Multimedia Communications

Audio coding
Introduction

• Lossy compression schemes can be based on source model (e.g., speech compression) or user model (audio coding)
• Unlike speech, audio signals can be generated by different mechanisms
• Lacking a unique model for audio production, audio compression methods have focused on the unique model for audio perception (psychoacoustic model of human perception)
• By identifying what can and cannot be heard, audio compression schemes obtain their compression by discarding information that cannot be perceived
Introduction

- Over the course of our evolutionary history, we have developed limitations on what we can hear.
- These limitations are physiological (based on machinery of hearing) or psychological (based on how our brain processes auditory stimuli).
- The machinery of hearing is frequency dependent.
- Variation of what is perceived as equally loud at different frequencies is usually displayed as a set of equal loudness curves.
- In these curves the sound pressure level (SPL) is plotted as a function of frequency for tones perceived to be equally loud.
Introduction

- The SPL curve that delineates the boundary of audible and inaudible sounds at different frequencies is threshold-of-hearing curve.
Introduction

• Quantization (in lossy compression) can be modeled as an additive noise
• To hide quantization noise, we can make use of the fact that signals below a particular amplitude at a particular frequency are not audible.
• If we select the quantization step size such that the quantization noise lies below the audibility threshold, the noise will not be perceived.
Introduction

• A tone at a certain frequency will raise the threshold in a critical band around that frequency (spectral masking)
• These critical bands have a constant Q (Q is the ration of frequency to bandwidth)
 – The critical band is larger at higher frequencies and smaller at lower frequencies.
• Increase of the threshold will allow us to introduce more quantization noise at the frequencies in the critical band
Introduction

• Temporal masking is the masking that occurs when a sound raises the audibility threshold for a brief interval preceding and following the sound.
• Premasking or backward masking: If the masked sound occurs prior to the masking tone
• Post masking or forward masking: If the masked sound occurs after the masking tone
Introduction

• A psychoacoustic model is used in MPEG audio coding
• The first step in psychoacoustic model is to obtain a spectral profile of the signal being encoded
• The audio signal is windowed and transformed using filter banks or a frequency domain transform
• The SPL is calculated for each spectral band
Introduction

• Because tonal and nontonal components have different effects on the masking level, the next step is to determine the presence and location of these components.

• The presence of any tonal components is determined by first looking for local maximum ($|X_k|^2 > |X_{k+1}|^2$ and ($|X_k|^2 > |X_{k-1}|^2$)).

• A local maximum is determined to be a tonal component if:

$$20 \log_{10} \frac{|X_k|}{|X_{k+j}|} \geq 7$$
Introduction

• Once all maskers are identified, those with SPL below the audibility threshold are removed.
• For maskers that are very close to each other in frequency, the lower-amplitude masker is removed.
• The effects of the remaining maskers are obtained using a spreading function that models spectral masking.
• Masking due to audibility level and the maskers are combined to give the final masking thresholds.
• These thresholds are then used in the coding process.
MPEG Audio Coding

• Most standards have normative and informative sections
• Normative: are required for compliance to standard
• Most standards define the bitstream that should be presented to the decoder, leaving the design of the encoder to individual vendors
• MPEG audio coding has three strategies known as Layer I, Layer II and Layer III.
• Each layer is progressively more complicated than the previous layer and provides higher compression
• The three layers are backward compatible.
MPEG Audio Coding

- A block diagram of basic strategy used in all three layers of MPEG audio coding.
Layer I

- In layer I coding the time frequency mapping is accomplished using a bank of 32 subband filters.
- The output of each filter is down sampled by 32.
- The samples are divided into groups of 12 samples each.
- Each group of 12 samples is examined to determine a scalefactor.
- The scalefactor is used to make sure that the coefficients make use of the entire range of quantizer.
- The subband output is divided by the scalefactor before being quantized.
Layer I

- To determine the number of bits to be used for quantization of each subband, the coder makes use of the psychoacoustic model.
- Input to the model includes FFT of the audio data as well as the signal itself.
- The model calculates the masking threshold in each subband and hence the quantization step size.
- In layer I the encoder has a choice of 14 different quantizers for each band.
- Quantizers are all midtread ranging from 3 levels to 65,535 levels.
- 12 quantized samples from each subband (a total of 384), make up one frame.
Layer I
Layer I

- Total number of bits available to represent all the subbands is fixed.
- Bit allocation can be an iterative process with the objective of keeping noise-to-mask ratio more or less constant across subbands.
- Modes available in Layer I: stereo, joint stereo, dual channel, single channel
 - Stereo mode: two channels that are encoded separately but should be played together.
 - Joint stereo: left and right channels are combined to form mid and side signals.
 - Dual channel mode consists of two channels that are encoded separately and are not intended to be played together (e.g., translations).
Layer II coding

• Layer II coder groups three sets of 12 samples from each subband into a frame
 – Total number of samples per frame increases from 384 samples to 1152 samples, which reduces the overhead

• In Layer II coding the encoder tries to share a scale factor among two or all three groups of samples from each subband.

