
Multimedia Communications

Huffman Coding

Copyright S. Shirani

Optimal codes
•  Suppose that si -> wi ∈ A+ is an encoding scheme for a source alphabet

S={s1, …,sm}. Suppose that the source letter s1, …,sm occur with
relative frequencies f1, .. fm respectively. The average code word length
of the code is defined as:

where li is the length of wi
•  The average number of code letters required to encode a source text

consisting of N source letters is
•  It may be expensive and time consuming to transmit long sequences of

code letters, therefore it may be desirable for to be as small as
possible.

•  It is in our power to make small by cleverly making arrangements
when we devise the encoding scheme.

Copyright S. Shirani

Optimal codes
•  What constraints should we observe?
•  The resulting code should be uniquely decodable
•  Considering what we saw in the previous chapter, we confine

ourselves to prefix codes.
•  An encoding scheme that minimizes is called optimal

encoding
•  The process of finding the optimal code was algorithmized by

Huffman.

Copyright S. Shirani

Optimal codes
•  The necessary conditions for an optimal variable-length

binary code are:
1.  Given any two letters aj and ak if then
2.  The two least probable letters have codewords with the same

maximum length
3.  In the tree corresponding to the optimum code, there must be

two branches stemming from each intermediate node
4.  Suppose we change an intermediate node into a leaf node by

combining all the leaves descending from it into a composite
word of a reduced alphabet. Then, if the original tree was
optimal for the original alphabet, the reduced tree is optimal
for the reduced alphabet.

Copyright S. Shirani

Condition #1 and #2
•  Condition #1 is obvious
•  Suppose an optimum code C exists in which the two code

words corresponding to the least probable symbols do not
have the same length. Suppose the longer code word is k bits
longer than the shorter one.

•  As C is optimal, the codes corresponding to the least probable
symbols are also the longest.

•  As C is a prefix code, none of the code words is a prefix of
the longer code.

Copyright S. Shirani

Condition #2
•  This means that, even if we drop the last k bits of the longest

code word, the code words will still satisfy the prefix
condition.

•  By dropping the k bits, we obtain a new code that has a
shorter average word length.

•  Therefore, C cannot be optimal.

Copyright S. Shirani

Conditions #3 and #4
•  Condition #3: If there were any intermediate node with only

one branch coming from that node, we could remove it
without affecting the decipherability of the code while
reducing its average length.

•  Condition #4: If this condition were not satisfied, we could
find a code with smaller average code length for the reduced
alphabet and then simply expand the composite word of a
reduced alphabet. Then, if the original tree was optimal for
the original alphabet, the reduced tree is optimal for the
reduced alphabet

Copyright S. Shirani

•  It can be shown that codes generated by Huffman algorithm
(explained shortly) meet the above conditions

•  In fact it can be shown that not only does Huffman’s
algorithm always give a “right answer”, but also, every “right
answer”.

•  For the proof see section 4.3.1 in “Information theory and
data compression” by D. Hankerson.

Copyright S. Shirani

Building a Huffman Code
•  The main idea:

–  Let S be a source with alphabet A={a1,…,aN}.
–  Let S' be a source with alphabet A'={a'1,…,a'N-1} such that

–  Then if a prefix code is optimum for S', the corresponding prefix code
for S is also optimum.

Copyright S. Shirani

Building a Huffman Code

a2 (.4) a2 (.4) a2 (.4) a''3 (.6) a'''3 (1)
a1 (.2) a1 (.2) a'3 (.4) a2 (.4)
a3 (.2) a3 (.2) a1 (.2)
a4 (.1) a'4 (.2)
a5 (.1)

 a2 (.4) 1
 a1 (.2) 01
 a3 (.2) 000 average length = 2.2 bits
 a4 (.1) 0010 entropy = 2.122 bits
 a5 (.1) 0011

