CoE4TN4 Image Processing

Chapter 11 Image Representation & Description

Image Representation & Description

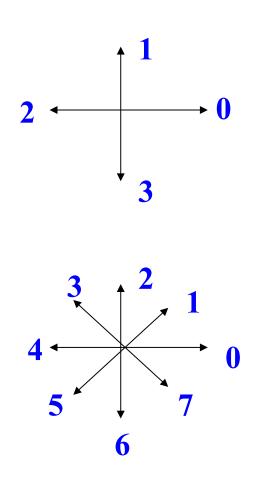
- After an image is segmented into regions, the regions are represented and described in a form suitable for computer processing (descriptors).
- Representing a region:
 - 1. In terms of its external characteristics (boundary)
 - 2. In term of its internal characteristics
 - Exp: A region might be represented by the length of its boundary.
 - External representations are used when the focus is on shape of the region.
 - Internal representations are used when the focus is on color and texture.
 - Representations should be insensitive to rotation and translation.

Chain Code

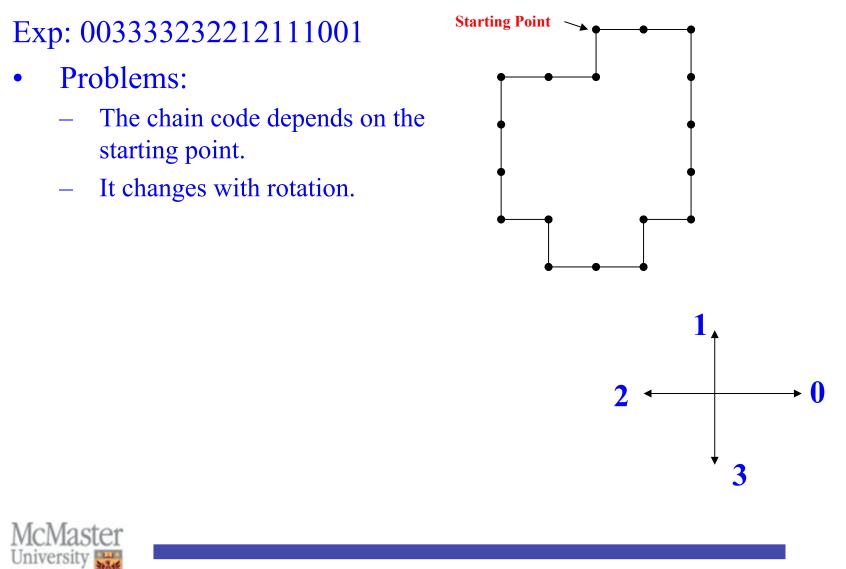
- Chain Code: Used to represent a boundary by a connected sequence of straight line segments.
 - 4 or 8 connectivity is used
 - The direction of each segment is coded by a numbering scheme.

Method:

- Follow the boundary in a specific (clockwise) direction.
- Assign a direction to the segment connecting every pair of pixels.



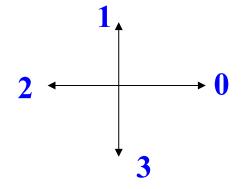
Chain Code



Chain Code

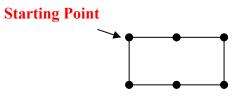
Solutions:

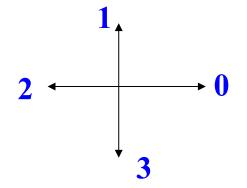
- Treat the chain code as a circular sequence of numbers. Circulate until the number is of minimum magnitude.
- Use the difference of chain code instead of the code itself: count counterclockwise the number of directions that separates two adjacent elements (First difference)
- Exp: 10103322
- First difference code: 33133030



Shape Number

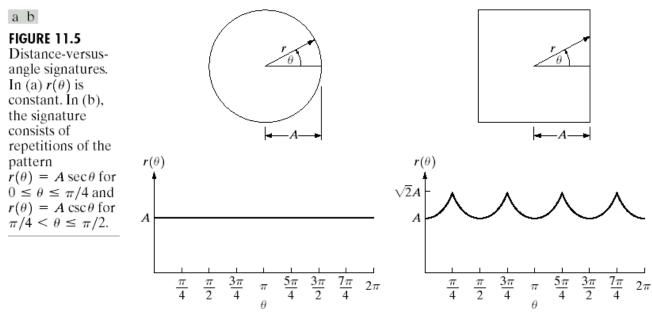
- Shape number: first difference of smallest magnitude (in the chain code)
 - Exp: chain code 003221
 - First difference code: 303303
 - Shape number: 033033





