COMPUTATIONAL PHOTOGRAPHY

Chapter 10



Computational photography

« Computational photography: image analysis and processing
algorithms are applied to one or more photographs to create
images that go beyond the capabilities of traditional imaging
systems
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Computational photography

« Photometric calibration: the measurement of camera and lens
responses

- High dynamic range imaging: capturing the full range of in a
scene through the use of multiple exposures

« Image matting and compositing: algorithms for cutting pieces
of images from one photograph and pasting tem into others

 Super-resolution and blur removal: improving the resolution of
Images

 Texture analysis and synthesis: how to generate novel textures
form real-world samples for applications such as holes filling
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Image sensing pipeline
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Calibration

- Radiometric response function: maps arriving photons into
digital values stored in the file

» Noise level estimation
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Radiometric response function

- Affect Factors:
1. Aperture and shutter

200 / . speed

| .« 2.A/D converter

: /" (controlled by ISO, linear)
/ |+ 3. Demosaicing
so} / I T
o s ) :

g exposure X

- Hard to model, easier to
measure
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Approaches to measure response function

* Integrating sphere
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Approaches to measure response function

« Calibration chart

WWW.DRYCREEKPHOTO.COM

http://www.adorama.com/alc/0013301/article/Using-the-ColorChecker-Passport-Adorama-TV
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Noise level estimation
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Approaches to measure noise

* Integrating sphere
« Calibration chart
 Taking repeated exposures and computing the variance

« Assuming pixel values should all be the same within some
region
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High dynamic range imaging

- Registered images taken at different exposures can be used to
calibrate the radiometric response function of a camera

- They can create well-exposed photographs
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High Dynamic Range
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The Problem of Dynamic Range

The real world is high
dynamic range!
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10-¢

High dynamic range
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- Today s Cameras: Limited Dynamic Range

¢ We need about 5-10 million values to store all brightnesses around us.
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AEB mode and HDR Composite
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Recovering HDR

« 1. Extract the radiometric response function from the

- 2. Estimate a radiance map by blending pixels from different
exposures
« 3. Tone-map it into a single low dynamic range image
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Recover radiometric response
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- Goal: estimating the

radiometric
response
function( radiance
map )



Recover radiance map

At Position i ¢ The radiance map can be
written as:

At, = 0.01s Zii=f( E; - At;)

At; = 0.001s * Where E; is the radiance
at position i.

- Define E; At; asthe
exposure.

* Known: At; , Z;;
« Unknown: E;, f
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Recover radiance map

Zijzf( Ei : Atj) can be rewrite as:
fUZ;)=(E; - At;)

, taking the natural logarithm of both sides, we have:

lnf‘l(Zij) = lnEi + lTlAtj , to simplify notation, let g=log f*

g(ZU) = lnEi + lnAt]

- Note: recovering g only requires recovering finite number of
values.( Since the domain of Z is from 0-255)
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Recover radiance map

» Objective function:

Ei,g(z) = E%i(rzl)

P 255
=1 j=

[g(Zl-j) — InE; —In Atj]2 + Az g"(2)
1 z=0
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Recover radiance map

- Refine objective function:

Q(Z-m id ) =

« 1. scalar function:

- 2. anticipating the basic shape of the response function:
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Recover radiance map

- Refine objective function:
- 3. How many samples(pixels) do we need to calculate:

255

(Z)ZZ[Q(Z”) InE; —InAt;] +AZg”(z)

Ei,g(z) = min
=1 j=

1.Make sure (# of Ei)*(# of Pictures)>256

2.The pixel locations should be chosen so that they have a
reasonably even distribution of pixel values.
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Results: Color Film

- Kodak Gold ASA 100, PhotoCD
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Recovered Response Curves

pixad value T
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The Radiance Map

Computational Photography @McMaster University 2013



Tone-mapping

« Once a radiance map has been computed, it is usually
necessary to display it on a lower gamut (i.e., 8-bit) screen or
printer
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Tone mapping

10-¢ High dynamic range 106

Real world | | | | | | | | | | | | |
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Picture | | |

0 to 255

 Given radiance map

« Goal: build a reasonable mapping function of
radiance to pixel values
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Tone mapping Methods

« Simple Gamma tone mapping

Gamma applied to each color
channel independently

8 gamma -
correction L7 Input Image
”~

oo 7

Gamma compression Gamma applied to each channel
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Tone mapping Methods

* Intensity Gamma tone —

\

mapping

« Splitting the image up into
luminance and
chrominance(L*a*b) Input Image
components, and applying the
mapping to the luminance
channel

Gamma applied to luminance
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Chrominance and luminance

« YUV color space

vyl [ 0209 0587 0114 [R
U|=|-014713 —028886 0436 ||G
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Tone mapping Methods

« Advanced mapping method

(a)

Figure 10.21 Local tone mapping using linear filters: (a) low-pass and high-pass filtered log
luminance images and color (chrominance) image; (b) resulting tone-mapped image (after at-
tenuating the low-pass log luminance image) shows visible halos around the trees. Processed
images courtesy of Frédo Durand, MIT 6.815/6.865 course on Computational Photography.
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Tone mapping Methods

« Advanced mapping method (using Edge-preserving filter)

(a)

