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Video

* A video 1s a sequence of frames captured at different
times

 The video data 1s a function of
¢ time (t) =

¢ space (X,y) |

"”’ [(.X,y,t)




Introduction to motion estimation

Given a video sequence of moving objects or
camera, what information can we extract?

* How is the camera moving?

 How many moving objects exist?

* What 1s the direction of each moving object?
* How fast i1s object moving?

If we could get the answer of these questions we
can interpret the scene better.



Applications

* Background Subtraction

¢ a stationary camera is observing the scene

¢ Goal: Separate the static background from the
moving foreground




Applications

* Motion Segmentation

- = - -

Segment the video to the moving objects with

different motions




Other Applications

Estimating 3D structure
Segmenting objects based on motion cues
Recognizing events and activities

Improving video quality (motion stabilization)



Image Alignment

* Alignment between two 1mages or image patches
template 1image image

. / 0 (X) . 1 1 (X)
discrete pixel locations

(X, = (x,0)} (eld = (el yaT' )}




Motion Estimation

To estimate motion between two or more images:
* Error Metric

¢ Measuring the similarity/dissimilarity between
1mages

* Search Technique
¢ Full search (Simple but too slow)

¢ Hierarchical coarse-to-fine methods based on image
pyramids

* Optical Flow
¢ Multiple independent motions



Translational Alignment

* Sum of Squared Differences
Egp(@)= Y [1,0x+w)=1,(x)] =Y ¢

“* u=(u,v) : displacement vector
o eli=/1 (xdi+u)—-/0 (xli) :the residual error
Displaced Frame Difference ( Video Coding)



Translational Ali gnment
Egp@ =X [50x+w=1x)] = 3e;

¢ Assumptions:

v Ignoring the possibility that for a given alignments
some parts of Iy lie outside of I; boundaries and so are
not visible

v" Assuming that corresponding pixel values remain the
same 1n two 1mages.

\/

*¢ u can be fractional : Interpolation Functions needed
¢ Color images :

v" Do the same for all 3 color channels

v’ Transform image into a different color space



Robust Error Metrics

* Replacing the squared error terms with a robust function

p(e;)
ESRD(u) — Zp(ll(xi +u) _]O(Xi)) — Zp(ez)

Grows less quickly than the quadratic penalty associated with least squares
*¢* Sum of Absolute differences

Eg,,(u)= 2‘11(3(1' +u)_10(xi)‘ = Z

!

€

v’ widely used in motion estimation for video coding because
of 1t’s speed

v'ESAD is NOT differentiable at the origin, not well suited to
gradient descent approaches



Robust Error Metrics

° Smoothly Varying function (Black and Rangarajan (1996))
— Quadratic for small values but
— grows more slowly away from the origin

* Geman—McClure function

2
X

1+x°/a’
a: constant that can be thought of as an outlier threshold
¢ for small values of x :

22
pem (x) = x
“* as x becomes larger:

pem(x) = a*

Poy (X) =



Spatially Varying Weights

* Pixels that may lie outside of the boundaries

* Partially or completely downweight the contribution
of certain pixels
¢ Background Stabilization or Background Alignment

v downweight the middle part of the image, containing
independently moving objects

Eyssp (W) = 0y (x)a(x, +w)[1,(x, +w) = [,(x)]

Weighted (or Windowed) SSD function
wo and wqare zero outside of image boundaries



Windowed SSD

* In case of a large range of motion:

¢ The above metric has bias toward smaller
overlapping solutions

A= z @, (X, )@ (X; W) Overlapping Area

** Ton counteract this bias:

RMS = \/EWSSD /| A : per — pixel squared pixel error



Bias and Gain (Exposure Differences)

e Often the two images being alighed were not
taken with the same exposure.

* Simple model of intensity variations:
[(x+u)=(1+x),(x)+

* a isthe gain
* Bis the bias



Bias and Gain

* Least squares with bias and gain

E,.(n)= Z[ll(xi +u)-(I+a)l,(x,) —,3]2 = Z[a]o(xi)+,8—ei]2

1

* Performing a linear regression

* Color image
— Estimate bias and gain for each color channel

— Bias and gain compensation 1s also used 1n video
codecs, known as Weighted Prediction.



Correlation

Cross-Correlation
— Alternative to taking intensity difference
— Maximize the product of two aligned images

Eqc(u)= Z[O(Xi)ll(xi +u)
Is Bias and Gain modeling unnecessary?

Bright patch exists in images



Normalized Cross-Correlation

D) =1y || L(x, +w) =1, |

Eyec(u) = : — —
JZ_[IO(x,.)—lo] \/Z[ll<xi+u>—11]

where

TOZ%Z[O(XJ and

- 1
1, ZWZA(Xz‘ +u)

* NCCin[-1,1]

* Works well when matching images taken with different
exposure

* Degrades for noisy low-contrast regions (Zero variance)



Hierarchical Motion Estimation

e How can we find 1ts minimum?

