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Optimal codes 
•  Suppose that si -> wi ∈ A+ is an encoding scheme for a source alphabet 

S={s1, …,sm}. Suppose that the source letter s1, …,sm occur with 
relative frequencies f1, .. fm respectively. The average code word length 
of the code is defined as: 

where li is the length of wi 
•  The average number of code letters required to encode a source text 

consisting of N source letters is  
•  It may be expensive and time consuming to transmit long sequences of 

code letters, therefore it may be desirable for     to be as small as 
possible. 

•  It is in our power to make     small by cleverly making arrangements 
when we devise the encoding scheme. 
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Optimal codes 
•  What constraints should we observe? 
•  The resulting code should be uniquely decodable  
•  Considering what we saw in the previous chapter, we confine 

ourselves to prefix codes. 
•  An encoding scheme that minimizes      is called optimal 

encoding 
•  The process of finding the optimal code was algorithmized by 

Huffman.  
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Optimal codes 
•  The necessary conditions for an optimal variable-length 

binary code are: 
1.  Given any two letters aj and ak if                     then 
2.  The two least probable letters have codewords with the same 

maximum length  
3.  In the tree corresponding to the optimum code, there must be 

two branches stemming from each intermediate node 
4.  Suppose we change an intermediate node into a leaf node by 

combining all the leaves descending from it into a composite 
word of a reduced alphabet. Then, if the original tree was 
optimal for the original alphabet, the reduced tree is optimal 
for the reduced alphabet. 
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Condition #1 and #2 
•  Condition #1 is obvious 
•  Suppose an optimum code C exists in which the two code 

words corresponding to the least probable symbols do not 
have the same length. Suppose the longer code word is k bits 
longer than the shorter one. 

•  As C is optimal, the codes corresponding to the least probable 
symbols are also the longest. 

•  As C is a prefix code, none of the code words is a prefix of 
the longer code. 
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Condition #2 
•  This means that, even if we drop the last k bits of the longest 

code word, the code words will still satisfy the prefix 
condition. 

•  By dropping the k bits, we obtain a new code that has a 
shorter average word length. 

•  Therefore, C cannot be optimal. 
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Conditions #3 and #4 
•  Condition #3: If there were any intermediate node with only 

one branch coming from that node, we could remove it 
without affecting the decipherability of the code while 
reducing its average length. 

•  Condition #4: If this condition were not satisfied, we could 
find a code with smaller average code length for the reduced 
alphabet and then simply expand the composite word of a 
reduced alphabet. Then, if the original tree was optimal for 
the original alphabet, the reduced tree is optimal for the 
reduced alphabet 
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•  It can be shown that codes generated by Huffman algorithm 
(explained shortly) meet the above conditions 

•  In fact it can be shown that not only does Huffman’s 
algorithm always give a “right answer”, but also, every “right 
answer”.  

•  For the proof see section 4.3.1 in “Information theory and 
data compression” by D. Hankerson. 
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Building a Huffman Code 
•  The main idea: 

–  Let S be a source with alphabet A={a1,…,aN}. 
–  Let S' be a source with alphabet A'={a'1,…,a'N-1} such that 

–  Then if a prefix code is optimum for S', the corresponding prefix code 
for S is also optimum. 
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Building a Huffman Code 

a2 (.4)   a2 (.4)   a2 (.4)   a''3 (.6)  a'''3 (1) 
a1 (.2)   a1 (.2)   a'3 (.4)   a2 (.4) 
a3 (.2)   a3 (.2)   a1 (.2) 
a4 (.1)   a'4 (.2) 
a5 (.1) 

   a2 (.4)  1 
   a1 (.2)  01 
   a3 (.2)  000   average length = 2.2 bits 
   a4 (.1)  0010   entropy = 2.122 bits 
   a5 (.1)  0011 

0 
1 

0 
1 

0 
1 

0 
1 
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•  We can use a tree diagram to build the Huffman code 
•  Assignment of 0 and 1 to the branches is arbitrary and gives 

different Huffman codes with the same average codeword 
length 

•  Sometimes we use the counts of symbols instead of their 
probability 

•  We might draw the tree horizontally or vertically 
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Building a Huffman Code 

a2 (4)         (10) 
a1 (2)      (6) 
a3 (2)             (4) 
a4 (1)         (2) 
a5 (1) 

   a2 :  1 
   a1 :  01 
   a3 :  000    
   a4 :  0010    
   a5 :  0011 

0 

0 

0 0 

1 
1 

1 1 
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Minimum Variance Huffman Codes 
•  According to where in the list the combined source is placed, 

we obtain different Huffman codes with the same average 
length (same compression performance). 

•  In some applications we do not want the code word lengths to 
vary significantly from one symbol to another (example: 
fixed-rate channels). 

