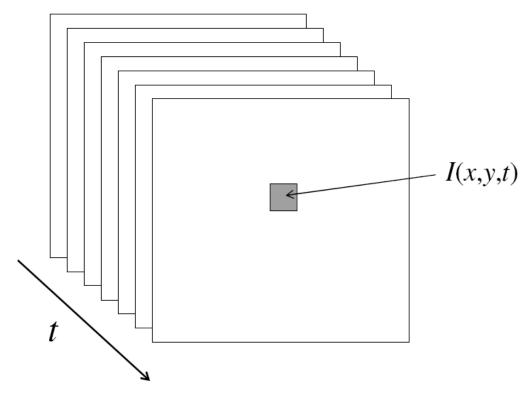
## Dense Image-based Motion Estimation Algorithms & Optical Flow



# Video

- A video is a sequence of frames captured at different times
- The video data is a function of
  - **\*** time (t)
  - ✤ space (x,y)



## Introduction to motion estimation

Given a video sequence of moving objects or camera, what information can we extract?

- How is the camera moving?
- How many moving objects exist?
- What is the direction of each moving object?
- How fast is object moving?

If we could get the answer of these questions we can interpret the scene better.

# Applications

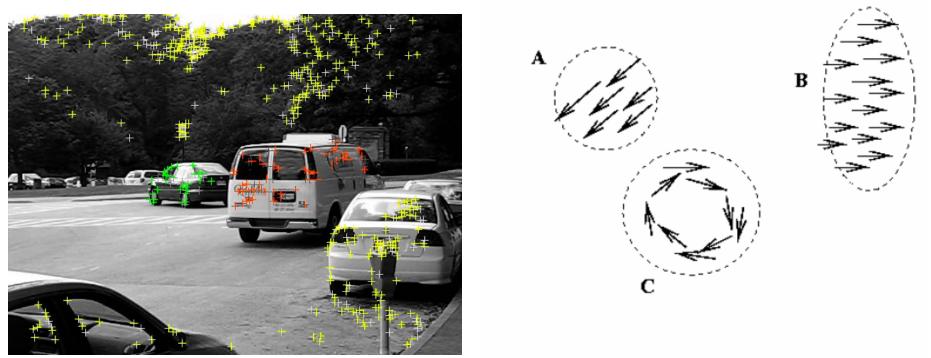
- Background Subtraction
  - $\clubsuit$  a stationary camera is observing the scene
  - Goal: Separate the static background from the moving foreground



# Applications

• Motion Segmentation

Segment the video to the moving objects with different motions



# Other Applications

- Estimating 3D structure
- Segmenting objects based on motion cues
- Recognizing events and activities
- Improving video quality (motion stabilization)

# Image Alignment

- Alignment between two images or image patches
  - template image

 $I_0(\mathbf{x})$  discrete pixel locations

 $\{\mathbf{x}_i = (x_i, y_i)\}$ 

image  $I_1(\mathbf{x})$ 

 $\{x\downarrow i\uparrow'=(x\downarrow i\uparrow',y\downarrow i\uparrow')\}$ 



# Motion Estimation

To estimate motion between two or more images:

- Error Metric
- Measuring the similarity/dissimilarity between images
- Search Technique
- Full search (Simple but too slow)
- Hierarchical coarse-to-fine methods based on image pyramids
- Optical Flow
- Multiple independent motions

### Translational Alignment

• Sum of Squared Differences

$$E_{SSD}(\mathbf{u}) = \sum_{i} \left[ I_1(\mathbf{x}_i + \mathbf{u}) - I_0(\mathbf{x}_i) \right]^2 = \sum_{i} e_i^2$$

*w*=(*u*,*v*): displacement vector
 *e*↓*i*=*I*↓1 (*x*↓*i*+*u*)−*I*↓0 (*x*↓*i*) :the residual error Displaced Frame Difference (Video Coding) Translational Alignment  $E_{SSD}(\mathbf{u}) = \sum_{i} [I_1(\mathbf{x}_i + \mathbf{u}) - I_0(\mathbf{x}_i)]^2 = \sum_{i} e_i^2$ 

