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Arithmetic Coding 
•  It has been shown that Huffman encoding will generate a code 

whose rate is within pmax +0.086 of the entropy (pmax is the 
probability of the most frequent symbol) 

•  When the size of the alphabet is small or the probabilities are 
skewed pmax can be quite large 

•  Huffman codes become inefficient under these conditions 
•  The performance of Huffman codes can be improved by 

grouping blocks of symbols together 
•  This can cause problems in terms of the memory requirements 

and decoding 
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Example 
•  A={a1,a2,a3} p(a1)=0.95, p(a2)=0.02, p(a3)=0.03 
•  H=0.335 bits/symbol 

Letter Codeword 

a1 0 

a2 11 

a3 10 

l=1.05 bits/symbol 

Letter Probability Codeword 

a1a1 0.9025 0 

a1a2 0.0190 111 
a1a3 0.0285 100 
a2a1 0.0190 1101 
a2a2 0.0004 110011 
a2a3 0.0006 110001 
a3a1 0.0285 101 
a3a2 0.0006 110010 
a3a3 0.0009 110000 

l=0.611 bits/symbol 

•  To reduce the redundancy to acceptable 
level, we should block eight symbols 
together 

• Alphabet size: 6561 
• Huge memory,  
• Decoding is highly inefficient  
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Arithmetic Coding�
•  It is more efficient to generate codewords for a sequence of 

symbols 
•  In Huffman to find codeword for a particular sequence of 

length M, we have to generate codewords for all possible 
sequences of length M 

•  We need a way of assigning codewords to particular 
sequences without having to generate codes for all sequences 
of that length 

•  Arithmetic coding fulfills this requirement 
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Arithmetic Coding 
•  Map a sequence into an interval. The sequence can then be 

encoded by transmitting a tag that represents the interval. 

•  Key advantage: no need to generate codewords for all 
sequences of length M. 

(a1, a2,…, aM) 

0 1 
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Arithmetic Coding 
•  Encoding is constructing and conveying an interval whose 

length is the product of the probabilities of the input symbols 
so far encoded. 

•  Encoding is done recursively. If the sequence {a1,…,an-1} has 
been encoded into the interval [l(n-1),u(n-1)), the sequence 
{a1,…,an}is encoded into an interval [l(n),u(n)) obtained by 
–  subdividing the previous interval into subintervals of lengths 

proportional to the probabilities of the symbols. 
–  choosing the subinterval corresponding to the symbol an. 
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Arithmetic Coding 
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Arithmetic Coding 
•  For convenience, we define a random variable X as: 

•  If the nth symbol that is encoded is ai then the lower and upper limits are 
updated as: 
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Arithmetic Coding: Bit Rate 
•  What tag to use? Popular choices are: 

–  Middle of interval 
–  Best: tag requiring smallest number of bits 

•  If middle of the interval is used as the tag, a binary 
representation of the tag truncated to 

bits is uniquely decodable. 
•  For this code, we can show that the average length satisfies 
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Example 1: Encoder 
•  Encode the sequence “bab”. 

For the first symbol, p(a)=2/3 and p(b)=1/3 => Fx(0)=0, 
Fx(1)=2/3, Fx(2)=1. 
For the second symbol, p(a)=1/2 and p(b)=1/2 => Fx(0)=0, 
Fx(1)=1/2, Fx(2)=1. 
For the third symbol, p(a)=2/5 and p(b)=3/5 => Fx(0)=0, 
Fx(1)=2/5, Fx(2)=1. 

•  Set l(0) = 0 and u(0) = 1. 
•  Input “b”: l(1) = 0 + (1) (0.66)=0.66 and u(1) = (1) (1) = 1 
•  Input “a”: l(2) = 0.66+(0.33)(0) = 0.66 and u(2) = 

0.66+(0.33) (0.50) =0.83. 
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Example 1: Encoder 
•  Input “b”:  l(3) = 0.66 + (0.16) (0.40) = 0.73 and u(3) = 

0.66+(0.16)(1) = 0.83. 
•  Since [0.110000..., 0.110100...) ⊂ [0.73, 0.83), send 1100, 

which is the shortest uniquely decodable code.  
•  Unique decodability implies that whatever bits the decoder 

adds to the code, the resulting real number still lies within the 
current interval.  
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Example 1: Encoder 
•  For example, if we only send 110 and the decoder adds 1 bits 

to the right side of the code, the resulting real number will 
definitely be larger than 0.83. However, sending 1100 will 
leave no ambiguity. In fact, you can check that 0.11001111 ∈ 
[0.73, 0.83).  
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Example 1: Decoder 

•  Decode the sequence 1100. Construct C = 0.11001000… 
(0.78125), where the right four bits are random bits. Assume 
we have a copy of the model used at the encoder. 

•  Set l(0)=0 and u(0)=1. 
•  Subdivide [0,1) to [0,0.66) and [0.66,1). 
•  Since C=0.78125 ∈ [0.66,1), select [0.66,1) and emit "b''. 
•  Subdivide [0.66,1) to [0.66, 0.83) and [0.83,1). 
•  Since C ∈ [0.66, 0.83), emit "a''. 
•  Subdivide [0.66, 0.83) to [0.66, 0.73) and [0.73,0.83). 
•  Since C ∈ [0.73,0.83), emit "b''. End. 
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Advantages and Problems 
•  Advantages: 

–  Naturally suitable for adaptation strategies. 
–  Close-to-optimal compression performance for sources with very low 

entropies. 

