COMPUTATIONAL PHOTOGRAPHY

Chapter 10

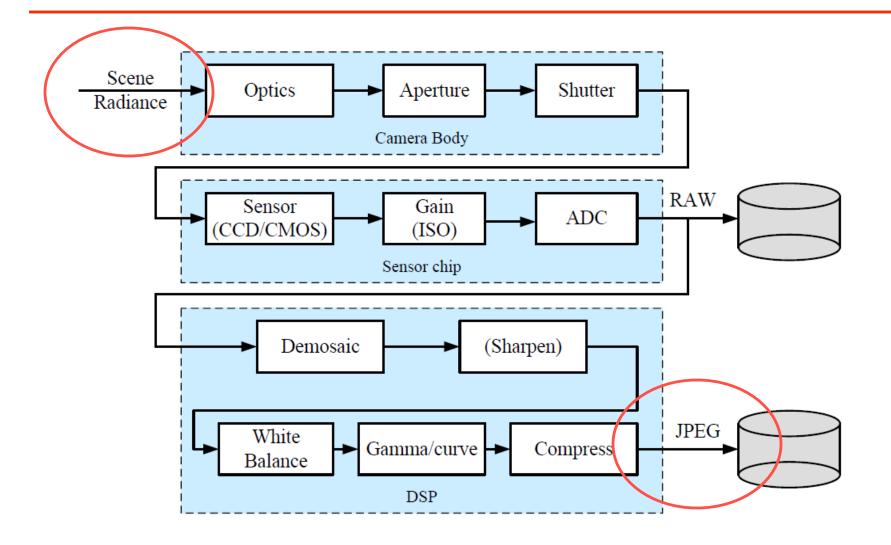
Computational photography

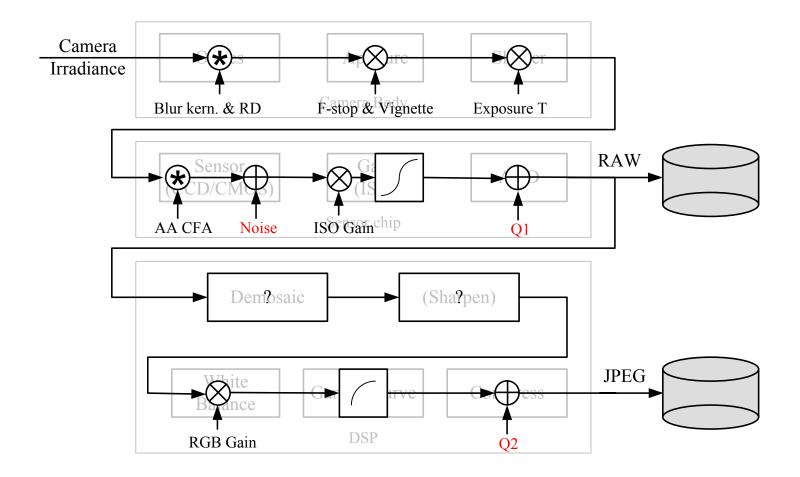
 Computational photography: image analysis and processing algorithms are applied to one or more photographs to create images that go beyond the capabilities of traditional imaging systems

Computational photography

- Photometric calibration: the measurement of camera and lens responses
- High dynamic range imaging: capturing the full range of in a scene through the use of multiple exposures
- Image matting and compositing: algorithms for cutting pieces of images from one photograph and pasting tem into others
- Super-resolution and blur removal: improving the resolution of images
- Texture analysis and synthesis: how to generate novel textures form real-world samples for applications such as holes filling

Image sensing pipeline

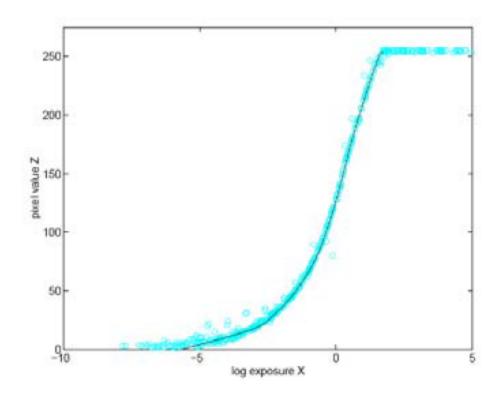




Calibration

- Radiometric response function: maps arriving photons into digital values stored in the file
- Noise level estimation

Radiometric response function



Affect Factors:

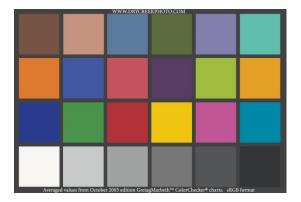
- 1. Aperture and shutter speed
- 2. A/D converter (controlled by ISO, linear)
- 3. Demosaicing
- 4. ...
- Hard to model, easier to measure

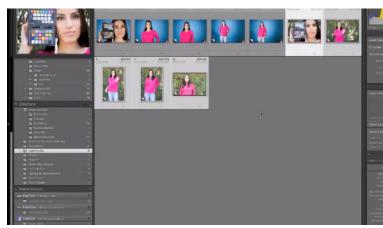
Approaches to measure response function

Integrating sphere

Approaches to measure response function

Calibration chart





http://www.adorama.com/alc/0013301/article/Using-the-ColorChecker-Passport-Adorama-TV

Noise level estimation

Computational Photography @McMaster University 2013

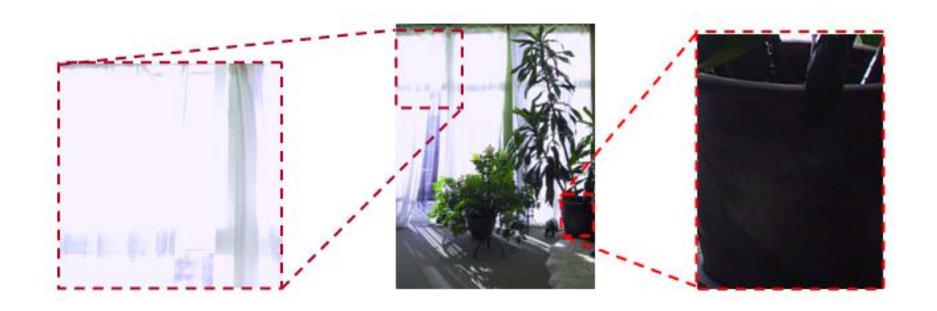
Approaches to measure noise

- Integrating sphere
- Calibration chart
- Taking repeated exposures and computing the variance
- Assuming pixel values should all be the same within some region

High dynamic range imaging

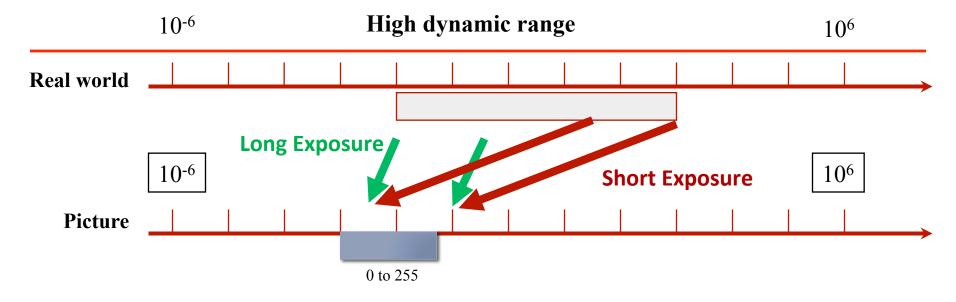
- Registered images taken at different exposures can be used to calibrate the radiometric response function of a camera
- They can create well-exposed photographs

High Dynamic Range



The Problem of Dynamic Range

200,000,000



• Today's Cameras: Limited Dynamic Range

High Exposure Image

Low Exposure Image

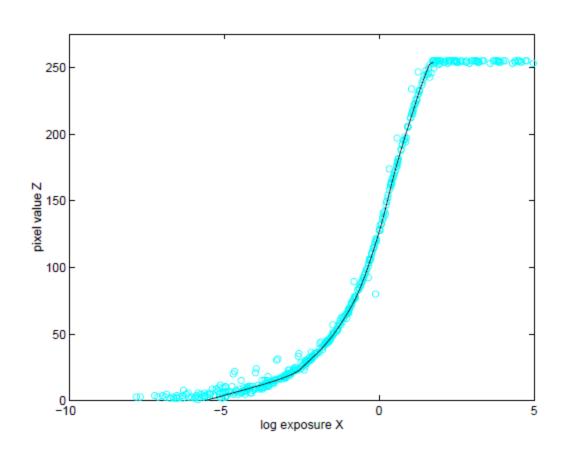
- We need about 5-10 million values to store all brightnesses around us.
- But, typical 8-bit cameras provide only 256 values sity 2013