- Assumptions:
  - ✓ Ignoring the possibility that for a given alignments some parts of  $I_0$  lie outside of  $I_1$  boundaries and so are not visible
  - ✓ Assuming that corresponding pixel values remain the same in two images.
- $\bullet$  *u* can be fractional : Interpolation Functions needed
- Color images :
  - $\checkmark$  Do the same for all 3 color channels
  - ✓ Transform image into a different color space

### **Robust Error Metrics**

• Replacing the squared error terms with a robust function  $\rho(e_i)$  $E_{SPD}(\mathbf{u}) = \sum \rho(I_1(\mathbf{x}_i + \mathbf{u}) - I_0(\mathbf{x}_i)) = \sum \rho(e_i)$ 

$$E_{SRD}(\mathbf{u}) = \sum_{i} \rho(I_1(\mathbf{x}_i + \mathbf{u}) - I_0(\mathbf{x}_i)) = \sum_{i} \rho(e_i)$$

Grows less quickly than the quadratic penalty associated with least squares Sum of Absolute differences

$$E_{SAD}(\mathbf{u}) = \sum_{i} \left| I_1(\mathbf{x}_i + \mathbf{u}) - I_0(\mathbf{x}_i) \right| = \sum_{i} \left| e_i \right|$$

- ✓ widely used in motion estimation for video coding because of it's speed
- ✓ ESAD is NOT differentiable at the origin, not well suited to gradient descent approaches

## **Robust Error Metrics**

- Smoothly varying function (Black and Rangarajan (1996))
  - Quadratic for small values but
  - grows more slowly away from the origin
- Geman–McClure function

$$\rho_{GM}(x) = \frac{x^2}{1 + x^2 / a^2}$$

a: constant that can be thought of as an outlier threshold

• for small values of x:

$$\rho_{GM}(x)\approx x^2$$

 $\Rightarrow$  as *x* becomes larger:

$$\rho_{GM}(x)\approx a^2$$

# Spatially Varying Weights

- Pixels that may lie outside of the boundaries
- Partially or completely downweight the contribution of certain pixels
  - Background Stabilization or Background Alignment
    - ✓ downweight the middle part of the image, containing independently moving objects

$$E_{WSSD}(\mathbf{u}) = \sum_{i} \omega_0(\mathbf{x}_i) \omega_1(\mathbf{x}_i + \mathbf{u}) \left[ I_1(\mathbf{x}_i + \mathbf{u}) - I_0(\mathbf{x}_i) \right]^2$$

Weighted (or Windowed) SSD function  $\omega_0$  and  $\omega_1$  are zero outside of image boundaries

## Windowed SSD

- In case of a large range of motion:
  - The above metric has bias toward smaller overlapping solutions

$$A = \sum_{i} \omega_0(\mathbf{x}_i) \omega_1(\mathbf{x}_i + \mathbf{u}) \qquad \text{Overlapping Area}$$

✤ Ton counteract this bias:  $RMS = \sqrt{E_{WSSD} / A} : per - pixel \text{ squared pixel error}$ 

### Bias and Gain (Exposure Differences)

- Often the two images being aligned were not taken with the same exposure.
- Simple model of intensity variations:

$$I_1(\mathbf{x} + \mathbf{u}) = (1 + \alpha)I_0(\mathbf{x}) + \beta$$

- $\alpha$  is the gain
- β is the bias

## Bias and Gain

• Least squares with bias and gain

$$E_{BG}(\mathbf{u}) = \sum_{i} \left[ I_1(\mathbf{x}_i + \mathbf{u}) - (1 + \alpha) I_0(\mathbf{x}_i) - \beta \right]^2 = \sum_{i} \left[ \alpha I_0(\mathbf{x}_i) + \beta - e_i \right]^2$$

- Performing a linear regression
- Color image
  - Estimate bias and gain for each color channel
  - Bias and gain compensation is also used in video codecs, known as Weighted Prediction.