Signature

- Signature: a 1-D functional representation of a boundary
- Different ways of generating signature
- Plot distance form centroid to boundary as a function of angle

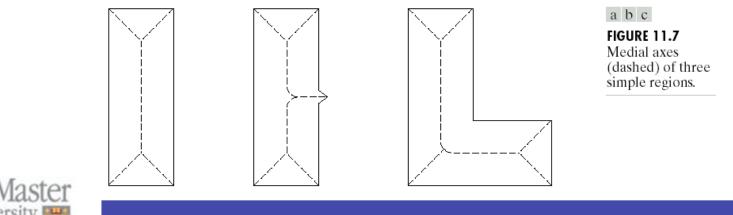


Signature

- Invariant to translation, depend on rotation and scaling
- To make it invariant to rotation we should select the same starting point regardless of the orientation
 - Select starting point farthest from centroid (if unique)
- To make it invariant to scaling we can normalize to a particular range
- Other signatures: traverse the boundary, at each point plot the angle between a line tangent to the boundary and a reference line
- Slope-density-function: histogram of tangent-angle values
- Straight segments will form the peaks of histogram

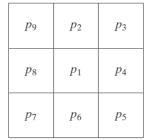
- An important approach to representing structural shape of a plane region is to reduce it to a graph
- This may be accomplished by obtaining the skeleton of the region via a thinning algorithm.
- Applications in automated inspection
- Definition of skeleton is based on medial axis transformation (MAT)

- MAT of a region R with border B: for each point p in R, find the closest neighbor in B. If p has more than one such neighbor, it belongs to medial axis (skeleton)
- MAT is based on "prairie fire concept".
- Direct implementation of MAT is computationally expensive
- Alternative algorithms have been proposed that "thin" the boundary of a region until the skeleton is left

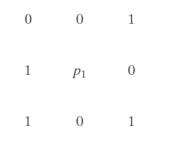


- An algorithm for thinning binary regions (assume region points are 1 and background points are 0)
- The algorithm has two steps which are applied to all the pixels on the contour of the region
- A contour point is any pixel with value 1 and having at least one 8-neighbor valued 0.
- In each step the boundary point that satisfy a set of conditions are flagged and then deleted

- Step 1 flags a contour point p1 if the following conditions are satisfied:
 - $a) \qquad 2 \leq N(p1) \leq 6$
 - $b) \qquad T(p1) = 1$
 - c) p2.p4.p6 = 0
 - d) p4.p6.p8 = 0



- N(p1): number of nonzero neighbors of p1
- T(p1) : number of 0 to 1 transitions in ordered sequence p2,p3,....p8,p9,p2.

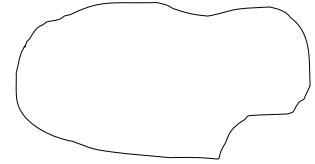


- After step 1 is applied to all border points those that are flagged are deleted (changed to 0)
- In step 2 conditions (a) and (b) remain the same but (c) and (d) are changed to:
 - $c') \qquad p2.p4.p8 = 0$
 - $d') \qquad p2.p6.p8 = 0$
- After step 2 is applied to all border points remaining after step 1, those that are flagged are deleted (changed to 0)
- This procedure is applied iteratively until no further points are deleted.

FIGURE 11.16 Human leg bone and skeleton of the region shown superimposed.

Simple boundary descriptors

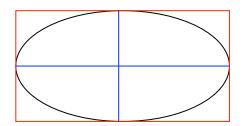
- Length: number of pixels along the contour of a region
- Diameter: Dima(B)=max[D(p_i,p_j)]
 - p_i, p_j are points on the boundary.



- Curvature: rate of change of slope.
- For digital images: the difference between the slopes of adjacent boundary segments.