Figure 10.22 Local tone mapping using bilateral filter (Durand and Dorsey 2002): (a) low-
pass and high-pass bilateral filtered log luminance images and color (chrominance) image;
(b) resulting tone-mapped image (after attenuating the low-pass log luminance image) shows
no halos. Processed images courtesy of Frédo Durand, MIT 6.815/6.865 course on Compu-
tational Photography.
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Image matting and compositing
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Compositing Equation

C=((1—-a)B+ aF

- B: background image
 F: foreground image
- C: composite image
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foreground color  alpha matte  background plate

C=0-a)B+aF

compositing
equation
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Matting ambiguity

C=0—-a)B+ aF

Known: C
Unknown: «, B, F

7 unknowns: a and triplets for F and B
3 equations, one per color channel
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Blue screen matting

C=(1—-a)B+ aF

Known: C, B
Unknown: «, F

4 unknowns: a and
triplets for F

3 equations, one per color
channel
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Blue screen matting issues

 Color limitation
« — Annoying for blue-eyed people
adapt screen color (in particular green)
- Shadows
- —How to extract shadows cast on background

Computational Photography @McMaster University 2013



Natural image matting
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Bayesian framework

observed

parameters

Example:
zZ¥=maxP(z| y) super-resolution
. de-blurring
— max P(y ‘ Z)P(Z) de-blocking

= P(y)
=maxL(y|z)+L(z)



Bayesian matting approach(Chuang 2001)

P(F,B,a/C) = P(C|F,B,a) P(F,B,a) / P(C)

Foreground, I T
S tant w.r.t.
background, Likelihood Constant w.r
: parameters X.
transparency you function
want to estimate Prior probability

Color you observe
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Bayesian matting approach(Chuang 2001)

« We must try to build a probability distribution for the unknown
regions.

max L(F,B,a|C) = max L(C|F,B,a) + L(F,B,a) — L(C)
= max L(C|F,B,a) + L(F,B, a)

’ ‘-\ = max L(C|F,B,a) + L(F) + L(B) + L(a)
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Bayesian matting approach(Chuang 2001)

e Log likelihood L(C|F, B, @)

L(C|F,B,a) = —||C — aF — (1 — a)B|| */o 2
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Bayesian matting approach(Chuang 2001)

e Prior probabilities L(F),L(B)

L(F)=—(F—F) 2." 1 (F—F)/2

? - _sz
1EN
- —. T
Spo= WEZNwi(Fi—F)(Fi—F)

- SAME for B
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Bayesian matting approach(Chuang 2001)

e Prior probabilities L(«)

- In this work, we assume that log likelihood for the opacity L(«)
Is constant.

* [gnort it.
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Bayesian matting approach(Chuang 2001)

max L(F,B,«a|C) = max L(C|F,B,a) + L(F) + L(B)

L(C|F,B,a) = —|IC —aF — (1 — @)B|| */c 2
L(F)= —(F—F) 3. ' (F-F)/2
L(B)=—(B—B) ;"' (B— B)/2
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Bayesian matting approach(Chuang 2001)

 Solve math problem: (for @ constant)

* Derive L(C|F,B,a) + L(F) +L(B)+L(a) wrt F & B, and
set to zero gives

I Z}1+1a2/0% Ia(l — a)/c?,
Ia(l-a)/cd 23" +I(1-0)?/c2
- Zjlf-FCOz/c% -
| ZZ;]'B—I—C(l —a)/o?,

SVES
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Bayesian matting approach(Chuang 2001)

» Solve math problem: for F&B constant

* Derive L(C|F,B,a) + L(F) +L(B)+L(a) wrt o, and set
to zero gives

(C—-B)-(F—-B)
£ = BJ|®
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Bayesian matting approach(Chuang 2001)

 Solve math problem:

1. The user specifies a trimap

« 2. Compute Gaussian distributions for foreground and
background regions

3. lterate
- —Keep a constant, solve for F & B (for each pixel)
- —Keep F & B constant, solve for a (for each pixel)

* Note that pixels are treated independently
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Bayesian matting approach(Chuang 2001)

« Results:

Bayesian approach

Ground truth

Alpha Matte Composite - Inset
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Super-resolution and blur removal
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How to increase resolution

 Possible ways for increasing an image resolution:
« — Reducing pixel size.
- — Increase the chip-size.
« — Super-resolution.

Computational Photography @McMaster University 2013



How to increase resolution

- Reduce pixel size:
* Increase the number of pixels per unit area.

- Advantage:

* Increases spatial resolution.

« Disadvantage:

* Noise introduced.
 As the pixel size decreases, the amount of light decreases.
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How to increase resolution

* Increase the chip size (HW):

- Advantage:
« Enhances spatial resolution.

 Disadvantage:
 High cost for high precision optics.
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How to increase resolution

 Superresolution (SR):

 Process of combining multiple low resolution images to form a high
resolution image.

- Advantages:

 Cost less than comparable approaches.
« LR imaging systems can still be utilized.
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Super resolution

ok (x) = D{b(x) * s(h(x)} + ng(x)

D llon(x) = D{b(x) * s(hy,(x)}|
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Super-resolution

« Obtaining a HR image from one or multiple LR images .

zoom apply super-resolution
technique
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Super-resolution
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