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Chapter 11

Image Representation & Description
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Image Representation & Description

« After an image 1s segmented into regions, the regions are
represented and described in a form suitable for computer
processing (descriptors).

e Representing a region:

1. Interms of its external characteristics (boundary)

2. Interm of its internal characteristics

Exp: A region might be represented by the length of its boundary.

— External representations are used when the focus 1s on shape of the
region.

— Internal representations are used when the focus is on color and
texture.

— Representations should be insensitive to rotation and translation.
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Chain Code

e Chain Code: Used to represent a t 1
boundary by a connected sequence of 2 < .
straight line segments.

— 4 or 8 connectivity is used "3

— The direction of each segment is coded by
a numbering scheme.

Method:

— Follow the boundary in a specific
(clockwise) direction.

— Assign a direction to the segment
connecting every pair of pixels.
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Chain Code

Exp: 003333232212111001 Smmfifi;iI——+__,
* Problems: |

— The chain code depends on the . ¢
starting point.

— It changes with rotation.
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Chain Code

Solutions:

— Treat the chain code as a circular sequence
of numbers. Circulate until the number 1s of
minimum magnitude.

— Use the difference of chain code instead of
the code itself: count counterclockwise the
number of directions that separates two
adjacent elements (First difference)

— Exp: 10103322
— First difference code: 33133030
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Shape Number

Starting Point

* Shape number: first difference of e
smallest magnitude (in the chain I:::::I
code)

— Exp: chain code 003221
— First difference code: 303303
— Shape number: 033033
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Signature
Signature: a 1-D functional representation of a boundary

Different ways of generating signature
« Plot distance form centroid to boundary as a function of angle
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Signature
Invariant to translation, depend on rotation and scaling

To make 1t invariant to rotation we should select the same
starting point regardless of the orientation

— Select starting point farthest from centroid (if unique)

To make 1t invariant to scaling we can normalize to a
particular range

Other signatures: traverse the boundary, at each point plot the
angle between a line tangent to the boundary and a reference
line

Slope-density-function: histogram of tangent-angle values

Straight segments will form the peaks of histogram
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Skeletons

* An important approach to representing structural shape of a
plane region is to reduce it to a graph

« This may be accomplished by obtaining the skeleton of the
region via a thinning algorithm.

* Applications in automated inspection ....

* Definition of skeleton is based on medial axis transformation
(MAT)
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Skeletons

« MAT of aregion R with border B: for each point p in R, find
the closest neighbor in B. If p has more than one such
neighbor, it belongs to medial axis (skeleton)

« MAT is based on “prairie fire concept”.
e Direct implementation of MAT is computationally expensive

« Alternative algorithms have been proposed that “thin” the
boundary of a region until the skeleton 1s left

aibiic

FIGURE 11.7
Medial axes
(dashed) of three
simple regions.

\I(\I \l

Univer

> §

(..

*a

10



Skeletons

e An algorithm for thinning binary regions (assume region
points are 1 and background points are 0)

e The algorithm has two steps which are applied to all the pixels
on the contour of the region

e A contour point 1s any pixel with value 1 and having at least
one 8-neighbor valued 0.

 In each step the boundary point that satisfy a set of conditions
are flagged and then deleted
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Skeletons

e Step 1 flags a contour point pl 1f the following conditions are

satisfied:
a) 2= N(pl)=<6 po | P2 | P
b) T(pl)=1 T

c) p2.p4.p6=0
d) p4.p6.p8 =0

* N(pl): number of nonzero neighbors of pl
 T(pl): number of 0 to 1 transitions in ordered sequence
p2.p3,....p8,p9,p2.
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Skeletons

After step 1 1s applied to all border points those that are
flagged are deleted (changed to 0)

In step 2 conditions (a) and (b) remain the same but (¢) and
(d) are changed to:

c') p2.p4.p8=0
d") p2.p6.p8 =0

After step 2 1s applied to all border points remaining after step
1, those that are flagged are deleted (changed to 0)

This procedure 1s applied iteratively until no further points are
deleted.
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Skeletons

FIGURE 11.16
Human leg bone
and skeleton of
the region shown
superimposed.

McMaster
University S8 ]

W



Simple boundary descriptors

* Length: number of pixels along the contour
of a region

* Diameter: Dima(B)=max[D(p;,p;)]
— p;,p; are points on the boundary.

e Curvature: rate of change of slope.

« For digital images: the difference between
the slopes of adjacent boundary segments.
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Simple boundary descriptors

e Major axis: straight line segment
joining the two points farthest from
cach other on the boundary

* Minor axis: Perpendicular to the major /
axis and of such length that a box K
could be formed to enclose the
boundary.

\L/

« Eccentricity=Major axis/Minor axis

» Basic rectangle (bounding box): the
rectangle formed by minor and major
axes enclosing the boundary.
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Fourier Descriptor

N point boundary
(X05Y0)s (X1 Y1) (Xgys Yov)

s(k) = X, + ]y,
N point DFT of s(k):

1N1

a(u)=—"> s(k)exp(-j2muk/ N)

a(u) are called Fourier descriptors.
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Fourier Descriptor

If P of the Fourier descrptors are used

;(k) = Pz_l a(u)exp(j2auk/ N)

P < N = High frequency details of

the boundary (e.g., corners ) are removed.