•  To obtain a minimum variance Huffman code, we always put 
the combined symbol as high in the list as possible. 
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Minimum Variance Huffman Codes 

a2 (.4) 
a1 (.2) 
a3 (.2) 
a4 (.1) 
a5 (.1) 

   a2 (.4)  00 
   a1 (.2)  10 
   a3 (.2)  11   average length = 2.2 bits 
   a4 (.1)  010   entropy = 2.122 bits 
   a5 (.1)  011 

0 
1 

0 
1 

0 
1 
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0.2 

0.4 
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Huffman Codes 
•  The average length of a Huffman code satisfies 

•  The upper bound is loose. A tighter bound is 
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Extended Huffman Codes 
•  If the probability distribution is very skewed (large Pmax), 

Huffman codes become inefficient.  
•  We can reduce the rate by grouping symbols together.  
•  Consider the source S of independent symbols with alphabet 

A={a1,…,aN}.  
•  Let us construct an extended source S(n) by grouping n 

symbols together  
•  Extended symbols in the extended alphabet  
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Extended Huffman Codes: Example 

Huffman code (n = 1)  Huffman code (n = 2) 
a1   .95  0   a1a1  .9025  0 
a3   .03  10   a1a3  .0285  100 
a2   .02  11   a3a1  .0285  101 

     a1a2  .0190  111 
R = 1.05 bits/symbol   a2a1  .0190  1101 
H = .335 bits/symbol   a3a3  .0009  110000 

     a3a2  .0006  110010 
     a2a3  .0006  110001 
     a2a2  .0004  110011 
     R = .611 bits/symbol 

Rate gets close to the entropy only for n > 7.  
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Extended Huffman Codes 
•  We can build a Huffman code for the extended source with a 

bit rate R(n) which satisfies  

•  But R = R(n)/n and, for i.i.d. sources, H(S) = H(S(n))/n, so 

•  As n → ∞, R → H(s). Complexity (memory, computations) 
also increases (exponentially). Slow convergence for skewed 
distributions. 
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Nonbinary Huffman Codes 
•  The code elements are coming from an alphabet with m>2 

letters 
•  Observations 

1.  The m symbols that occur least frequently will have the same length 
2.  The m symbols with the lowest probability differ only in the last 

position 

•  Example: ternary Huffman code for a source with six letters 
–  First combine three letters with the lowest probability, giving us a 

reduced alphabet with 4 letters,  
–  Then combining three lowest probability gives us an alphabet with 

only two letters 
–  We have three values to assign and only two letters, we are wasting 

one of the code symbols  
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Nonbinary Huffman Codes 
–  Instead of combining three letters at the beginning we could have 

combined two letters, into an alphabet of size 5,  
–  If we combine three letters from this alphabet we end up in alphabet 

with a size of 3. 
–  We could combine three in the first step and two in the second step. 

Which one is better? 
–  Observation:  

•  all combine letters will have codewords of the same length 
•  Symbols with the lowest probability will have the longest codeword 

–  If at some stage we are allowed to combine less than m symbols the 
logical place is the very first stage 

•  In the general case of a code alphabet with m symbols (m-
ary) and a source with N symbols, the number of letters 
combined in the first phase is:   N modulo (m-1) 
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Adaptive Huffman Codes 
•  Two-pass encoders: first collect statistics, then build Huffman 

code and use it to encode source.  
•  One-pass (recursive) encoders: 

–  Develop the code based on the statistics of the symbols already 
encoded. 

–  The decoder can build its own copy in a similar way.  
–  Possible to modify code without redesigning entire tree.  
–  More complex than arithmetic coding. 
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Adaptive Huffman Codes 
•  Feature: no statistical study of the source text need to be done 

before hand 
•  The encoder keeps statistics in the form of counts of source 

letters, as the encoding  proceeds, and modifies the encoding 
according to those statistics 

•  What about the decoder? if the decoder knows the rules and 
conventions under which the encoder proceeds, it will know 
how to decode the next letter 

•  Besides the code stream, the decoder should be supplied with 
the details of how encoder started and how the encoder will 
proceed in each situation 
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Adaptive Huffman Codes 
•  In adaptive Huffman coding, the tree and corresponding 

encoding scheme change accordingly 
•  Two versions of the adaptive Huffman will be described:  

1.  Primary version 
2.  Knuth and Gallager method  
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Primary version 
•  The leaf nodes (source letters) are sorted non-increasingly 
•  We merge from below in the case of a tie 
•  When two nodes are merged they are called siblings 
•  When two nodes are merged, the parent node will be ranked 

on the higher of the two sibling nodes. 
•  In the labeling of the edges (branches) of the tree, the edge 

going from parent to highest sibling is labeled zero 
•  At start all letters have a count of one 
•  Update after count increment: the assignment of leaf nodes to 

source letters is redone so that the weights are in non-
increasing order 
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Performance 
•  Adaptive Huffman codes: respond to locality 
•  Encoder is "learning" the characteristics of the source. The decoder must 

learn along with the encoder by continually updating the Huffman tree so 
as to stay in synchronization with the encoder.  