0
1

0
1

0
1

0
1

Copyright S. Shirani

•  We can use a tree diagram to build the Huffman code
•  Assignment of 0 and 1 to the branches is arbitrary and gives

different Huffman codes with the same average codeword
length

•  Sometimes we use the counts of symbols instead of their
probability

•  We might draw the tree horizontally or vertically

Copyright S. Shirani

Building a Huffman Code

a2 (4) (10)
a1 (2) (6)
a3 (2) (4)
a4 (1) (2)
a5 (1)

 a2 : 1
 a1 : 01
 a3 : 000
 a4 : 0010
 a5 : 0011

0

0

0 0

1
1

1 1

Copyright S. Shirani

Minimum Variance Huffman Codes
•  According to where in the list the combined source is placed,

we obtain different Huffman codes with the same average
length (same compression performance).

•  In some applications we do not want the code word lengths to
vary significantly from one symbol to another (example:
fixed-rate channels).

•  To obtain a minimum variance Huffman code, we always put
the combined symbol as high in the list as possible.

Copyright S. Shirani

Minimum Variance Huffman Codes

a2 (.4)
a1 (.2)
a3 (.2)
a4 (.1)
a5 (.1)

 a2 (.4) 00
 a1 (.2) 10
 a3 (.2) 11 average length = 2.2 bits
 a4 (.1) 010 entropy = 2.122 bits
 a5 (.1) 011

0
1

0
1

0
1

0

1
0.2

0.4
0.6

Copyright S. Shirani

Huffman Codes
•  The average length of a Huffman code satisfies

•  The upper bound is loose. A tighter bound is

Copyright S. Shirani

Extended Huffman Codes
•  If the probability distribution is very skewed (large Pmax),

Huffman codes become inefficient.
•  We can reduce the rate by grouping symbols together.
•  Consider the source S of independent symbols with alphabet

A={a1,…,aN}.
•  Let us construct an extended source S(n) by grouping n

symbols together
•  Extended symbols in the extended alphabet

Copyright S. Shirani

Extended Huffman Codes: Example

Huffman code (n = 1) Huffman code (n = 2)
a1 .95 0 a1a1 .9025 0
a3 .03 10 a1a3 .0285 100
a2 .02 11 a3a1 .0285 101

 a1a2 .0190 111
R = 1.05 bits/symbol a2a1 .0190 1101
H = .335 bits/symbol a3a3 .0009 110000

 a3a2 .0006 110010
 a2a3 .0006 110001
 a2a2 .0004 110011
 R = .611 bits/symbol

Rate gets close to the entropy only for n > 7.

Copyright S. Shirani

Extended Huffman Codes
•  We can build a Huffman code for the extended source with a

bit rate R(n) which satisfies

•  But R = R(n)/n and, for i.i.d. sources, H(S) = H(S(n))/n, so

•  As n → ∞, R → H(s). Complexity (memory, computations)
also increases (exponentially). Slow convergence for skewed
distributions.

Copyright S. Shirani

Nonbinary Huffman Codes
•  The code elements are coming from an alphabet with m>2

letters
•  Observations

1.  The m symbols that occur least frequently will have the same length
2.  The m symbols with the lowest probability differ only in the last

position

•  Example: ternary Huffman code for a source with six letters
–  First combine three letters with the lowest probability, giving us a

reduced alphabet with 4 letters,
–  Then combining three lowest probability gives us an alphabet with

only two letters
–  We have three values to assign and only two letters, we are wasting

one of the code symbols

Copyright S. Shirani

Nonbinary Huffman Codes
–  Instead of combining three letters at the beginning we could have

combined two letters, into an alphabet of size 5,
–  If we combine three letters from this alphabet we end up in alphabet

with a size of 3.
–  We could combine three in the first step and two in the second step.

