
Multimedia Communications

Arithmetic Coding

Copyright S. Shirani 2

Arithmetic Coding
•  It has been shown that Huffman encoding will generate a code

whose rate is within pmax +0.086 of the entropy (pmax is the
probability of the most frequent symbol)

•  When the size of the alphabet is small or the probabilities are
skewed pmax can be quite large

•  Huffman codes become inefficient under these conditions
•  The performance of Huffman codes can be improved by

grouping blocks of symbols together
•  This can cause problems in terms of the memory requirements

and decoding

Copyright S. Shirani 3

Example
•  A={a1,a2,a3} p(a1)=0.95, p(a2)=0.02, p(a3)=0.03
•  H=0.335 bits/symbol

Letter Codeword

a1 0

a2 11

a3 10

l=1.05 bits/symbol

Letter Probability Codeword

a1a1 0.9025 0

a1a2 0.0190 111
a1a3 0.0285 100
a2a1 0.0190 1101
a2a2 0.0004 110011
a2a3 0.0006 110001
a3a1 0.0285 101
a3a2 0.0006 110010
a3a3 0.0009 110000

l=0.611 bits/symbol

•  To reduce the redundancy to acceptable
level, we should block eight symbols
together

• Alphabet size: 6561
• Huge memory,
• Decoding is highly inefficient

Copyright S. Shirani 4

Arithmetic Coding�
•  It is more efficient to generate codewords for a sequence of

symbols
•  In Huffman to find codeword for a particular sequence of

length M, we have to generate codewords for all possible
sequences of length M

•  We need a way of assigning codewords to particular
sequences without having to generate codes for all sequences
of that length

•  Arithmetic coding fulfills this requirement

Copyright S. Shirani 5

Arithmetic Coding
•  Map a sequence into an interval. The sequence can then be

encoded by transmitting a tag that represents the interval.

•  Key advantage: no need to generate codewords for all
sequences of length M.

(a1, a2,…, aM)

0 1

Copyright S. Shirani 6

Arithmetic Coding
•  Encoding is constructing and conveying an interval whose

length is the product of the probabilities of the input symbols
so far encoded.

•  Encoding is done recursively. If the sequence {a1,…,an-1} has
been encoded into the interval [l(n-1),u(n-1)), the sequence
{a1,…,an}is encoded into an interval [l(n),u(n)) obtained by
–  subdividing the previous interval into subintervals of lengths

proportional to the probabilities of the symbols.
–  choosing the subinterval corresponding to the symbol an.

Copyright S. Shirani 7

Arithmetic Coding

Copyright S. Shirani 8

Arithmetic Coding
•  For convenience, we define a random variable X as:

•  If the nth symbol that is encoded is ai then the lower and upper limits are
updated as:

Copyright S. Shirani 9

Arithmetic Coding: Bit Rate
•  What tag to use? Popular choices are:

–  Middle of interval
–  Best: tag requiring smallest number of bits

•  If middle of the interval is used as the tag, a binary
representation of the tag truncated to

bits is uniquely decodable.
•  For this code, we can show that the average length satisfies

Copyright S. Shirani 10

Example 1: Encoder
•  Encode the sequence “bab”.

For the first symbol, p(a)=2/3 and p(b)=1/3 => Fx(0)=0,
Fx(1)=2/3, Fx(2)=1.
For the second symbol, p(a)=1/2 and p(b)=1/2 => Fx(0)=0,
Fx(1)=1/2, Fx(2)=1.
For the third symbol, p(a)=2/5 and p(b)=3/5 => Fx(0)=0,
Fx(1)=2/5, Fx(2)=1.

•  Set l(0) = 0 and u(0) = 1.
•  Input “b”: l(1) = 0 + (1) (0.66)=0.66 and u(1) = (1) (1) = 1
•  Input “a”: l(2) = 0.66+(0.33)(0) = 0.66 and u(2) =

0.66+(0.33) (0.50) =0.83.

Copyright S. Shirani 11

Example 1: Encoder
•  Input “b”: l(3) = 0.66 + (0.16) (0.40) = 0.73 and u(3) =

0.66+(0.16)(1) = 0.83.
•  Since [0.110000..., 0.110100...) ⊂ [0.73, 0.83), send 1100,

which is the shortest uniquely decodable code.
•  Unique decodability implies that whatever bits the decoder

adds to the code, the resulting real number still lies within the
current interval.

Copyright S. Shirani 12

Example 1: Encoder
•  For example, if we only send 110 and the decoder adds 1 bits

to the right side of the code, the resulting real number will
definitely be larger than 0.83. However, sending 1100 will
leave no ambiguity. In fact, you can check that 0.11001111 ∈
[0.73, 0.83).

Copyright S. Shirani 13

Example 1: Decoder

•  Decode the sequence 1100. Construct C = 0.11001000…
(0.78125), where the right four bits are random bits. Assume
we have a copy of the model used at the encoder.

•  Set l(0)=0 and u(0)=1.
•  Subdivide [0,1) to [0,0.66) and [0.66,1).
•  Since C=0.78125 ∈ [0.66,1), select [0.66,1) and emit "b''.
•  Subdivide [0.66,1) to [0.66, 0.83) and [0.83,1).
•  Since C ∈ [0.66, 0.83), emit "a''.
•  Subdivide [0.66, 0.83) to [0.66, 0.73) and [0.73,0.83).
•  Since C ∈ [0.73,0.83), emit "b''. End.

Copyright S. Shirani 14

Advantages and Problems
•  Advantages:

–  Naturally suitable for adaptation strategies.
–  Close-to-optimal compression performance for sources with very low

entropies.