 Fourier descriptors are not directly insensitive to
translation, rotation and scaling.
« Magnitude of the Fourier descriptors 1s insensitive to

rotation.
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Fourier Descriptor

Original (K = 64) P=2 P =4 P=28
P =16 P =24 P =32 P =40
P =48 P = 56 P =61 P =62
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Regional Descriptors

* Area: number of pixels contained within a region
« Compactness: (perimeter)?/area
e Min and Max of the gray levels in the region

 Mean and median of gray levels

McMaster
University e N

20



Topological Descriptors

« Topology: study of properties of a figure that are unaffected
by any deformation, as long as there 1s no tearing or joining of
the figure (rubber sheet distortions)

« Since stretching affects distance, topological properties do not
depend on the notion of distance

« Number of holes in a region (H)
« Number of connected components (C)
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Topological Descriptors

 Fuler number: E=C-H

« Sometimes a region 1s represented by straight-line segments
(polygonal network)

e V:number of vertices, Q: number of edges, F: number of
faces => V-Q+F=C-H=E
* For the figure below right: 7-11+2=1-3=-2

ab
FIGURE 11.25

D Regions with

Euler number
equal to 0 and

D respectively.

FIGURE 11.26 A
region con taining
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FIGURE 11.28
The white squares
mark, from left to
right, smooth,
coarse, and
regular textures.
These are optical
microscope
images of a
superconductor,
human
cholesterol, and a
MiCroprocessor.
(Courtesy of Dr.
Michael W.
Davidson, Florida
State University.)
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Texture

* An important approach to region description is to quantify its
texture content

e This descriptor provides measures of smoothness, coarseness
and regularity

e 3 approaches in describing the texture of a region: statistical,
structural, and spectral.
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Texture (statistical)

e One of the simplest approaches for describing texture 1s to use
statistical moments of the histogram of an image or a region

uxaagcfmrma>

L—-

—

m=z,p(z,)
=0
e 0(2)=u,(2) is a measure of contrast
R=1- 12
l1+0°(2)
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Texture (statistical)

e Third moment 1s a measure of skewness of histogram
L-1
s (z) = E (Zz' - m)3p(Zi)
i=0

e Measure of uniformity: U is maximum for an image in which
all gray levels are equal

L-1

U= pz(zi)

=
« Average entropy: a measure of variability and 1s zero for
constant image

_2 p(Zl-)lng p(Zi)
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TABLE 11.2
Texture measures
for the subimages
shown in

Fig. 11.22.
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Standard Third
Texture Mean  deviation R (normalized) moment Uniformity Entropy
Smooth 82.64 11.79 0.002 —-0.105 0.026 5434
Coarse 143.56 74.63 0.079 —-0.151 0.005 7.783
Regular ~ 99.72 3373 0.017 0.750 0.013 6.674
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Texture (statistical)

e Measures of texture computed using histogram carry no
information regarding the relative position of pixels with
respect to each other

e Let Q be a position operator and G a kxk matrix whose
element a;; 1s the number of times that points with gray level z,
occur (in position specified by Q) relative to points with gray
level z,.
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Texture (statistical)
e Let n be the total number of point pairs in the 1image that
satisfy Q (n=30 1n the previous example)
 (C=G/n : gray-level co-occurrence matrix
e C depends on Q

e (C1s analyzed to categorize texture over which C was
computed

max(c )

22@ e,
EEC’J /G- j)*
334
-EE(;] log(c;)
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Texture (structural)

A simple texture primitive (texture elements) can be used to form more
complex texture patterns by means of some rules
Exp: S -=> aA
— S, A: variables (symbols or primitives)
— a: some operation for example “put a circle to the right”
— Rule S -> aA says that starting point can be replaced by a circle to the right
and a variable
Exp:
S->aA
A->DA,
A->CcA,
A->a,
A-> aA,
— a: circle right

SNk

— b: circle down

Mc \TNCL Imrcle left 155233254 1s a 3x3 square of circles
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Texture (spectral)

e Three features of Fourier spectrum are useful in texture
description:

1. Peaks in spectrum give the principle direction of texture pattern

2. Location of the peaks in the frequency plane gives spatial period of
the pattern

3. Eliminating periodic components via filtering leaves non-periodic
image elements that can be described by statistical techniques

* Spectrum 1s sometimes considered in polar coordinates:

S(r,0)
S(r) = E S(r,0)
S(6) = E S(r,0)
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Texture (spectral)
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FIGURE 11.35

(a) and (b) Images
of random and
ordered objects.
(c) and (d) Corres-
ponding Fourier
spectra. All images
are of size

600 X 600 pixels.
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FIGURE 11.36
Plots of (a) S(r)
and (b) S(0) for
Fig. 11.35(a).

(c) and (d) are
plots of S(r) and
S(0) for Fig.
11.35(b). All
vertical axes are
X107,
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Moments

mpq - E(x,y)ER E xpyqf(x> y) Moment of order p+q

u,, = E(x er E (x - )_c)p (v- )_/)q f(x,y) Central Moments

= Tho My,
x=—1 y=—00
Mo My
N,y = i Normalized Central Moments
‘LtOO
P+q
= +1
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Principle component analysis

FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared,
(e) middle infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)
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Principle component analysis
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Principle component analysis




Principle component analysis
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Principle component analysis
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