
Dense Image-based Motion 
Estimation Algorithms 

& Optical Flow 



Video 

•  A video is a sequence of frames captured at different 
times 

•  The video data is a function of  
v  time (t) 
v  space (x,y) 
	  



Introduction to motion estimation 

Given a video sequence of moving objects or 
camera, what information can we extract? 
•  How is the camera moving? 
•  How many moving objects exist? 
•  What is the direction of each moving object? 
•  How fast is object moving? 

If we could get the answer of these questions we 
can interpret the scene better. 
	  



Applications 

•  Background Subtraction  
v  a stationary camera is observing the scene 
v  Goal: Separate the static background from the 

moving foreground   
	  



Applications 

•  Motion Segmentation  
Segment the video to the moving objects with 
different motions 
 



Other Applications 

•  Estimating 3D structure 
•  Segmenting objects based on motion cues 
•  Recognizing events and activities 
•  Improving video quality (motion stabilization) 



Image Alignment 

•  Alignment between two images or image patches 
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Motion Estimation 
To estimate motion between two or more images: 
•  Error Metric 
v   Measuring the similarity/dissimilarity between 

images 
•  Search Technique 
v  Full search (Simple but too slow) 
v  Hierarchical coarse-to-fine methods based on image 

pyramids 
•  Optical Flow 
v  Multiple independent motions 

 



Translational Alignment 

•  Sum of Squared Differences 
 
 

v  𝑢=(𝑢,𝑣) : displacement vector 
v  𝑒↓𝑖 = 𝐼↓1 (𝑥↓𝑖 +𝑢)− 𝐼↓0 (𝑥↓𝑖 )      :the residual error 

 Displaced Frame Difference ( Video Coding) 
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Translational Alignment	  
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Robust Error Metrics 
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Grows less quickly than the quadratic penalty associated with least squares 
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Robust Error Metrics 
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Spatially Varying Weights 
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Weighted (or Windowed) SSD function 



Windowed SSD 

•  In case of a large range of motion: 
v  The above metric has bias toward smaller 

overlapping solutions 
 

v  Ton counteract this bias: 
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Bias and Gain (Exposure Differences) 

1 0( ) (1 ) ( )I Iα β= + +x+u x

•  O#en	  the	  two	  images	  being	  aligned	  were	  not	  
taken	  with	  the	  same	  exposure.	  

•  Simple	  model	  of	  intensity	  varia<ons:	  

•  α	  	  is	  the	  gain	  
•  β	  is	  the	  bias	  



Bias and Gain 

•  Least squares with bias and gain 

•  Performing a linear regression 
•  Color image 

– Estimate bias and gain for each color channel  
– Bias and gain compensation is also used in video 

codecs, known as Weighted Prediction. 

[ ] [ ]2 2
1 0 0( ) ( ) (1 ) ( ) ( )BG i i i i

i i
E I I I eα β α β= − + − = + −∑ ∑u x +u x x



Correlation 

•  Cross-Correlation 
– Alternative to taking intensity difference 
– Maximize the product of two aligned images 
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Is Bias and Gain modeling unnecessary? 

Bright patch exists in images 



Normalized Cross-Correlation 
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•  NCC in [-1,1] 
•  Works well when matching images taken with different 

exposure 
•  Degrades for noisy low-contrast regions (Zero variance) 



Hierarchical Motion Estimation 

•  How can we find its minimum? 
•  Full search over some range of shifts 

– Often used for block matching in motion 
compensated video compression 

– Simple to implement but slow 

•  To accelerate the search process 
– Hierarchical motion estimation 



Hierarchical Motion Estimation 

•  Steps 
–  Construct image pyramid 
–  Full search over the range  
–  At coarser levels, search over a smaller number of discrete pixels 
–  The motion estimation from one level is used to initialize a smaller 

local search at next finer level 
–  Not guaranteed to produce the same results as a full search, but works 

almost as well and much faster 

	  

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 
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Optical Flow 
•  The most general and challenging version of motion 

estimation 
•  Computing an independent estimate of motion at each 

pixel of the image 
 



Optical Flow Field 



Problem Definition : Optical Flow 

•  How to estimate pixel motion from image H to 
image I? 