•  Problems: 
–  Unlike Huffman coding, the decoder requires (explicit or implicit) 

knowledge of the number of symbols to be decoded. 
–  Transmission of coded data cannot begin until the whole sequence is 

encoded. 
–  Infinite precision is required. 
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•  There are two way to know when the entire sequence has 
been decoded: 

1.  The decoder may know the length of the sequence in which 
case the process is stopped when that many symbols have 
been obtained 

2.  A particular symbol is denoted as an end-of-transmission 
symbol. The encoding of this symbol would bring the 
decoding process to a close. 
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Incremental coding 
•  As the number of symbols coded, gets larger, the values of 

l(n) and u(n) get closer to each other 
•  This means that in order to represent all subintervals we need 

increasing precision 
•  We would also like to perform encoding incrementally: 

transmit portions of the code as the sequence is being 
observed  
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Incremental coding 
•  Once the interval is confined to either upper or lower half of 

the unit interval, it is forever confined to that interval 
•  The most significant bit of the binary representation of all 

numbers in the interval [0,0.5) is 0 
•  The most significant bit of the binary representation of all 

numbers in the interval [0.5,1) is 1 
•  Therefore, without waiting to see that the rest of the sequence 

looks like, we can indicate to the decoder whether the tag is 
confined to the upper or lower half of the unit interval by 
sending 1 for upper half and 0 for the lower half 
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Incremental coding 
•  Once the encoder and decoder know which half contains the 

tag, we can ignore the other half and map the half containing 
the tag to the full [0,1) interval. 
E1: [0,0.5) -> [0,1) E1(x)=2x 
E2: [0.5,1) -> [0,1) E2(x)=2(x-0.5) 

•  A method to prevent the current interval from becoming too 
small when the interval is short but includes 0.5. 

•  Suppose [l,u) satisfies: 
•  This is called underflow conditions. 
•  The next bit to output is still unknown, but the next two bits 

should be 01 or 10 
•  Why? if the next bit is 0 after that we cannot have another 0 

because we will fall out of [0.25,0.75]. Similar reasoning for 1. 
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Incremental coding 
•  What kind of expansion under this condition? 
•  Expand [l,u) about 0.5 by E3(x)=2(x-0.25) 
•  Let’s study effects of this expansion:  

–  If r=(.01a3a4…) belongs to [l,u) then expansion will give (.0a3a4…) 
–  If r=(.10a3a4…) belongs to [l,u) then expansion will give (.1a3a4…) 

•  Underflow expansion preserves the code stream 
•  After expansion the first bit is the same as the first bit before 

expansion 
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Incremental coding 
•  Algorithm for arithmetic coding with rescaling: 

1.  Current interval [l,u) is initialized to [0,1). Underflow count is 
initialized at 0. 

2.  If                                                  expand to [2(l-0.25),2(u-0.25)) and 
increment the underflow count 

3.  If                                   then output 0 and any pending underflow bits, 
all 1, and expand the current interval to [2l,2u). If                                     
then output 1 and any pending underflow bits, all 0, and expand the 
current interval to [2(l-0.5),2(u-0.5)). In either case, reset the 
underflow count to zero 

4.  If 2 or 3 does not hold, divide the current interval into disjoint 
subintervals and take the one corresponding to the next symbol 



Copyright S. Shirani 21 

Incremental coding 
5.  Repeat steps 2-4 until there are no more source letters and none of the 

conditions in 2 or 3 hold. At this stage, the final interval satisfies 
l<0.25<0.5<u or l<0.5<0.75<u. Any point inside the interval could be 
transmitted. We pick 0.25 (01 in binary) for the first and 0.5 (10 ) for 
the second one. Any underflow bits are output after the first of these 
bits.  
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Integer Implementation of Arithmetic Coding 

•  l(0)=00…0 (m bits) and u(0)=11…1 (m bits) 
•  nj: number of times the symbol j occurs in a sequence of 

length Total_Count  
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Integer Implementation of Arithmetic Coding 
(encoder) 

•  If MSB of both u(n) and l(n) are zero or one, shift it out and 
shift in a 1 into the LSB of u(n) and a zero into LSB of l(n). 

Send as many as underflow counter of the complement of the 
bit shifted out. 

•  If the second MSB of u(n) is 0 and the second MSB of l(n) is 1, 
complement the second MSB of u(n) and l(n), shift left, shifting 
in a 1 in u(n) and a 0 into l(n). Increment the underflow counter. 

•  Continue until the last symbol. After coding the last symbol 
sent the lower limit as the tag. If underflow counter is not zero 
after sending the first bit of lower limit send as many as the 
counter of the opposite bit and then the remaining bits of 
lower limit.  
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Integer Implementation of Arithmetic Coding 
(decoder) 

•  If MSB of both u(n) and l(n) are zero or one, shift it out and 
shift in a 1 into the LSB of u(n) and a zero into LSB of l(n). 

Shift tag to the left one bit and read the next bit from the 
received bitstream 

•  If the second MSB of u(n) is 0 and the second MSB of l(n) is 1, 
complement the second MSB of u(n) and l(n), shift left, shifting 
in a 1 in u(n) and a 0 into l(n). Complement the second MSB of 
the tag, shift the tag to the left one bit read the next bit from 
the received bitstream 
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Comparison 
•  For arithmetic coding: 

•  For Huffman coding 

•  On the surface it seems that the advantage is with Huffman 
•  It is impractical to build long enough sequences with Huffman 
•  It is feasible to build long sequences for arithmetic coder 


