IMAGE PROCESSING USING

!'_ MATLAB

Scott Bezan
bezansa@mcmaster.ca
ITB 134

i Introduction

MAT matrix
o — lab(oratory)

o Images are just matrices (arrays) where the
elements mean something (visually).

= Each pixel in an image has an intensity
value.

= Arrays of size MxN.
= Each element is a pixel.

‘L Coordinate conventions

i Coordinates continued...

= Note indices in MATLAB begin with 1
and can only be positive real integers.

- (XIY) -> (rlc)
= (0,0) ->(1,1)

= Spatial coordinates have x as cols. and
Yy as rOwSs.

i Images as matrices

- a(L) a(l,2)
Matrix a=| M) 90D

a(MJ) a(M2) -
Row vector r=[5 - r]

Column vector c¢=

a(l1,N)
a(2,N)

a(M,N)

i Basic MATLAB functionality

= Creating a row vector

a=[1 2 3] a=%k>2 3
= Creating a column vector
b=[1;2;3] b=31>
» Creating a matrix i

C=[1 2 3;4 5 6;7 8 9] c=1
4
7

co Ul N
o O

i Vector and matrix indexing

= 10 index an element from a vector
a(2) >> 2 b(end) >> 3

= 10 index an element from a matrix

C(2,3) >> 6 C(l,end) >> 7

\ W/,

= The colon ™:" operator will yield a
specified range
C(3,:) >> 7 8 9 2 C(:,2) >>

5
8

i Useful functions

length (X)
= Returns the length of the matrix X.

[M,N] =size (X)
= Returns the length of the rows and

columns (respectively) of X in separate
variables.

sum (X)
= sums the elements in X (col. wise for
matrices. Can specify the dimension.)

X (:)
= Selects elements of an array (col. by col.
basis) and stacks them one atop the other.

sum(X(:)) <==> sum(sum(X))

zeros (MxN)

= Returns an MxN array of zeros.

ones (MxN)

= Returns an MxN array of ones.

rand (MxN)

= Returns an MxN array of uniformly
distributed random numbers from [0,1].

randn (MxN)

= Returns an MxN array of Gaussian
distributed random numbers with mean
0 and unit variance.

i Operators

= Arithmetic
= Perform numeric computations.
= Matrix operations (linear algebra).
= Array arithmetic operations (element by

\\ 7/

element) via dot (*.”) operator.

A and B are MxN matrices.

A*B A.*B

i More operators

= Relational
= Compare operands quantitatively.
n <, <=, >>=, ==, ~v=

= Logical

= AND, OR, NOT, XOR
=« Anything ~=0 is true otherwise is false.

Flow control

s If statements

1f expressionl
statementsl
elselif expression?2
statements?2
else expression3
statements3
end

= For loops

for index = start:increment**:end
statements

end

(** no increment, assumed 1)

= While loops
while expression
statements
end

= Switch

switch switch expression
case case Expression
statement (s)

case{case expressionl,case expression2, ...}
statement (s)
otherwise
statement (s)
end
break

= terminates loop in which it resides.

iImage Processing Toolbox (IPT)

= Reading images

« IPT accepts images of type TIFF, JPEG,
GIF, BMP, PNG and XWD.

= filename is string of complete filename (i.e.
path (if not in pwd) and extension).

= Use quotes for strings!!

f=imread (‘picture.jpg’) ;
f=imread (‘'D:\images\picture2.jpg’) ;
f=imread (‘'.\images\picture3.jpg’) ;

i Reading images cont...

= Some types are not readable by imread
(i.e. .bin).

fid=fopen(‘picture.bin’) ;
f=fread (fid, [numRow, numCol]) ;
fclose (fid) ;

= Need to know the size of image
beforehand.

i Displaying Images

imshow (£, G)
= fis the image array

= G is the number of intensity levels
(default 256).

colormap (gray (G)) ; image (f)
= careful of data type and max values**

i Writing images

= For IPT compatible images,

imwrite(f,’filename’)
imwrite(f,’filename’,’ format’)

= JPEG

imwrite (f, 'picture.jpg’, 'quality’, q)

= g is quality factor 0<=gq<=100
= lower g, higher distortion.

i Exporting images from MATLAB

= In figure window
= File -> Export

OR/

print -f # -d fileformat -r res# filename

= # is figure number
= fileformat MUST be allowable by IPT
= res# resolution in dpi

i Data Classes

Class Range # bytes/element
double [-10308,1039%] 8
uint8 [0,255] 1
uintl6 [0,65535] 2
uint32 [0,4294967295] 4
int8 [-128,127] 1
intl6 [-32768,32767] 2
2 Ctanasies :
single [-1038,103¢]
char characters
logical [0,1]

i Image types

= Intensity
= data matrix with entries scaled to intensities.
= uint8 -> [0,255]
= uintl6 -> [0,65535]
= double -> [0,1] (*scaled)
= Binary
= |logical array of 1’s and 0’s.

i Type casting

= convert from one data type to another.

B=data class name (A)

converts to array A to type of
data_class_name.

= MATLAB expects operands in
numeric computations to be of
double precision floating point
numbers.

i Image classes < Image types

= Perform necessary scaling to convert between
image classes and types.

im2uint8 (X)
= detects input data class and scales to allow
recognition of data as valid image data.

mat2gray (X, [Amin, Amax])
» takes arbitrary double array input and scales to
range [0,1].

= values < Amin =>0, >Amax =>1

im2double (X)

= converts X input to class double in range [0,1]
unless input is of class double, no effect.

im2bw (X, T)
= converts intensity image to a binary image.

= anything less than T output set to 0, otherwise
output set to 1.

= [= [OI 1]
= output is logical

i Code optimization

= Can eliminate loops by using vectors as

arguments.
for x=1:50000 x=0:49999
f(x)=A*sin((x-1))/(2*pi)); < f=A*sin (x/ (2*pi)) ;
end
t=12.6870 s t=0.0160 s

s Method 2 is almost 800 times faster!!!