AEB mode and HDR Composite

Recovering HDR

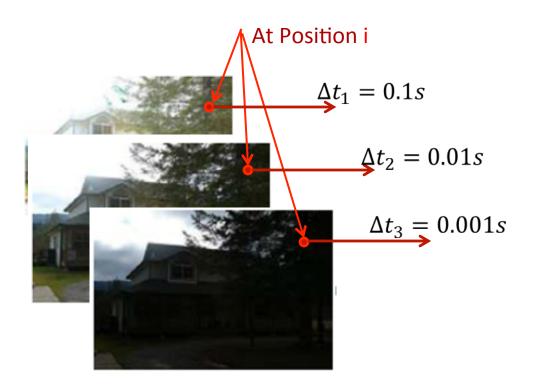
- 1. Extract the radiometric response function from the
- 2. Estimate a radiance map by blending pixels from different exposures
- 3. Tone-map it into a single low dynamic range image

Recover radiometric response



 Given multiple exposure pictures

 Goal: estimating the radiometric response function(radiance map)



• The radiance map can be written as:

$$Z_{ij} = \mathbf{f}(E_i \cdot \Delta t_j)$$

- Where E_i is the radiance at position i.
- Define $E_i \Delta t_j$ as the exposure.
- Known: Δt_i , Z_{ij}
- Unknown: E_i , **f**

$$Z_{ij}$$
 = $\mathbf{f}(E_i \cdot \Delta t_j)$ can be rewrite as: $f^{-1}(Z_{ij})$ = $(E_i \cdot \Delta t_j)$, taking the natural logarithm of both sides, we have: $lnf^{-1}(Z_{ij}) = lnE_i + ln\Delta t_j$, to simplify notation, let g = lnE_i + $ln\Delta t_j$, to simplify notation, let g = lnE_i + $ln\Delta t_j$

 Note: recovering g only requires recovering finite number of values.(Since the domain of Z is from 0-255)

Objective function:

$$\widehat{Ei}, \widehat{g(z)} = \min_{Ei, g(Z)} \sum_{i=1}^{N} \sum_{j=1}^{P} [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]^2 + \lambda \sum_{z=0}^{255} g''(z)$$

Refine objective function:

$$g(Z_{mid}) = 0$$

2. anticipating the basic shape of the response function:

$$w(z) = \begin{cases} z - Z_{min} & \text{for } z \le \frac{1}{2}(Z_{min} + Z_{max}) \\ Z_{max} - z & \text{for } z > \frac{1}{2}(Z_{min} + Z_{max}) \end{cases}$$

$$\mathcal{O} = \sum_{i=1}^{N} \sum_{j=1}^{P} \{w(Z_{ij}) [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]\}^2 +$$

$$\lambda \sum_{z=Z_{min}+1}^{Z_{max}-1} [w(z)g''(z)]^2$$

- Refine objective function:
- 3. How many samples(pixels) do we need to calculate:

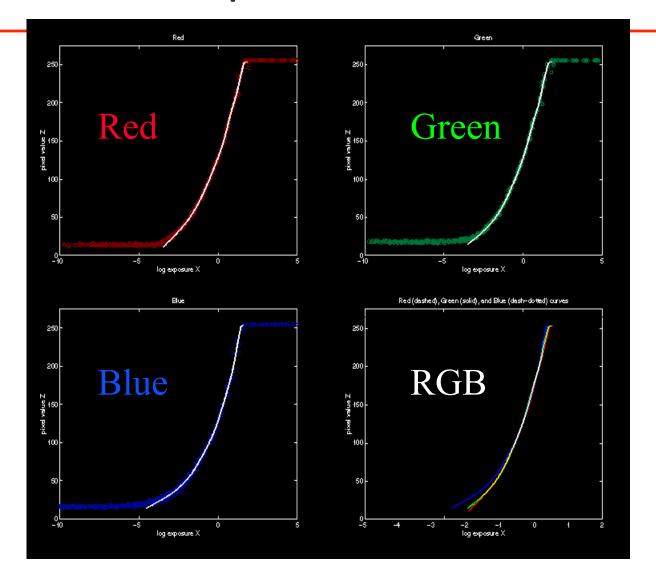
$$\widehat{Ei}, \widehat{g(z)} = \min_{Ei, g(Z)} \sum_{i=1}^{N} \sum_{j=1}^{P} [g(Z_{ij}) - \ln E_i - \ln \Delta t_j]^2 + \lambda \sum_{z=0}^{255} g''(z)$$

- 1.Make sure (# of Ei)*(# of Pictures)>256
- 2. The pixel locations should be chosen so that they have a reasonably even distribution of pixel values.