## Correlation

- Cross-Correlation
  - Alternative to taking intensity difference
  - Maximize the product of two aligned images

$$E_{CC}(\mathbf{u}) = \sum_{i} I_0(\mathbf{x}_i) I_1(\mathbf{x}_i + \mathbf{u})$$

Is Bias and Gain modeling unnecessary?

Bright patch exists in images

### Normalized Cross-Correlation

$$E_{NCC}(\mathbf{u}) = \frac{\sum_{i} \left[ I_0(\mathbf{x}_i) - \overline{I}_0 \right] \left[ I_1(\mathbf{x}_i + \mathbf{u}) - \overline{I}_1 \right]}{\sqrt{\sum_{i} \left[ I_0(\mathbf{x}_i) - \overline{I}_0 \right]^2} \sqrt{\sum_{i} \left[ I_1(\mathbf{x}_i + \mathbf{u}) - \overline{I}_1 \right]^2}}$$

where

$$\overline{I}_0 = \frac{1}{N} \sum_i I_0(\mathbf{x}_i) \quad and$$
$$\overline{I}_1 = \frac{1}{N} \sum_i I_1(\mathbf{x}_i + \mathbf{u})$$

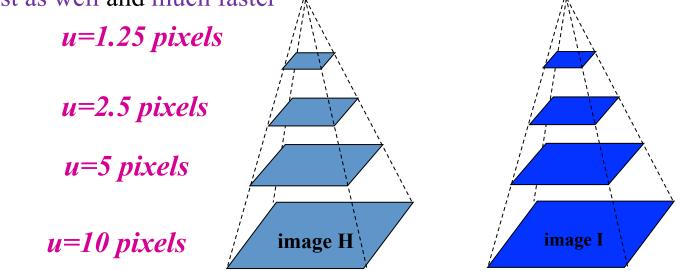
- NCC in [-1,1]
- Works well when matching images taken with different exposure
- Degrades for noisy low-contrast regions (Zero variance)

## Hierarchical Motion Estimation

- How can we find its minimum?
- Full search over some range of shifts
  - Often used for block matching in motion compensated video compression
  - Simple to implement but slow
- To accelerate the search process
   Hierarchical motion estimation

### Hierarchical Motion Estimation

- Steps
  - Construct image pyramid
  - Full search over the range  $2^{-l}[-S,S]^2$
  - At coarser levels, search over a smaller number of discrete pixels
  - The motion estimation from one level is used to initialize a smaller local search at next finer level
  - Not guaranteed to produce the same results as a full search, but works almost as well and much faster



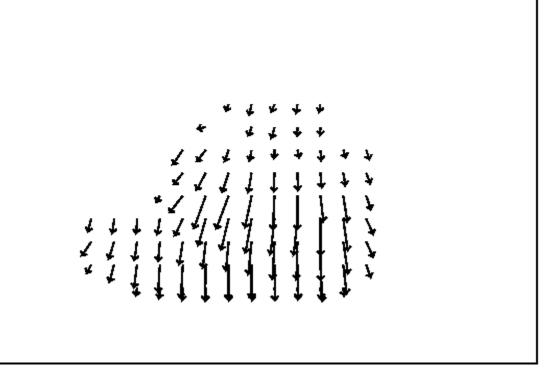
Gaussian pyramid of image H

Gaussian pyramid of image I

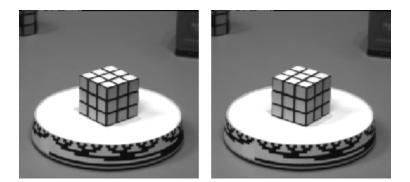
# **Optical Flow**

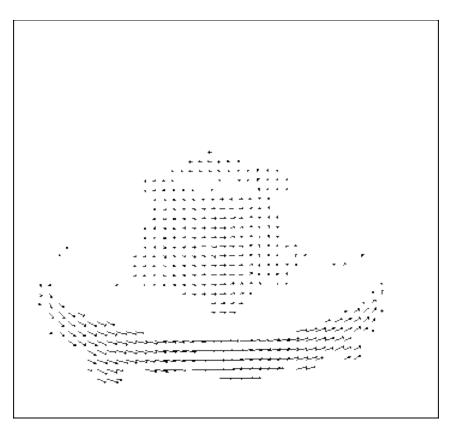
- The most general and challenging version of motion estimation
- Computing an independent estimate of motion at each pixel of the image



