX R3 < R1
1 10 00 XXXX RO <~ R2
1 10 01 XXXX R1 < R2
1 10 10 XXXX R2 < R2
1 10 11 XXXX R3 < R2
1 11 00 XXXX RO < R3
1 11 01 XXXX R1 <R3
1 11 10 XXXX R2 <R3
1 11 11 XXXX R3 <R3

Sf% 6 ALU

An ALU is a combinational logic circuit that performs various arithmetic and logic operations on n-bit
data (operands). A simple 8-function ALU that operates on 4-bit inputs A and B is specified in the
following table. The block symbol for an ALU is also given below. The number of bits on the
"function select" input determines how many operations may be performed on the operands (in this
example there are 2° = 8 functions). Its definition in VHDL code is given at the end of this lab (see
Figure 6.48, p.360 of the textbook). Compile this code, then implement and test this function in the
MAX7000 device using several values of A and B. Verify the function table:

Lunctivn Ouwtte Operatio
g 44
Seloct ¢ v ALU 3

F Function
4i select
S; $15

011 A+B add
S2357350 IE 100 AXORB exclusive OR
10 1 AORB logical OR
000 0000 clear]] ? A1'°;N1D 1'3 '09")‘;2;&"'[)
001 B-A subtract
010 A-B subtract

Sf% 4 /l/l L‘é 7%/1/51/‘&/* ﬁé

To be able to include an ALU in our datapath, we must first modify our register file design so that
it has the capability to select two registers as outputs (Source Register A and Source Register B).
This will allow the contents of any two registers to be applied to the A and B inputs of the ALU.

This is easily achieved by adding a second Quad 4:1 MUX to the design of the register file as
shown below:

Data In
4 Register File
. :ﬁ 2, destination
th:c:):iI:f £ register select
0123 enabl : % load enable
L :
Clk Clk Clk Clk
R, R, R, R,
41 41 41 ,
//
. | . source register B
: 00 01 10 M 00 01 10 M . select
2, L\ Quad 4:1 Quad 4:1 / . 2

source . Selects
register A.
select

MUX selects .

...

Data Out Data Out
A B

The inputs to this register file are now:

destination register select (2 bits), source register A select (2 bits), source register B
select (2 bits) and load enable (1 bit).

The outputs are Data Out A and Data Out B (each 4 bits) as shown.

Compile this design and create a symbol for this register file.

Sf% S Dm‘%f/ zm;f/ AL U

Now, the datapath design can be extended by including the ALU from S L‘% { and the register

file from LSZ% 7as shown in the next figure:

Data In
< 2 destination register select (D1,D0)
4x4 2 _
Register < source register A select (SA1,SAO0)
. 2 .
File < source register B select (SB1,SB0)
DatZ Out Dat[ag Out | 1 load enable (LE)
4 4
\ 4 \ 4
AV B
ALU [, 3 ALU function select
F / S2’ S17 SO
4
» data output (LEDs)
] external data input
\ 4 \ 4
1 0
Quad 2:1 1 external data source
MUX / select (DS)
4

Using the graphic design editor, build this circuit using the previous components and compile,

implement and test. This datapath has much more capability than our first design in Sf% ;

(a) as before, any register can be loaded with external data from switches:
R4 < data (4 bits) (whered =0, 1,2 or 3)

(b) any register can be loaded with the result of any of the eight functions supported by our
ALU whose input is the data contained in any two of the registers. For example:

Ra < Ra + R (whered,A,B =0, 1,2 or 3)

would allow us to load any register with the sum of any two registers.

The inputs [D1, DO, SA1, SAO, SB1, SBO, sy, s1, So, DS] comprise a 10-bit control word
which specifies a destination register (D1, DO), the two source registers (SA1, SAQ) and (SB1,
SBO0), and the ALU function (S2, S1, So) that operates on the source registers. The DS input
allows loading of the registers with external data via the Quad 2:1 MUX. For DS=0, external
data from switches is loaded into the destination register; for DS=1, data is transferred from the

ALU output to the destination register. As in S L‘% j,J once the control word and data input (if

appropriate) are set on the level switches, execution is achieved by applying a load enable (LE)
input (pulse lo-hi-lo) to the register file. This LE input may be considered as the clock to the
entire system. You can view the results of each operation using four LEDs connected to the
output of the ALU as shown. The function that is executed in response to a control word and a
LE clock input is called a microoperation. A series of microoperations applied to a datapath

is called a microprogram.