Results: Color Film

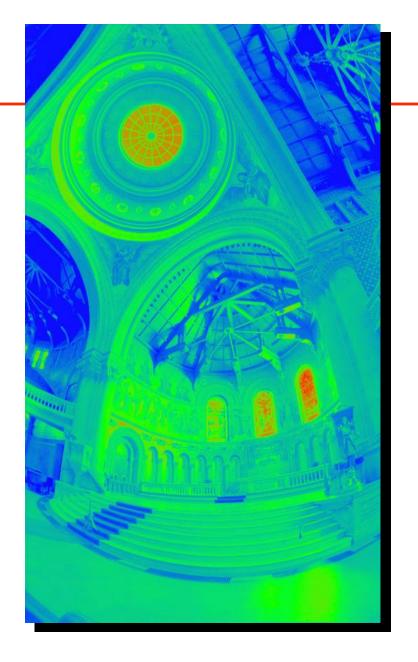
Kodak Gold ASA 100, PhotoCD

Recovered Response Curves



The Radiance Map

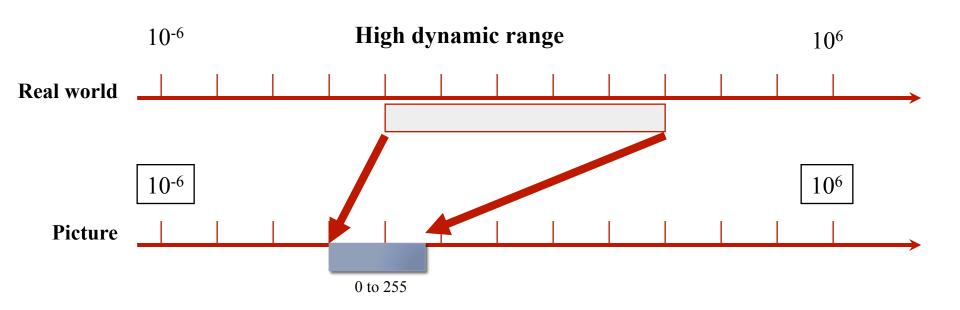
W/sr/m2 121.741 28.869 6.846 1.623 0.384 0.091 0.021 0.005



Tone-mapping

 Once a radiance map has been computed, it is usually necessary to display it on a lower gamut (i.e., 8-bit) screen or printer

Tone mapping

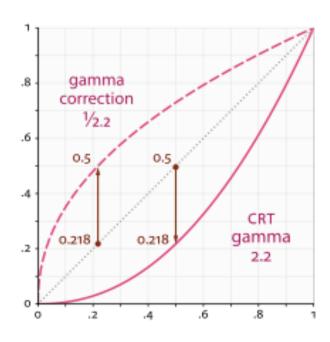


- Given radiance map
- Goal: build a reasonable mapping function of radiance to pixel values

Tone mapping Methods

Simple Gamma tone mapping

Gamma applied to each color channel independently



Gamma compression

Input Image

Gamma applied to each channel

Tone mapping Methods

- Intensity Gamma tone mapping
- Splitting the image up into luminance and chrominance(L*a*b) components, and applying the mapping to the luminance channel

Input Image

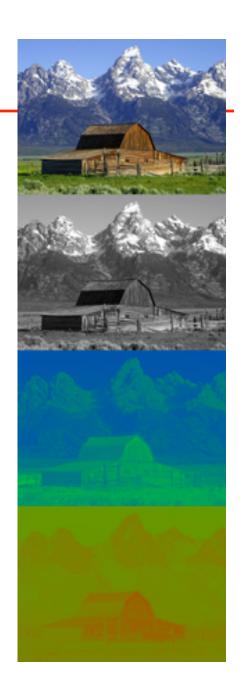
Gamma applied to luminance

Chrominance and luminance

YUV color space

$$\begin{bmatrix} Y' \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.299 & 0.587 & 0.114 \\ -0.14713 & -0.28886 & 0.436 \\ 0.615 & -0.51499 & -0.10001 \end{bmatrix} \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

$$\begin{bmatrix} R \\ G \\ B \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1.13983 \\ 1 & -0.39465 & -0.58060 \\ 1 & 2.03211 & 0 \end{bmatrix} \begin{bmatrix} Y' \\ U \\ V \end{bmatrix}$$