* Full search over some range of shifts

— Often used for block matching in motion
compensated video compression

— Simple to implement but slow

* To accelerate the search process

— Hierarchical motion estimation



Hierarchical Motion Estimation

* Steps

Construct image pyramid
Full search over the range 27 [-S,S]’
At coarser levels, search over a smaller number of discrete pixels

The motion estimation from one level is used to initialize a smaller
local search at next finer level

Not guaranteed to produce the same results as a full search, but works
almost as well and much faster a

u=1.25 pixels

u=2.5 pixels

u=>3 pixels
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Optical Flow

* The most general and challenging version of motion
estimation

* Computing an independent estimate of motion at each

pixel of the image

*
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Problem Definition : Optical Flow

./ Q, ®

\ @
o—> i ° .
H(x,y) I(x,y)

* How to estimate pixel motion from image H to
image 1?

» Solve pixel correspondence problem
— given a pixel in H, look for nearby pixels of the same color in I



Problem Definition

* Key assumptions

¢ color constancy: a point in H looks the same in I

— For grayscale images, this is brightness constancy

¢ small motion: points do not move very far

* This 1s called the optical flow problem



Optical Flow Constraints (gray scale images)

(2, 9)
., 0
displacement = (u,v) (2 + u,y +v)

* Let’s look at these constraints more closely

 brightness constancy: Q: what’s the equation?

H(x, y) = (x+u y+v)
« small motion: (u and v are less than 1 pixel)

— suppose we take the Taylor series expansion of I:

I(x+u, y+v) = I(x, y)—l—ﬂ ﬂfu—l—higher order terms
~I(z,y) + Giu+ G



Combining Equations

O=I(zx+u,y+v)— H(x,y)
~ I(z,y) + Lyu+ Iyvo — H(zx, y)

= I Leu + Iyv shorthand: I, = %

~I; + VI - [u v] The X-component of
the gradient vector.

What is I.? The time derivative of the image at (x,y)

How do we calculate 1t?

O=1I1+VI-|u v]




Optical Flow Equation
O=1I1+VI-|u v]

Problem 1:

* Q: how many unknowns and equations per
pixel?

1 equation, but 2 unknowns
(u and v)



Problem 2:
The Aperture Problem

* For points on a line of fixed intensity we can only recover the

normal flow

Time t Time t+dt

|

Where did the blue point move to?

We need additional constraints

6)



Use LLocal Information

Sometimes enlarging the aperture can help
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[L.ocal smoothness
Lucas Kanade (1984)

lu+1,y=-I

—)

e assume locally constant motion
¢ pretend the pixel’s neighbors have the same (u,v)
v' If we use a 5x5 window, that gives us 25

equations per

pixel!
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Lucas Kanade (1984)

Goal: Minimize HAﬁ_sz

Method: Least-Squares

Ai=5b
|

At 4u=4"p
—— e
2x2 2x1  2x1

!

i=(4a4) ATb




How does Lucas-Kanade behave?

i=(4a4) ATb

Z[)% Z[x]y

A" 4= ,
20l 2Ty

We want this matrix to be invertible.

1.€., no zero eigenvalues



How does Lucas-Kanade behave?

« Edge = A" A becomes singular

- i
>1io Yrd,[-1,] [0
2
PREFEEDW Y A

!

} 1s eigenvector with eigenvalue 0




How does Lucas-Kanade behave?

* Homogeneous = A"4=0 S0 eigenvalues

(I)w]y)z 0

_ ) -
Z[x Z]x]y

A" A= ,
20l 2y




How does LLucas-Kanade behave?

» Textured regions =» two high eigenvalues




How does LLucas-Kanade behave?

* Edge = A" A becomes singular

 Homogeneous regions =» low gradients
A" 4=0
* High texture =» g



When does 1t break?

*

-

Homogeneous Fixed sphere. Non-rigid
objects generate Changing light texture motion
zero optical source.
flow.




Other break-downs

* Brightness constancy 1s not satisfied

b Correlation based methods

* A point does not move like its neighbors
— what 1s the ideal window size?

b Regularization based methods

* The motion is not small (Taylor expansion doesn’t hold)

k Use multi-scale estimation



Multi-Scale Flow Estimation

u=1.25 pixels

u=2.5 pixels

u=>3 pixels

Gaussian pyramid of image I; Gaussian pyramid of image I,



Multi-Scale Flow Estimation

run Lucas-Kanade «e—moHAo

1
1

warp & upsample ;
P

run Lucas-Kanade

Gaussian pyramid of image I,

Gaussian pyramid of image I;



Examples: Motion Based
Segmentation

Segmentation result



Examples: Motion Based
Segmentation

Segmentation result



Other break-downs

* Brightness constancy 1s not satisfied

b Correlation based methods

* A point does not move like its neighbors
— what 1s the ideal window size?

b Regularization based methods

* The motion is not small (Taylor expansion doesn’t hold)

b Use multi-scale estimation



Regularization
Horn and Schunk (1981)

Add global smoothness term

Smoothness error:

E, = H(ui +u§ )-l— (v)% —|—v§ )dxdy
D

constancy equation

Error in brightness EC — J.J. ([xu + ]yv + ]t)2 dx dy
D

Minimize: E .+ AE,

Solve by calculus of variations