•  Another advantage: they require only one pass over the data.  
•  Of course, one-pass methods are not very interesting if the number of bits 

they transmit is significantly greater than that of the two-pass scheme. 
Interestingly, the performance of these methods, in terms of number of bits 
transmitted, can be better or worse than that of static Huffman coding.  

•  This does not contradict the optimality of the static method as the static 
method is optimal only over all methods which assume a time-invariant 
mapping.  
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Primary version 
•  The Huffman tree and associated encoding scheme are 

expected to settle down eventually to the fixed tree and 
scheme that might have arisen from counting the letters in a 
large sample of source text 

•  The advantage of adaptive Huffman encoding can be quite 
important in situations that the source nature changes 

•  Exp: a source text consists of a repeated 10,000 times, b 
repeated 10,000 times, c repeated 10,000 and d repeated 
10,000.  

•  Non-adaptive Huffman: probability ¼, four binary codes each 
2 bits 
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Primary version 
•  Adaptive Huffman: encode almost all a’s by a single digit. 

The b’s will be coded by two bits each, c’s and d’s with three 
bits each 

•  It is wasting the advantage over non-adaptive Huffman 
•  Source of problem: when the nature of the source text 

changes, one or more of the letters may have built up such a 
hefty counts that it takes a long time for the other letters to 
catch up 

•  Solution: periodically multiply all the counts by some fraction 
and round down (of course the decoder must know when and 
how much the counts are scaled down) 
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Knuth & Gallager method 
•  Problem with primary method: updating the tree 
•  The tree resulting from an application of Huffman’s algorithm belong to a 

special class of diagrams called binary tree 
•  A binary tree with n leaf nodes has 2n-1 nodes and 2n-2 nodes other than 

the root 
•  Theorem: Suppose that T is a binary tree with n leaf nodes with each node 

yi assigned a non-negative weight xi. Suppose that each parent is weighted 
with the sum of the weights of its children. Then T is a Huffman tree 
(obtainable by some instance of Huffman’s algorithm) if and only if 2n-2 
non-root nodes of T can be arranged in a sequence y1y2…y2n-2 with the 
properties that 
1.    
2.  y2k-1 and y2k are siblings  
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Knuth & Gallager method 
•  Knuth and Gallager proposed to manage the Huffman tree at 

each stage in adaptive Huffman encoding by ordering the 
nodes y1y2…y2n-2 so that he weight on yk is non-decreasing 
with k and so that y2k-1 and y2k are siblings 

•  This arrangement allows updating after a count increment in 
order of n operations, while redoing the whole tree from 
scratch requires order of n2 operations. 
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Knuth & Gallager method  
•  Squares denote external nodes and correspond 

to the symbols 
•  Codeword for a symbol can be obtained by 

traversing the tree from root to the external 
node corresponding to the symbol, 0 
corresponds to a left branch and 1 
corresponds to a right branch 

•  Weight of a node: a number written inside the 
node  
–  For external nodes: number of times the symbol 

corresponding to the node has been encountered 
–  For internal nodes: sum of the weight of its off 

springs  

1 

2 

0 1 

1 

3 
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Knuth & Gallager method  
•  Node number: a unique number 

assigned to each internal and external 
node 

•  Block: set of nodes with the same 
weight  

•  Node interchange: entire subtree being 
cut off and re-grafted in new position  

2 

2 1 

3 

51 

49 50 

47 48 
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Adaptive Huffman Codes 
•  Version 1: encoder is initialized with source alphabet with a 

count of one  
–  Send the binary code for the symbol (traverse the tree) 
–  If the node is the root, increase its weight and exit 
–  If the node has the highest node number in its block, increment its 

weight, update its parent. 
–  If the node does not have the highest node number, swap it with the 

node with highest number in the block, increment its weight, update its 
parents.  
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Adaptive Huffman Codes 
•  Update a node: 

–  If the node is the root, increase its weight and exit 
–  If the node has the highest node number in its block, increment its 

weight, update its parent. 
–  If the node does not have the highest node number, swap it with the 

node with highest number in the block, increment its weight, update its 
parents.  
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Adaptive Huffman Codes 
•  Version 2: no initialization is required 
•  At the beginning the tree consists of a single node called Not 

Yet Transmitted (NYT) with a weight of zero.  
•  If the symbol to be coded is new: 

–  An NYT and a fixed length code for the symbol is transmitted.  
–  In the tree, NYT is converted to a new NYT and an external node for 

the symbol. The weight of the new external node is set to one. The 
weight of the parent (old NYT) is set to one. The parent of the old 
NYT is updated. 

