
Memory Decode Logic Design

Dr. D. Capson
Electrical and Computer Engineering

McMaster University

Introduction

A microprocessor with an n-bit address bus can generate 2n unique addresses with values 0 to 2n - 1. The
purpose of decode logic is to interface memory devices with a microprocessor as shown in the diagram
below. The input to the decode logic is k bits taken from the n-bit address bus. The address bus is
unidirectional since the microprocessor provides addresses (it never receives them) as part of its operation of
fetching and executing instructions. The output of the decode logic is a single bit “chip select” signal for
each memory device. The decode logic may be viewed as ‘monitoring’ the address bus. When it ‘sees’ an
address within the range it is designed to detect, it generates a corresponding output that is used to enable the
appropriate memory device via its chip select (/cs) input. On some memory devices this is also called the
‘chip enable’ (/ce) input. Chip select and chip enable behave identically and are often used interchangeably.

Note: The forward slash is front of a signal name is a way of indicating a LO-true signal. That is, the

signal is normally HI when it is in its quiscient state and is considered asserted when LO.

The memory devices in a system may be of different types (mixtures of RAM and ROM) and may even be
of different sizes and organizations. Note that in the diagram, the number of address bits p, q and n are not
necessarily equal (although they can be). The data bus is bidirectional since data may be read from, or
written to, a memory component depending on its type. The width of the data bus (m) need not be equal to
the width of the data connections to/from the memory devices (r and s in the diagram).

Microprocessor

address

data

n-bit address bus

m-bit data bus

Decode logic

Memory
Device

Memory
Device

k

/cs /cs

p q

r s
/WR

/RD to /oe of all
memory deivces

to /we of all
memory deivces

Microprocessors provide mutually exclusive signals /RD and /WR to coordinate access to memory (they are
never asserted at the same time!) For reading from memory, the microprocessor places the desired address
onto the address bus and then issues a read pulse /RD At the end of this read pulse, the microprocessor
reads the contents of the requested memory location from the data bus where it is assumed to have been
placed by the appropriate memory device. This is called a memory read machine cycle.

It is the role of the decode logic to ensure that the correct memory device is accessed and that it supplies data
on the data bus for this cycle. The basic memory read machine cycle timing is as follows:

address

/RD

address stable

address from microprocessor
becomes stable here

microprocessor takes
data from data bus here

microprocessor indicates
that data is avaiable on

the data bus here

For a write operation, the microprocessor provides an address on the address bus, provides data on the data
bus and then issues a write pulse /WR. This is called a memory write machine cycle. It is also the role of the
decode logic to ensure that the correct memory device is accessed and that it takes data from the data bus at
the end of this cycle. The basic memory write machine cycle timing is as follows:

address

/WR

address stable

address and data from microprocessor
are both stable here

data data stable

All microprocessors use some form of this basic mechanism; it is the fundamental concept to understand the
interfacing of memory and I/O devices to a microprocessor bus. The read and write machine cycles are a
major factor in determining the overall performance of a system. There has been a wide variety of strategies
developed by manufacturers of microprocessors and memory components to enhance this basic mechanism
for improving performance.

Memory Maps

It is useful to graphically portray the entire range of possible addresses that can be generated by a
microprocessor (also called the address space) in the form of a memory map as in the following examples:

2n - 1 + 2n - 2 - 1

2n-2 K

2n-2 K

2n-2 K

2n-2 K

n-bit Memory Map

0

2n - 1

2n - 1

2n - 1 - 1

2n - 2

2n - 2 - 1

2n - 1 + 2n - 2

16K

16K

16K

16K

16-bit Memory Map

0000

3FFF
4000

7FFF
8000

BFFF
C000

FFFF
20-bit Memory Map

00000

3FFFF
40000

7FFFF
80000

BFFFF
C0000

FFFFF

256K

256K

256K

256K

Consider a memory space with 16 address bits (i.e. n=16) as shown in the middle memory map above. Many
small systems used in embedded applications use no more than 16 bits. This then defines an address space
of 64K. Note that all of the addresses are shown in hexadecimal. We assume the individual bits of the
address bus are labelled A15 (the msb) thru A0 (the lsb).