Which one is better?
–  Observation:

•  all combine letters will have codewords of the same length
•  Symbols with the lowest probability will have the longest codeword

–  If at some stage we are allowed to combine less than m symbols the
logical place is the very first stage

•  In the general case of a code alphabet with m symbols (m-
ary) and a source with N symbols, the number of letters
combined in the first phase is: N modulo (m-1)

Copyright S. Shirani

Adaptive Huffman Codes
•  Two-pass encoders: first collect statistics, then build Huffman

code and use it to encode source.
•  One-pass (recursive) encoders:

–  Develop the code based on the statistics of the symbols already
encoded.

–  The decoder can build its own copy in a similar way.
–  Possible to modify code without redesigning entire tree.
–  More complex than arithmetic coding.

Copyright S. Shirani

Adaptive Huffman Codes
•  Feature: no statistical study of the source text need to be done

before hand
•  The encoder keeps statistics in the form of counts of source

letters, as the encoding proceeds, and modifies the encoding
according to those statistics

•  What about the decoder? if the decoder knows the rules and
conventions under which the encoder proceeds, it will know
how to decode the next letter

•  Besides the code stream, the decoder should be supplied with
the details of how encoder started and how the encoder will
proceed in each situation

Copyright S. Shirani

Adaptive Huffman Codes
•  In adaptive Huffman coding, the tree and corresponding

encoding scheme change accordingly
•  Two versions of the adaptive Huffman will be described:

1.  Primary version
2.  Knuth and Gallager method

Copyright S. Shirani

Primary version
•  The leaf nodes (source letters) are sorted non-increasingly
•  We merge from below in the case of a tie
•  When two nodes are merged they are called siblings
•  When two nodes are merged, the parent node will be ranked

on the higher of the two sibling nodes.
•  In the labeling of the edges (branches) of the tree, the edge

going from parent to highest sibling is labeled zero
•  At start all letters have a count of one
•  Update after count increment: the assignment of leaf nodes to

source letters is redone so that the weights are in non-
increasing order

Copyright S. Shirani

Performance
•  Adaptive Huffman codes: respond to locality
•  Encoder is "learning" the characteristics of the source. The decoder must

learn along with the encoder by continually updating the Huffman tree so
as to stay in synchronization with the encoder.

•  Another advantage: they require only one pass over the data.
•  Of course, one-pass methods are not very interesting if the number of bits

they transmit is significantly greater than that of the two-pass scheme.
Interestingly, the performance of these methods, in terms of number of bits
transmitted, can be better or worse than that of static Huffman coding.

•  This does not contradict the optimality of the static method as the static
method is optimal only over all methods which assume a time-invariant
mapping.

Copyright S. Shirani

Primary version
•  The Huffman tree and associated encoding scheme are

expected to settle down eventually to the fixed tree and
scheme that might have arisen from counting the letters in a
large sample of source text

•  The advantage of adaptive Huffman encoding can be quite
important in situations that the source nature changes

•  Exp: a source text consists of a repeated 10,000 times, b
repeated 10,000 times, c repeated 10,000 and d repeated
10,000.

•  Non-adaptive Huffman: probability ¼, four binary codes each
2 bits

Copyright S. Shirani

Primary version
•  Adaptive Huffman: encode almost all a’s by a single digit.

The b’s will be coded by two bits each, c’s and d’s with three
bits each

•  It is wasting the advantage over non-adaptive Huffman
•  Source of problem: when the nature of the source text

changes, one or more of the letters may have built up such a
hefty counts that it takes a long time for the other letters to
catch up

•  Solution: periodically multiply all the counts by some fraction
and round down (of course the decoder must know when and
how much the counts are scaled down)

Copyright S. Shirani

Knuth & Gallager method
•  Problem with primary method: updating the tree
•  The tree resulting from an application of Huffman’s algorithm belong to a

special class of diagrams called binary tree
•  A binary tree with n leaf nodes has 2n-1 nodes and 2n-2 nodes other than

the root
•  Theorem: Suppose that T is a binary tree with n leaf nodes with each node

yi assigned a non-negative weight xi. Suppose that each parent is weighted
with the sum of the weights of its children. Then T is a Huffman tree
(obtainable by some instance of Huffman’s algorithm) if and only if 2n-2
non-root nodes of T can be arranged in a sequence y1y2…y2n-2 with the
properties that
1. 
2.  y2k-1 and y2k are siblings

Copyright S. Shirani

Knuth & Gallager method
•  Knuth and Gallager proposed to manage the Huffman tree at

each stage in adaptive Huffman encoding by ordering the
nodes y1y2…y2n-2 so that he weight on yk is non-decreasing
with k and so that y2k-1 and y2k are siblings

•  This arrangement allows updating after a count increment in
order of n operations, while redoing the whole tree from
scratch requires order of n2 operations.