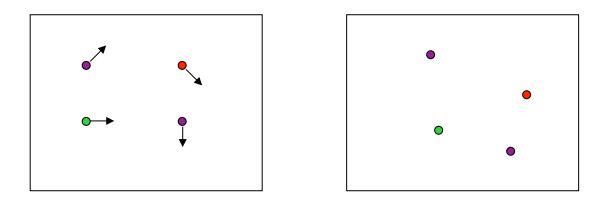


## Optical Flow Field





## Problem Definition : Optical Flow



H(x,y) I(x,y)

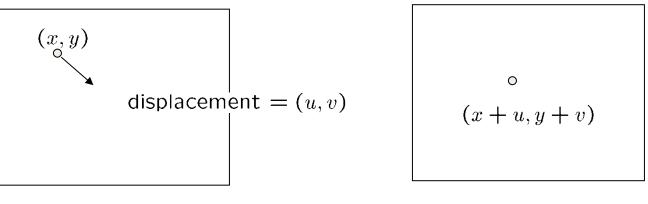
- How to estimate pixel motion from image H to image I?
  - Solve pixel correspondence problem
    - given a pixel in H, look for nearby pixels of the same color in I

## Problem Definition

- Key assumptions
  - **\* color constancy:** a point in H looks the same in I
    - For grayscale images, this is brightness constancy
  - **\* small motion**: points do not move very far

• This is called the **optical flow** problem

### Optical Flow Constraints (gray scale images)



$$H(x,y)$$
  $I(x,y)$ 

- Let's look at these constraints more closely
  - brightness constancy: Q: what's the equation?

$$H(x, y) = I(x+u, y+v)$$

• small motion: (u and v are less than 1 pixel)

- suppose we take the Taylor series expansion of I:

 $I(x+u, y+v) = I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v + \text{higher order terms}$  $\approx I(x, y) + \frac{\partial I}{\partial x}u + \frac{\partial I}{\partial y}v$ 

## **Combining Equations**

$$0 = I(x + u, y + v) - H(x, y)$$
  

$$\approx I(x, y) + I_x u + I_y v - H(x, y)$$
  

$$\approx (I(x, y) - H(x, y)) + I_x u + I_y v$$
  

$$\approx I_t + I_x u + I_y v \qquad \text{shorthand:} \quad I_x = \frac{\partial I}{\partial x}$$
  

$$\approx I_t + \nabla I \cdot [u \ v] \qquad \text{The x-component of the gradient vector.}$$

What is  $I_t$ ? The time derivative of the image at (x,y)

How do we calculate it?

$$0 = I_t + \nabla I \cdot [u \ v]$$

# Optical Flow Equation $0 = I_t + \nabla I \cdot [u \ v]$

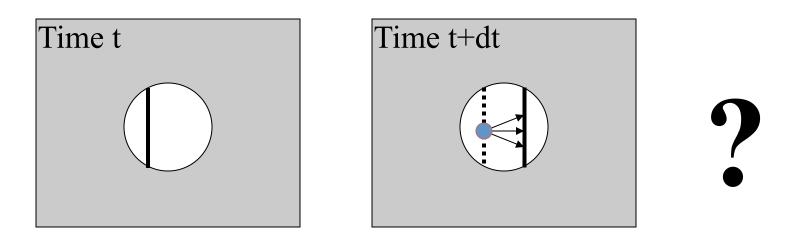
### Problem 1:

• Q: how many unknowns and equations per pixel?