•  Problems:
–  Unlike Huffman coding, the decoder requires (explicit or implicit)

knowledge of the number of symbols to be decoded.
–  Transmission of coded data cannot begin until the whole sequence is

encoded.
–  Infinite precision is required.

Copyright S. Shirani 15

•  There are two way to know when the entire sequence has
been decoded:

1.  The decoder may know the length of the sequence in which
case the process is stopped when that many symbols have
been obtained

2.  A particular symbol is denoted as an end-of-transmission
symbol. The encoding of this symbol would bring the
decoding process to a close.

Copyright S. Shirani 16

Incremental coding
•  As the number of symbols coded, gets larger, the values of

l(n) and u(n) get closer to each other
•  This means that in order to represent all subintervals we need

increasing precision
•  We would also like to perform encoding incrementally:

transmit portions of the code as the sequence is being
observed

Copyright S. Shirani 17

Incremental coding
•  Once the interval is confined to either upper or lower half of

the unit interval, it is forever confined to that interval
•  The most significant bit of the binary representation of all

numbers in the interval [0,0.5) is 0
•  The most significant bit of the binary representation of all

numbers in the interval [0.5,1) is 1
•  Therefore, without waiting to see that the rest of the sequence

looks like, we can indicate to the decoder whether the tag is
confined to the upper or lower half of the unit interval by
sending 1 for upper half and 0 for the lower half

Copyright S. Shirani 18

Incremental coding
•  Once the encoder and decoder know which half contains the

tag, we can ignore the other half and map the half containing
the tag to the full [0,1) interval.
E1: [0,0.5) -> [0,1) E1(x)=2x
E2: [0.5,1) -> [0,1) E2(x)=2(x-0.5)

•  A method to prevent the current interval from becoming too
small when the interval is short but includes 0.5.

•  Suppose [l,u) satisfies:
•  This is called underflow conditions.
•  The next bit to output is still unknown, but the next two bits

should be 01 or 10
•  Why? if the next bit is 0 after that we cannot have another 0

because we will fall out of [0.25,0.75]. Similar reasoning for 1.

Copyright S. Shirani 19

Incremental coding
•  What kind of expansion under this condition?
•  Expand [l,u) about 0.5 by E3(x)=2(x-0.25)
•  Let’s study effects of this expansion:

–  If r=(.01a3a4…) belongs to [l,u) then expansion will give (.0a3a4…)
–  If r=(.10a3a4…) belongs to [l,u) then expansion will give (.1a3a4…)

•  Underflow expansion preserves the code stream
•  After expansion the first bit is the same as the first bit before

expansion

Copyright S. Shirani 20

Incremental coding
•  Algorithm for arithmetic coding with rescaling:

1.  Current interval [l,u) is initialized to [0,1). Underflow count is
initialized at 0.

2.  If expand to [2(l-0.25),2(u-0.25)) and
increment the underflow count

3.  If then output 0 and any pending underflow bits,
all 1, and expand the current interval to [2l,2u). If
then output 1 and any pending underflow bits, all 0, and expand the
current interval to [2(l-0.5),2(u-0.5)). In either case, reset the
underflow count to zero

4.  If 2 or 3 does not hold, divide the current interval into disjoint
subintervals and take the one corresponding to the next symbol

Copyright S. Shirani 21

Incremental coding
5.  Repeat steps 2-4 until there are no more source letters and none of the

conditions in 2 or 3 hold. At this stage, the final interval satisfies
l<0.25<0.5<u or l<0.5<0.75<u. Any point inside the interval could be
transmitted. We pick 0.25 (01 in binary) for the first and 0.5 (10) for
the second one. Any underflow bits are output after the first of these
bits.

Copyright S. Shirani 22

Integer Implementation of Arithmetic Coding

•  l(0)=00…0 (m bits) and u(0)=11…1 (m bits)
•  nj: number of times the symbol j occurs in a sequence of

length Total_Count

Copyright S. Shirani 23

Integer Implementation of Arithmetic Coding
(encoder)

•  If MSB of both u(n) and l(n) are zero or one, shift it out and
shift in a 1 into the LSB of u(n) and a zero into LSB of l(n).

Send as many as underflow counter of the complement of the
bit shifted out.

•  If the second MSB of u(n) is 0 and the second MSB of l(n) is 1,
complement the second MSB of u(n) and l(n), shift left, shifting
in a 1 in u(n) and a 0 into l(n). Increment the underflow counter.

•  Continue until the last symbol. After coding the last symbol
sent the lower limit as the tag. If underflow counter is not zero
after sending the first bit of lower limit send as many as the
counter of the opposite bit and then the remaining bits of
lower limit.

Copyright S. Shirani 24

Integer Implementation of Arithmetic Coding
(decoder)

•  If MSB of both u(n) and l(n) are zero or one, shift it out and
shift in a 1 into the LSB of u(n) and a zero into LSB of l(n).

Shift tag to the left one bit and read the next bit from the
received bitstream

•  If the second MSB of u(n) is 0 and the second MSB of l(n) is 1,
complement the second MSB of u(n) and l(n), shift left, shifting
in a 1 in u(n) and a 0 into l(n). Complement the second MSB of
the tag, shift the tag to the left one bit read the next bit from
the received bitstream

Copyright S. Shirani 25

Comparison
•  For arithmetic coding:

•  For Huffman coding

•  On the surface it seems that the advantage is with Huffman
•  It is impractical to build long enough sequences with Huffman
•  It is feasible to build long sequences for arithmetic coder

