#### COMPUTATIONAL PHOTOGRAPHY

Chapter 10

## Computational photography

 Computational photography: image analysis and processing algorithms are applied to one or more photographs to create images that go beyond the capabilities of traditional imaging systems

## Computational photography

- Photometric calibration: the measurement of camera and lens responses
- High dynamic range imaging: capturing the full range of in a scene through the use of multiple exposures
- Image matting and compositing: algorithms for cutting pieces of images from one photograph and pasting tem into others
- Super-resolution and blur removal: improving the resolution of images
- Texture analysis and synthesis: how to generate novel textures form real-world samples for applications such as holes filling

## Image sensing pipeline





#### Calibration

- Radiometric response function: maps arriving photons into digital values stored in the file
- Noise level estimation

### Radiometric response function



#### Affect Factors:

- 1. Aperture and shutter speed
- 2. A/D converter (controlled by ISO, linear)
- 3. Demosaicing
- 4. ...
- Hard to model, easier to measure

## Approaches to measure response function

Integrating sphere





#### Approaches to measure response function

#### Calibration chart







http://www.adorama.com/alc/0013301/article/Using-the-ColorChecker-Passport-Adorama-TV

## Noise level estimation



Computational Photography @McMaster University 2013

#### Approaches to measure noise

- Integrating sphere
- Calibration chart
- Taking repeated exposures and computing the variance
- Assuming pixel values should all be the same within some region

#### High dynamic range imaging

- Registered images taken at different exposures can be used to calibrate the radiometric response function of a camera
- They can create well-exposed photographs

# High Dynamic Range



# The Problem of Dynamic Range



200,000,000



• Today's Cameras: Limited Dynamic Range



High Exposure Image



Low Exposure Image

- We need about 5-10 million values to store all brightnesses around us.
- But, typical 8-bit cameras provide only 256 values sity 2013

# AEB mode and HDR Composite





#### Recovering HDR

- 1. Extract the radiometric response function from the
- 2. Estimate a radiance map by blending pixels from different exposures
- 3. Tone-map it into a single low dynamic range image

#### Recover radiometric response



 Given multiple exposure pictures

 Goal: estimating the radiometric response function( radiance map )



• The radiance map can be written as:

$$Z_{ij} = \mathbf{f}(E_i \cdot \Delta t_j)$$

- Where  $E_i$  is the radiance at position i.
- Define  $E_i \Delta t_j$  as the exposure.
- Known:  $\Delta t_i$  ,  $Z_{ij}$
- Unknown:  $E_i$ , **f**

$$Z_{ij}$$
 =  $\mathbf{f}(E_i \cdot \Delta t_j)$  can be rewrite as:  $f^{-1}(Z_{ij})$  =  $(E_i \cdot \Delta t_j)$  , taking the natural logarithm of both sides, we have:  $lnf^{-1}(Z_{ij}) = lnE_i + ln\Delta t_j$  , to simplify notation, let  $g$  =  $lnE_i$  +  $ln\Delta t_j$  , to simplify notation, let  $g$  =  $lnE_i$  +  $ln\Delta t_j$ 

 Note: recovering g only requires recovering finite number of values.(Since the domain of Z is from 0-255)

Objective function:

$$\widehat{Ei}, \widehat{g(z)} = \min_{Ei, g(Z)} \sum_{i=1}^{N} \sum_{j=1}^{P} [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]^2 + \lambda \sum_{z=0}^{255} g''(z)$$

Refine objective function:

$$g(Z_{mid}) = 0$$

2. anticipating the basic shape of the response function:

$$w(z) = \begin{cases} z - Z_{min} & \text{for } z \le \frac{1}{2}(Z_{min} + Z_{max}) \\ Z_{max} - z & \text{for } z > \frac{1}{2}(Z_{min} + Z_{max}) \end{cases}$$

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 +$$

$$\lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} [w(z)g''(z)]^2$$

- Refine objective function:
- 3. How many samples(pixels) do we need to calculate:

$$\widehat{Ei}, \widehat{g(z)} = \min_{Ei, g(Z)} \sum_{i=1}^{N} \sum_{j=1}^{P} [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]^2 + \lambda \sum_{z=0}^{255} g''(z)$$

- 1.Make sure (# of Ei)\*(# of Pictures)>256
- 2. The pixel locations should be chosen so that they have a reasonably even distribution of pixel values.

#### Results: Color Film

Kodak Gold ASA 100, PhotoCD



## Recovered Response Curves



#### The Radiance Map

W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005



#### Tone-mapping

 Once a radiance map has been computed, it is usually necessary to display it on a lower gamut (i.e., 8-bit) screen or printer

#### Tone mapping



- Given radiance map
- Goal: build a reasonable mapping function of radiance to pixel values

### Tone mapping Methods

#### Simple Gamma tone mapping

Gamma applied to each color channel independently



Gamma compression



Input Image



Gamma applied to each channel

### Tone mapping Methods

- Intensity Gamma tone mapping
- Splitting the image up into luminance and chrominance(L\*a\*b) components, and applying the mapping to the luminance channel



Input Image



Gamma applied to luminance

#### Chrominance and luminance

#### YUV color space

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}$$



## Tone mapping Methods

#### Advanced mapping method



**Figure 10.21** Local tone mapping using linear filters: (a) low-pass and high-pass filtered log luminance images and color (chrominance) image; (b) resulting tone-mapped image (after attenuating the low-pass log luminance image) shows visible halos around the trees. Processed images courtesy of Frédo Durand, MIT 6.815/6.865 course on Computational Photography.