Tone mapping Methods

Advanced mapping method

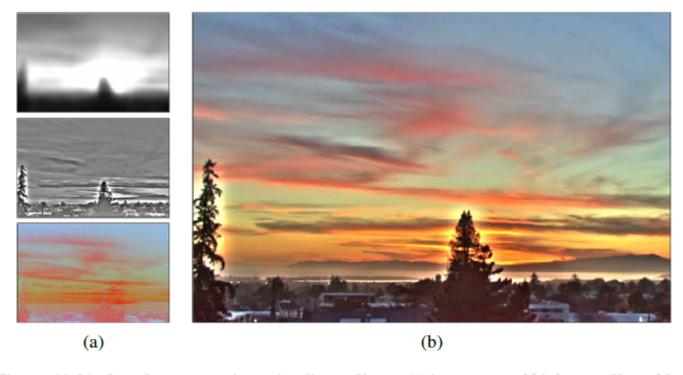


Figure 10.21 Local tone mapping using linear filters: (a) low-pass and high-pass filtered log luminance images and color (chrominance) image; (b) resulting tone-mapped image (after attenuating the low-pass log luminance image) shows visible halos around the trees. Processed images courtesy of Frédo Durand, MIT 6.815/6.865 course on Computational Photography.

Tone mapping Methods

Advanced mapping method (using Edge-preserving filter)

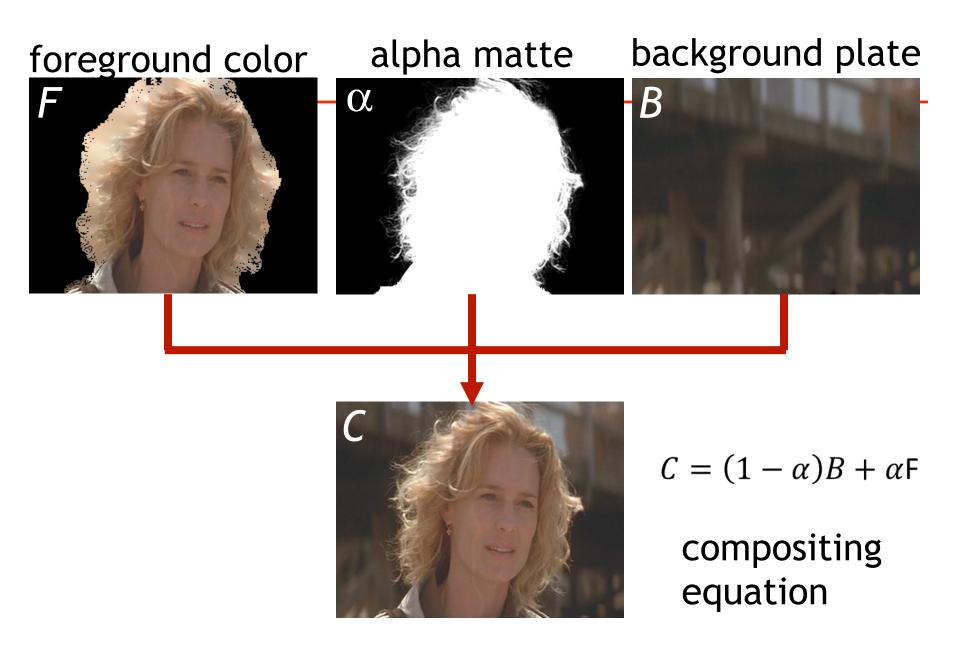
Figure 10.22 Local tone mapping using bilateral filter (Durand and Dorsey 2002): (a) low-pass and high-pass bilateral filtered log luminance images and color (chrominance) image; (b) resulting tone-mapped image (after attenuating the low-pass log luminance image) shows no halos. Processed images courtesy of Frédo Durand, MIT 6.815/6.865 course on Computational Photography.