### 1 equation, but 2 unknowns (u and v)

### Problem 2: The Aperture Problem

• For points on a line of fixed intensity we can only recover the normal flow

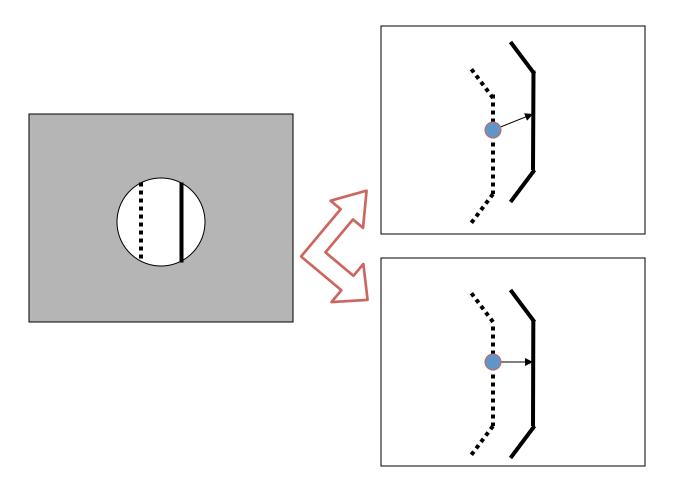


Where did the blue point move to?

We need additional constraints

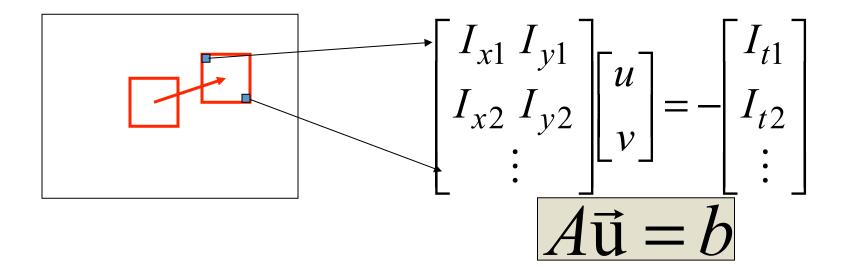
### Use Local Information

Sometimes enlarging the aperture can help



Local smoothness Lucas Kanade (1984)  $I_x u + I_y v = -I_t \implies [I_x \quad I_y] \begin{bmatrix} u \\ v \end{bmatrix} = -I_t$ 

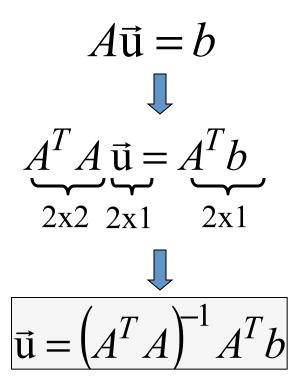
- assume locally constant motion
  - $\clubsuit$  pretend the pixel's neighbors have the same (u,v)
    - ✓ If we use a 5x5 window, that gives us 25 equations per pixel!



### Lucas Kanade (1984)

Goal: Minimize 
$$\|A\vec{u} - b\|^2$$

Method: Least-Squares



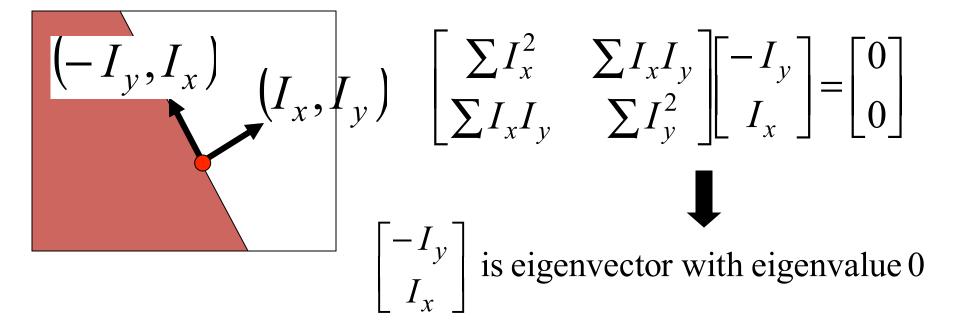
$$\vec{\mathbf{u}} = (A^T A)^{-1} A^T b$$

$$A^{T}A = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{bmatrix}$$

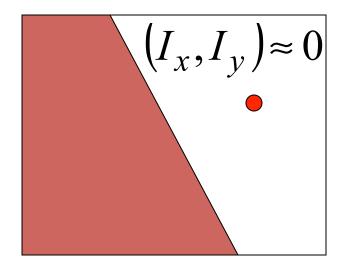
We want this matrix to be invertible.

