Multimedia Communications
ECE 728
(Data Compression)
Multimedia Communications

• Course number: ECE 728
• Instructor: Dr. S. Shirani
• E-mail: shirani@mcmaster.ca
• Office: ITB-A320
• Web page of the course: http://www.ece.mcmaster.ca/~shirani/multi08/multi08.htm
Course Objectives

• Goal: to develop a deep understanding of principles, theory, and application of data compression
• State-of-the-art compression techniques will be introduced.
• Compression standards: H.26x, MPEG, and JPEG, JPEG2000
Course Outline

• Introduction
• Multimedia representation and compression:
 – Huffman coding
 – Arithmetic coding
 – Dictionary techniques
 – Predictive coding
 – Scalar quantization
 – Vector quantization
 – Differential coding
 – Transform coding
 – Subband coding
Course Outline

– Bit allocation
– Wavelet based compression
– Fractal coding

• Multimedia communication standards
 – Visual compression standards JBIG, JPEG, MPEG 1,2,4 and H.261, H.263, H.26L
 – Audio/speech coding standards: MPEG audio coding, ITU-T speech coding
Textbook & References

• Textbooks:

• Reference books:
Grading System

• Homework: 35%
• Exam: 45%
• Project: 20%
Project

• The project can be in the form of a survey about a multimedia related topic, part of a multimedia related research or developing a multimedia related application
• A one-page project proposal is due by October 17th.
• The project report is due at the end of the term
• A presentation will be scheduled for the end of the term
Project

- Multimedia authentication and data hiding (watermarking, encryption, security, authentication)
- Multimedia databases, indexing and retrieval:
 - Indexing methods
 - Access methods (hashing, B-trees, Inverted Files, Space filling curves, R-trees)
 - Retrieval: text, speech recognition and retrieval, image and video retrieval
 - Digital Libraries
- Wireless multimedia networking
- Applications
 - IP telephony
 - Video-on-demand
Why Compression?

- The amount of information needed and available has increased.
- Limited-bandwidth communication channels.
- Fast communication, access, and processing is desirable.
- Limited storage capacity
Example: A Two-Hour Digital Movie

- **Uncompressed video:**
 - 30 frames per second
 - 720 by 480 pixels per frame
 - 3 color components (R, G, B)
 - 8 bits per component pixel

- **Compressed video on DVD:**
 (MPEG-2)

- **compression ratio:** 50:1

\[\text{224 GB} \]

\[\text{approx. 4.7 GB} \]
Compression

• **Compression:** Art or science of representing information in a compact form.

• **How the compression is achieved?**
 – Identify and exploit the structure that exists in the data
 • Statistical structure in English Language used in Morse code
 • Mechanism of speech production imposes structure on speech
 – Use the characteristics of the user of the data
 • If something presented in the data cannot be perceived by the user (e.g., human) it can be discarded.
Lossless and Lossy Compression

• **Lossless compression: no loss of information**
 – applied to: text, computer data, most medical images
 – limited amount of compression

• **Lossy compression: loss of information**
 – applied to various signals (speech, audio, video, image), some text
 – higher compression ratios
Measure of performance

- Compression ratio: ratio of number of bits required to represent the data before compression to number of bits required to represent the data after compression.
- Rate: number of bits required to represent a single sample after compression.
- Example: a 256x256 8-bit image requires 65,536 bytes before compression.
 - Compressed to 16,384 byte the compression ratio is 4
 - Rate is 2 bits.
- In lossy compression we have to quantify the difference between original data and reconstructed data.
- Distortion criteria:
 - Subjective: measured by the effect the distortion has on the receiver.
 - Objective: use mathematical formula to measure distortion.
Applications

- Storage and archiving
- Facsimile, document image analysis
- CD-ROM, DVD
- Digital TV broadcasting
- World Wide Web

- Wireless image transmission
- Digital audio broadcasting
- Digital photography
- Medical imaging
- Video telephony and video conferencing