Simple boundary descriptors

- Major axis: straight line segment joining the two points farthest from each other on the boundary
- Minor axis: Perpendicular to the major axis and of such length that a box could be formed to enclose the boundary.
- Eccentricity=Major axis/Minor axis
- Basic rectangle (bounding box): the rectangle formed by minor and major axes enclosing the boundary.



Fourier Descriptor

N point boundary

$$(x_0, y_0), (x_1, y_1), \dots, (x_{N-1}, y_{N-1})$$

 $s(k) = x_k + jy_k$ N point DFT of s(k):

$$a(u) = \frac{1}{N} \sum_{k=0}^{N-1} s(k) \exp(-j2\pi u k / N)$$

a(u) are called Fourier descriptors.

Fourier Descriptor

If P of the Fourier descrptors are used

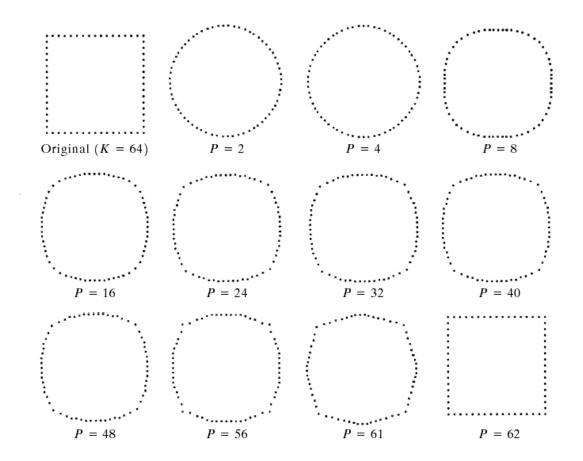
$$\hat{s}(k) = \sum_{u=0}^{P-1} a(u) \exp(j2\pi uk / N)$$

 $P < N \Rightarrow$ High frequency details of

the boundary (e.g., corners) are removed.

- Fourier descriptors are not directly insensitive to translation, rotation and scaling.
- Magnitude of the Fourier descriptors is insensitive to rotation.

Fourier Descriptor

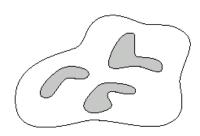


Regional Descriptors

- Area: number of pixels contained within a region
- Compactness: (perimeter)²/area
- Min and Max of the gray levels in the region
- Mean and median of gray levels

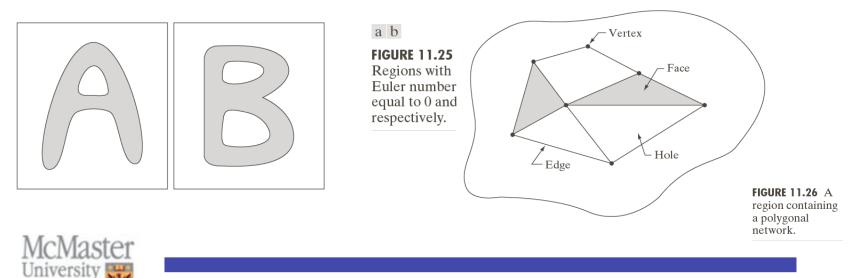
Topological Descriptors

- Topology: study of properties of a figure that are unaffected by any deformation, as long as there is no tearing or joining of the figure (rubber sheet distortions)
- Since stretching affects distance, topological properties do not depend on the notion of distance
- Number of holes in a region (H)
- Number of connected components (C)



Topological Descriptors

- Euler number: E=C-H
- Sometimes a region is represented by straight-line segments (polygonal network)
- V: number of vertices, Q: number of edges, F: number of faces => V-Q+F=C-H=E
- For the figure below right: 7-11+2=1-3=-2



Texture



FIGURE 11.28 The white squares mark, from left to right, smooth, coarse, and regular textures. These are optical microscope images of a superconductor, human cholesterol, and a microprocessor. (Courtesy of Dr. Michael W. Davidson, Florida State University.)

Texture

- An important approach to region description is to quantify its texture content
- This descriptor provides measures of smoothness, coarseness and regularity
- 3 approaches in describing the texture of a region: statistical, structural, and spectral.