Image matting and compositing

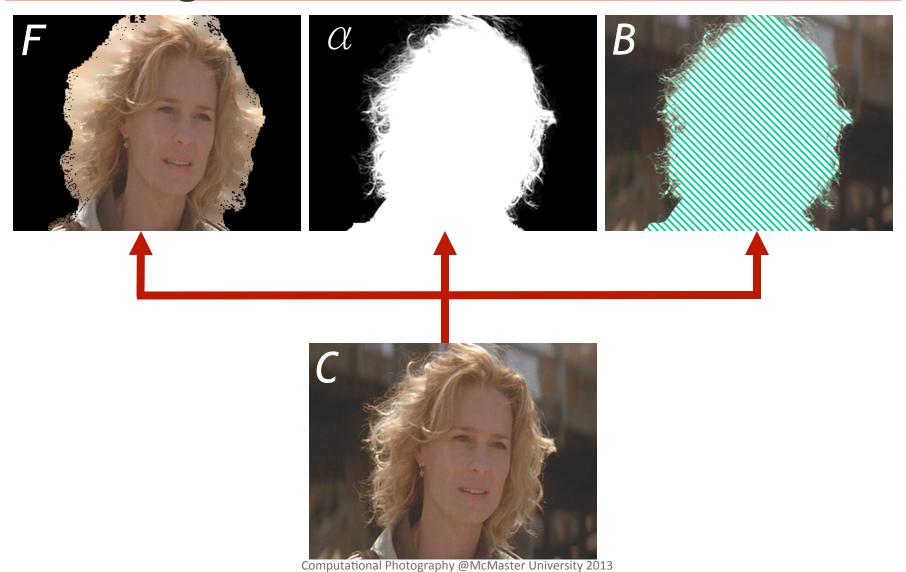
Compositing Equation

$$C = (1 - \alpha)B + \alpha F$$

- B: background image
- F: foreground image
- C: composite image



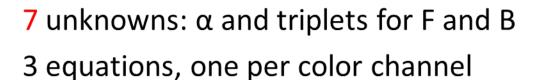
Matting

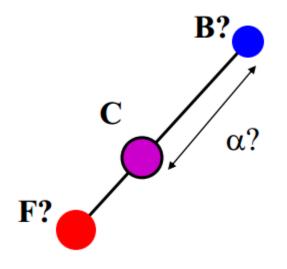


Matting ambiguity

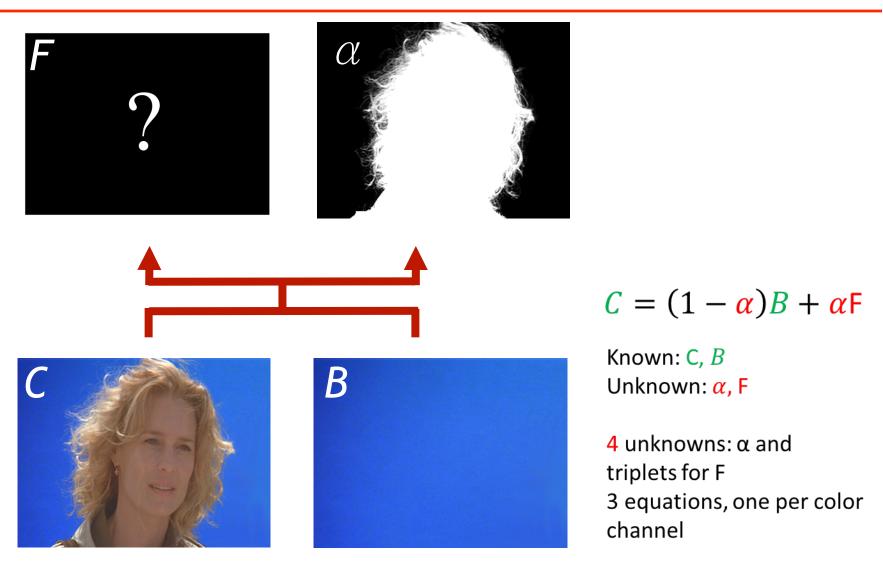
$$C = (1 - \alpha)B + \alpha F$$

Unknown: α , B, F





Blue screen matting

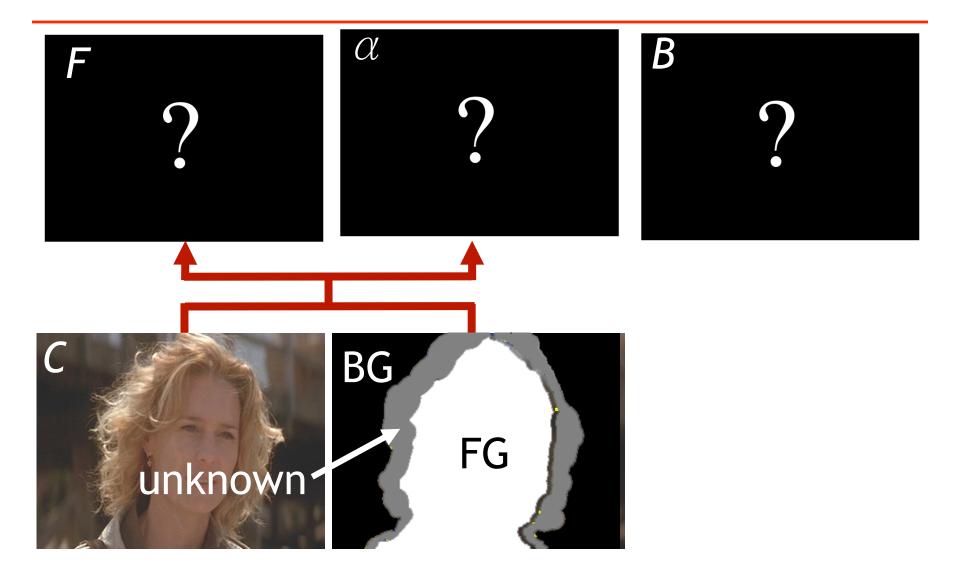


Blue screen matting issues

Color limitation

- Annoying for blue-eyed people adapt screen color (in particular green)
- Shadows
- How to extract shadows cast on background

Natural image matting



Bayesian framework

parameters
$$z \longrightarrow f(z) \longrightarrow y$$
 observed signal

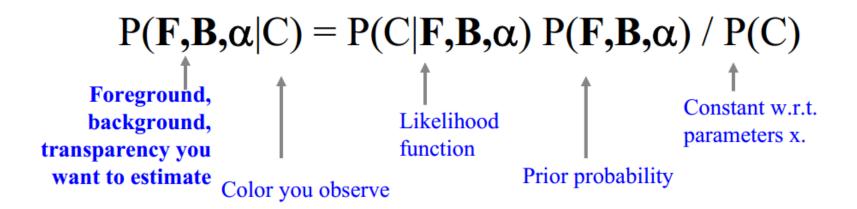
$$z^* = \max_{z} P(z \mid y)$$

$$= \max_{z} \frac{P(y \mid z)P(z)}{P(y)}$$

$$= \max_{z} L(y \mid z) + L(z)$$