•  Solve pixel correspondence problem 
–  given a pixel in H, look for nearby pixels of the same color in I 



Problem Definition 

•  Key assumptions 
v color constancy:  a point in H looks the same in I 

–  For grayscale images, this is brightness constancy 
v small motion:  points do not move very far 

•  This is called the optical flow problem 



Optical Flow Constraints (gray scale images) 

•  Let’s look at these constraints more closely 
•  brightness constancy:   Q:  what’s the equation? 

𝐻(𝑥,  𝑦)  =  𝐼(𝑥+𝑢,  𝑦+𝑣) 
•  small motion:  (u and v are less than 1 pixel) 

–  suppose we take the Taylor series expansion of I: 



Combining Equations 

What is It   

How do we calculate it? 

?   The time derivative of the image at (x,y) 

The x-component of 
the gradient vector. 



Optical Flow Equation 

Problem 1: 
•  Q:  how many unknowns and equations per 

pixel? 

1 equation, but 2 unknowns 
(u and v) 



•  For points on a line of fixed intensity we can only recover the 
normal flow 

Problem 2: 
The Aperture Problem 

Time t+dt Time t 

? 
Time t+dt 

Where did the blue point move to? 

We need additional constraints 



Use Local Information 

Sometimes enlarging the aperture can help 



Local smoothness 
Lucas Kanade (1984) 
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Lucas Kanade (1984) 

Goal:    Minimize 
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Method: Least-Squares 



How does Lucas-Kanade behave? 
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We want this matrix to be invertible. 

i.e., no zero eigenvalues 



How does Lucas-Kanade behave? 

•  Edge	  è	  	  	  	  	  	  	  	  	  	  	  	  	  becomes singular AAT
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How	  does	  Lucas-‐Kanade	  behave?	  

•  Homogeneous è                 è 0 eigenvalues 0≈AAT
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How does Lucas-Kanade behave? 

•  Textured regions è	  two high eigenvalues 

( ) 0, ≠yx II



How does Lucas-Kanade behave? 

•  Edge	  è	  	  	  	  	  	  	  	  	  	  	  	  	  becomes singular 

0≈AAT

AAT

•  Homogeneous regions è	  low gradients 

•  High texture è	  	  



When does it break? 

Homogeneous 
objects generate 

zero optical 
flow. 

Fixed sphere. 
Changing light 

source. 

Non-rigid 
texture motion 



Other break-downs 

•  Brightness constancy is not satisfied 

•  A point does not move like its neighbors  
–  what is the ideal window size? 

•  The motion is not small (Taylor expansion doesn’t hold) 

Correlation based methods 

Regularization based methods 

Use multi-scale estimation 



Multi-Scale Flow Estimation 

image It-1 image I 

Gaussian pyramid of image It Gaussian pyramid of image It+1 

image It+1 image It 
u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 



Multi-Scale Flow Estimation 

image It-1 image I 

Gaussian pyramid of image It Gaussian pyramid of image It+1 

image It+1 image It 

run Lucas-Kanade 

run Lucas-Kanade 

warp & upsample 

. 

. 

. 



Examples: Motion Based 
Segmentation 

Input Segmentation result 



Examples: Motion Based 
Segmentation 

Input Segmentation result 



Other	  break-‐downs	  

•  Brightness constancy is not satisfied 

•  A point does not move like its neighbors  
–  what is the ideal window size? 

•  The motion is not small (Taylor expansion doesn’t hold) 

Correlation based methods 

Regularization based methods 

Use multi-scale estimation 



Regularization 
Horn and Schunk (1981) 

Add global smoothness term 
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Solve by calculus of variations 