The minimum address is 0000H (16 binary 0’s) and the maximum address is FFFFH (16 binary 1’s) which is
216 – 1. The fact that the maximum address is shown at the top of the diagram is completely arbitrary and
has no bearing on our discussion. The first address of the top half of the memory map is 8000H. Every
address from this point upward to FFFFH has A15 = 1. Every address in the bottom half, that is, 7FFFH
down to 0000H has A15 = 0. In general, the most significant address bit (An-1 for an n-bit address bus)
divides the memory exactly in half. In the 16-bit example, every address from C000H upward to FFFFH has
address bit A14 (the second m.s.b.) equal to 1. Therefore all addresses in the top quarter of the memory map
have A15 =1 and A14 = 1. In general, the value of the two msb’s An-1 and An-2 of any n-bit address thus
identify which quarter of the memory map in which it belongs. Similarly, the memory map is divided into
eighths by the first three msb’s of the address and so on. Try a few values to convince yourself that this is
true.

A Simple Example of Memory Decode Logic

A typical microprocessor memory system may contain several types of memory technologies including ROM
(e.g. Flash), fast SRAM, high-density DRAM as well as empty space in which there is no memory available.
The memory map shows the relative space occupied by all memory devices (and any empty space)
proportionally to the total address space. The memory map may also indicate starting- and ending-addresses
for each of theses regions as well as I/O device addresses if memory-mapped I/O is being used (however, we
will not consider memory-mapped I/O in this discussion)

In most real implementations, the address space is rarely completely filled with memory devices. For
example, in a typical PC, the Pentium processor has a 32-bit address bus which provides a 4G address space.
Most desktop systems however, have 500Mbytes or less of memory which represents no more than 1/8 of the
possible address space. That is, 7/8 (87.5 %) of the address space is empty ! Even with 1Gbyte of memory
in your system, you are using only 25%.

Think about this: Next generation microprocessors will have 64-bit address buses. Estimate the cost at
today’s prices, to fully populate a 64-bit address space with DRAM.

At this point, we can demonstrate a very simple decoding logic circuit – it is nothing more than an inverter
whose input is connected to A15 as shown in the following diagram. When A15 = 1, the ROM device is
enabled and responds to read cycles indicated by /RD = 0 for addresses 8000H to FFFFH. The ROM has 15
address lines and r data lines; therefore its organization is 32K x r. Note that decoding logic is independent
of the value of r. If the microprocessor generates any address from 0000H to 7FFFH, the ROM is disabled
and nothing will be read since the bottom half of the memory is empty ! The memory map shows this simple
arrangement. A second 32K x r memory device could be added to populate the bottom half of the memory
space by connecting its chip select directly to A15 (no inverter). This would then completely fill the 64K
space.

ROM

empty

Memory Map

0000

7FFF
8000

FFFF

Microprocessor

address

data

/WR
/RD

A15

ROM

/cs

15

r

m-bit data bus

/oe

A14- A0

16-bit address bus

A Second Example of a Memory Decode Logic

In the previous example, the inverter acts as a 1-to-2 decoder that responds to half of the address space. A
binary decoder can be used to divide the address space by higher powers of 2. For example, in the figure
below, the 3 msb’s of an address bus A15 , A14 and A13 are connected to the select inputs of a 3-to-8
decoder to divide the 64K address space evenly into eight 8K blocks. The decoder also has 3 enables which
are fixed inputs as shown. The eight decoder outputs activate in the 8K address ranges as shown (in
hexadecimal) which leads to the memory map as shown. LO-true outputs from the decoder are shown since
most memory devices have LO-true chip select inputs.

Y7

Y6

Y5

Y4

Y3

Y2

Y1

Y0

Memory Map

0000

1FFF

4000

5FFF
6000

7FFF

A000

BFFF
C000

DFFF
E000

FFFF

3:8 Line Decoder

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

enablesselects

A15

A14
A13

0

0000 - 1FFF

4000 - 5FFF
6000 - 7FFF

A000 - BFFF
C000 - DFFF
E000 - FFFF

Microprocessor

10

16-bit address bus

2000

3FFF

2000 - 3FFF

8000

9FFF

8000 - 9FFF

With this circuit, as many as 8 memory devices, each to a maximum size of 8K, could be connected to the
address and data buses. The address range in which each device responds is, of course, determined by
which of the decoder outputs is used to drive its chip select input. The regions of the memory map have been
labelled with the corresponding names of the decoder outputs.