Try the following examples of microoperations in your implementation:

Destination Source Source ALU Data data

Register Register A | Register B | function select | Source | input Operation

D1 DO SA1 SA0 SB1 SBO S2 S1 So DS
00 XX XX X XX 0 abcd RO <—abcd
01 XX XX X XX 0 abcd R1 < abcd
10 XX XX X XX 0 abcd R2 < abcd
11 XX XX XXX 0 abcd R3 < abcd
00 00 01 011 1 XXXX RO <~ RO + R1
01 00 10 010 1 XXXX R1< RO -R2
10 XX XX 000 1 XXXX R2 <0
11 XX XX 111 1 XXXX R3 < -1
00 10 11 110 1 XXXX RO < R2 AND R3
01 01 10 101 1 XXXX R1< R10RR2
10 01 11 100 1 XXXX R2 < R1 XORR3
11 11 11 100 1 XXXX R3 < R3 XOR R3

Note: (1) the first four lines of this table allow for initializing the register contents (DS =0).
(2) this is not a complete table of all possible microoperations that can execute

What microoperation is implemented with the control word.:

What is the effect of the last microoperation in this table ?

What microoperation is implemented with the control word:

1001110111 ?

1111110101 ?

Can you think of yet another way to implement this same operation ?

If you want to experiment further, try changing the ALU functions. For example, replace the "preset"
function with an "increment" (A+1) operation. Add status bits for Zero (Z) and Sign (S) as outputs
from the ALU. Changes can be done very quickly in our modular design !

The VHDL source code for Quad 4:1 MUX

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY quad4tolmux IS

PORT (a, b, ¢, d : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
S : IN STD LOGIC VECTOR(1 DOWNTO 0) ;
f : OUT STD LOGIC VECTOR(3 DOWNTO 0));

END quad4tolmux ;

ARCHITECTURE Behavior OF quad4tolmux IS
BEGIN
WITH s SELECT
f <= a WHEN "00",

b WHEN "O1",

c WHEN "10",

d WHEN OTHERS ;
END Behavior ;

The VHDL source code for 4-bit Register

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY reg4 IS

PORT (D : IN STD_LOGIC VECTOR (3 DOWNTO 0) ;
Clk : IN STD_LOGIC ;
0 : OUT STD_LOGIC VECTOR (3 DOWNTO 0));
END reg4d ;

ARCHITECTURE Behavior OF reg4 IS
BEGIN
PROCESS (Clk)
BEGIN
IF Clk'EVENT AND Clk = 'l' THEN Q <= D;
END IF;
END PROCESS ;

END Behavior ;

The VHDL source code for Quad 2:1 MUX

LIBRARY ieee ;
USE ieee.std logic 1164.all ;

ENTITY quad2tolmux IS

PORT (a, b : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
S : IN STD LOGIC ;
f : OUT STD_LOGIC VECTOR (3 DOWNTO 0));

END quad2tolmux ;

ARCHITECTURE Behavior OF quad2tolmux IS
BEGIN

f <= a WHEN s='0' ELSE b ;

END Behavior ;

The VHDL source code for 8-function, 4-bit ALU

LIBRARY ieee ;
USE ieee.std logic 1164.all ;
USE ieee.std logic signed.all ;

ENTITY alu IS

PORT (s IN STD LOGIC VECTOR (2 DOWNTO Q) ;
A, B : IN STD LOGIC VECTOR(3 DOWNTO 0) ;
F OUT STD_LOGIC VECTOR (3 DOWNTO 0)) ;
END alu ;

ARCHITECTURE Behavior OF alu IS

BEGIN
PROCESS (s, A, B)
BEGIN
CASE s IS
WHEN "000" =>
F <= "0000"
WHEN "001" =>
F <=B - A ;
WHEN "010" =>
F<=A-3B ;

WHEN "011" =>

F <= A + B ;
WHEN "100" =>

F <= A XOR B ;
WHEN "101" =>

F <= A OR B ;
WHEN "110" =>

F <= A AND B ;
WHEN OTHERS =>

F <= "1111"

END CASE ;
END PROCESS ;
END Behavior ;