i.e., no zero eigenvalues

• Edge  $\rightarrow A^T A$  becomes singular

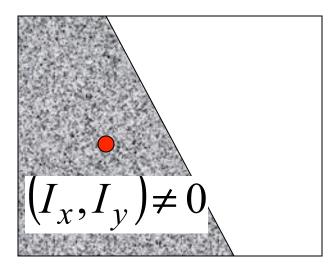


• Homogeneous  $\rightarrow A^T A \approx 0 \rightarrow 0$  eigenvalues



 $A^{T}A = \begin{bmatrix} \sum I_{x}^{2} & \sum I_{x}I_{y} \\ \sum I_{x}I_{y} & \sum I_{y}^{2} \end{bmatrix}$ 

• Textured regions  $\rightarrow$  two high eigenvalues





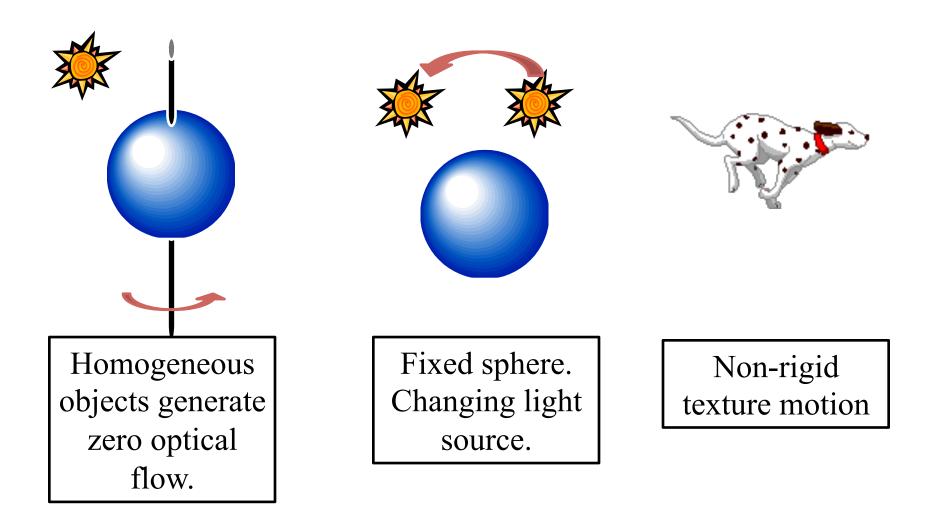


• Homogeneous regions  $\rightarrow$  low gradients  $A^T A \approx 0$ 0 0





### When does it break?



### Other break-downs

• Brightness constancy is **not** satisfied

Correlation based methods

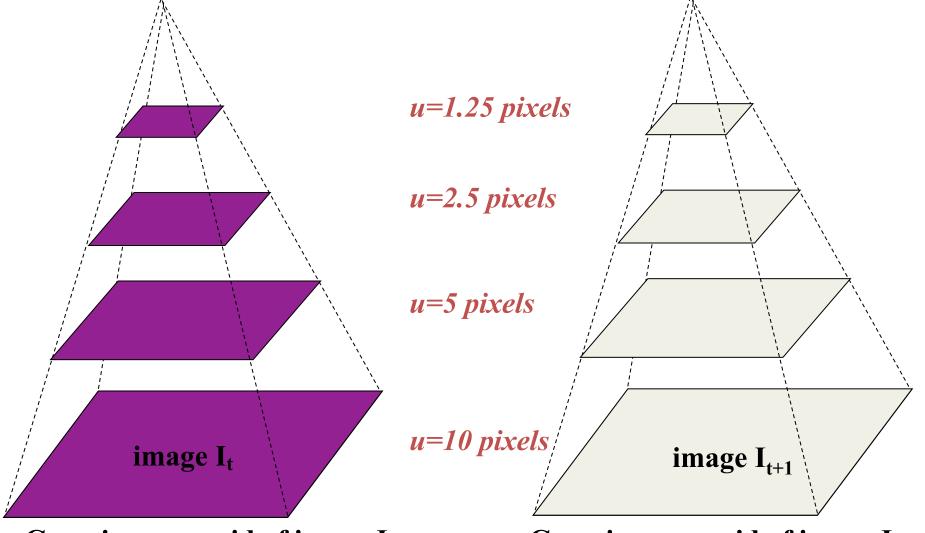
- A point does **not** move like its neighbors
  - what is the ideal window size?