Using address bits to avoid parts of the Memory Map

Suppose now that A15 is used as an enable to the decoder and that the select inputs of the decoder are
connected to bus A14 , A13 and A12 as shown in the next diagram. The affect on the memory map (also
shown below) is to divide the bottom half of the address space into eight blocks each of 4K. Any address
from the top half of memory (A15 =1) will produce no response from this decode logic since the decoder will
be disabled. Only addresses with A15 = 0 will result in a response from the decoder. Up to 8 memory
devices each of a maximum size of 4K could be connected to the address and data buses with this circuit.

Y6

Y4

Y2

Y0

Memory Map

0000

2000

3000

5FFF
6000

7FFF
8000

FFFF

Y7

Y5

Y3

Y1

6FFF
7000

3FFF

5000

2FFF

0FFF

3:8 Line Decoder

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

enablesselects

A12A14

A13

0000 - 0FFF

2000 - 2FFF
3000 - 3FFF

5000 - 5FFF
6000 - 6FFF
7000 - 7FFF

A15 1

Microprocessor

address 16-bit address bus

0

4FFF
4000

4000 - 4FFF

1FFF
1000

1000 - 1FFF

Similary, if both A15 and A14 are used as enables to the decoder, the bottom quarter of the address space is
divided into eight 2K blocks with addresses as shown:

3:8 Line Decoder

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

enablesselects

A11A13

A12

0000 - 07FF
0800 - 0FFF
1000 - 17FF
1800 - 1FFF
2000 - 27FF
2800 - 2FFF
3000 - 37FF
3800 - 3FFF

Y5

Y1

Memory Map

0000

7FFF
8000

FFFF

A14

Y7

Y3

3FFF
4000

A15

Y6

Y4

Y2

Y0

16-bit address bus

Microprocessor

1

Non-exhaustive Memory Decode Logic

Consider the following example where, as in a previous example, the select inputs of the decoder are
connected to bus A14 , A13 and A12 as shown. However, now, the decoder is permanently enabled by fixing
its enables to 0 0 1. Address bit A15 is not connected anywhere in the decode logic and is effectively
ignored. The effect on the memory map is to replicate each block of decoded space in the top and bottom
half of the address space.

Y6

Y4

Y2

Y0

Memory Map

0000

2000

3000

5FFF
6000

7FFF
8000

Y7

Y5

Y3

Y1

6FFF
7000

3FFF

5000

2FFF

0FFF

Y6

Y4

Y2

Y0

Y7

Y5

Y3

Y1
A000

E000
EFFF

AFFF

8FFF

B000

DFFF

FFFF
F000

BFFF

D000

3:8 Line Decoder

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

enablesselects

A12A14

A13

0000 - 0FFF

2000 - 2FFF
3000 - 3FFF

5000 - 5FFF
6000 - 6FFF
7000 - 7FFF

1

Microprocessor

address 16-bit address bus

00

1FFF
1000

9FFF
9000

1000 - 1FFF

4FFF
4000

CFFF
C000

4000 - 4FFF

That is, there are two addresses, one with A15 = 0 and one with A15 = 1, that activate the same decoder
output. For example, address 0000 and adresss 8000H each activate output Y0. Similarly, addresses 1000H
and 9000H both activate output Y1 and so on. The result is that half of the memory addresses are wasted. In
this example, there are only 32K unique addresses (0000 to 7FFFH). Addresses 8000H to FFFFH are not
available for other uses. This is known as non-exhaustive decoding.

Of course A15 still exists on the address bus and is still being driven by the microprocessor. We haven’t
eliminated it, we are only ignoring A15 in the decode logic. Although the entire address space is used, there
are only 8 unique address ranges for a total of 32K.