• Major difference between Layer I and II coding schemes is in the quantization step.

• In Layer I each subband is quantized using one of 14 possibilities which are the same possibilities for each subband.
Layer II coding

• In Layer II, quantizer used for each subband can be selected from a different set of quantizers depending on the sampling rate and bit rate
• For some sampling rate and bit rate combination many of higher subbands are assigned 0 bits.
Layer III (mp3)

• One of the problems with Layer I coding scheme was that with 32-band decomposition, the bandwidth of the subband at lower frequencies is significantly larger than the critical band.
• This makes it difficult to make an accurate judgment of the mask-to-signal ratio.
 – If we get a high amplitude tone in a subband and if the subband is narrow, we could assume that it will mask other tones in the subband
• To satisfy backward compatibility requirement, the spectral decomposition in Layer III algorithm is performed in two stages: a 32 band subband decomposition followed by a modified DCT (MDCT).
• MDCT can have two sizes 6 or 18 with 50% overlap.
• Using different window sizes help prevent the spread of quantization noise
Layer III (mp3)

• Coding and quantization of output of MDCT is conducted in an iterative fashion using two nested loops
• Outer loop is called distortion control loop whose purpose is to ensure that the introduced quantization noise is below the audibility threshold
• Inner loop is called the rate control loop and makes sure that the target bit rate is not exceeded.
• Typical compression ratio: 10:1
Layer III

Figure 16. MPEG/audio Layer II filter bank processing (encoder side).
Advanced Audio Coding (AAC)

• The Advanced Audio Coding (AAC) standard was approved as a higher quality multichannel alternative to backward compatible MPEG Layer III in 1997.
• AAC is modular and based on a set of modules (tools).
• By using some or all these tools, the standard describes three profiles: main, low complexity and sampling-rate-scalable
Advanced Audio Coding (AAC)

- Psychoacoustic model is used to trigger switching in the block length and to produce threshold values used to determine scalefactors and quantization thresholds.
Advanced Audio Coding (AAC)

- In AAC frequency decomposition is accomplished by a MDCT.
- AAC allows switching between a window length of 2048 and 256 samples (window lengths include 50% overlap with neighboring blocks).
- Longer block length allows the algorithm to take advantage of stationary portions of the input to get significant improvements in compression.
- Short blocks allow the algorithm to handle sharp attacks without incurring substantial distortion and rate penalties.
Advanced Audio Coding (AAC)

- ACC algorithm uses prediction to reduce dynamic range of the coefficients and further reduces the bit rate
- ACC contains two kinds of predictors: intrablock (referred to as Temporal Noise Shaping (TNS)) and interblock
- Interblock predictor is used during stationary periods
- During these periods it is reasonable to assume that the coefficients at a certain frequency do not change their value significantly from block to block.
- When the audio input contains transient, AAC uses intraband predictor
- AAC uses neighboring coefficients to perform prediction.
Advanced Audio Coding (AAC)

• Quantization and coding strategy used in AAC:
 – scale factors are used to control the quantization noise as a part of an outer distortion control loop
 – Quantization step size is adjusted to accommodate a target bit rate in an inner rate control loop

• Stereo: AAC allows independent coding, Mid/Side coding and intensity stereo coding
MPEG-4 AAC

- MPEG-4 AAC: adds a perceptual noise substitution (PNS) tool, a long term prediction (LTP), Transform Domain Weighted Interleave Vector Quantization (TwinVQ) and Bit Sliced Arithmetic Coding (BSAC)
Dolby Digital (Dolby AC3)

- Dolby AC3 has multichannel capability required by the movie industry along with the ability to downmix the channels.
- The 5.1 channels include: right, center, left, left rear, and right rear and a narrowband low frequency effect channel (0.1 channel).
- Dolby AC3 is now the standard used for DVD and Direct Broadcast Satellites.
- As MPEG, Dolby AC3 uses modified DCT with 50% overlap for frequency decomposition.
- As MPEG there are two different sizes of windows used: for stationary portions of audio size is 512 and for non-stationary parts 256.
Dolby Digital (Dolby AC3)

• In MPEG schemes the audio sequence being encoded is provided to the bit allocation procedure and the bit allocation is sent to the decoder as side information.

• In Dolby AC3 scheme the signal itself is not provided to the bit allocation. Instead a crude representation of the spectral envelop is provided to both the decoder and the bit allocation procedure.

• Since decoder has the information used to generate the bit allocation, the allocation itself is not included in the transmitted bitstream.