Example: super-resolution de-blurring de-blocking

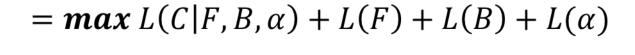
• • •



 We must try to build a probability distribution for the unknown regions.

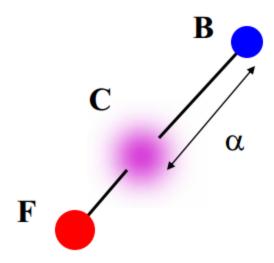
$$\max L(F, B, \alpha | C) = \max L(C | F, B, \alpha) + L(F, B, \alpha) - L(C)$$

$$= max L(C|F,B,\alpha) + L(F,B,\alpha)$$



• Log likelihood $L(C|F, B, \alpha)$

$$\mathbf{L}(C|F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^{2} / \sigma^{2}$$



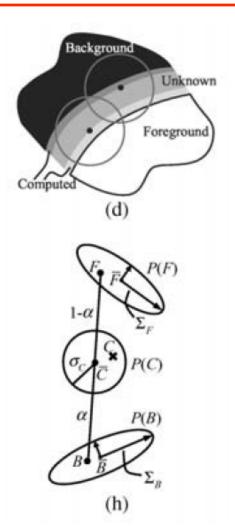
• Prior probabilities L(F), L(B)

$$\mathbf{L}(F) = -(\mathbf{F} - \overline{F})^{T} \Sigma_{F}^{-1} (\mathbf{F} - \overline{F})/2$$

$$\overline{F} = \frac{1}{W} \sum_{i \in N} w_{i} F_{i}$$

$$\Sigma_{F} = \frac{1}{W} \sum_{i \in N} w_{i} (F_{i} - \overline{F}) (F_{i} - \overline{F})^{T}$$

SAME for B



• Prior probabilities $L(\alpha)$

• In this work, we assume that log likelihood for the opacity $L(\alpha)$ is constant.