Adding Memory Devices

Returning to the example in which the address space is divided into eight 8K blocks, we extend the
discussion by adding actual memory devices to the circuit as shown:

Y7

Y6

Y5

Y4

Y3

ROM

Y1

RAM

Memory Map

0000

1FFF
2000

3FFF
4000

5FFF
6000

7FFF
8000

9FFF
A000

BFFF
C000

DFFF
E000

FFFF

8-bit data bus

3 to 8 Decoder

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

enablesselects

A12 - A0

address

data

cs
we RAM

13

8

address

data

cs
oe ROM

13

8

16-bit address bus

13

A15

A14
A13

0

oe

Microprocessor

address

data

/WR
/RD

10

The RAM and ROM are each 8K x 8 devices (13 address lines and 8 data lines). The output enable (/OE) of
each device is connected to the /RD signal so that the memory places its value onto the data bus at the proper
time in the memory read machine cycle. The /WE input of the RAM is controlled by the /WR signal so that
the memory takes a value from the data bus at the proper time in the memory write machine cycle. The
address range to which each memory device responds is determined by the choice of connection from the
decoder output to its chip select input. As shown, the RAM responds to addresses 0000 to 1FFFH and the
ROM responds to addresses 4000H to 5FFFH. This is easily observed in the memory map. By changing its
chip select connection to other unused decoder outputs, a memory device may be seen to reside in any of the
8K address blocks.

If the microprocessor reads or writes with any address in an 8K range in which no memory device is enabled,
then no valid data is transferred. Up to eight 8K x 8 devices could be supported with this circuit. With the
two memory devices as shown, the percentage of the address space that is populated is: (8K + 8K)/64K =
25%. There is decoding logic for the entire 64K space.

If the memory device is smaller than the decoded block, then regions of redundant redundant addresses are
generated. For example, using the same decode logic as above, consider the following circuit in which 4K x
8 memory devices are used in place of the 8K memory devices:

8-bit data bus

3 to 8 Decoder

Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7

enablesselects

A11 - A0

address

data

cs
we RAM

12

8

address

data

cs
oe ROM

12

8

16-bit address bus

12

A15

A14
A13

0

oe

Microprocessor

address

data

/WR
/RD

10
Y7

Y6

Y5

Y4

Y3

ROM

Y1

RAM

Memory Map

0000

1FFF
2000

3FFF
4000

5FFF
6000

7FFF
8000

9FFF
A000

BFFF
C000

DFFF
E000

FFFF

RAM

ROM

0FFF
1000

4FFF
5000

Since address bit A12 is effectively not used, the memory map contains duplicate regions of addresses which
access the same physical memory device ! For example, address 0000 accesses the same location as address
1000H, address 4FFFH accesses the same physical memory location as address 5FFFH and so on. Two 8K
blocks are occupied in the address space, but there is only 4K + 4K = 8K of physical memory available. So
the percentage of populated space is : (4K + 4K)/64K = 12.5%.

Address bit A12 is still driven by the microprocessor on the address bus but is ignored externally and again
this leads to wasted addresses in the memory map as in the case on non-exhaustive decode logic. In general,
logically replicated areas occur in the memory map when k + p ≠ n or k + q ≠ n (refer to the first diagram
in this document). Redundant areas of duplicated address space as shown in this example, is sometimes
called foldback memory.

Foldback memory regions are transparent to the microprocessor since it operates independently of any
external decode logic and memory devices. The microprocessor executes memory read and write cycles and
relies on the design of the external logic to ensure that reads and writes from/to memory take place correctly.

Think about this: If instead of 4K devices as above, 2K devices were used with this decode logic, what would
be the effect in the memory map?

Conclusion

This design of decode logic as shown here is valid for any size of address space, that is, any value of n.
Decode logic is generally not dependent on the size of the data bus. There are many ways to implement
decode logic; one of the most common uses of the early PAL devices was to implement decode logic for
microprocessor memory systems.

	Introduction
	All microprocessors use some form of this basic mechanism; it is the fundamental concept to understand the interfacing of memory and I/O devices to a microprocessor bus. The read and write machine cycles are a major factor in determining the overall per
	A Simple Example of Memory Decode Logic
	�
	A Second Example of a Memory Decode Logic
	Using address bits to avoid parts of the Memory Map
	Non-exhaustive Memory Decode Logic
	Adding Memory Devices
	Returning to the example in which the address space is divided into eight 8K blocks, we extend the discussion by adding actual memory devices to the circuit as shown:
	�

	The RAM and ROM are each 8K x 8 devices (13 address lines and 8 data lines). The output enable (/OE) of each device is connected to the /RD signal so that the memory places its value onto the data bus at the proper time in the memory read machine cy
	Conclusion