• One of the simplest approaches for describing texture is to use statistical moments of the histogram of an image or a region

$$\mu_{n}(z) = \sum_{i=0}^{L-1} (z_{i} - m)^{n} p(z_{i})$$
$$m = \sum_{i=0}^{L-1} z_{i} p(z_{i})$$

$$\sum_{i=0}^{l} 1^{l} \langle 1^{l} \rangle$$

• $\sigma^2(z) = \mu_2(z)$ is a measure of contrast

$$R = 1 - \frac{1}{1 + \sigma^2(z)}$$

• Third moment is a measure of skewness of histogram

$$\mu_3(z) = \sum_{i=0}^{L-1} (z_i - m)^3 p(z_i)$$

• Measure of uniformity: U is maximum for an image in which all gray levels are equal

$$U = \sum_{i=0}^{L-1} p^2(z_i)$$

• Average entropy: a measure of variability and is zero for constant image

$$e = -\sum_{i=0}^{L-1} p(z_i) \log_2 p(z_i)$$

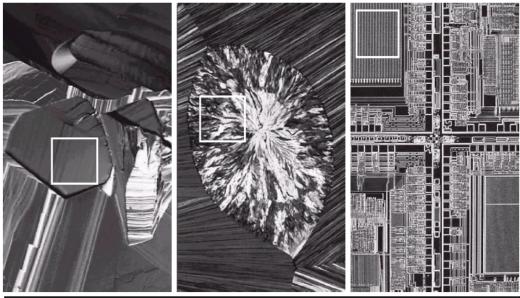
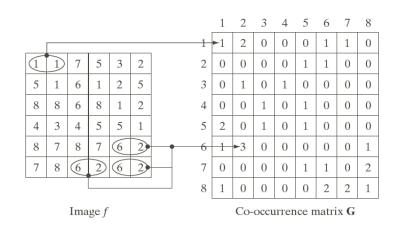


TABLE 11.2 Texture measures for the subimages shown in Fig. 11.22.

Texture	Mean	Standard deviation	R (normalized)	Third moment	Uniformity	Entropy
Smooth	82.64	11.79	0.002	-0.105	0.026	5.434
Coarse	143.56	74.63	0.079	-0.151	0.005	7.783
Regular	99.72	33.73	0.017	0.750	0.013	6.674

- Measures of texture computed using histogram carry no information regarding the relative position of pixels with respect to each other
- Let Q be a position operator and G a kxk matrix whose element a_{ij} is the number of times that points with gray level z_i occur (in position specified by Q) relative to points with gray level z_j .

Q: one pixel to the right



- Let n be the total number of point pairs in the image that satisfy Q (n=30 in the previous example)
- C=G/n : gray-level co-occurrence matrix
- C depends on Q
- C is analyzed to categorize texture over which C was computed

$$\max_{i,j} (c_{ij})$$

$$\sum_{i} \sum_{j} (i - j)^{k} c_{ij}$$

$$\sum_{i} \sum_{j} c_{ij} / (i - j)^{k}$$

$$\sum_{i} \sum_{j} c_{ij}^{2}$$

$$-\sum_{i} \sum_{j} c_{ij} \log(c_{ij})$$

Texture (structural)

- A simple texture primitive (texture elements) can be used to form more complex texture patterns by means of some rules
- Exp: S -> aA
 - S, A: variables (symbols or primitives)
 - a: some operation for example "put a circle to the right"
 - Rule S -> aA says that starting point can be replaced by a circle to the right and a variable
- Exp:
 - 1. S->aA
 - 2. A-> bA,
 - 3. A-> cA,
 - 4. A->a,
 - 5. A-> aA,
 - a: circle right
 - b: circle down