Copyright S. Shirani

Knuth & Gallager method
•  Squares denote external nodes and correspond

to the symbols
•  Codeword for a symbol can be obtained by

traversing the tree from root to the external
node corresponding to the symbol, 0
corresponds to a left branch and 1
corresponds to a right branch

•  Weight of a node: a number written inside the
node
–  For external nodes: number of times the symbol

corresponding to the node has been encountered
–  For internal nodes: sum of the weight of its off

springs

1

2

0 1

1

3

Copyright S. Shirani

Knuth & Gallager method
•  Node number: a unique number

assigned to each internal and external
node

•  Block: set of nodes with the same
weight

•  Node interchange: entire subtree being
cut off and re-grafted in new position

2

2 1

3

51

49 50

47 48

Copyright S. Shirani

Adaptive Huffman Codes
•  Version 1: encoder is initialized with source alphabet with a

count of one
–  Send the binary code for the symbol (traverse the tree)
–  If the node is the root, increase its weight and exit
–  If the node has the highest node number in its block, increment its

weight, update its parent.
–  If the node does not have the highest node number, swap it with the

node with highest number in the block, increment its weight, update its
parents.

Copyright S. Shirani

Adaptive Huffman Codes
•  Update a node:

–  If the node is the root, increase its weight and exit
–  If the node has the highest node number in its block, increment its

weight, update its parent.
–  If the node does not have the highest node number, swap it with the

node with highest number in the block, increment its weight, update its
parents.

Copyright S. Shirani

Copyright S. Shirani

Adaptive Huffman Codes
•  Version 2: no initialization is required
•  At the beginning the tree consists of a single node called Not

Yet Transmitted (NYT) with a weight of zero.
•  If the symbol to be coded is new:

–  An NYT and a fixed length code for the symbol is transmitted.
–  In the tree, NYT is converted to a new NYT and an external node for

the symbol. The weight of the new external node is set to one. The
weight of the parent (old NYT) is set to one. The parent of the old
NYT is updated.

•  If the symbol already exists:
–  Send the binary code for the symbol (traverse the tree)
–  Update the node

Copyright S. Shirani

Adaptive Huffman Codes
•  Update a node:

–  If the node is the root, increase its weight and exit
–  If the node has the highest node number in its block, increment its

weight, update its parent.
–  If the node does not have the highest node number, swap it with the

node with highest number in the block (as long as the node with the
higher number is not the parent of the node being updated), increment
its weight, update its parents.

Copyright S. Shirani

Copyright S. Shirani

Adaptive Huffman Codes
•  Fixed length coding:

–  If the n symbols in the alphabet, we fine e and r such that:

If then ak is coded as the (e+1)-bit binary representation
of k-1

If k>2r, ak is coded as the e-bit binary representation of k-r-1

Exp: n=26, e=4, r=10
a2: 00001
a22: 1011

Copyright S. Shirani

Adaptive Huffman Codes
a a r d v a r k 0

1

1

51
NYT

0

49
NYT 1

50
a

51
1

0

49
NYT 2

50
a

51
2

0

47
NYT

2

50
a

51
3

48

49

r 1

2 2

50
a

51
4

48

49

r

1

1

0

45
NYT

46

47

d

00000

000001

000001010001

0000010100010000011

Copyright S. Shirani

Adaptive Huffman Codes
a a r d v a r k

1

2 2

50
a

51
4

48

49

r

1

1

46

47

d

0

43
NYT 1

44
v

45
1

1

2 2

50
a

51
4

48

49

r

1

2

46

47
d

0

43

NYT 1

44
v

45
1

1

3 2 50 a
51
5

48
49

r

1

2

46

47
d

0

43

NYT 1

44
v

45
1

Copyright S. Shirani

Golomb Codes
•  Golomb-Rice codes belong to a family of codes designed to

encode integers with the assumption that the larger an
integer, the lower its probability of occurrence.