Regularization based methods

• The motion is **not** small (Taylor expansion doesn't hold)

Use multi-scale estimation

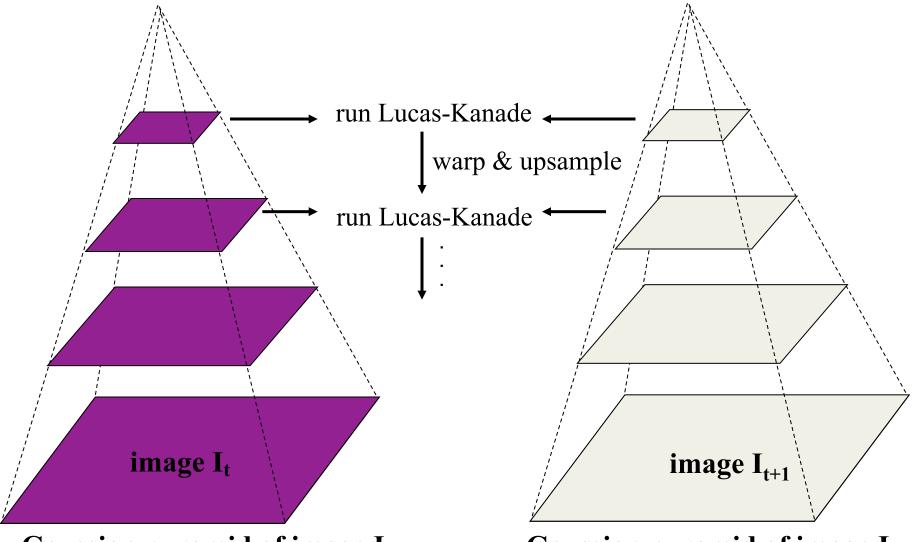
### Multi-Scale Flow Estimation



Gaussian pyramid of image  $I_t$ 

Gaussian pyramid of image I<sub>t+1</sub>

## Multi-Scale Flow Estimation



Gaussian pyramid of image I<sub>t</sub>

Gaussian pyramid of image I<sub>t+1</sub>

# Examples: Motion Based Segmentation



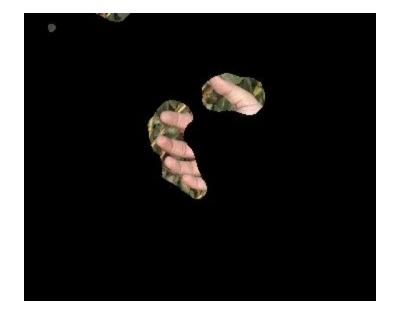
Input



Segmentation result

# Examples: Motion Based Segmentation





Input

#### Segmentation result

### Other break-downs

• Brightness constancy is **not** satisfied

Correlation based methods

- A point does **not** move like its neighbors
  - what is the ideal window size?

Regularization based methods

• The motion is **not** small (Taylor expansion doesn't hold)

Use multi-scale estimation

## Regularization Horn and Schunk (1981)

### Add global smoothness term

Smoothness error:

Error in brightness constancy equation

$$E_s = \iint_D \left( u_x^2 + u_y^2 \right) + \left( v_x^2 + v_y^2 \right) dx \, dy$$
$$E_c = \iint_D \left( I_x u + I_y v + I_t \right)^2 \, dx \, dy$$

Minimize: 
$$E_c + \lambda E_s$$

Solve by calculus of variations