#### Tone mapping Methods

Advanced mapping method (using Edge-preserving filter)



Figure 10.22 Local tone mapping using bilateral filter (Durand and Dorsey 2002): (a) low-pass and high-pass bilateral filtered log luminance images and color (chrominance) image; (b) resulting tone-mapped image (after attenuating the low-pass log luminance image) shows no halos. Processed images courtesy of Frédo Durand, MIT 6.815/6.865 course on Computational Photography.

# Image matting and compositing





#### **Compositing Equation**

$$C = (1 - \alpha)B + \alpha F$$

- B: background image
- F: foreground image
- C: composite image



# Matting



## Matting ambiguity

$$C = (1 - \alpha)B + \alpha F$$



Unknown:  $\alpha$ , B, F





## Blue screen matting



## Blue screen matting issues

#### Color limitation

- Annoying for blue-eyed people adapt screen color (in particular green)
- Shadows
- How to extract shadows cast on background





# Natural image matting



# Bayesian framework

parameters 
$$z \longrightarrow f(z) \longrightarrow y$$
 observed signal

$$z^* = \max_{z} P(z \mid y)$$

$$= \max_{z} \frac{P(y \mid z)P(z)}{P(y)}$$

$$= \max_{z} L(y \mid z) + L(z)$$

Example: super-resolution de-blurring de-blocking

• • •





 We must try to build a probability distribution for the unknown regions.

$$\max L(F, B, \alpha | C) = \max L(C | F, B, \alpha) + L(F, B, \alpha) - L(C)$$

$$= max L(C|F,B,\alpha) + L(F,B,\alpha)$$





• Log likelihood  $L(C|F, B, \alpha)$ 

$$\mathbf{L}(C|F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^{2} / \sigma^{2}$$



• Prior probabilities L(F), L(B)

$$\mathbf{L}(F) = -(\mathbf{F} - \overline{F})^{T} \Sigma_{F}^{-1} (\mathbf{F} - \overline{F})/2$$

$$\overline{F} = \frac{1}{W} \sum_{i \in N} w_{i} F_{i}$$

$$\Sigma_{F} = \frac{1}{W} \sum_{i \in N} w_{i} (F_{i} - \overline{F}) (F_{i} - \overline{F})^{T}$$

SAME for B



• Prior probabilities  $L(\alpha)$ 

• In this work, we assume that log likelihood for the opacity  $L(\alpha)$  is constant.

• Ignort it.

$$\max L(F, B, \alpha | C) = \max L(C|F, B, \alpha) + L(F) + L(B)$$

$$L(C|F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^{2} / \sigma^{2}$$

$$L(F) = -(F - \overline{F})^{T} \Sigma_{F}^{-1} (F - \overline{F}) / 2$$

$$L(B) = -(B - \overline{B})^{T} \Sigma_{R}^{-1} (B - \overline{B}) / 2$$

- Solve math problem: (for  $\alpha$  constant)
- Derive L(C|F,B,α) + L(F) +L(B)+L(α) wrt F & B, and set to zero gives

$$\begin{bmatrix} \Sigma_F^{-1} + I\alpha^2/\sigma_C^2 & I\alpha(1-\alpha)/\sigma_C^2 \\ I\alpha(1-\alpha)/\sigma_C^2 & \Sigma_B^{-1} + I(1-\alpha)^2/\sigma_C^2 \end{bmatrix} \begin{bmatrix} F \\ B \end{bmatrix}$$
$$= \begin{bmatrix} \Sigma_F^{-1}\overline{F} + C\alpha/\sigma_C^2 \\ \Sigma_B^{-1}\overline{B} + C(1-\alpha)/\sigma_C^2 \end{bmatrix},$$

- Solve math problem: for F&B constant
- Derive L(C|F,B,α) + L(F) +L(B)+L(α) wrt α, and set to zero gives

$$\alpha = \frac{(C-B) \cdot (F-B)}{\|F-B\|^2}$$

#### Solve math problem:

- 1. The user specifies a trimap
- 2. Compute Gaussian distributions for foreground and background regions
- 3. Iterate
  - – Keep  $\alpha$  constant, solve for F & B (for each pixel)
  - – Keep F & B constant, solve for  $\alpha$  (for each pixel)
- Note that pixels are treated independently

#### • Results:



# Super-resolution and blur removal



- Possible ways for increasing an image resolution:
  - Reducing pixel size.
  - Increase the chip-size.
  - – Super-resolution.

#### Reduce pixel size:

- Increase the number of pixels per unit area.
- Advantage:
  - Increases spatial resolution.
- Disadvantage:
  - Noise introduced.
  - As the pixel size decreases, the amount of light decreases.

- Increase the chip size (HW):
- Advantage:
  - Enhances spatial resolution.
- Disadvantage:
  - High cost for high precision optics.

#### Superresolution (SR):

 Process of combining multiple low resolution images to form a high resolution image.

#### Advantages:

- Cost less than comparable approaches.
- LR imaging systems can still be utilized.

## Super resolution

$$o_k(\mathbf{x}) = D\{b(\mathbf{x}) * s(\hat{h}_k(\mathbf{x}))\} + n_k(\mathbf{x})$$

$$\sum_{k} ||o_k(\mathbf{x}) - D\{b(\mathbf{x}) * s(\hat{h}_k(\mathbf{x}))\}||^2$$

$$\sum_{k} ||o_k - DB_K W_K s||^2$$

## Super-resolution

Obtaining a HR image from one or multiple LR images.







zoom

apply super-resolution technique

# Super-resolution