•  Unary code: simple codes for this situation
•  Unary code of an integer n is n 1s followed by a 0.
•  Exp: 4 -> 11110

Copyright S. Shirani

Golomb Codes
•  Golomb codes: has a parameter m
•  An integer n is represented by two numbers q and r:

•  q is unary coded
•  r can take values 0,1,2, .., m-1
•  m a power of two: use the -bit representation of r
•  Not a power of two: use the -bit representation of r

Copyright S. Shirani

Golomb Codes
•  The number of bits can be reduced if we use bit

representation of r for the first values and
bit binary representation of for the rest of
values

•  Exp: m=5,
•  First 8-5=3 values of r (0,1,2) will be represented by 2 bits

binary representation of r, and the next two values (3,4) will
be represented by the 3-bit representation of r+3 (6,7)

•  14 -> 110111

Copyright S. Shirani

Rice codes
•  Rice coding has two steps: preprocessing and coding
•  Preprocessing: generates a sequence of nonnegative integers

where smaller values are more probable than larger values

Copyright S. Shirani

Rice codes

Copyright S. Shirani

Rice codes

•  The preprocessed sequence is divided into segments with each
segment being further divided into blocks of size J (e.g., 16)

•  Each block is coded using one of the following options (the
coded block is transmitted along with an identifier indicating
the option used):

Copyright S. Shirani

Rice codes Options
1.  Fundamental sequence: unary code (n is coded as n 0s

followed by a 1)
2.  Split sample options:

–  There is a parameter k
–  A m-bit number n code consists of k least significant bits of n

followed by the unary code of the m-k most significant bits
3.  Second extension option: the sequence is divided into

consecutive pairs of samples. Each pair is used to obtain an
index: , the index is coded using
a unary code.

4.  Zero block option: used when one or more blocks are all
zero. Number of zero blocks is transmitted using a code. See
Table 3.17

Copyright S. Shirani

Rice codes

Copyright S. Shirani

A 00
B 01
C 10
D 11

A 0
B 10
C 110
D 111

A B C D A B: 0 10 110 111 0 10

A B C D A B: 00 01 10 11 00 01
00 01 10 10 00 01

0 10 110 0 110 10

A B C C A B

A B C A C B

Variable Length Codes & Error Propagation

Copyright S. Shirani

Tunstall Codes
•  In Tunstall code, all the codewords are of equal length.

However, each codeword represents a different number of
letters.

Sequence Codeword

AAA 00

AAB 01

AB 10

B 11

Copyright S. Shirani

Tunstall code
•  Design of an n bit Tunstall code for a source with an alphabet

size of N
•  Start with the N letters of the source alphabet in codebook
•  Remove the entry in the codebook with highest probability

and add the N string obtained by concatenating this letter
with every letter in the alphabet (including itself)

•  This increases the size of codebook from N to N+(N-1)
•  Calculated the probabilities of the new entries
•  Select the entry with the highest probability and repeat until

the size of the code book reaches 2n

Copyright S. Shirani

Tunstall code
•  Exp:
•  S={A,B,C}, P(A)=0.6, P(B)=0.3, P(c)=0.1, n=3 bits

Sequence P

A 0.6

B 0.3
C 0.1

Sequence P

B 0.3

C 0.1
AA 0.36
AB 0.18
AC 0.06

Sequence P

B 000

C 001
AB 010
AC 011
AAA 100
AAB 101
AAC 110