•  If the symbol already exists:   
–  Send the binary code for the symbol (traverse the tree) 
–  Update the node  
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Adaptive Huffman Codes 
•  Update a node: 

–  If the node is the root, increase its weight and exit 
–  If the node has the highest node number in its block, increment its 

weight, update its parent. 
–  If the node does not have the highest node number, swap it with the 

node with highest number in the block (as long as the node with the 
higher number is not the parent of the node being updated), increment 
its weight, update its parents.  
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Adaptive Huffman Codes 
•  Fixed length coding: 

–  If the n symbols in the alphabet, we fine e and r such that: 

If                           then ak is coded as the (e+1)-bit binary representation 
of k-1 

If k>2r, ak is coded as the e-bit binary representation of k-r-1 

Exp: n=26, e=4, r=10 
a2: 00001 
a22: 1011 
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Adaptive Huffman Codes 
a a r d v a r k 0 

1 
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Adaptive Huffman Codes 
a a r d v a r k 
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Golomb Codes 
•  Golomb-Rice codes belong to a family of codes designed to 

encode integers with the assumption that the larger  an 
integer, the lower its probability of occurrence.  

•  Unary code: simple codes for this situation 
•  Unary code of an integer n is n 1s followed by a 0. 
•  Exp: 4 -> 11110 
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Golomb Codes 
•  Golomb codes: has a parameter m 
•  An integer n is represented by two numbers q and r: 

•  q is unary coded 
•  r can take values 0,1,2, .., m-1 
•  m a power of two: use the              -bit representation of r 
•  Not a power of two: use the             -bit representation of r 
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Golomb Codes 
•  The number of bits can be reduced if we use                bit 

representation of r for the first                      values and                                    
bit binary representation of                           for the rest of 
values 

•  Exp: m=5,  
•  First 8-5=3 values of r (0,1,2) will be represented by 2 bits 

binary representation of r, and the next two values (3,4) will 
be represented by the 3-bit representation of r+3 (6,7) 

•  14 -> 110111 
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Rice codes 
•  Rice coding has two steps: preprocessing and coding 
•  Preprocessing: generates a sequence of nonnegative integers 

where smaller values are more probable than larger values 
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Rice codes 
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Rice codes  

•  The preprocessed sequence is divided into segments with each 
segment being further divided into blocks of size J (e.g., 16) 

•  Each block is coded using one of the following options (the 
coded block is transmitted along with an identifier indicating 
the option used): 
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Rice codes Options 
1.  Fundamental sequence: unary code (n is coded as n 0s 

followed by a 1) 
2.  Split sample options:  

–  There is a parameter k 
–  A m-bit number n code consists of k least significant bits of n 

followed by the unary code of the m-k most significant bits 
3.  Second extension option: the sequence is divided into 

consecutive pairs of samples. Each pair is used to obtain an 
index:                                              , the index is coded using 
a unary code. 

4.  Zero block option: used when one or more blocks are all 
zero. Number of zero blocks is transmitted using a code. See 
Table 3.17 
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Rice codes 



Copyright S. Shirani 

A  00 
B  01 
C  10 
D  11 

A  0 
B  10 
C  110 
D  111 

A B C D A B: 0 10 110 111 0 10 

A B C D A B: 00 01 10 11 00 01 
00 01 10 10 00 01 

0  10  110  0  110  10 

A B C C A B 

A B C A C B 

Variable Length Codes & Error Propagation 
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Tunstall Codes 
•  In Tunstall code, all the codewords are of equal length. 

However, each codeword represents a different number of 
letters. 

Sequence Codeword 

AAA 00 

AAB 01 

AB 10 

B 11 
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Tunstall code 
•  Design of an n bit Tunstall code for a source with an alphabet 

size of N 
•  Start with the N letters of the source alphabet in codebook 
•  Remove the entry in the codebook with highest probability 

and add the N string obtained by concatenating  this letter 
with every letter in the alphabet (including itself) 

•  This increases the size of codebook from N to N+(N-1) 
•  Calculated the probabilities of the new entries 
•  Select the entry with the highest probability and repeat until 

the size of the code book reaches 2n 
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Tunstall code 
•  Exp: 
•  S={A,B,C}, P(A)=0.6, P(B)=0.3, P(c)=0.1, n=3 bits 

Sequence P 

A 0.6 

B 0.3 
C 0.1 

Sequence P 

B 0.3 

C 0.1 
AA 0.36 
AB 0.18 
AC 0.06 

Sequence P 

B 000 

C 001 
AB 010 
AC 011 
AAA 100 
AAB 101 
AAC 110 