• Ignort it.

$$\max L(F, B, \alpha | C) = \max L(C|F, B, \alpha) + L(F) + L(B)$$

$$L(C|F, B, \alpha) = -\|C - \alpha F - (1 - \alpha)B\|^{2} / \sigma^{2}$$

$$L(F) = -(F - \overline{F})^{T} \Sigma_{F}^{-1} (F - \overline{F}) / 2$$

$$L(B) = -(B - \overline{B})^{T} \Sigma_{R}^{-1} (B - \overline{B}) / 2$$

- Solve math problem: (for α constant)
- Derive L(C|F,B,α) + L(F) +L(B)+L(α) wrt F & B, and set to zero gives

$$\begin{bmatrix} \Sigma_F^{-1} + I\alpha^2/\sigma_C^2 & I\alpha(1-\alpha)/\sigma_C^2 \\ I\alpha(1-\alpha)/\sigma_C^2 & \Sigma_B^{-1} + I(1-\alpha)^2/\sigma_C^2 \end{bmatrix} \begin{bmatrix} F \\ B \end{bmatrix}$$
$$= \begin{bmatrix} \Sigma_F^{-1}\overline{F} + C\alpha/\sigma_C^2 \\ \Sigma_B^{-1}\overline{B} + C(1-\alpha)/\sigma_C^2 \end{bmatrix},$$

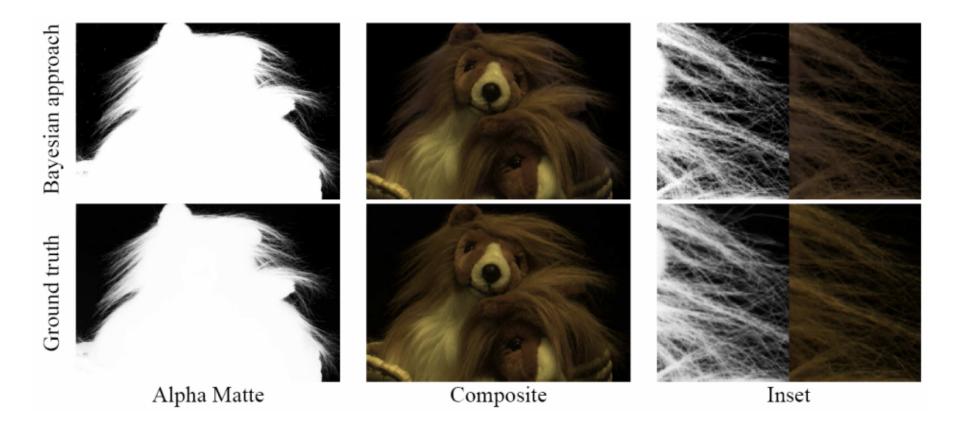
- Solve math problem: for F&B constant
- Derive L(C|F,B,α) + L(F) +L(B)+L(α) wrt α, and set to zero gives

$$\alpha = \frac{(C-B) \cdot (F-B)}{\|F-B\|^2}$$

Solve math problem:

- 1. The user specifies a trimap
- 2. Compute Gaussian distributions for foreground and background regions
- 3. Iterate
 - – Keep α constant, solve for F & B (for each pixel)
 - – Keep F & B constant, solve for α (for each pixel)
- Note that pixels are treated independently

• Results:



Super-resolution and blur removal

- Possible ways for increasing an image resolution:
 - Reducing pixel size.
 - Increase the chip-size.
 - – Super-resolution.

Reduce pixel size:

- Increase the number of pixels per unit area.
- Advantage:
 - Increases spatial resolution.
- Disadvantage:
 - Noise introduced.
 - As the pixel size decreases, the amount of light decreases.

- Increase the chip size (HW):
- Advantage:
 - Enhances spatial resolution.
- Disadvantage:
 - High cost for high precision optics.

Superresolution (SR):

 Process of combining multiple low resolution images to form a high resolution image.

Advantages:

- Cost less than comparable approaches.
- LR imaging systems can still be utilized.

Super resolution

$$o_k(\mathbf{x}) = D\{b(\mathbf{x}) * s(\hat{h}_k(\mathbf{x}))\} + n_k(\mathbf{x})$$

$$\sum_{k} ||o_k(\mathbf{x}) - D\{b(\mathbf{x}) * s(\hat{h}_k(\mathbf{x}))\}||^2$$

$$\sum_{k} ||o_k - DB_K W_K s||^2$$

Super-resolution

Obtaining a HR image from one or multiple LR images.

zoom

apply super-resolution technique

Super-resolution