McMaster circle left

University

155233254 is a 3x3 square of circles

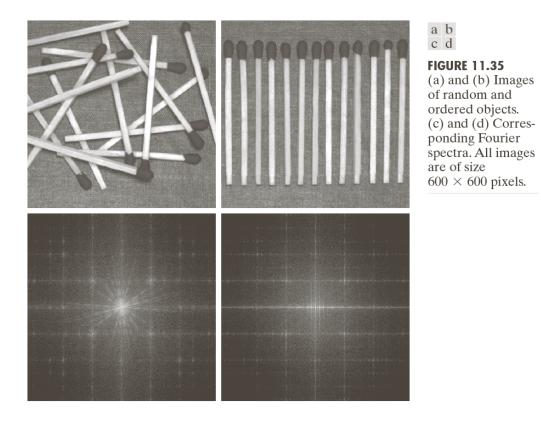
31

Texture (spectral)

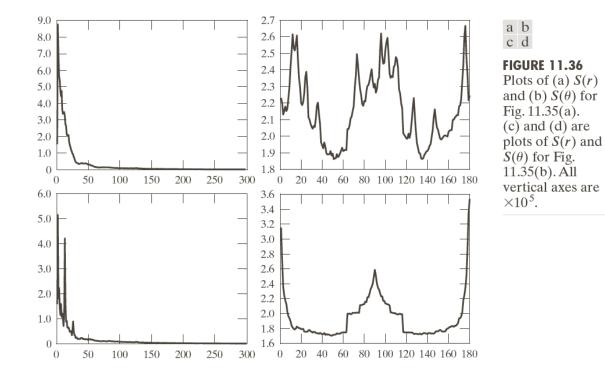
- Three features of Fourier spectrum are useful in texture description:
 - 1. Peaks in spectrum give the principle direction of texture pattern
 - 2. Location of the peaks in the frequency plane gives spatial period of the pattern
 - 3. Eliminating periodic components via filtering leaves non-periodic image elements that can be described by statistical techniques
- Spectrum is sometimes considered in polar coordinates:

$$S(r,\theta)$$
$$S(r) = \sum_{\theta} S(r,\theta)$$
$$S(\theta) = \sum_{r} S(r,\theta)$$

Texture (spectral)



Texture (spectral)

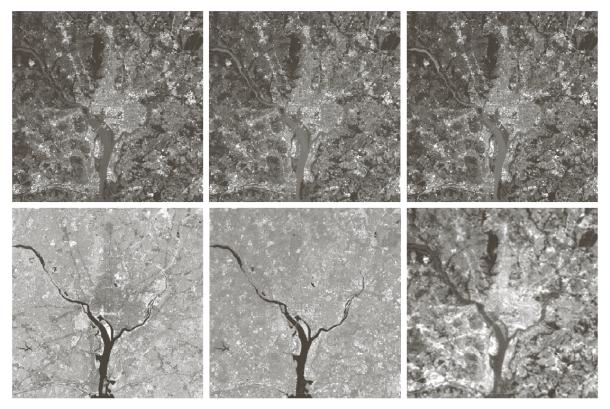


Moments

 $m_{pq} = \sum_{(x,y)\in \mathbb{R}} \sum x^p y^q f(x,y)$ Moment of order p + q

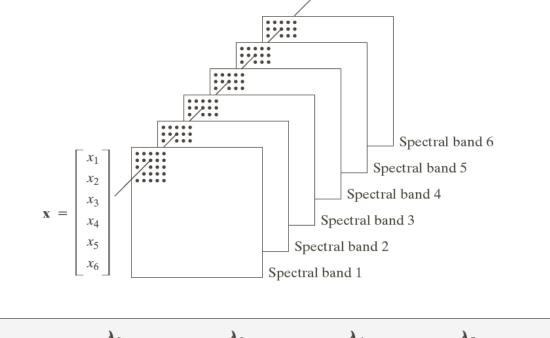
$$\mu_{pq} = \sum_{(x,y)\in R} \sum_{x} (x - x)^p (y - y)^q f(x, y)$$
 Central Moments
$$\bar{x} = \frac{m_{10}}{m_{00}} \qquad \bar{y} = \frac{m_{01}}{m_{00}}$$

$$\eta_{pq} = \frac{\mu_{pq}}{\mu_{00}^{\gamma}}$$
 Normalized Central Moments
 $\gamma = \frac{p+q}{2} + 1$



a b c d e f

FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared, (e) middle infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)



λ_1	λ_2	λ_3	λ_4	λ_5	λ_6
10344	2966	1401	203	94	31

